Recent Advances in iron-based Superconductors : Actors are ready · 2013-06-20 · Recent Advances...

42
Recent Advances in iron-based Superconductors : Actors are ready Hideo HOSONO Frontier Research Center Tokyo Institute of Technology, Yokohama, JAPAN ASC 2012@ Portland, US (Oct 10, 2012)

Transcript of Recent Advances in iron-based Superconductors : Actors are ready · 2013-06-20 · Recent Advances...

  • Recent Advances

    in iron-based Superconductors

    : Actors are ready

    Hideo HOSONO Frontier Research Center

    Tokyo Institute of Technology, Yokohama, JAPAN

    ASC 2012@ Portland, US (Oct 10, 2012)

  • Acknowledgements

    1. Collaborators

    (TIT) S.Matsuishi, T.Hanna, Y.Muraba, S.Iimura,

    H.Hiramatsu, T.Kamiya, T.Katase, H.Sato

    (ISTEC)

    K.Tanabe, Y. Ishimaru, A.Tsukamoto

    (Los Alamos)

    B. Maiorov

    2. Sponsor JSPS FIRST Program

  • OUTLINES

    1. Background

    2. Parent Compounds

    3. Generic Phase Diagram and Mechanism

    4. Thin Films and Grain Boundary Nature

    5. Wire & Tape Applications

    6. Summary

  • Year

    Met

    C Cuprates

    Metals

    Organics

    Iron pnictides

    Year

    Cri

    tical

    Tem

    p.

    77K (boiling point of N2)

    100 Years of Superconductivity

  • Superconductivity & Magnetism

    • Cooper Pair

    Coherent length

    Magnetic Ordering

    Ferro/Anti-Ferromagnetism

    Transition metal

    Pnicogen

    Iron was believed to

    the worst element for superconductivity

    Compete

  • Fe As

    e-

    O F

    LaFePnO (Pn=P,As)

    JACS(2006) JACS (2008)

  • dCo-Co : 2.54 Å

    No B-B bonding

    La

    131°

    3.45Å

    3.04Å 1.99Å

    B

    Co

    Co

    B

    La

    0 - 5 - 10 5 Energy (eV)

    Total

    Covalent Co-B bonding

    LaCo2B2 :122 type

    H (104 Oe)

    2 3 4 5 6 7 8

    ZFC

    FC

    (

    em

    u/m

    ol-C

    o)

    T (K)

    -10

    -5

    0

    5

    T=2K

    M (

    em

    u/m

    ol-

    Co

    )

    0

    -0.1

    -0.2

    -0.3

    0 0.5 1.0

    2 4 6 8 10 120

    10

    20

    0.20

    0.30

    0.150.10

    x=0.00

    (1

    0

    cm

    )

    La(Co1-x

    Fex)

    2B

    2

    T (K)

    Mizoguchi et al.Phys.Rev.Lett. (2011)

    Fe-substituted

  • FeCh (Ch =Se, Te)

    AFe2Pn2 (A = Ca,

    Sr, Ba, K,

    Eu)

    LiFeAs, NaFeAs

    Ae2MFePnO3 (M =Sc, Ti, V, Cr

    Ae = Ca, Sr

    Pn = P, As)

    LnFePnO

    AeFePnF

    (Ln = La,

    Ce,..,

    Ae = Ca, Sr

    Pn = P, As)

    1111 122

    11

    111

    Ch

    Fe

    A

    Fe

    As

    Li, Na

    Tc ~ 55 K

    Tc ~ 38 K

    Ln

    Fe

    Pn

    O

    Sr3Sc2Fe2As2O5

    O

    Sr

    Sc

    Ae

    O

    M

    Fe

    As

    21113 32225

    Tc ~ 37 K

    Tc ~ 20 K

    Parent Materials

    Fe

    (a)

    Jahrendt G

    Chu et al. Jin et al

    Wu et al Shimoyama G, Wen G Tc~15K

    AFeCh

    Guo (2010)

  • New Parent Phase: 245

    Chemical Composition

    A0.8Fe1.6Se2.0

    (A= K,Rb,Cs,Tl )・・・・)

    High Neel Tem. : ~500K Large magnetic moment : ~3.3mB/Fe

    Band Gap: = ~0.35eV

    Fe vacancy : 25% & ordered

    Mott Insulator (?)

  • 1111-type 122-type

    Te

    mp

    era

    ture

    Te

    mp

    era

    ture

    Doping level Doping level

    AFM

    (Ortho.)

    PM

    (Tetra.)

    SC

    (Tetra.)

    AFM

    (Ortho.) SC

    (Tetra.)

    PM

    (Tetra.)

    SC

    (Ortho.?)

    QPC

    Electronic Phase Diagram

    Ln

    Fe

    Pn

    O AeFe2Pn2 LnFePnO

  • hPn low hPn high

    g disappear appear

    Mazin et al. PRL(2008),

    Kuroki et al.PRL(2008) Spin Fluctuation (FS nesting)Model

    Kuroki et al PRB(2009)

    Sm-1111 La-1111, LaFeOP

  • Tc vs. pnictgen height from iron plane

    T

    c (

    K)

    hPn (nm)

    1111(Oxide)

    1111(Fluoride)

    122

    111

    11

    21113

    Sm1111

    Gd1111

    Pr1111

    Nd1111

    Tb1111

    SrCr21113

    SrV21113

    Sr2ScFePO3

    FeSe FeSe0.125Te0.875

    FeSe0.25Te0.75

    FeSe0.5Te0.5

    Ce1111

    La1111

    Ca1111

    Sr1111 K122

    Na111

    Li111

    BaNi2P2

    LiFeP

    BaNi2As2

    LaFePO LaNiAsO

    SmFePO

    LaRu2P2

    Sr122

    Ba122

    Eu122

    Hosono et al. Bull Phys.Soc.Jpn (2010)

    Mizuguchi et al. SuST(2011)

  • Does nesting scenario work well ?

    K0.8Fe2Se2 Tc=30K (Guo et al.PRB 2010)

    Feng et al Nature Phys.(2011)

    Hole pocket @Gdisappears

    Cf. heavily e-doped BaFe2As2:Co

    hole pocket X , Tc X

    (Ding et al.EPL(2008),Zhang et al.PRL 2010)

    KFe2As2 electron pocket X

    (Sato et al PRL2009)

    Tc=3K, d-wave

    (Zhang et al.ArXiv2010)

    FS

    FS nesting is not a primary ingredient

  • Complete Tc Dome in 1111 • Hydrogen Substitution to 1111 type iron-arsenides

    – Extension of 1111 type group

    – Alternative technique for electron doping to FeAs-layer

    – Overcoming the substitution limit of fluorine

    Improvement of Tc ?

    information on over-doped region

    REFeAsO1-xHx (0 < x ≤ 0.5)

    0.1

    Sm

    New e-doping method

    O2-= F- +e O2- =H- +e-

  • x

    5 10 15 20

    0

    2

    4

    0.0 0.2 0.4

    0.0

    0.2

    0.4

    0.6

    CeFeAsO0.7

    D0.3

    (RT)

    wRp = 3.26%

    Rp = 2.92%

    S = 1.36

    Inte

    nsity (

    arb

    .units)

    Q (Å-1) xnominal

    Analy

    zed x

    xEPMA

    xNPD

    Space group:P4/mmm,

    Ce: 2c (1/4, 1/4, zCe) Fe: 2a (3/4, 1/4, 0) As: 2b (1/4, 1/4, zAs) O/D: 2c (3/4, 1/4, 1/2 )

    xnominal [O] gD a (Å) c (Å) zCe zAs wRp (%) Rp (%) S

    0 0 0 4.00033(3) 8.65926(10) 0.63990(16) 0.15476(12) 3.94 3.21 1.57

    0.1 0.854 0.132(5) 3.99812(4) 8.63525(12) 0.64124(16) 0.15589(12) 3.29 2.70 1.38

    0.3 0.721 0.238(4) 3.97749(3) 8.60913(11) 0.64639(16) 0.15869(13) 3.26 2.92 1.36

    0.4 0.574 0.368(5) 3.95386(4) 8.59259(12) 0.65145(20) 0.16340(16) 3.93 3.30 1.48

    Matsuishi et al. PRB(2012)

  • 0

    10

    0

    10

    0

    5

    0

    5

    -8 -6 -4 -2 0 20

    5

    -8 -6 -4 -2 0 20

    1

    -8 -6 -4 -2 0 2

    (a) CeFeAsO

    Total

    (b)

    up

    dn

    CeD

    ensity o

    f S

    tate

    s (

    eV

    –1,

    f. u

    .)

    Fe

    As

    O

    Energy (eV)

    2p

    CeFeAsO0.75

    H0.25

    Total 0.3 eV0.3 eV

    Ce

    Fe

    As

    O

    Energy (eV)

    2p

    F

    CeFeAsO0.75

    F0.25

    Total

    Ce

    Fe

    As

    O

    1s2H

    Energy (eV)

    Calculated DOS of H

    XRD data at 20K

    EF

  • 0.0 0.1 0.2 0.3 0.4 0.5

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Xm

    ol%

    /Fe

    mol%

    Nominal X

    X= Ce

    X= Fe

    X= As

    X= O

    O

    As

    EPMA ( O content)

    0.0 0.1 0.2 0.3 0.4 0.50.0

    0.2

    0.4

    0.6

    0.8

    1.0

    me

    asu

    red

    co

    nte

    nt

    of

    H a

    nd

    O

    Nominal X

    CeFeAsO1-y

    Hx

    O

    H

    O+H

    EPMA and TG-Mass

    CeFeAsO1-xHx

    Tc(max)=46K

    Data on F-doped samples were cited from X.H.Cheng Nature (2008)

    Matsuishi et al.PRB(2012)

  • SmFeAsO1-xHx: Phase diagram

    Y. Kamihara et al, NJP 12 (2010) 033005.

    0 100 2000

    2

    Tc

    (

    mc

    m)

    T (K)

    Tanorm

    x = 0.03

    0.0 0.1 0.2 0.3 0.4 0.50

    50

    100

    150

    Tanorm

    Tc

    AFM

    (orth.)

    PM(tet.)

    SmFeAsO1-x

    Fx

    Tanorm

    Tc

    Measured x

    T (

    K)

    SmFeAsO1-x

    Hx

    SC

    Optimal Tc = 56 K (onset)

    Very wide SC range

    Optimal X : 0.2-0.3

    Coexistence of Tanorm and Tc at x = 0.03

    Hanna et al. PRB (2011)

  • Two Dome Structures

    H

    F

    Iimura et al.Nat Comm(2012)

  • High pressure effects

    CeFeAsO1-xHx

    Da/a of ~1% of La-1111 corresponds to Ce-1111

    LaFeAsO1-xHx

    3GPa

  • -0.5

    0.0

    0.5

    0 3 6 0 3 6 0 3 6 0.1 0.2 0.3 0.4

    0.00

    0.25

    0.50

    0.1 0.2 0.3 0.4

    110

    112

    114

    0 3 6

    - 0

    x = 0.08

    Totald

    xy

    dyz,zx

    dxy

    +dyz,zx

    x = 0.21

    Density of States (eV-1 f.u.

    -1)

    x = 0.36

    E (

    eV

    )

    G

    x

    G

    Gdyz,zx

    Gdxy

    Ganti-dxy

    x

    E (

    eV

    )

    -2

    x = 0.21 x = 0.36

    Gdxy

    Ganti-dxy

    Gdyz,zx

    0

    1.0

    -1

    0

    1

    2

    0.5

    x = 0.08

    E (

    eV

    )

    x = 0.40

    G

    00.2

    00.2

    G

    00.2 0.2

    0

    G

    G

    NMLK

    J

    IHGF

    EDDCB

    GGG

    k k

    - 0

    ky

    kx

    - 0

    x = 0.08

    dxy

    dyz,zx

    A

    dxy

    dyz,zx

    - 0

    x = 0.21 x = 0.40

    x = 0.36

    -

    G

    E (

    eV

    )

    Ð A

    s-F

    e-A

    s (

    de

    g.)

    109.47

    0

    1.30

    1.32

    1.34

    1.36

    hA

    s (

    Å)

    x = 0.40

    .

    DFT calculation with virtual crystal approximation

    Hydrogen behaves as fluorine

    Nuclear charge of O site: Z = 8+x

    Experimental Lattice parameters & atomic position

    Wien2k LAPW+lo

  • Dome First Second

    x 0.05 < x < 0.2 0.2 < x < 0.5

    Exponent n 2.0 < n < 2.3 0.7 < n < 2.0

    Tcmax 29 K 36 K

    Tc-sensitivity to x High Low

    Under high pressure Unified

    FS nesting Strong Weak

    DOS (EF) No shoulder Shoulder

    Characteristic of two domes

  • La

    Ce

    Sm

    ● La 1st Opt.

    ● La 2nd Opt.

    ● Ce Opt.

    ● Sm Opt.

    0 100 200 300 0.0

    0.5

    1.0

    300K

    T (K)

    Phase diagram : RE-dependence

  • Single Unit-Cell FeSe Films on SrTiO3

    1U.C. 2U.C

    Sc gap=20meV

  • (Tl0.58Rb0.42)Fe1.72Se2 Single layer FeSe

    (Ba1.6K0.4)Fe2As2 b-FeSe (cald.) Nat.Commun.(2012) D.Liu et al.

    Fermi Surface

  • Jc of iron pnictide epitaxial films

    Lee, Nat. Mater. (2010). Katase, APEX (2010).

    Rall, PRB (2011).

    Kidszun, PRL (2011). Hiramatsu, APEX (2008).

    Maiorov, SuST (2009).

    Eisterer, SuST (2011).

    Mele, SuST (2010).

    Choi, APL (2009).

    Ueda, APL (2012).

  • Superconducting films on IBAD-MgO tape

    Fe(Se,Te) film

    Jc = 0.31 MA/cm2 at 4.2 K

    (W. Si et al., APL 2011.)

    Ba(Fe,Co)2As2 film

    Jc = 13 MA/cm2 at 2 K

    (T. Katase et al., APL 2011.)

    Ba(Fe,Co)2As2 film

    Jc = 0.1 MA/cm2 at 8 K

    (K. Iida et al., APEX 2011.)

    Superconducting tapes

  • Anomalous mixed-state Hall effect

    in high-Jc Ba122:Co film

    Paper No. 3MB-05 11:45– in A107-109, H. Sato et al.

    T sweep (5→25 K) H sweep (0→9 T)

    Origin: Wide vortex liquid phase due to disorders and high-density pinning centers

    H

    J = 5 kA/cm2

    ρxx

    ρxy

    T sweep (5 → 25 K) H sweep (0 → 9 T)

    Fixed H / T 1 → 9 T 13 → 16 K

    b value 1.7–1.8 (const.) 1.8→2.0 (Increase)

    Different !

  • Superconductor devices GB Josephson

    junction SQUID

    Katase et al., APL 2010.

    PbIn / Au / BaFe2As2:Co film

    Hybrid SNS junction

    Schmidt et al., APL 2010. Katase et al., SuST 2010.

    BaFe2As2:Co film

  • Fabrication of SC Wires and Josephson Junction

    Ca10(Pt4As8)(Fe1.8Pt0.2As2)5 Tc = 33 K, mechanical strong

    Ca10(Pt4As8)(Fe1.8Pt0.2As2)5

    Diameter < 1 μm Length ~ 2 mm

    SIS Josephson Junction

    (diameter~2mm), clear hysteresis in J-V curve

    1mm

    NIMS Muromachi G. JACS (2012)

    Intrinsic JJ

    C-axis

  • Experimental

    Ba122:Co epitaxial films

    on [001]tilt-bicrystal substrates

    (LSAT, MgO : qGB=3 – 45o)

    8mm-wide micro-bridges

    Grain Boundary Nature

  • JcBGB(qGB) = Jc0exp(–qGB/q0)

    q0=~9o (Ba122:Co) q0=~4

    o (YBCO)

    ※ H. Hilgenkamp et al., Rev. Mod. Phys. (2002).

    YBCO at 4 K

    YBCO at 77 K

    JcB

    GB (

    A/c

    m2)

    YBCO at 4 K

    qc=8–9o

    JcB

    GB / J

    cG

    rain

    qGB (deg.)

    qGB (deg.)

    qGB dependence of JcBGB

    Ba122:Co/MgO at 4K

    Ba122:Co/LSAT at 4K

    Ba122:Co/MgO at 12K

    Ba122:Co/LSAT at 12K

    Transition to weak link occurs at qc = 8– 9o.

    Higher q0: Gentler decay of JcBGB

    Decay in the weak link region :

    qc=5o(YBCO)

    5%

    Nat.Commun.(2011)

  • # Coherent length (Ba122:Co)

    xab = 2.6 nm at 4K.

    qc=8–9o : D=2.5–2.8 nm.

    xab D : Weak link

    Strong current channels still remain between dislocations (qGB qc)

    BGB

    YBCO at 4 K

    JcB

    GB / J

    cG

    rain

    qGB (deg.)

    qc and TEM Obs.

    qc=8–9o

    [Ref] Putti et al., SuST (2010).

    Nature Commun.Aug 2 isuue

  • High Jc PIT Wire : (Ba0.6K0.4)Fe2As2

    4cm long, 1.3 mm dia.

    Ball milling CIPed at 275MPa HIPed under 192MPa at 600C

    Weiss et al .Nat.Mat.(2012)

    Tc=38K

    200nm sized grain PIT

  • Comparison with other Fe-based sc.

    Practical level

  • Mixed powders (10% excess K) by balling milling/(900℃, 35 h)

    Cold rolled into tapes with a large processing rate

    Tapes with 0.5 mm in thickness

    New texturing process of PIT (Sr,K)122 tapes

    XRD, SEM, R(H), PPMS, V-I

    HT Sintering (1100℃, 1-5 min)

    Photograph of the final

    122 tapes

    Fe tube used sheath material

    Wire of 2.0 mm in diameter

    Pb or Sn added

    Gao, et al., APL 99, 242506 (2011) L. Wang, et al., Physica C 471, 1689 (2011).

  • SEM Photo and Jc

    Cross-section

    By optimizing the texturing process and Sn addition

  • At 4.2 K, the Jc values reached high values of over 104 A/cm2 at 14 T,

    which approach the Jc level desired for practical applications.

    Rapid Improvement of Jc

    in 122 Wires and Tables

  • Fe-pnictides MgB2 Cuprates Parent

    Material (bad) metal

    (TN~150K) metal Mott Insulator

    (TN~400K)

    Fermi

    Level 3d 5-bands 2-bands 3d single band

    Max Tc 56K 40K ~140K

    SC gap

    symmetry extended

    s-wave (+- or ++) s-wave d-wave

    Hc2(0) 100-200T> ~40T ~100T

    Critical GB angle 8-9(Ba 122)

    Impurity robust sensitive sensitive

    g 2-4 (122) ~3.5 5-7 (YBCO)

    50-90(Bi system)

    Comparison

    ~5°(YBCO)

    Very robust to magnetic field & strong grain boundary

  • Summary: Actors are ready

    1.The major ingredient member of glue

    for pairing have been ready.

    Spin (Magnetism), Orbitals (Lattice) , Charge (Mott insulators)

    2. Maximum Jc at high magnetic field is

    approaching to the practical level.

    Conventional FS nesting is NOT dominant mechanism

    Anisotropy (122) ~2, High Hc2

    Critical grain boundary angle ~twice of YBCO

    PIT & bulk (122) Jc >~104 A/cm2 @ 10T, 4.2K

  • LaO T M

    P ( T M

    = Fe, Ni)

    Cu - based oxides

    Non - magnetic metals

    TM oxypnictides

    REFeAs(O,F )

    1986 Cuprates

    LaO T M

    P ( T M

    = Fe, Ni)

    Cu - based oxides

    Non - magnetic metals

    TM oxypnictides

    REFeAs(O,F )

    LaO T M

    P ( T M

    = Fe, Ni)

    REFeAs(O,F)

    1986 Cuprates 77K

    Strike while the iron is hot

    Cu oxides Non-mag. metals

    Fe pnicides

  • First book on Iron-based Superconductors

    Nan Ling Wang

    Hideo Hosono

    Pencheng Dai

    Pan Stanford

    (2012)

    520 Pages