Reconstrucción paleoambiental del sitio arqueológico Alfar

download Reconstrucción paleoambiental del sitio arqueológico Alfar

If you can't read please download the document

description

situacion paleoambiental del sitio arqueológico alfar

Transcript of Reconstrucción paleoambiental del sitio arqueológico Alfar

  • they were located at the beginning and the end of the humanoccupation. The P3 samplings cover from I to VIII stratigraphicunits, although the focus was on units I to V (from 450 to 310 cm).At this stage the total sample was analyzed, which determined thepercentage of amorphous silica biomineralizations (silicophyto-liths, diatoms, spicules, chrysophytes) and charcoals with respect tothe total mineralogical components in each level. About 5 g soilwere taken from each sample (Alvarez et al., 2008). Organic matter

    was oxidized with 30% hydrogen peroxide at 70 C. The clayminerals were extracted by repeated centrifugation at 1000 rpm for3 min. Once the sample was clean, it was mounted on immersionoil, and 500 grains were counted under optical (OM, Zeiss, 450magnification) and petrographic microscopes (PM, Olympus BXPol,600 magnification), to calculate the corresponding percentages.The qualitative analysis of the silicophytolith morphologies wasmade according to the Madella et al. (2005) and Twiss (1992)specifications. Part of the samples were observed by scanningelectron microscope (SEM) (Jeol JSM-6460 LV) and analyzed byenergy dispersive X-ray analysis (EDAX) to explore a possiblerelationship between opal silica composition and silicophytolithdeterioration.

    3.2. Analysis of gastropods

    Simultaneously to silicophytolith sampling, for the malaco-logical analysis P1 and P2 profiles were sampled (Fig. 2). Theseprofiles from I to V stratigraphic units were located in the archae-ological excavation sector in grids 3 and 5, to control lateral vari-ations in the mollusc record. Twenty eight samples were collectedat 10 cm intervals (fourteen in each profile) from levels located at450 and 310 cm depth. In the malacological analysis each samplewas sieved (0.5 4), carefully washed and dried. All molluscsrecovered were counted under a binocular loupe (Iroscope, 40magnification) and discriminated at the species level. Relativeabundances and densities were calculated. The taphonomicalattributes observed in shells were: fragmentation, abrasion,different coloration, and polished surface (shine).

    3.3. Analysis of faunal remains

    Faunal specimens from 11 grid-squares (NISP 1608) (grids2e7 and 11e15) associated with the human occupation of the

    Fig. 2. Stratigraphic sequence of the Alfar archaeological site with the four sampleprofiles. P1 and P2 Alfar profile 1 (malacological samplings), P3 Alfar profile 3(phytolithic sample) and P4 Alfar profile 4 (sediment sample).

    Fig. 1. Geographical location of Alfar archaeological site (A) and excavation area, with a detail of the excavated grid-squares (B).

    M. Bonomo et al. / Quaternary International xxx (2012) 1e13 3

    241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305

    306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370

    JQI3251_proof 2 April 2012 3/13

    Please cite this article in press as: Bonomo, M., et al., Paleoenvironmental studies of Alfar archaeological site (mid-Holocene; SoutheasternPampas of Argentina): Silicophytoliths, gastropods and archaeofauna, Quaternary International (2012), doi:10.1016/j.quaint.2012.03.039

  • Alfar site (Fig. 2) were studied with the aim of complementinginformation derived from the other proxies. To evaluate envi-ronmental conditions on a site scale, at the time of the depo-sition of the archaeological material and after, when they wereburied, the following taphonomical variables were taken intoconsideration: weathering, geological abrasion, root marks, andchemical deposition (Behrensmeyer, 1978; Andrews, 1990;Lyman, 1994; Fisher, 1995; Gutirrez and Kaufmann, 2007). Inaddition, from the taxa present at the site, animal habitats andlocal and regional climatic conditions were analyzed (Burgosand Vidal, 1951; Olrog and Lucero, 1981; Williams, 1991; Tonniet al., 1999; Darrieu and Camperi, 2001; Bastida andRodriguez, 2003; Canevari and Balboa, 2003; Narosky andYzurieta, 2003; Jaureguizar, 2004; Laita and Aparicio, 2005;Brquez et al., 2006; Leynaud et al., 2006; Politis et al., 2011). Inorder to evaluate vertical variations, the taphonomical traceswere analyzed in the 5 cm artificial levels used in the archae-ological excavation.

    4. Results

    The silicophytoliths, diatoms, gastropods, and archaeofaunalmaterials have offered information on the diverse parts of thepedostratigraphic sequence in which the archaeological remains ofAlfar site are deposited. Only silicophytoliths are presentthroughout the whole sampled stratigraphic column.

    4.1. Analysis of phytoliths

    Generally, silicophytoliths are an important fraction in all thesamples of P3, being about 17e54% of the total mineralogicalcomponents of the sediments (Fig. 3A). Most relevant lightminerals are potassium and CaeNa feldspars, fragments of quartz,alterites, volcanic ashes and few muscovites. Heavy minerals arescarce and they are represented by opaque minerals, epidotes,amphiboles and pyroxenes (Fig. 4a). Although their state is variable,they are usually subangular to rounded. The variability in particlesize is considerable, some levels being texturally more heteroge-neous than others (Fig. 4b), agreeing with the texture defined inTable 1. Particularly in relation to archaeological materials, gypsumcrystals were observed in the transition between units II and III (S5:410e400 cm depth), (Fig. 4c), and the MEB analysis suggests thepresence of staurolites in unit II (S3: 430e420 cm) (Fig. 4d). This isa rare iron aluminosilicate of metamorphic origin that could beassociatedwith the rocks of the Tandilia crystalline basement. Theirexcellent state of preservation is striking, which could be indicatinga little transport.

    Based on amorphous silica biomineralization (silicophytoliths,chrysophytes, diatoms and spicules) and charcoal contents withrespect to the total mineralogy of sediments, the following groupswere designated (Fig. 3A):

    a) Unit I has the lowest silicophytolith content, about 17%. From445 cm, the silicophytolith content increases from 30% to about50% at the end of stratigraphic unit II (S5). The charcoals showthe same trend, with the maximum of all the sequence from445 to 430 cm, just at the beginning of the human occupationin unit II. In these samples, chrysophytes were also observed(Fig. 4e).

    b) At the base of unit III, from 400 to 370 cm depth (S6 to S8), thesilicophytolith content decreases to values close to 40%. WithinS7, the top level (385e380 cm) increases about 10% of the sil-icophytolith content with respect the lower one (390e385 cm)related to human occupation. S9 (370e360 cm) presents thehighest silicophytolith content (about 60%) and chrysophytesof all the sequence (Fig. 4f,j,k). From 360 cm depth, the silico-phytolith content decreases to the top of unit III with valuesclose to 30%. Unit IV has less charcoals and a third of the totalmineralogy is silicophytoliths.

    c) From S14 to the top, the sampled stratigraphic units (V to VIII)that were affected by modern human modifications start. Atthe base of stratigraphic unit V, in S14 (320e310 cm), diatomsbegin to appear, and in S15 (310e300 cm) spicules and scleras

    Table 1Textural analysis, organic matter and, carbonates from four sedimentary samples from grid 7 of Alfar archaeological site. Note: Size analyzed using a Malvern Mastersizermodel 2000 LASER particle counter; organic matter determined by the Walkley and Blake (1965) procedure; carbonates determined with a Netto digital calcimeter; pHdetermined from a 1:1 soil:water paste.

    Sample Depth (cm) Unit Archaeological remains Texture (Folk) Mz (phi) % Organic matter % Carbonates pH

    S4 350e345 III absent Sandy silt 5.421 0.53 0.40 6.82S3 395e390 III present Sandy silt 5.159 0.60 0.40 7.01S2 425e420 II present Silty sand 3.515 0.43 0.30 6.97S1 450e445 I absent Sandy silt 4.597 0.41 0.20 6.88

    Table 2Taxonomical abundance at the Alfar archaeological site.NISP number of identified specimens.Q5

    Taxa NISP

    MOLLUSCA 30Amiantis sp. 2Mesoderma sp. 2MAMMALIA 310Didelphidae 2Dasypodidae 315Chaetophractus villosus 149Tolypeutes matacus 19Carnivora 1cf. Ducysion sp. 2Conepatus sp. 3Otariidae 343Artiodactyla 4Lama guanicoe 34Cervidae 2Ozotoceros bezoarticus 14Cetacea 2Pontoporia blainvillei 5Rodentia 111Holochilus brasilensis 2Lagostomus sp. 49cf. Microcavia sp. 1Ctenomys sp. 74AVES 25Rheidae 119Caradriforme 2Psitacidae 1Theristicus sp. 1Spheniscus sp. 20TELEOSTOMI 26Myliobatis sp. 1AMPHIBIA 3Subtotal 1674Indeterminate (2 cm) 312Total 1986

    M. Bonomo et al. / Quaternary International xxx (2012) 1e134

    371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435

    436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500

    JQI3251_proof 2 April 2012 4/13

    Please cite this article in press as: Bonomo, M., et al., Paleoenvironmental studies of Alfar archaeological site (mid-Holocene; SoutheasternPampas of Argentina): Silicophytoliths, gastropods and archaeofauna, Quaternary International (2012), doi:10.1016/j.quaint.2012.03.039

    Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text-
  • Fig. 3. Analysis of amorphous silica biomineralizations and charcoals. A) Silicophytolith, chrysophyte, diatom, spicule and charcoal content (% of the total mineralogical componentsof the soil). B) Silicophytolith predominant morphologies (% of silicophytolith fraction).

    M. Bonomo et al. / Quaternary International xxx (2012) 1e13 5

    501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565

    566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630

    JQI3251_proof 2 April 2012 5/13

    Please cite this article in press as: Bonomo, M., et al., Paleoenvironmental studies of Alfar archaeological site (mid-Holocene; SoutheasternPampas of Argentina): Silicophytoliths, gastropods and archaeofauna, Quaternary International (2012), doi:10.1016/j.quaint.2012.03.039

  • (Fig. 4h). In S17 (290e280 cm) there are no chrysophytes ordiatoms, and only a few spicules (Fig. 4i) were observed. Thetop samples (S20eS21: 260e240 cm) only differ from thelower ones because of their higher diatom content, althoughnot exceeding 3%.

    In summary, the content of other amorphous silica bio-mineralizations (chrysophytes, diatoms and spicules) is very low inthe whole sequence (Figs. 3A and 4). Chrysophytes represent about0.3e1.7% of the total mineralogy and, although their distribution is

    fairly uniform in the P3 profile, they are the only ones present fromunit II to IV (from 445 to 320 cm), being more representative insamples 5, 9 and 11. Diatoms and spicules are present in the upperunits of the profile (units V to VIII). Diatoms represent about0.2e1.6% of the mineralogical components and, although S20eS21(260e240 cm) are the samples with the highest content, theyappear from 320 cm (S14) to 290 cm (S16). Spicules represent0.2e0.6% of the total mineralogy, and appear from 310 cm (S15) to240 cm (S21). The samples S15, S18 and S21 are the only onescontaining, although in low proportion, spicules, diatoms and

    Fig. 4. Amorphous silica biomineralizations and charcoals recorded at Alfar archaeological site. a, b panoramic view of heavy (a) and light (b) mineralogy, and silicophytoliths ofunit I (OM), c gypsum in the transition between units II and III (OM), d staurolites in unit II (SEM and EDAX), e panoramic view of charcoals and silicophytoliths of theboundary between units I and II (OM), f panoramic view of silicophytoliths and chrysophytes in the unit III (OM), g charcoals (SEM),h silicophytoliths and diatoms of theboundary between units IV and V (SEM), i spicules (SEM), j detailed view of chrysophytes (OM and SEM), k predominant silicophytolith morphologies: elongates, bilobates,cross; and chrysophytes (OM), l elongates (SEM), m bilobates silicophytolith (SEM), n trapeziform sinuate silicophytolith (SEM), o saddles (OM and SEM), per silicaskeletons composed of elongates and subepidermal cells (OM and SEM), s broken bilobates (physical degradation, OM and SEM), t weathered silicophytoliths and unidentifiedsilicophytoliths (chemical degradation, OM). Bar: a, b 100 mm; c, j, m, n, o, s 2 mm; d, e, f, g, h, i, k, l, p, q, r, t 20 mm.

    M. Bonomo et al. / Quaternary International xxx (2012) 1e136

    631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695

    696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760

    JQI3251_proof 2 April 2012 6/13

    Please cite this article in press as: Bonomo, M., et al., Paleoenvironmental studies of Alfar archaeological site (mid-Holocene; SoutheasternPampas of Argentina): Silicophytoliths, gastropods and archaeofauna, Quaternary International (2012), doi:10.1016/j.quaint.2012.03.039

    Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text:
  • chrysophytes in addition to abundant silicophytoliths. Black parti-cles were observed in most of the samples, some of them opaqueminerals, and charcoals the others (Fig. 4e,g).

    Within the silicophytolith fraction, predominant morphologiesare characteristic of the Poaceae family, rondels (23e38%), elon-gates (17e34%), trapeziform sinuates (1e19%), bilobate short cells(6e15%), acicular hair cells (2e12%) and bulliform cells (0.6e6%)being the most representative (Fig. 3B, 4len). Although there isa great homogeneity in the morphotypes throughout the profile,certain changes in the contents of some morphologies corroboratethe changes observed from the quantitative analysis ofsilicophytoliths.

    At 450e440 cm (S1), bilobate short cells, trapeziform sinuateand undefined silicophytoliths decrease towards the top level in thebase of unit II, whereas elongates increase their content. At430e420 cm (S3) globular equinates were observed. As in S1, at390e380 cm (S7) bilobate short cells and trapeziform sinuatedecrease to the upper level in unit III. In S9 (370e360 cm), whichpresents the lowest content of indefinite silicophytoliths andbroken bilobate short cells, but silica skeletons are present, a higherenvironmental stability were also observed. In this sample fromunit III there are saddles, a typical morphology of C4 plants (Fig. 4o),that could indicate drought periods of variable extension. Thiswater deficit favours the concentration of alkaline salts that modifythe soils, enabling the development of C4 communities. Althoughwith a low representation, this chloridoid morphotype is presentthroughout the stratigraphic units IeVI. At 320e310 cm (S14)a change evident in the decrease of rondels and bulliform cellincrease was observed. From 300 cm (S16) elongates and bulliformcells increases their content and, although some of them are notweathered, most are corroded or broken.

    A notable aspect is the presence in unit III (S6, S7top, S9) of silicaskeletons with grass affinity mostly composed by elongates and, inlesser proportion by short cells (Fig. 4per). In units V and VI (S14and S17) sulcate tracheids were also observed. Another importantaspect is the weathering state of silicophytoliths. In all the samples,the physical weatheringwas recorded as broken bilobate short cells(2e13%) (Figs. 3B and 4s). The chemical weathering was recordedon indefined silicophytoliths (2e12%) and in silicophytoliths that,although they were classified, show different degree of weathering(Figs. 3B and 4t).

    4.2. Analysis of gastropods

    The malacological composition is represented by five species ofgastropods (Table 3; Fig. 5): Heleobia parchappii, Biomphalaria

    peregrina, Zilchogyra costellata,Miradiscops brasiliensis and Succineameridionalis. The recovered shells are 792 and the abundancebetween both stratigraphic profiles is very similar, 383 in P1 and407 in P2. In the two sampling profiles the most abundant corre-sponds to B. peregrina, followed by H. parchappii, S. meridionalis,M. brasiliensis and Z. costellata. The last one is recorded only in oneof the two sampled profiles, in P1.

    In relation to the abundance of each gastropod species somedifferences are observed throughout the stratigraphic sequence. Inthe first place, unfortunately in the deposits that contain thearchaeological remains, at the base of the sequence, the record ofgastropods or fragments of them is null. Secondly, the presence ofmolluscs is recorded at the top of the sequence, specifically in unitIII since 370 cm in P1 and since 360 cm in P2. In P1 the higherabundance of molluscs is represented by aquatic species and taxawith a wide range of environmental tolerance, H. parchappii.Afterwards, the level with greatest abundance is the sample 12(340e330 cm) as a consequence of the sudden increase of B. pere-grina; after that a decrease of this species is observed. However, inthe P2 B. peregrina is the only species recorded in S10 (360e350 cm)and themost abundance is recorded in S14 (320e310 cm) in the topof the sampling profile as result of an increase of B. peregrina andH. parchappii. The taphonomical analysis indicates signals of frag-mentation in B. peregrina (S10) in P2. In units IV and V the remainsof marine and freshwater shells show abrasion, high fragmentationand fragments with rounded edges.

    4.3. Analysis of the archaeofaunal remains

    In a previous paper (Bonomo and Leon, 2010) a brief expositionon surface of the archaeological materials was determined from thestages of weathering (stages 0 and 1 82%) of the bone remains.Additionally, 86% of the bones were included in stage 1 of geolog-ical abrasion, indicating that they were only affected in situ bywater without giving rise to a subrepresentation of the sample.Root marks were observed in low proportions (13.2%), whereaschemical deposition corresponds wholly to specimens stained withmanganese oxide (4.7%). In the same way, the scarce collagencontent of the bones might be linked to the variations in thephreatic stratum (Bonomo et al., 2008). Therefore, this indicatesthat the archaeological materials were discarded in a water-containing context, a variable condition after they were buried,and they were subsequently quickly covered by sediments thatwere pedogenized.

    Considering these variables in a vertical sense the followingdifferences are observed (Fig. 6): 1) in unit II there is greater

    Table 3Malacological composition of Alfar Profile 1 (P1) and Profile 2 (P2). Q6

    Profile-sample Depth (cm) Unit Species %

    Heleobiaparchappii

    Biomphalariaperegrina

    Zilchogyracostellata

    Miradiscopsbrasiliensis

    Succineameridionalis

    Total

    P1-S14 310e320 V 9 82 0 1 2 94 22.98P1-S13 320e330 IV 0 84 0 5 0 89 21.76P1-S12 330e340 III 0 123 0 3 0 126 30.81P1-S11 340e350 III 0 21 0 0 0 21 5.13P1-S10 350e360 III 0 4 1 0 0 5 1.22P1-S9 360e370 III 59 5 0 4 6 74 18.09Subtotal e e 68 319 1 13 8 409 eP2-S14 310e320 V 61 102 0 0 6 169 44.13P2-S13 320e330 IV 1 59 0 3 0 63 16.45P2-S12 330e340 III 0 93 0 1 0 94 24.54P2-S11 340e350 III 0 54 0 0 0 54 14.10P2-S10 350e360 III 0 3 0 0 0 3 0.78Subtotal e e 62 311 0 4 6 383 e% Total of species 16.42 79.55 0.13 2.14 1.76 e 100.00

    M. Bonomo et al. / Quaternary International xxx (2012) 1e13 7

    761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825

    826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890

    JQI3251_proof 2 April 2012 7/13

    Please cite this article in press as: Bonomo, M., et al., Paleoenvironmental studies of Alfar archaeological site (mid-Holocene; SoutheasternPampas of Argentina): Silicophytoliths, gastropods and archaeofauna, Quaternary International (2012), doi:10.1016/j.quaint.2012.03.039

    Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted TexteOriginal text:Inserted Text-Original text:Inserted Text-
  • weathering between 425 and 410 cm depth; 2) although abrasion isless between 445 and 415 cm, it is more intense (stage 1, 2, and 3sensu Gutirrez and Kaufmann, 2007); 3) the percentage of speci-mens showing root marks is higher between 440 and 420 cm (unitII), peaking at between 400 and 395 cm depth (base of unit III), 4)stage 1 abrasion is heavier between 415 and 385 cm in the top of II

    and the base of unit III, and 5), manganese oxide is more frequenton the upper levels, especially between 420 and 395 cm depth.

    Taking into account the taxa of the archaeofaunal record thatprovide palaeoenvironmental information on a local and regionalscale, disparities are observed when bearing in mind their envi-ronmental requirements (Table 4). For the base of unit II

    Fig. 5. Continental gastropods identified in Alfar 1. A Heleobia parchappii, B Biomphalaria peregrina, C Miradiscops brasiliensis, D Zylchogira costellata and E Succineameridionalis.

    M. Bonomo et al. / Quaternary International xxx (2012) 1e138

    891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955

    956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999

    100010011002100310041005100610071008100910101011101210131014101510161017101810191020

    JQI3251_proof 2 April 2012 8/13

    Please cite this article in press as: Bonomo, M., et al., Paleoenvironmental studies of Alfar archaeological site (mid-Holocene; SoutheasternPampas of Argentina): Silicophytoliths, gastropods and archaeofauna, Quaternary International (2012), doi:10.1016/j.quaint.2012.03.039

  • (445e425 cm) the predominant species are Ch. villosus, Tolypeutesmatacus, Lagostomus sp., L. guanicoe, O. bezoarticus, Ctenomys sp.and H. brasiliensis. Their distributions (Olrog and Lucero, 1981;Canevari and Balboa, 2003; Brquez et al., 2006; Politis et al., 2011)and the environmental variations of their habitats (e.g., the waterindex, Burgos and Vidal,1951, andmean annual temperature, Politiset al., 2011), indicate sub-humid dry regional conditions. On a localscale, the presence of the above-mentioned mammals, Pontoporiablainvillei, Theristicus sp., Spheniscus sp., indeterminate fishes,Myliobatis sp., and Amiantis sp. indicate multiple lateral facies fromsea or estuary ones passing alongside the edges of bodies of waterto steppes and prairies (Olrog and Lucero, 1981; Bastida andRodriguez, 2003; Narosky and Yzurieta, 2003; Laita and Aparicio,2005; Brquez et al., 2006). The presence of T. matacus, H. brasi-lensis and P. blainvillei suggests it will have been hot (Tonni et al.,1999; Jaureguizar, 2004).

    For the top of unit II (420e405 cm) mammals once more indi-cate sub-humid dry conditions on a regional scale (T. matacus,L. guanicoe, O. bezoarticus, Ctenomys sp., Table 4), yet the repre-sentativity of Ctenomys sp. (57.7%), hints at the surrounding land-scape having been one of dunes and sandy prairies according to itsenvironmental requirements (Olrog and Lucero, 1981; Brquezet al., 2006). At the same time the persistence of T. matacus mightimply that the environmental temperature continued to be hot.

    The taxaon thebaseofunit III (400e385cm) indicate situations ofwide-ranging regional humidityand temperature, thoughperhaps insub-humid dry conditions (e.g., L. guanicoe). Contrarywise, thepresence of Amphibia would be evidence of a local pool facies(Williams,1991; Leynaud et al., 2006, Table 4). These results point tovariations in water level, with drying out and flooding, and changesfrommarine environments to continental, and edges to beds.

    5. Discussion

    The integration between archaeological and paleoenvir-onmental studies of the diverse proxies analyzed in this paperallow the presence of water to be presumed in the whole strati-graphic sequence, though with drying-out/retraction, and floodingevents. In general, concentrations and variations of amorphoussilica biomineralizations (silicophytoliths, crysophytes, diatoms,and spicules) and malacological record mostly agree with thepreviously proposed evolution of the stratigraphic sequence(Bonomo and Leon, 2010). The presence of chrysophyte cyststhroughout the sequence would indicate recurrent saturation

    levels, but during short periods in which diatoms and spongespicules become associated with these shallow-water bodies.The high content of silicophytoliths throughout the sequence isevidence of a continuous plant covering, predominantly of grasses,that will have supported an also continuous pedological develop-ment. The pedogenesis has mostly evolved under hydromorphicconditions, alternating with short periods of dryness. The first ofthese periods is recorded in the top of unit II, where archaeofaunaalso indicates sub-humid dry conditions during human occupation.

    The content of charcoals is highest at the base of the sequence(top of stratigraphic unit I and base of II), which could be a productof water saturation as well as the combustion activities carried outby the humans who occupied the site in the past. Silicophytolithproportions increase in concordance with the initial settlement ofhumans and the anthropic introduction of useful plants.

    Silica skeletons are easily disarticulated, and the presence ofarticulated silicophytoliths is a good indicator of environmentalstability (Osterrieth et al., 2002, 2009). These articulates, smoothelongates and whole crenates, acicular hair cells with conspicuouspoints, bilobates, trapeziforms, all of them very well preserved,were found at the following depths: 445e440 cm, 410e400 cm,385e380 cm, 370e360 cm, 330e320 cm, 300e290 cm, and260e250 cm, which could identify those levels as surfaces stabi-lized for considerable intervals of time during the Holocene. Somecould correspond to Entisoles and Hapludoles, typical soils on thebanks of watercourses or bodies of water. The level with the mostconspicuous pedogenesis is the middle sector of stratigraphic levelIII (370e360 cm). This paleosol has the largest articulated phytolithcontent, and the fewest broken bilobates, both evidence of higherenvironmental stability when humans abandoned the settlementand consequently stopped anthropic modification of the naturallandscape.

    In particular, the most representative silicophytolith morphol-ogies correspond to C3 type sub-families. The bilobate short cellsare characteristic of the Panicoideae sub-family, rondels of thePooideae and Stipoideae sub-family, and the trapeziform sinuate tothat of the Pooideae. The presence of C4 grass (saddle) silicophy-toliths, although scarce, is found in all the units of the lower andmiddle sector of the profile, units I to IV, including the profile sectorthat contains the archaeological material. They indicate droughtperiods when the hydric stress might generate salts that conditionthe growth of typical C4 plants, related to climatic changes fromdamp and fresh to warmer and drier, although they could also beassociated with local microtopographical modifications linked to

    Fig. 6. Vertical distribution of relative frequencies for the four taphonomical variables. Note: Color of the bars, in weathering: white stage 1, light grey stage 2; dark grey stage3, black stage 4; in geological abrasion, white stage 1, light grey stage 2, black stage 3; in Manganese oxide and root marks, black indicates the presence of these variables.

    M. Bonomo et al. / Quaternary International xxx (2012) 1e13 9

    10211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085

    10861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150

    JQI3251_proof 2 April 2012 9/13

    Please cite this article in press as: Bonomo, M., et al., Paleoenvironmental studies of Alfar archaeological site (mid-Holocene; SoutheasternPampas of Argentina): Silicophytoliths, gastropods and archaeofauna, Quaternary International (2012), doi:10.1016/j.quaint.2012.03.039

    Original text:Inserted Text-Original text:Inserted Text. Original text:Inserted Text. Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text;Original text:Inserted Text;Original text:Inserted Text[space]Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Texta
  • the extent and morphodynamics of the body of water. Theseconditions of higher salinity and an increase in the pH at thoselevels might explain the high degree of corrosion of the silicophy-toliths, particularly at the profile base (unit I). The abundance ofbroken but not corroded bilobate morphotypes is clear evidence ofprocesses connected with the increase in the transport andmobility dynamics of these silicophytoliths as clastic particles insaturated mediums on the edges of lagoons.

    The appearance of gastropods in the record is coincident withthe boundaries of stratigraphic units III and IV over the archaeo-logical levels (w370e330 cm). This difference between bothsampling profiles could be related to slope of the landscape whilecorresponding to the same unit. In unit III, P1 malacological data at370e360 cm depth indicate a shallow-water body and latterdesiccation or evapotranspiration facies suggested by presence ofcalcium carbonate and species of M. brasiliensis (370e360 cm) andZ. costellata (360e350 cm); terrestrial species that live undervegetation cover in decomposition and humus. The highestchrysophytes content in this level corroborate the presence ofa water body. The highest silicophytolith content and the moreconspicuous presence of the saddle morphotype at this depth couldcorroborate the event of desiccation or evapotranspiration, allow-ing the development of C4 plant communities. Taphonomicalcharacteristics and low abundance of gastropods in 360e350 cmdepth suggest a level with alteration and allochthonous shells ofB. peregrina in P2. At 350e340 cm depth there is a slight increase ofindividual of freshwater species in association with the evidence ofhigh fragmentation of shells and abundant root concretions.

    Malacological abundance and taxonomic associations indicatein 340e330 cm depth freshwater characteristics that could berelated with shallow environments in both sampling profiles. From330 to 310 cm, aquatic taxa of gastropods increase more in P2 thanin P1 during soil development. This inference takes into account thepresence of roots and micro mollusc punctoidea that inhabit soilswith high humidity and percentage of plant cover (Miquel et al.,2007; Miranda and Cuezzo, 2010). These results complement theinferences from phytoliths that also indicate the presence ofa paleosol. However, among the taphonomical signals at the top ofsampling sequence are a mixture of autochthonous and allochth-onous malacological materials, possibly linked with a streamcurrent and/or sea of higher energy that incorporated indetermi-nate fragments of marine molluscs.

    In unit II and the base of unit III containing the archaeologicalmaterials, the gastropod record is nonexistent. Human occupationmay have altered the natural conditions of the place and limited thedevelopment of microenvironments favorable to mollusc pop-ulations. The higher abundance of species and taxonomic diversityof mollusc at both profiles indicate that between units III and IV,different flooded sectors in irregular surface of the landscape arerecorded, located on the archaeological deposits.

    The taphonomical variables taken from faunal specimens rep-resented in the archaeological occupation indicates that thematerials were buried quickly and were subjected in situ to theinfluence of water. The taphonomical effects observed on bones ofdifferent taxa of unit II, and the sedimentary (Table 1) and silico-phytolith analyses (Fig. 3) indicate a depositional context at theedge of an interdune lagoon, the water volume of which was sub-jected to alternate events of retraction and flooding. The abrasionobserved on some remains was probably produced by waves in thebody of water, on the banks of which vegetation developed leadingto pedogenesis.

    The recorded fauna is diverse and from different habitats, whichreflects past human selection. Estuarine and continental taxa arerepresented, from dry environments as well as humid and associ-ated with high temperatures. The high frequency of Ctenomys sp.Ta

    ble

    4Verticaldistribution

    ofthetaxa

    inrelative

    freq

    uen

    cies.

    Dep

    th(cm)

    Lama

    guan

    icoe

    Ozotoceros

    bezoarticu

    sSp

    heniscus

    sp.

    Amiantis

    sp.

    Chae

    toph

    ractus

    villo

    sus

    Tolype

    utes

    matacus

    cf.

    Duc

    ysionsp

    .Co

    nepa

    tus

    sp.

    Pontop

    oria

    blainv

    illei

    Holochilus

    brasile

    nsis

    Lago

    stom

    ussp

    .Cten

    omys

    sp.

    Theristicu

    ssp

    .TE

    LEOST

    OMI

    Mylioba

    tis

    sp.

    AMPH

    IBIA

    385e

    390

    6.5

    14.28

    110

    1.3

    00

    500

    00

    4.6

    03.75

    033

    .33

    390e

    395

    00

    00

    0.7

    00

    00

    00

    1.6

    00

    00

    395e

    400

    00

    00

    00

    100

    00

    02.4

    110

    00

    33.33

    400e

    405

    314

    .28

    110

    00

    00

    00

    2.4

    6.3

    00

    00

    405e

    410

    6.5

    00

    01.4

    00

    00

    02.4

    170

    00

    33.33

    410e

    415

    160

    5.6

    00

    10.5

    050

    00

    525

    03.75

    00

    415e

    420

    6.5

    14.28

    00

    00

    00

    00

    2.4

    9.4

    03.75

    00

    420e

    425

    6.5

    14.28

    00

    05.3

    00

    00

    06.3

    012

    00

    425e

    430

    314

    .28

    110

    010

    .50

    00

    02.4

    110

    1210

    00

    430e

    435

    6.5

    14.28

    5.6

    00

    31.6

    00

    00

    153.1

    019

    00

    435e

    440

    6.5

    14.28

    5.6

    00.7

    10.5

    00

    050

    301.6

    03.75

    00

    440e

    445

    390

    50.2

    100

    95.9

    31.6

    00

    100

    5038

    3.1

    100

    420

    0

    M. Bonomo et al. / Quaternary International xxx (2012) 1e1310

    11511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215

    12161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280

    JQI3251_proof 2 April 2012 10/13

    Please cite this article in press as: Bonomo, M., et al., Paleoenvironmental studies of Alfar archaeological site (mid-Holocene; SoutheasternPampas of Argentina): Silicophytoliths, gastropods and archaeofauna, Quaternary International (2012), doi:10.1016/j.quaint.2012.03.039

    Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text[space]Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text-Original text:Inserted Text-
  • and the record of moderately weathered specimens on the top ofunit II would indicate the drying out of the body of water anda decrease in the rate of sediment deposition compared to previousand later levels.

    The context of a lagoon edge seems to be modified on the top ofunit III. The smaller proportion of specimens with root marks, thegreater abundance of remains with abrasion, the decrease in thedeposition of manganese oxide (maybe in a saturated medium inwater under conditions of anoxia, Dorn and Oberlander, 1981), thehigher content of organic matter in muddier sediments (Table 2),and the presence of Amphibia indicate that the presence of waterlasted longer compared with unit II. This context coincides with theenvironment transformation on the bottom of a lagoon, whichcould be correlatedwith the lack of later human occupation of Alfar.

    6. Conclusions

    In summary, the results of the palaeobotanical analyses, com-plemented with the archaeofaunal and sediments studies, showthe existence of a considerable pedogenetic activity and a perma-nent cover of gramineous communities on a lagoon edge witha certain margin of wave activity. The existing vegetation corre-sponded mainly to communities of grasses (Poaceae), less so Pan-icoideae, Stipoideae and limited Chloridoideae. This place withabundant grasses at the water-edge was chosen by the Pampeanhunter-gatherers to set up a residential camp around 5700 yearsago. During the human occupation the volume of water appears todiminish, salt-concentration increased, and C4 type grasses arerecorded. After the settlement was abandoned, water covered theoccupation surface and, just as before it was occupied, saturated,anaerobic, and reducing conditions occurred.

    In general, the obtained data indicates that the human pop-ulations occupied Alfar site under dryness conditions, but withwarm climate at mid-Holocene. From this time of the Holocene(6000e5000 BP), marked by important climatic changes, there arefew archaeological sites in the region. Nevertheless, new Pampeansites dated within this period have been recently detected (Baynet al., 2010; Gutirrez et al., 2011; Massigoge, 2011), showing thatthe there is no pronounced gap or hiatus in the archaeologicalrecord as in other regions across South America. The differences inthe quantity of sites from former and later periods may be due tothe location of the hunter-gatherer settlements on specific envi-ronments, such as the Atlantic coast where marine resources wereavailable and also related to problems of reduced visibility and lowpreservation. The evidence from Alfar is connected with theradiocarbon dates recently obtained for other archaeological sites,and human skeletons buried in the coast under study (Bonomo,2011; Bonono et al., 2011) that range from 7623 to 430 BP andshow a continuity in the use of the Interserrana coast since theEarly Holocene until the arrival of Europeans in the Ro de la Plata.

    Mid-Holocene was a period marked by global, but not uniform,significant changes in precipitation, temperature, sea-level, faunaldistribution and/or vegetation cover that affected past humanpopulations in different degrees (see discussion in Anderson et al.,2007a)Q2 . These climatic changes had different effects on the avail-ability of water, animals and plants utilized by humans around theworld. During this period, warmer than the Early Holocene and theLate Holocene, Pampean hunter-gatherers continued the occupa-tion of the region, apparently without drastic cultural changes.However, after the mid-Holocene, a reorientation of the hunter-gatherer subsistence in detriment of marine resources occurred(Bonono et al., 2011). In contrast to many other coastal areas of thecontinent (e.g., Moss et al., 2007; Anderson et al., 2007b; Bonomo,2011), when aquatic ecosystem stabilized after mid-Holocene inthe Pampean Atlantic coast there is no evidence of intensive use of

    marine fauna (shellfish, fish, and sea mammals). On the contrary,the exploitation of marine resources declined in the Late Holocene,and there is a focus of the diet on continental resources, especiallyon terrestrial mammals.

    Acknowledgments

    The authors express their gratitude to Museo Histrico yArqueolgico Magrassi, Delegacin Municipal del Puerto (Gral.Pueyrredn), Capilla Nuestra Seora de La Paz and Autocamping delFaro. This research has been supported by grants PIP-CONICET1282, PICT-Bicentenario N 1415, UNLP-N634, AGENCIA-PICT/10-2036 and UNMDP-EXA-15E/511.

    Appendix. Supplementary material

    Supplementary material associated with this article can befound, in the online version, at doi:10.1016/j.quaint.2012.03.039.

    References Q3

    Ackerley, D., Renwick, J.A., 2010. The Southern Hemisphere semiannual oscillationand circulation variability during the Mid-Holocene. Climate of the PastDiscussions 6 (1), 185e224.

    Alvarez, M.F., Borelli, N., Osterrieth, M., 2008. Extraccin de biominerales silceos endistintos sedimentos utilizando dos tcnicas bsicas. In: Korstanje, A., Babot, P.(Eds.), Matices Interdisciplinarios en Estudios Fitolticos y de Otros Microfsiles.British Archaelogical Reports (BAR) International Series 1870, Oxford,pp. 31e38.

    Anderson, D., Maasch, K., Sandweiss, D., Mayewski, P.A., 2007a. Climate and culturechange: exploring Holocene transitions. In: Anderson, D., Maasch, K.,Sandweiss, D. (Eds.), Climate Change and Cultural Dynamics: a GlobalPerspective on Mid-Holocene Transitions. Elsevier, pp. 1e23.

    Anderson, D., Russo, M., Sassaman, K., 2007b. Mid-Holocene cultural dynamics insoutheastern North America. In: Anderson, D., Maasch, K., Sandweiss, D. (Eds.),Climate Change and Cultural Dynamics: a Global Perspective on Mid-HoloceneTransitions. Elsevier, pp. 457e489.

    Andrews, P., 1990. Owls, Caves and Fossils. Natural History Museum Publications,Londres.

    Araujo, A.G. de M., Pilo, L.B., Neves, W.A., Atui, J.P.V., 2005-2006. Human occupationand paleoenvironments in South America: expanding the notions of an Archaicgap. Revista do Museu de Arqueologia e Etnologia 15/16, 3e35.

    Brquez, R.M., Daz, M.M., Ojeda, R.A., 2006. Mamferos de Argentina. Sistemtica yDistribucin. SAREM, Tucumn.

    Barrientos, G., 1997. Nutricin y dieta de las poblaciones aborgenes prehispnicasdel sudeste de la Regin Pampeana. Ph.D. Thesis, Facultad de Ciencias Naturalesy Museo, Universidad Nacional de La Plata, La Plata.

    Barrientos, G., Prez, I., 2005. Was there a population replacement during the latemiddle Holocene in the Southeastern Pampas of Argentina? Discussing itsarchaeological evidence and its paleoecological basis. Quaternary International132 (1), 95e105.

    Bastida, R., Rodriguez, D., 2003. Mamferos Marinos de Patagonia y Antrtida.Vzquez Mazzini Editores, Buenos Aires.

    Bayn, C., Pupio, A., Frontini, R., Vecchi, R., Scabuzzo, C., 2010. Localidad arqueo-lgica Paso Mayor: nuevos estudios 40 aos despus. Intersecciones enAntropologa 11 (1), 115e128.

    Behling, H., DePatta Pillarb, V., Girardi Bauermann, S., 2005. Late Quaternarygrassland (Campos), gallery forest, fire and climate dynamics, studied by pollen,charcoal and multivariate analysis of the So Francisco de Assis core in westernRio Grande do Sul (southern Brazil). Review of Palaeobotany and Palynology133, 235e248.

    Behrensmeyer, A., 1978. Taphonomic and ecologic information from bone weath-ering. Paleobiology 4, 150e162.

    Bern, M.A., 2004. Dinmica poblacional y estrategias de subsistencia de pobla-ciones prehispnicas de la cuenca Atuel-Salado-Chadileuv-Curac, Provinciade La Pampa. Ph.D. Thesis, Facultad de Filosofa y Letras, UBA, Buenos Aires.

    Blinnikov, M., Busacca, A., Whitlock, C., 2002. Reconstruction of the late Pleistocenegrassland of the Columbia basin, Washington, USA, based on phytolith recordsin loess. Palaeogeography, Palaeoclimatology, Palaeoecology 177, 77e101.

    Bonomo, M., 2011. The use of the space in the Pampean Atlantic coast and theadjacent plains (Argentina, South America): a comparative view. In: Bicho, N.,Haws, J., Davis, L. (Eds.), Trekking the Shore: Changing Coastlines and theAntiquity of Coastal Settlement. Interdisciplinary Contributions to ArchaeologySeries. Springer, pp. 333e353.

    Bonomo, M., Leon, C., 2010. Un contexto arqueolgico en posicin estratigrfica enlos mdanos litorales. El sitio Alfar (pdo. Gral. Pueyrredn, Pcia. Bs. As.). In:Bern, M., Luna, L., Bonomo, M., Montalvo, C., Aranda, C., Aizpitarte, M.C. (Eds.),

    M. Bonomo et al. / Quaternary International xxx (2012) 1e13 11

    12811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345

    13461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410

    JQI3251_proof 2 April 2012 11/13

    Please cite this article in press as: Bonomo, M., et al., Paleoenvironmental studies of Alfar archaeological site (mid-Holocene; SoutheasternPampas of Argentina): Silicophytoliths, gastropods and archaeofauna, Quaternary International (2012), doi:10.1016/j.quaint.2012.03.039

    Original text:Inserted Text-Original text:Inserted Text[space]
  • Maml Mapu: pasado y presente desde la arqueologa pampeana II. Libros delEspinillo, Ayacucho, pp. 29e45.

    Bonomo, M., Osterrieth, M., Leon, C., 2008. First Results of the Phytolithic Compo-sition Studies of the Sedimentary Sequence of the Alfar Archaeological Site. IIIMeeting of Phytolitic Research, Mar del Plata (Argentina). UNMDP, Mar delPlata, 62 pp.

    Bonomo, M., Zucol, A., Gutirrez Tllez, B., Coradeghini, A., Vigna, M.S., 2009. LateHolocene palaeoenvironments of the Nutria Mansa 1 archaeological site,Argentina. Journal of Paleolimnology 41 (2), 273e296.

    Bonono, M., Leon, C., Scabuzzo, C., 2011. Cronologa y dieta en la costa atlnticaInterserrana. Paper presented at VI Congreso de Arqueologa de la ReginPampeana Argentina, La Plata.

    Burgos, J.J., Vidal, A.L., 1951. Los climas de la Repblica Argentina segn la nuevaclasificacin de Thornthwaite. Meteoros 1, 1e32.

    Cabrera, A.L., 1976. Regiones fitogeogrficas argentinas. In: Kugler, W.F. (Ed.), Enci-clopedia Argentina de Agricultura y Jardinera, II. ACME, Buenos Aires, pp. 1e85.

    Canevari, M., Balboa, C., 2003. 100 Mamferos Argentinos. Editorial Albatros, BuenosAires.

    Darrieu, C.A., Camperi, A.R., 2001. Nueva lista sistemtica de las aves de la provinciade Buenos Aires. Serie COBIOBO 3/PROBIOTA 2. Secretaria de Poltica Ambiental(FCNyM, UNLP), La Plata.

    Epstein, E., 1994. The anomaly of silicon in plant biology. Proceedings of theNational Academy of Sciences of the United States of America 91, 11e17.

    Espinosa, M., De Francesco, C., Isla, F., 2003. Paleoenvironmental reconstruction ofHolocene coastal deposits from the southeastern Buenos Aires province,Argentina. Journal of Paleolimnology 29, 49e60.

    Fasano, J.L., Isla, F.I., Mook, W.G., Van de Plassche, O., 1987. Mximo transgresivopostglacial de 7.000 aos en Quequn, Provincia de Buenos Aires. Revista de laAsociacin Geolgica Argentina 42 (3e4), 475e477.

    Ferrero, L., Obenat, S., Zrate, M.A., 2005. Mid-Holocene serpulid build-ups in anestuarine environment (Buenos Aires Province, Argentina). Palaeogeography,Palaeoclimatology, Palaeoecology 222, 259e271.

    Fidalgo, F., Tonni, E.P., 1983. Geologa y paleontologa de los sedimentos encauzadosdel Pleistoceno tardo y Holoceno en Punta Hermengo y arroyo Las Brusquitas(partidos de General Alvarado y General Pueyrredn, Provincia de BuenosAires). Ameghiniana 20 (3e4), 281e296.

    Fisher, W., 1995. Bone modifications in zooarchaeology. Journal of ArcheologicalMethod and Theory 2 (1), 7e68.

    Frenguelli, J., 1930. Partculas de slice organizadas en el loess y en limos pam-peanos. Clulas silceas de Gramneas. Anales de la Sociedad Cientfica de SantaFe 2, 64e109.

    Gil, A., Neme, G., 2010. Registro arqueolgico en la cuenca media del Atuel: viejos ynuevos problemas; viejos y nuevos datos. In: Zrate, M., Gil, A., Neme, G. (Eds.),Condiciones paleoambientales y ocupaciones humanas durante la transicinPleistoceno-Holoceno y Holoceno de Mendoza. Sociedad Argentina de Antro-pologa, Buenos Aires, pp. 239e275.

    Grosjean, M., Nuez, L., Cartagena, I., Messerli, B., 1997. Mid-Holocene climate andculture change in the Atacama Desert, Northern Chile. Quaternary Research 48,239e246.

    Gutirrez, M.A., Kaufmann, C., 2007. Criteria for the identification of formationprocesses in guanaco (Lama guanicoe) bone assemblages in fluvial-Lacustrineenvironments. Journal of Taphonomy 5 (4), 151e176.

    Gutirrez, M., Martnez, G., Luchsinger, H., Grill, S., Zucol, A., Hassan, G., Barros, M.P.,Kaufmann, C., lvarez, M.C., 2011. Paleoenvironments in the Paso Otero localityduring late Pleistocene-Holocene (Pampean region, Argentina): an interdisci-plinary approach. Quaternary International 245, 37e47.

    Iriarte, J., 2006. Landscape transformation, mounded villages and adopted culti-gens: the rise of early formative communities in South-Eastern Uruguay. WorldArchaeology 38 (4), 644e663.

    Isla, F., Cortizo, L., Schnack, E., 1996. Pleistocene and Holocene beaches and estuariesalong the southern barrier of Buenos Aires, Argentina. Quaternary ScienceReviews 15, 833e841.

    Jahren, A.H., 1996. How and why do phytoliths form? biomineralization. The Phy-tolitharien. Bulletin of the Society for Phytolith Research 9, 2e10.

    Jaureguizar, A.J., 2004. Patrn espacial y temporal de las reas de asociacionescticas demersales costeras (34 Se41 S) y su relacin con los factores ambi-entales. Ph.D. Thesis, Facultad de Ciencias Exactas y Naturales, UBA, BuenosAires.

    Laita, H., Aparicio, G., 2005. 100 Peces Argentinos. Albatros, Buenos Aires.Leynaud, G.C., Pelegrin, N., Lescano, J.N., 2006. Anfibios y Reptiles. In: Bucher, E.H.

    (Ed.), Baados del ro Dulce y Laguna Mar Chiquita (Crdoba, Argentina).Academia Nacional de Ciencias, Crdoba, pp. 219e235.

    Lyman, R.L., 1994. Vertebrate Taphonomy. Cambridge University Press, Cambridge.Madella, M., Alexandre, A., Ball, T., 2005. International code for phytolith nomen-

    clature 1.0. Annals of Botany 96, 253e260.Mancini, M.V., Paez, M.M., Prieto, A.R., Stutz, S., Tonello, M., Vilanova, I., 2005. Mid-

    Holocene climatic variability reconstruction from pollen records (321e521S,Argentina). Quaternary International 132, 47e59.

    Martnez, G., 1999. Tecnologa, subsistencia y asentamiento en el curso medio delRo Quequn Grande: un enfoque arqueolgico. Ph.D. Thesis, Facultad deCiencias Naturales y Museo UNLP, La Plata.

    Massigoge, A., 2011. Nuevas evidencias arqueolgicas del Holoceno medio y tardodel rea Interserrana: localidad Las Brusquillas (partido de San Cayetano, pro-vincia de Buenos Aires). Paper presented at VI Congreso de Arqueologa de laRegin Pampeana Argentina, La Plata.

    Mayewski, P., Rohling, E., Stager, J., Karlen, W., Maasch, K., Meeker, D., Meyerson, A.,Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F.,Staubwasser, M., Schneider, R., Steig, E., 2004. Holocene climate variability.Quaternary Research 62, 243e255.

    Mazzanti, D., Colobig, M.M., Zucol, A., Martnez, G., Porto, L.J., Brea, M., Soria, J.L.,Quintana, C., Puente, V., 2010. Investigaciones arqueolgicas en el Sitio 1 de laLocalidad Lobera I. In: Bern, M., Luna, L., Bonomo, M., Montalvo, C., Aranda, C.,Aizpitarte, M.C. (Eds.), Maml Mapu: pasado y presente desde la arqueologapampeana II. Libros del Espinillo, Ayacucho, pp. 99e114.

    Miquel, S.E., Ramirez, R., Thom, J.W., 2007. Biodiversidad y taxonoma de micro-moluscos Punctoidea del sur de Brasil, con la descripcin de una nueva especiede Radiodiscus de la Mata Atlntica (Mollusca, Gastropoda, Pulmonata). Revistadel Museo Argentino de Ciencias Naturales 9, 205e230.

    Miranda, M.J., Cuezzo, M.G., 2010. Biodiversidad de gasterpodos terrestres Mol-lusca en el Parque Biolgico Sierra de San Javier, Tucumn, Argentina. Revista deBiologa Tropical 58 (3), 1009e1029.

    Moss, M.L., Peteet, D.M., Whitlock, C., 2007. Mid-Holocene culture and climate onthe Northwest coast of North America. In: Anderson, D., Maasch, K.,Sandweiss, D. (Eds.), Climate Change and Cultural Dynamics: a GlobalPerspective on Mid-Holocene Transitions. Elsevier, pp. 491e529.

    Narosky, T., Yzurieta, D., 2003. Gua para la identificacin de las aves de Argentina yUruguay. Asociacin Ornitolgica del Plata, Buenos Aires.

    Nuez, L., Grosjean, M., Cartagena, I., 2001. Human dimensions of late Pleistocene/Holocene arid events in southern South America. In: Marckgraf, V. (Ed.),Interhemispheric Climate Linkages. Academia Press, San Diego, pp. 105e117.

    Olrog, C.C., Lucero, M.M., 1981. Gua de los mamferos argentinos. Fundacin MiguelLillo, Tucumn.

    Osterrieth, M.L., 1998. Paleosols and their relation to sea level changes during thelate Quaternary in Mar Chiquita, Buenos Aires, Argentina. Quaternary Interna-tional 51e52, 43e44.

    Osterrieth, M., 2000. Silicofitolitos una herramienta para la comprensin de proc-esos pedolgicos del Cuaternario. XVII Congreso Argentino de la Ciencia delSuelo. CDR, Mar del Plata, Argentina, 4 pp.

    Osterrieth, M., 2004. Biominerales y Biomineralizaciones. In: Cristalografa deSuelos. Sociedad Mejicana de Cristalografa, 206e218 pp.

    Osterrieth, M., 2008a. Silicofitolitos en suelos, paleosuelos y materiales parentales.In: Zucol, A., Osterrieth, M., Brea, M. (Eds.), Fitolitos. Estado actual de susconocimientos en Amrica del Sur. Talleres del Departamento de ServiciosGrficos de la UNMdP, Mar del Plata, pp. 75e85.

    Osterrieth, M., 2008b. Silicobiolitos/silicofitolitos: su rol en la matriz de suelos ypaleosuelos de ambientes costeros de Buenos Aires, Argentina. In: Zucol, A.,Osterrieth, M., Brea, M. (Eds.), Fitolitos. Estado actual de sus conocimientos enAmrica del Sur. Talleres del Departamento de Servicios Grficos de la UNMdP,Mar del Plata, pp. 119e126.

    Osterrieth, M., 2008c. Silicofitolitos en sedimentos lossicos de la llanura inter y per-iserrana de Tandilia, Buenos Aires, Argentina. In: Zucol, A., Osterrieth, M., Brea, M.(Eds.), Fitolitos. Estadoactual de sus conocimientos enAmrica del Sur. TalleresdelDepartamento de Servicios Grficos de la UNMdP, Mar del Plata, pp. 204e215.

    Osterrieth, M., Zucol, A., Lopez de Armentia, A., 1998. Presencia de restos vegetalescarbonizados en secuencias sedimentarias costeras del Holoceno Tardo de MarChiquita, Buenos Aires Argentina. V Jornadas Geolgicas Bonaerenses 2, Mar delPlata, Argentina, 251e255 pp.

    Osterrieth, M., Martinez, G., Zurro, D., Zucol, A., Brea, M., Mazzanti, D., 2002.Procesos de formacin del sitio 2 de la localidad arqueolgica Amalia: Evolucinpaleoambiental. In: Mazzanti, D.L., Bern, M.A., Oliva, F. (Eds.), Del mar a lossalitrales. Diez mil aos de historia pampeana en el umbral del tercer milenio.UNMDP, Mar del Plata, pp. 343e354.

    Osterrieth, M., Martinez, G., Gutierrez, M., Alvarez, F., 2008. Biomorfos de slice ensecuencias pedoarqueolgicas del sitio Paso Otero 5, Buenos Aires. In:Korstanje, A., Babot, P. (Eds.), Matices Interdisciplinarios en Estudios Fitolticos yde Otros Microfsiles. British Archaelogical Reports (BAR) International Series1870, Oxford, pp. 77e90.

    Osterrieth, M.L., Madella, M., Zurro, D., 2009. Taphonomical aspects of silica phy-toliths in the loess sediments of the Argentinean pampas. Quaternary Inter-national 193, 70e79.

    Piperno, D.R., 1988. Phytolith Analysis. An Archaeological and Geological Perspec-tives. Academic Press, San Diego.

    Politis, G., 1984. Arqueologa del rea Interserrana Bonaerense. Ph.D. Thesis, Fac-ultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata.

    Politis, G.G., Prates, L., Merino, M.L., Tognelli, M.F., 2011. Distribution parameters ofguanaco (Lama guanicoe), pampas deer (Ozotoceros bezoarticus) and marsh deer(Blastocerus dichotomus) in Central Argentina: archaeological and paleoenvir-onmental implications. Journal of Archaeological Science 38, 1405e1416.

    Prieto, A.R., 1996. Late Quaternary vegetational and climatic change in the Pampagrassland of Argentina. Quaternary Research 45, 73e88.

    Sandweiss, D.H., Maasch, K.A., Anderson, D.G., 1999. Transitions in the mid-Holo-cene. Science 283, 499e500. Q4

    Schnack, E., Isla, F., De Francesco, F., Fucks, E., 2005. Estratigrafa del cuaternariomarino tardo en la provincia de Buenos Aires. In: Barrio, R.E.de, Etcheverry, R.O.,Caball, M.F., Llambas, E. (Eds.), Relatorio del XVI Congreso Geolgico Argentino.Asociacin Geolgica Argentina, Buenos Aires, pp. 159e182.

    Strmberg, C.A.E., 2004. Using phytolith assemblages to reconstruct the origin andspread of grass dominated habitats in the great plains of North America duringthe late Eocene to early Miocene. Palaeogeography, Palaeoclimatology, Palae-oecology 207 (3e4), 239e275.

    M. Bonomo et al. / Quaternary International xxx (2012) 1e1312

    14111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475

    14761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540

    JQI3251_proof 2 April 2012 12/13

    Please cite this article in press as: Bonomo, M., et al., Paleoenvironmental studies of Alfar archaeological site (mid-Holocene; SoutheasternPampas of Argentina): Silicophytoliths, gastropods and archaeofauna, Quaternary International (2012), doi:10.1016/j.quaint.2012.03.039

  • Stutz, S., 2000. Historia de la vegetacin del litoral bonaerense durante el ltimociclo transgresivo-regresivo del Holoceno. Ph.D. Thesis, Facultad de CienciasExactas y Naturales, UNMdP, Mar del Plata.

    Teruggi, M.E., 1957. Estudio sedimentolgico de los terrenos de las barrancas de lazona de Mar del Plata. In: Geologa IV. Museo Argentino de Ciencias NaturalesBernardino Rivadavia, Buenos Aires.

    Tonni, E.P., 1994. Los mamferos y el clima en el Pleistoceno y Holoceno de laprovincia de Buenos Aires. In: Jornadas de Arqueologa e Interdisciplinas.CONICET, PREP, Buenos Aires. 127e142.

    Tonni, E.P., Cione, A.L., Figini, A.J., 1999. Predominance of arid climates indicated bymammals in the pampas of Argentina during the Late Pleistocene and Holo-cene. Palaeogeography, Palaeoclimatology, Palaeoecology 147, 257e281.

    Twiss, P.C., 1992. Predicted world distribution of C3 and C4 grass phytoliths. In:Rapp, G., Mulholland, S.C. (Eds.), Phytolith Systematics. Emerging Issues, vol. 1.Advances in Archaeological and Museum Science, pp. 113e128.

    Vilanova, I., Prieto, A.R., Espinosa, M., 2006. Palaeoenvironmental evolution andsea-level fluctuations along the southeastern Pampa grasslands coast ofArgentina during the Holocene. Journal of Quaternary Science 21 (3), 227e242.

    Vivo, M., Carmignotto, A.P., 2004. Holocene vegetation change and the mammalfaunas of South America and Africa. Journal of Biogeography 31, 943e957.

    Vizcaino, S.F., Pardias, U., Bargo, M.S., 1995. Distribucin de los armadillos(Mammalia, Dasypodidae) en la Regin Pampeana (Repblica Argentina)durante el Holoceno. Interpretacin Paleoambiental. Mastozoologa Neotropical2 (2), 149e166.

    Walkley, A., Blake, C.A., 1965. Organic carbon. Chapter 4. In: Black, C.A. (Ed.), Methodof Soil Analysis. American Society of Agronomy, pp. 1372e1375.

    Williams, J., 1991. Anfibios y reptiles. Situacin ambiental de la Provincia de BuenosAires. Comisin de Investigaciones Cientficas de la Provincia de Buenos Aires 1(4), 1e21.

    Zrate, M.A., Neme, G., Gil, A. (Eds.), 2005. Mid-Holocene paleoenvironments andhuman occupation in southern South America. Quaternary International 132.

    Zucol, A.F., Brea, M., Osterrieth, M., Martinez, G., 2002. Anlisis phytoltico de unhorizonte sedimentario del Sitio 2 de la localidad arqueolgica Amalia (Hol-oceno temprano). In: Mazzanti, D., Bern, M., Oliva, F. (Eds.), Del Mar a lossalitrales. Diez mil aos de historia pampeana en el umbral del tercer milenio.UNMDP, Mar del Plata, pp. 355e363.

    M. Bonomo et al. / Quaternary International xxx (2012) 1e13 13

    154115421543154415451546154715481549155015511552155315541555

    155615571558155915601561156215631564156515661567156815691570

    JQI3251_proof 2 April 2012 13/13

    Please cite this article in press as: Bonomo, M., et al., Paleoenvironmental studies of Alfar archaeological site (mid-Holocene; SoutheasternPampas of Argentina): Silicophytoliths, gastropods and archaeofauna, Quaternary International (2012), doi:10.1016/j.quaint.2012.03.039