Radiacion Del Cuerpo Negro

16
RADIACIÓN DEL CUERPO NEGRO Durante la segunda mitad del siglo XIX muchos físicos, casi todos ellos alemanes, estuvieron estudiando la radiación emitida por cuerpos calientes. La distribución de energía entre las distintas longitudes de onda de la radiación electromagnética emitida esta dada por una curva que tiene un máximo a una cierta longitud de onda, la cual es dependiente de la temperatura del cuerpo. Puesto que son las cargas aceleradas, las que emiten radiación electromagnética, varios físicos como el austriaco Wien, los ingleses Rayleigh y Jeans, y el alemán Planck trataron de explicar en términos de la emisión por parte de la cargas atómicas esta distribución o espectro del cuerpo negro. El término radiación se refiere a la emisión continua de energía desde la superficie de cualquier cuerpo, esta energía se denomina radiante y es transportada por las ondas electromagnéticas que viajan en el vacío a la velocidad de 3·10 8 m/s . Las ondas de radio, las radiaciones infrarrojas, la luz visible, la luz ultravioleta, los rayos X y los rayos gamma, constituyen las distintas regiones del espectro electromagnético. Propiedades de la superficie de un cuerpo Sobre la superficie de un cuerpo incide constantemente energía radiante, tanto desde el interior como desde el exterior, la que incide desde el exterior procede de los objetos que rodean al cuerpo. Cuando la energía radiante incide sobre la superficie una parte se refleja y la otra parte se transmite.

description

cuerpos

Transcript of Radiacion Del Cuerpo Negro

Page 1: Radiacion Del Cuerpo Negro

RADIACIÓN DEL CUERPO NEGRO

Durante la segunda mitad del siglo XIX muchos físicos, casi todos ellos alemanes, estuvieron estudiando la radiación emitida por cuerpos calientes. La distribución de energía entre las distintas longitudes de onda de la radiación electromagnética emitida esta dada por una curva que tiene un máximo a una cierta longitud de onda, la cual es dependiente de la temperatura del cuerpo. Puesto que son las cargas aceleradas, las que emiten radiación electromagnética, varios físicos como el austriaco Wien, los ingleses Rayleigh y Jeans, y el alemán Planck trataron de explicar en términos de la emisión por parte de la cargas atómicas esta distribución o espectro del cuerpo negro.

El término radiación se refiere a la emisión continua de energía desde la superficie de cualquier cuerpo, esta energía se denomina radiante y es transportada por las ondas electromagnéticas que viajan en el vacío a la velocidad de 3·108 m/s . Las ondas de radio, las radiaciones infrarrojas, la luz visible, la luz ultravioleta, los rayos X y los rayos gamma, constituyen las distintas regiones del espectro electromagnético.

 

Propiedades de la superficie de un cuerpo

Sobre la superficie de un cuerpo incide constantemente energía radiante, tanto desde el interior como desde el exterior, la que incide desde el exterior procede de los objetos que rodean al cuerpo. Cuando la energía radiante incide sobre la superficie una parte se refleja y la otra parte se transmite.

Consideremos la energía radiante que incide desde el exterior sobre la superficie del cuerpo. Si la superficie es lisa y pulimentada, como la de un espejo, la mayor parte de la energía incidente se refleja, el resto atraviesa la superficie del cuerpo y es absorbido por sus átomos o moléculas.

Si r es la proporción de energía radiante que se refleja, y a la proporción que se absorbe, se debe de cumplir que r+a=1.

Page 2: Radiacion Del Cuerpo Negro

La misma proporción r de la energía radiante que incide desde el interior se refleja hacia dentro, y se transmite la proporción a=1-r que se propaga hacia afuera y se denomina por tanto, energía radiante emitida por la superficie.

En la figura, se muestra el comportamiento de la superficie de un cuerpo que refleja una pequeña parte de la energía incidente. Las anchuras de las distintas bandas corresponden a cantidades relativas de energía radiante incidente, reflejada y transmitida a través de la superficie.

 

Comparando ambas figuras, vemos que un buen absorbedor de radiación es un buen emisor, y un mal absorbedor es un mal emisor. También podemos decir, que un buen reflector es un mal emisor, y un mal reflector es un buen emisor.

Una aplicación práctica está en los termos utilizados para mantener la temperatura de los líquidos como el café. Un termo tiene dobles paredes de vidrio, habiéndose vaciado de aire el espacio entre dichas paredes para evitar las pérdidas por conducción y convección. Para reducir las pérdidas por radiación, se cubren las paredes con una lámina de plata que es altamente reflectante y por tanto, mal emisor y mal absorbedor de radiación.

 

El cuerpo negro

Page 3: Radiacion Del Cuerpo Negro

La superficie de un cuerpo negro es un caso límite, en el que toda la energía incidente desde el exterior es absorbida, y toda la energía incidente desde el interior es emitida.

 

No existe en la naturaleza un cuerpo negro, incluso el negro de humo refleja el 1% de la energía incidente.

Sin embargo, un cuerpo negro se puede sustituir con gran aproximación por una cavidad con una pequeña abertura. La energía radiante incidente a través de la abertura, es absorbida por las paredes en múltiples reflexiones y solamente una mínima proporción escapa (se refleja) a través de la abertura. Podemos por tanto decir, que toda la energía incidente es absorbida.

 

La radiación del cuerpo negro

Consideremos una cavidad cuyas paredes están a una cierta temperatura. Los átomos que componen las paredes están emitiendo radiación electromagnética y al mismo tiempo absorben la radiación emitida por otros átomos de las paredes. Cuando la radiación encerrada dentro de la cavidad alcanza el equilibrio con los átomos de las paredes, la cantidad de energía que emiten los átomos en la unidad de tiempo es igual a la que absorben. En consecuencia, la densidad de energía del campo electromagnético existente en la cavidad es constante.

A cada frecuencia corresponde una densidad de energía que depende solamente de la temperatura de las paredes y es independiente del material del que están hechas.

Page 4: Radiacion Del Cuerpo Negro

Si se abre un pequeño agujero en el recipiente, parte de la radiación se escapa y se puede analizar. El agujero se ve muy brillante cuando el cuerpo está a alta temperatura, y se ve completamente negro a bajas temperaturas.

Históricamente, el nacimiento de la Mecánica Cuántica, se sitúa en el momento en el que Max Panck explica el mecanismo que hace que los átomos radiantes produzcan la distribución de energía observada. Max Planck sugirió en 1900 que

1. La radiación dentro de la cavidad está en equilibrio con los átomos de las paredes que se comportan como osciladores armónicos de frecuencia dada f .

2. Cada oscilador puede absorber o emitir energía de la radiación en una cantidad proporcional a f. Cuando un oscilador absorbe o emite radiación electromagnética, su energía aumenta o disminuye en una cantidad hf .

La segunda hipótesis de Planck, establece que la energía de los osciladores está cuantizada. La energía de un oscilador de frecuencia f sólo puede tener ciertos valores que son 0, hf , 2hf ,3hf ....nhf .

La distribución espectral de radiación es continua y tiene un máximo dependiente de la temperatura. La distribución espectral se puede expresar en términos de la longitud de onda o de la frecuencia de la radiación.

dEf /df es la densidad de energía por unidad de frecuencia para la frecuencia f de la radiación contenida en una cavidad a la temperatura absoluta T. Su unidad es (J·m-3)·s.

donde k es la constante de Boltzmann cuyo valor es k=1.3805·10-23 J/K.

dE /d es la densidad de energía por unidad de longitud de onda para la longitud de onda de la radiación contenida en una cavidad a la temperatura absoluta T. Su unidad es (J·m-3)·m-1.

 

La ley del desplazamiento de Wien

Page 5: Radiacion Del Cuerpo Negro

La posición del máximo en el espectro de la radiación del cuerpo negro depende de la temperatura del cuerpo negro y está dado por la ley de desplazamiento de Wien. Calculando la derivada primera de la función de la distribución de Planck expresada en términos de la longitud de onda o de la frecuencia

Obtenemos la ecuación trascendente

Este resultado constituye la ley de desplazamiento de Wien, que establece que el máximo de la densidad de energía dE /d por unidad de longitud de onda a distintas temperaturas T1, T2, T3, .., se produce a las longitudes de onda 1, 2, 3...tales que

De modo similar en el dominio de las frecuencias

Obtenemos la ecuación trascendente

A medida que la temperatura T se incrementa el máximo se desplaza hacia longitudes de onda menores (mayores frecuencias).

Como podemos comprobar el producto

no nos da la velocidad de la luz c como se podría esperar a primera vista, ya que estamos tratando con el máximo de una distribución que nos da la intensidad por unidad de longitud de onda o por unidad de frecuencia.

La luminosidad de un cuerpo caliente no se puede explicar, como se indica en algunos textos, a partir de la ley del desplazamiento de Wien, sino a partir de la intensidad de la radiación emitida en la región visible del espectro, tal como veremos más abajo. Así, a temperaturas tan elevadas como 6000 K el máximo medido en el eje de frecuencias de la distribución espectral se sitúa en la región del infrarrojo cercano. Sin embargo, a esta temperatura una proporción importante de la intensidad emitida se sitúa en la región visible del espectro.

Page 6: Radiacion Del Cuerpo Negro

 

La ley de Stefan-Boltzmann

La intensidad (energía por unidad de área y unidad de tiempo) por unidad de longitud de onda para la longitud de onda , de un cuerpo negro a la temperatura absoluta T, viene dada por la expresión.

Su unidad es (W·m-2)·m-1.

La intensidad (energía por unidad de área y unidad de tiempo) por unidad de frecuencia para la frecuencia f , de un cuerpo negro a la temperatura absoluta T, viene dada por la expresión.

Su unidad es (W·m-2)·s.

El applet realiza una representación gráfica de esta función en escala doblemente logarítmica. La intensidad por unidad de frecuencia en el eje vertical, y la frecuencia en el eje horizontal, para las temperaturas que se indican en la parte izquierda del applet.

Se muestra la parte visible del espectro en el centro, a la izquierda la región infrarroja y a la derecha la región ultravioleta del espectro. Se han señalado los máximos de las curvas y se ha trazado la recta que pasa por dichos puntos.

Page 7: Radiacion Del Cuerpo Negro

Huecos Negros Supermasivos

Otra pregunta que se hacen los astrónomos locos (¿o serán los locos que

son astrónomos?) cuando miran al universo por sus telescopios y

satélites es: ¿Por qué las estrellas están tan lejos unas de otras? Usando

la teoría del Big Bang uno entiende porqué las galaxias están bien lejos

unas de otras. La razón es que el universo crece y se expande con el

paso del tiempo. Y como han pasado 14 billones de años desde la Gran

Explosión Inicial, pues estos enjambres de estrellas, polvo y materia

oscura que llamamos galaxias han sido llevados por este espaciotiempo

que se infla a estar cada vez más lejos unas de otras como una tabla de

surfing es movida por una ola del mar.

Un agujero negro u hoyo negro es una región finita del espacio-tiempo provocada por una gran concentración de masa en su interior, con enorme aumento de la densidad, lo que provoca un campo gravitatorio tal que ninguna partícula material, ni siquiera la luz, puede escapar de dicha región.

La curvatura del espacio-tiempo o «gravedad de un agujero negro» debida a la gran cantidad de energía del objeto celeste provoca una singularidad envuelta por una superficie cerrada, llamada horizonte de sucesos. El horizonte de sucesos separa la región de agujero negro del resto del Universo y es la superficie límite del espacio a partir de la cual ninguna partícula puede salir, incluyendo la luz. Dicha curvatura es estudiada por la relatividad general, la que predijo la existencia de los agujeros negros y fue su primer indicio. En los años 70, Hawking y Ellis1 demostraron varios teoremas importantes sobre la ocurrencia y geometría de los agujeros negros. Previamente, en 1963, Roy Kerr había demostrado que en un espacio-tiempo de cuatro dimensiones todos los agujeros negros debían tener una geometría cuasi-esférica determinada por tres parámetros: su masa M, su carga eléctrica total e y su momento angular L.

Se cree que en el centro de la mayoría de las galaxias, entre ellas la Vía Láctea, hay agujeros negros supermasivos. La existencia de agujeros negros está apoyada en observaciones astronómicas, en especial a través de la emisión de rayos X por estrellas binarias y galaxias activas.

Tabla de contenidos

[ocultar] 1 Historia del agujero negro 2 Clasificación teórica

o 2.1 Agujeros negros primordiales o 2.2 Según la masa

Page 8: Radiacion Del Cuerpo Negro

o 2.3 Según el momento angular 3 Zonas observables 4 La entropía en los agujeros negros 5 Los agujeros negros en la física actual

o 5.1 Descubrimientos recientes 5.1.1 El mayor

6 Referencias 7 Véase también

8 Enlaces externos

Historia del agujero negro

Un agujero negro (simulado) de diez masas solares según lo visto de una distancia de 600 kilómetros con la vía láctea en el fondo (ángulo horizontal de la abertura de la cámara fotográfica: 90°).

El concepto de un cuerpo tan denso que ni la luz pudiese escapar de él, fue descrito en un artículo enviado en 1783 a la Royal Society por un geólogo inglés llamado John Michell. Por aquel entonces la teoría de Newton de gravitación y el concepto de velocidad de escape eran muy conocidas. Michell calculó que un cuerpo con un radio 500 veces el del Sol y la misma densidad tendría, en su superficie, una velocidad de escape igual a la de la luz y sería invisible. En 1796, el matemático francés Pierre-Simon Laplace explicó en las dos primeras ediciones de su libro Exposition du Systeme du Monde la misma idea aunque, al ganar terreno la idea de que la luz era una onda sin masa, en el siglo XIX fue descartada en ediciones posteriores.

En 1915, Einstein desarrolló la relatividad general y demostró que la luz era influenciada por la interacción gravitatoria. Unos meses después, Karl Schwarzschild encontró una solución a las ecuaciones de Einstein, donde un cuerpo pesado absorbería la luz. Se sabe ahora que el radio de Schwarzschild es el radio del horizonte de sucesos de un agujero negro que no gira, pero esto no era bien entendido en aquel entonces. El propio Schwarzschild pensó que no era más que una solución matemática, no física. En 1930, Subrahmanyan Chandrasekhar demostró que un cuerpo con una masa crítica, (ahora conocida como límite de Chandrasekhar) y que no emitiese radiación, colapsaría por su propia gravedad porque no había nada que se conociera que pudiera frenarla (para dicha masa la fuerza de atracción gravitatoria sería mayor que la proporcionada por el principio de exclusión de Pauli). Sin embargo, Eddington se opuso a la idea de

Page 9: Radiacion Del Cuerpo Negro

que la estrella alcanzaría un tamaño nulo, lo que implicaría una singularidad desnuda de materia, y que debería haber algo que inevitablemente pusiera freno al colapso, línea adoptada por la mayoría de los científicos.

En 1939, Robert Oppenheimer predijo que una estrella masiva podría sufrir un colapso gravitatorio y, por tanto, los agujeros negros podrían ser formados en la naturaleza. Esta teoría no fue objeto de mucha atención hasta los años 60 porque, después de la Segunda Guerra Mundial, se tenía más interés en lo que sucedía a escala atómica.

En 1967, Stephen Hawking y Roger Penrose probaron que los agujeros negros son soluciones a las ecuaciones de Einstein y que en determinados casos no se podía impedir que se crease un agujero negro a partir de un colapso. La idea de agujero negro tomó fuerza con los avances científicos y experimentales que llevaron al descubrimiento de los púlsares. Poco después, el término "agujero negro" fue acuñado por John Wheeler.

Clasificación teórica

Según su origen, teóricamente pueden existir al menos tres clases de agujeros negros:

Agujeros negros primordiales

Aquellos que fueron creados temprano en la historia del Universo. Sus masas pueden ser variadas y ninguno ha sido observado.

Según la masa Agujeros negros supermasivos : con masas de varios millones de masas solares.

Son el corazón de muchas galaxias. Se forman en el mismo proceso que da origen a las componentes esféricas de las galaxias.

Agujeros negros de masa estelar. Se forman cuando una estrella de masa 2,5 mayor que la masa del Sol se convierte en supernova e implosiona. Su núcleo se concentra en un volumen muy pequeño que cada vez se va reduciendo más.

Según el momento angular

Un agujero negro sin carga y sin momento angular es un agujero negro de Schwarzschild, mientras que un agujero negro rotatorio (con momento angular mayor que 0), se denomina agujero negro de Kerr.

Zonas observables

Page 10: Radiacion Del Cuerpo Negro

Visión de un artista de un agujero negro con disco de acreción.

Impresión de un artista de un agujero negro con una estrella del compañero de cerca que se mueve en órbita alrededor que excede su límite de Roche. la materia en que cae forma un disco de acrecimiento, con algo de la materia que es expulsada en chorros polares altamente enérgicos.

En las cercanías de un agujero negro se suele formar un disco de acrecimiento. Lo compone la materia con momento angular, carga eléctrica y masa, la que es afectada por la enorme atracción gravitatoria del mismo, ocasionando que inexorablemente atraviese el horizonte de sucesos y, por lo tanto, lo incremente.

Véase también: Acreción

En cuanto a la luz que atraviesa la zona del disco, también es afectada, tal como está previsto por la Teoría de la Relatividad. El efecto es visible desde la Tierra por la desviación momentánea que produce en posiciones estelares conocidas, cuando los haces de luz procedentes de las mismas transitan dicha zona.

Hasta hoy es imposible describir lo que sucede en el interior de un agujero negro; sólo se puede imaginar, suponer y observar sus efectos sobre la materia y la energía en las zonas externas y cercanas al horizonte de sucesos y la ergosfera.

Uno de los efectos más controvertidos que implica la existencia de un agujero negro es su aparente capacidad para disminuir la entropía del Universo, lo que violaría los fundamentos de la Termodinámica, ya que toda materia y energía electromagnética que atraviese dicho horizonte de sucesos, tienen asociados un nivel de entropía. Stephen

Page 11: Radiacion Del Cuerpo Negro

Hawking propone en su último libro que la única forma que no aumente la entropía sería que la información de todo lo que atraviese el horizonte de sucesos siga existiendo de alguna forma.

Otra de las implicaciones de un agujero negro supermasivo sería la probabilidad que fuese capaz de generar su colapso completo, convirtiéndose en una singularidad desnuda de materia.

La entropía en los agujeros negros

Según Stephen Hawking, en los agujeros negros se viola el segundo principio de la termodinámica, lo que dio pie a especulaciones sobre viajes en el espacio-tiempo y agujeros de gusano. El tema está siendo motivo de revisión; actualmente Hawking se ha retractado de su teoría inicial y ha admitido que la entropía de la materia se conserva en el interior de un agujero negro (véase enlace externo). Según Hawking, a pesar de la imposibilidad física de escape de un agujero negro, estos pueden terminar evaporándose por la llamada radiación de Hawking, una fuente de Rayos X que escapa del horizonte de sucesos.

El legado que entrega Hawking en esta materia es de aquellos que, con poca frecuencia en física, son calificados de bellos. Entrega los elementos matemáticos para comprender que los agujeros negros tienen una entropía gravitacional intrínseca. Ello implica que la gravedad introduce un nivel adicional de impredictibilidad por sobre la incertidumbre cuántica. Parece, en función de la actual capacidad teórica, de observación y experimental, como si la naturaleza asumiera decisiones al azar o, en su efecto, alejadas de leyes precisas más generales.

La hipótesis de que los agujeros negros contienen una entropía y que, además, ésta es finita, requiere para ser consecuente que tales agujeros emitan radiaciones térmicas, lo que al principio parece increíble. La explicación es que la radiación emitida escapa del agujero negro, de una región de la que el observador exterior no conoce más que su masa, su momento angular y su carga eléctrica. Eso significa que son igualmente probables todas las combinaciones o configuraciones de radiaciones de partículas que tengan energía, momento angular y carga eléctrica iguales. Son muchas las posibilidades de entes, si se quiere hasta de los más exóticos, que pueden ser emitidos por un agujero negro, pero ello corresponde a un número reducido de configuraciones. El número mayor de configuraciones corresponde con mucho a una emisión con un espectro que es casi térmico.

Físicos como Jacob D. Bekenstein han relacionado a los agujeros negros y su entropía con la teoría de la información.

Los agujeros negros en la física actual

Se explican los fenómenos físicos mediante dos teorías que se contradicen entre ellas; la mecánica cuántica, que explica la naturaleza de «lo muy pequeño», donde predomina el caos y la estadística, y la relatividad general, que explica la naturaleza de «lo muy pesado» y que afirma que en todo momento se puede saber con exactitud dónde está un

Page 12: Radiacion Del Cuerpo Negro

cuerpo. Cualquiera de estas teorías están experimentalmente confirmadas pero, al intentar explicar la naturaleza de un agujero negro, es necesario discernir si se aplica la cuántica por ser algo muy pequeño o la relatividad por ser algo tan pesado. Está claro que hasta que no se disponga de una física más avanzada no se conseguirá explicar realmente la naturaleza de este fenómeno.

Descubrimientos recientes

En junio de 2004 astrónomos descubrieron un agujero negro súper masivo, el Q0906+6930, en el centro de una galaxia distante a unos 12.700 millones de años luz. Esta observación indicó una rápida creación de agujeros negros súper masivos en el Universo joven.

La formación de micro agujeros negros en los aceleradores de partículas ha sido informada,2 pero no confirmada. Por ahora, no hay candidatos observados para ser agujeros negros primordiales.

El mayor

En el año 2007 se descubre el agujero negro, denominado IC 10 X-1, está en la constelación de Casiopea cerca de la galaxia enana IC 10, a una distancia de 1,8 millones de años luz de la Tierra con una masa de entre 24 y 33 veces la de nuestro Sol se considera el mayor hasta la fecha.3