Proyecto de calculo ejes

14
Versión 2004 CAPITULO 7 PROYECTO Y CÁLCULO DE EJES Y ELEMENTOS ACCESORIOS División 1 Generalidades. Revisión de métodos estáticos Métodos Dinámicos y por Fatiga UTN-FRBB Cátedra: Elementos de Máquinas. Profesor: Dr. Ing. Marcelo Tulio Piovan

description

Mecanica, calculo resistencia a los esfuerzos y fatiga. Útil para motores y aplicaciones motrices.

Transcript of Proyecto de calculo ejes

Page 1: Proyecto de calculo ejes

Versión 2004

CCAAPPIITTUULLOO 77

PPRROOYYEECCTTOO YY CCÁÁLLCCUULLOO DDEE EEJJEESS YY EELLEEMMEENNTTOOSS AACCCCEESSOORRIIOOSS

División 1

Generalidades. Revisión de métodos estáticos

Métodos Dinámicos y por Fatiga

UTN-FRBB Cátedra: Elementos de Máquinas. Profesor: Dr. Ing. Marcelo Tulio Piovan

Page 2: Proyecto de calculo ejes

Versión 2004

1. Introducción En este capítulo se darán herramientas para el cálculo de ejes y sus accesorios afines. En la presente División 1, se efectuará un repaso de la metodología de análisis y cálculo estático de ejes y se introducirán esquemas para el estudio de resistencia por fatiga, que es lo más importante desde el punto de vista de diseño.

2. Generalidades

Un eje es un elemento de máquina generalmente rotatorio y a veces estacionario, que tiene sección normalmente circular de dimensiones menores a la longitud del mismo. Tiene montados sobre sí, elementos que transmiten energía o movimiento, tales como poleas (con correas o cadenas), engranajes, levas, volantes, etc. En la Figura 7.1 se puede apreciar un eje con diferentes tipos de montajes, como los mencionados anteriormente.

Figura 7.1. Eje con diferentes tipos de montajes.

La solicitación sobre un eje puede ser de diferentes características, estática o dinámica en cuanto a la variación temporal de las solicitaciones, o bien, flexional, torsional, axial en cuanto al modo en que actúa la solicitación.

3. Procedimiento de Diseño de Eje

En la Figura 7.2 se puede apreciar una distribución cualquiera de las solicitaciones a que puede estar sometido un eje, flexionales, cortantes por flexión, axiales y torsionales. Un procedimiento general para el cálculo y diseño de ejes se puede condensar en las siguientes etapas:

1. Desarrollar un diagrama de cuerpo libre, reemplazando los diversos dispositivos por sus correspondientes acciones o solicitaciones, de manera de obtener un sistema estático equivalente.

2. Evaluar los momentos flectores, torsores, esfuerzos de corte y esfuerzos axiales en el tramo completo del eje.

UTN-FRBB Cátedra: Elementos de Máquinas. Profesor: Dr. Ing. Marcelo Tulio Piovan

Page 3: Proyecto de calculo ejes

Versión 2004

3. Seleccionar las secciones más conflictivas y de ellas los puntos más conflictivos. Esta tarea está asociada a la determinación de factores de concentración de tensiones debidos a entallas geométricas y otros factores debidos según ha sido explicado en el Capítulo 2.

4. Evaluar los estados tensionales en los puntos conflictivos. 5. Seleccionar el criterio o teoría de falla estática o dinámica en función del tipo de

material (frágil o dúctil) y tipo de rotura estimada (fatiga, etc.) 6. Evaluar la seguridad de los puntos conflictivos. 7. Efectuar un replanteo en términos de diámetro y configuraciones geométricas o

material en tanto que los resultados obtenidos no satisfagan las condiciones de diseño.

Figura 7.2. Solicitaciones en un eje y diagrama de cuerpo libre.

4. Diseño para solicitación estática

Discriminación de las tensiones normales y cortantes Dado el tipo de configuración de las solicitaciones se puede discriminar el siguiente estado tensional genérico debido a flexión, torsión y efecto axial:

( )AP

IcxM

x +=.σ , ( )

JcxT

xy.

=τ (7.1)

Donde M(x), T(x) y P(x) son el momento flector, el momento torsor y la fuerza axial respectivamente y además:

2dc= ,

64dI

4π= ,

32dJ

4π= ,

4dA

2π= (7.2)

Luego los valores de tensión serán

( ) ( )23x dxP4

dxM32

ππσ += , ( )

3xy dxT16

πτ = (7.3)

Entonces según las expresiones de tensiones principales y las tensiones de corte máxima y mínima, según un estado plano de tensiones, se obtienen como:

UTN-FRBB Cátedra: Elementos de Máquinas. Profesor: Dr. Ing. Marcelo Tulio Piovan

Page 4: Proyecto de calculo ejes

Versión 2004

{ } 2xy

2xx

21 22τ

σσσσ +

±=, , { } 2

xy

2x

σττ +

±=minmax , (7.4)

Luego, reemplazando (7.3) en (7.4) se tiene

{ }2

3

2

232321 dT16

dP2

dM16

dP2

dM16

+

+=

πππππσσ , (7.5)

{ }2

3

2

23 dT16

dP2

dM16

+

+=

πππττ minmax , (7.6)

Ahora bien, según sea el criterio de rotura que se pretenda emplear se tendrán diferentes casos, los cuales se tratarán a continuación.

Teoría de la Energía de Distorsión (Criterio de Von Mises-Hencky) Se recordará del Capítulo 2, División 4, que el criterio de máxima energía de distorsión establece que la falla se produce (en un material dúctil) cuando se cumple que:

( )s

y21

22

21 n

S≥−+ σσσσ (7.7)

Donde Sy y ns son el límite de fluencia del material y el coeficiente de seguridad del material. En consecuencia, reemplazando los valores de (7.5) en (7.7) se puede obtener la siguiente expresión:

s

y2

3

2

23 nS

dT16

43

dP2

dM162 ≥

+

+

πππ (7.8)

Nótese que en (7.8) no se puede obtener el diámetro como forma explícita en función de las solicitaciones actuantes. Sin embargo en el caso de poder desechar el esfuerzo axial, se puede obtener la conocida expresión:

322

y

s TMSn32

d

+= ¾

.π (7.9)

que si tiene explicitado el diámetro en función de las solicitaciones actuantes. En definitiva, dentro de la posibilidad de explicitar el diámetro como en (7.9) se puede obtener una expresión para dimensionar el eje. Pero por lo general se tendrá que recurrir a expresiones como la (7.8) para verificar el estado tensional, dado que en más frecuente tener un prediseño geométrico del eje con la localización de todos los concentradores de tensiones.

Teoría de la máxima tensión de corte (Criterio de Coulomb-Tresca) En este caso la falla se presentará si se cumple que:

s

y21 n

S≥−σσ (7.10)

UTN-FRBB Cátedra: Elementos de Máquinas. Profesor: Dr. Ing. Marcelo Tulio Piovan

Page 5: Proyecto de calculo ejes

Versión 2004

Luego reemplazando (7.5) en (7.10) se obtiene

s

y2

3

2

23 nS

dT16

dP2

dM162 ≥

+

+

πππ (7.11)

La cual no tiene explicitado el diámetro en función de los esfuerzos. Ahora como en el caso anterior, en ausencia de cargas axiales se puede explicitar el diámetro obteniendo:

322

y

s TMSn32

d

+=

.π (7.12)

5. Diseño para solicitación Dinámica

Teoría de diseño a la fatiga para materiales dúctiles En la Figura 7.3 se muestra un elemento diferencial sobre la superficie cilíndrica de un eje. En tal elemento diferencial se pueden apreciar las componentes media (con subíndice m) y alternante (con subíndice a) de las tensiones normales y las tensiones cortantes. Además en la Figura 7.3.b se puede apreciar la distribución de tensiones actuantes en un plano inclinado un ángulo φ. De todas las posibles combinaciones de solicitación cíclica, la situación más conflictiva se da cuando las cargas alternantes debidas a los momentos flectores y a los momentos torsores se encuentran en fase (es decir cuando las tensiones alternantes normal y tangencial se encuentran en fase).

(a) (b)

Figura 7.3. Elemento diferencial de superficie cilíndrica en un eje.

Para deducir una expresión de cálculo a la fatiga en ejes, se pueden contabilizar diferentes situaciones. La manera más simple es analizando el estado tensional tangencial sobre el plano oblicuo A, que se ve en la Figura 7.3, esto significa emplear una variante del criterio de Máxima Tensión de Corte. Efectuando una sumatoria sobre la tangente del plano inclinado en φ, se obtiene:

UTN-FRBB Cátedra: Elementos de Máquinas. Profesor: Dr. Ing. Marcelo Tulio Piovan

Page 6: Proyecto de calculo ejes

Versión 2004

( ) [ ] [ ] ( ) [ ] [ ]( ) [ ] [ ] 0dASenCosK

dASenSenKdACosCosKdA

afm

afsmafsm

=++

++−++−

φφσσ

φφττφφτττφ (7.13)

simplificando y recurriendo a las definiciones de ángulos dobles se obtiene

( ) [ ] ( ) [ ]22SenK2CosK afmafsmφσσφτττφ +++= (7.14)

con lo cual se puede separar en componentes alternantes y componentes medias de la tensión de corte

[ ] [ ] [ ] [ ]

++

+=+=

22SenK2CosK

22Sen2Cos afafsmmam

φσφτφσφττττ φφφ (7.15)

En la Figura 7.4 se muestra el criterio de fatiga de Soderberg para un estado tensional cortante, del cual se puede extractar la siguiente relación:

⇒=⇒=ODCD

OACB

CBCD

OAOD

2S2Sn1

y

m

e

a

s //φφ ττ

+= (7.16)

Luego reemplazando (7.15) en (7.16) se obtiene la siguiente forma

[ ] [ φφ 2SenA2CosA2n1

21s

+= ] con e

afs

y

m1 S

KS

Aττ

+= , e

af

y

m2 S

KS

Aσσ

+= (7.17)

Figura 7.4. Diagrama de Fatiga de Soderberg para estado tensional cortante.

La condición de máxima seguridad, se tendrá cuando la expresión recuadrada de (7.17) sea mínima, es decir:

[ ] [ ] ⇒=+−=

02CosA22SenA4n1

dd

21s

φφφ

[ ][ ]

[ ]1

2

A2A2Tan

2Cos2Sen

== φφφ

(7.18)

de la cual se puede obtener:

[ ]2

12

2

2

A4AA2Sen+

=φ , [ ]2

12

2

1

A4AA2+

=φCos (7.19)

Reemplazando (7.19) en (7.17) y operando se puede lograr la siguiente expresión de tensión:

UTN-FRBB Cátedra: Elementos de Máquinas. Profesor: Dr. Ing. Marcelo Tulio Piovan

Page 7: Proyecto de calculo ejes

Versión 2004

2

ae

fsym

2

ae

fym

s

y

SKS

4SKS

nS

++

+= ττσσ (7.20)

Dado que en un estado plano de tensiones la tensión de corte máxima viene dada por

22

2τστ +

=max (7.21)

o bien aplicando la condición del criterio de máxima tensión cortante:

⇒=max

2Sn y

s22

s

y 4nS

τσ += (7.22)

De manera que comparando (7.20) y (7.22) se puede obtener las siguientes expresiones:

ae

fym S

KSσσσ += , a

e

fsym S

KSτττ += (7.23)

Teniendo en cuenta que de (7.23) se puede escribir:

3a

e

fy3

m

dM32

SKS

dM32

ππσ += , 3

a

e

fsy3m

dM16

SKS

dT16

ππτ += (7.24)

Donde Mm y Ma son momentos flectores medio y alternante, mientras que Tm y Ta son momentos torsores medio y alternante. Luego, reemplazando (7.24) en (7.20) se puede obtener:

2

ae

fsym

2

ae

fym3

s

y TSKS

TMSKS

Md32

nS

++

+=

π

Expresión de Fatiga por criterio de máxima tensión de corte

(7.25)

de la (7.25) se puede despejar el diámetro o el coeficiente de seguridad o el valor de la tensión de fluencia según sea el tipo de cálculo que se encare. Por otro lado se puede demostrar que para la teoría de máxima energía de deformación se obtiene la siguiente expresión (ver referencia [2])

2

ae

fsym

2

ae

fym3

s

y TSKS

T43M

SKS

Md32

nS

++

+=

π

Expresión de Fatiga por criterio de máxima energía de deformación

(7.26)

NOTA: En determinadas circunstancias y aplicaciones es común que alguno de los esfuerzos Mm, Ma, Tm y Ta sea nulo. Por ejemplo en el caso de flexión es más preponderante Ma que Mm y en torsión ocurre lo contrario. Sin embargo esto depende estrictamente de las aplicaciones.

Teoría de diseño a la fatiga para materiales frágiles Aunque generalmente los ejes son fabricados con materiales dúctiles, en algunas aplicaciones los ejes se hacen de fundición, es decir un material frágil. En consecuencia para plantear un método de análisis, se emplea la suma de componentes normales al plano de la sección A en la Figura 7.3.b. es decir

UTN-FRBB Cátedra: Elementos de Máquinas. Profesor: Dr. Ing. Marcelo Tulio Piovan

Page 8: Proyecto de calculo ejes

Versión 2004

( ) [ ] [ ] ( ) [ ] [ ]( ) [ ] [ ] 0dASenSenK

dACosSenKdASenCosKdA

amc

amcsamcs

=++

−+−+−

φφσσ

φφττφφττσφ (7.27)

donde Kc y Kcs son factores de concentración de tensiones. Téngase presente que hay una diferencia entre la concentración de tensiones para materiales frágiles que para materiales dúctiles. Esta es la razón por la cual los coeficientes se aplican en ambas componentes de tensión para los materiales frágiles y solo en la componente alternante en el caso de materiales dúctiles. En la Figura 7.5 se muestra el criterio de Soderberg para tensiones normales.

Figura 7.5. Diagrama de Fatiga de Soderberg para estado tensional normal.

Siguiendo el mismo procedimiento que en el apartado anterior (el trabajo algebraico se deja al alumno) se obtiene la siguiente expresión genérica en términos de la tensión:

2

ae

um

2CS

2

ae

um

2Ca

e

umC

s

u

SS

K4SS

KSS

KnS2

++

++

+= ττσσσσ (7.28)

Luego teniendo en cuenta las expresiones de los momentos flectores y torsores (7.24) se tiene:

++

++

+=

2

ae

um

2CS

2

ae

um

2Ca

e

umC3

s

u TSS

TKMSS

MKMSS

MKd16

nS

π

Expresión de Fatiga por criterio de máxima

tensión normal

(7.29)

de la (7.29) se puede despejar el diámetro o el coeficiente de seguridad o el valor de la tensión de fluencia según sea el tipo de cálculo que se encare.

6. Diseño de accesorios de sujeción

Los accesorios de sujeción más comunes son las denominadas chavetas. Las mismas pueden tener una gran variedad de formas y diseños según el tipo de aplicación. En la Figura 7.6 se pueden ver diferentes tipos de chavetas y ranurados para chavetas para ser empleadas como elementos de conexión de los ejes con las poleas, engranajes, y algunos tipos de acoplamientos, entre otros dispositivos. Las chavetas y otros elementos de sujeción de dispositivos a los ejes normalmente se calculan a dos tipos de solicitación diferentes

UTN-FRBB Cátedra: Elementos de Máquinas. Profesor: Dr. Ing. Marcelo Tulio Piovan

Page 9: Proyecto de calculo ejes

Versión 2004

1) por corte 2) por aplastamiento

Figura 7.6. Diferentes Tipos de Chavetas.

En la Figura 7.7 se muestra un tipo de chaveta paralelepípeda normalizada. El cálculo de falla debido al corte de la chaveta se obtiene de:

LwdT2

AP

2dTP diseño ../

==⇒= τ (7.30)

Siendo P la fuerza de corte, T el momento torsor, d el diámetro del eje, w y L el ancho y longitud de la chaveta. Para la falla por aplastamiento se tiene

hLdT4

2hLdT2

AdT2

AP

ccdiseño ../...

====σ (7.31)

recordar que para (7.30) y (7.31) se deberán cumplir condiciones de seguridad apropiadas, las cuales se dan por las siguientes expresiones:

s

y

s

sydiseño n

S400nS .

=≤τ , s

ydiseño n

S900.≤σ (7.32)

Figura 7.7. Chavetas rectangulares o paralelepípedas

UTN-FRBB Cátedra: Elementos de Máquinas. Profesor: Dr. Ing. Marcelo Tulio Piovan

Page 10: Proyecto de calculo ejes

Versión 2004

Otros accesorios de retención son los anillos de ajuste o de retención como las que se pueden ver en la Figura 7.8. Para seleccionar este tipo de accesorio es siempre necesario recurrir a los catálogos de los fabricantes. En la Figura 7.9 se muestran otros accesorios de sujeción elasticos, son denominados resortes de ajuste.

(a) (b) Figura 7.8. Diferentes Tipos de anillos de sujeción.

(a) (b)

Figura 7.9. Diferentes Tipos de resortes de sujeción. (ver referencia [5])

7. Diseño y cálculo de Volantes

Cuando se presentan en mecanismos, grandes variaciones de aceleración, se transmiten pares torsores con mucha fluctuación. Para suavizar este comportamiento de cambios bruscos de velocidad y para estabilizar el flujo de ida y vuelta de energía del equipo de rotación, se coloca un volante sobre el eje. Las funciones del volante son:

Reducir la amplitud de fluctuación de la velocidad Reducir la amplitud del par torsor fluctuante Almacenar y liberar energía cuando sea necesario.

UTN-FRBB Cátedra: Elementos de Máquinas. Profesor: Dr. Ing. Marcelo Tulio Piovan

Page 11: Proyecto de calculo ejes

Versión 2004

En la Figura 7.10 se tiene un ejemplo de montaje de volante sobre un eje. La energía cinética que posee tal volante es:

2me I

21K ω= (7.33)

Siendo Im la inercia de la masa del volante y w la velocidad de rotación con dimensiones del sistema internacional. Por otro lado en el volante de la Figura 7.10 se puede establecer la siguiente ley de equilibrio dinámico

dtdITT mmlω

=− (7.34)

siendo Tl el par de la carga y Tm el par del motor de accionamiento.

Figura 7.10. Esquema de un volante montado en un eje.

Ahora bien dado que

θωωθ

θωω

dd

dtd

dd

dtd

== . (7.35)

y teniendo en cuenta que en el par del motor Tm = Tprom, luego se puede escribir

θωω

ddITT mproml =− (7.36)

Integrando queda

( ) ( )22mproml 2

IdTT minmax

max

min

ωωθθ

θ

−=−∫ (7.37)

Para la selección del tamaño del volante es necesario establecer o conocer un parámetro que pondere la variabilidad de la velocidad de rotación. Este parámetro de variación se llama Coeficiente de Fluctuación y viene dado por la relación entre la velocidad de fluctuación y la velocidad promedio:

( )minmax

minmaxminmax

ωωωω

ωωω

ωω

+−

=−

==2

Cpromprom

fF (7.38)

Así pues la energía cinética (7.33) se puede expresar en función del coeficiente de fluctuación como:

UTN-FRBB Cátedra: Elementos de Máquinas. Profesor: Dr. Ing. Marcelo Tulio Piovan

Page 12: Proyecto de calculo ejes

Versión 2004

( )( ) F2promm

me CI

2I

K ωωωωω =−+= minmaxminmax (7.39)

De donde se puede despejar la inercia en función del resto de términos, es decir

F2prom

em C

KI

ω= (7.40)

El momento de inercia se puede obtener conociendo el coeficiente de fluctuación, el cual es dato para muchos tipos diferentes de aplicaciones. En el Caso de Estudio 12 se puede ver el análisis de diferentes tipos de solicitaciones para diseñar un Volante. El diseño más eficiente se obtiene maximizando la inercia del volante. El procedimiento para dimensionar volantes es el siguiente:

1. graficar el par de torsion de carga Tl en función del ángulo 2. se determina el par torsor promedio a lo largo del ciclo 3. se encuentran localizaciones para y maxθ minθ

4. Determinar la energía cinética por integración de la curva del par de torsión 5. Establecer el valor de promω

6. Determinar la inercia Im con la ecuación (7.33) 7. Obtener las dimensiones del volante.

En la Tabla 7.1 se pueden apreciar algunos valores de coeficientes de amortiguamiento para diferentes aplicaciones de volantes. En los volantes se deben tener en cuenta en más de una oportunidad los estados tensionales. Como hipótesis de análisis se supone que un volante es un cilindro de espesor uniforme con un orificio central y que es sometido a dos tipos de esfuerzos. Uno debido a efectos centrífugos y otro debido a efectos de presión de ajuste (según se vio en el Capítulo 2). Así pues, el estado de tensiones circunferencial y radial viene dado por:

rprr

p

σσσ

σσσ

ω

θθωθ

+=

+= (7.41)

donde los subíndices θ y r identifican las componente circunferencial y radial y los subíndices ω y p identifican las componentes debidas a efectos centrífugos y de presión. Teniendo en cuenta las expresiones (2.128) y (2.129) aplicadas a la configuración de un volante como el mencionado más arriba, se puede escribir las siguientes expresiones del estado tensional para el volante:

( )( )

p

2

2o

2i

2o

2ii2

2

2o

2i2

o2

i2

rr

1rr

rpr

331

rrr

rr8

3

θσθωσ

θ ννρωνσ

+

−+

++

−+++

= (7.42)

UTN-FRBB Cátedra: Elementos de Máquinas. Profesor: Dr. Ing. Marcelo Tulio Piovan

Page 13: Proyecto de calculo ejes

Versión 2004

rp

2

2o

2i

2o

2ii

r

22

2o

2i2

o2

i2

r rr

1rr

rpr

rrr

rr8

3

σωσ

ρωνσ

−+

−−+

+= (7.43)

Téngase presente que tanto σθ como σr son tensiones principales, en consecuencia para la obtención de una norma de valoración de seguridad para materiales Frágiles, donde se predice falla si se cumple:

s

u

nS

≥θσ (7.44)

Mientras que para materiales dúctiles se empleará una forma similar al criterio de máxima energía de deformación, en la cual se predice falla si:

s

yr

2r

2

nS

≥−+ θθ σσσσ (7.45)

Tipo de Aplicación Coeficiente de fluctuación CF

Máquinas de Trituración 0.200 Máquinas Eléctricas 0.003 Máquinas eléctricas accionadas directamente 0.002 Motores con transmisión por correas 0.030 Máquinas de molienda de granos 0.020 Transmisión por engranajes 0.020 Máquinas para estampado o martillado 0.200 Máquinas herramientas 0.030 Máquinas para fabricación de papel 0.025 Máquinas para bombeo 0.030 a 0.050 Maquinas para cortar 0.030 a 0.050 Máquinas giratorias 0.010 a 0.020 Máquinas para la industria textil 0.025

Tabla 7.1. Coeficientes de Fluctuación para diversas aplicaciones

Los volantes suelen fabricarse con diferentes tipos de materiales, que van desde los materiales metálicos (acero, fundición, plomo, etc) hasta los materiales cerámicos. Para poder clasificar su utilidad se suele definir una propiedad denominada “índice de rendimiento” el cual se obtiene relacionando la máxima tensión del material con respecto a la densidad del mismo. Esto es, mediante la siguiente ecuación:

ρσ max=RI (7.46)

En la Tabla 7.2 se muestran algunos valores de los Indices de rendimiento para diferentes materiales. Nótese que algunos son poco útiles como materiales para construir volantes

UTN-FRBB Cátedra: Elementos de Máquinas. Profesor: Dr. Ing. Marcelo Tulio Piovan

Page 14: Proyecto de calculo ejes

Versión 2004

Material Índice de Rendimiento Comentario Cerámicas 200-500 Frágiles. Poco útiles (rompen a tracción) Berilio 300 muy caro y también es tóxico Acero de alta resistencia 100-200 Aleaciones de aluminio 100-200 Aleaciones de titanio 100-200

Buenas propiedades y rendimiento parejo en cada uno.

Aleaciones de plomo 3 barato y fácil de emplear cuando el rendimiento está limitado por velocidad y no por la resistencia.

Plástico reforzado con fibra carbono 100-400 muy buen material Tabla 7.2. Comparación de Materiales para volantes

8. Bibliografía [1] J.E. Shigley y C.R. Mischke, “Diseño en Ingeniería Mecánica”, McGraw Hill 2002. [2] B.J. Hamrock, B. Jacobson y S.R. Schmid, “Elementos de Máquinas”, McGraw Hill 2000 [3] R.L. Norton, “Diseño de maquinaria”, McGraw Hill 2000. [4] X. Oliver Olivella y C. Agelet de Saracibar Bosch. “Mecánica de medios continuo para ingenieros”. Ediciones UPC, Ed. Alfaomega. (2002). [5] http://www.smalley.com

UTN-FRBB Cátedra: Elementos de Máquinas. Profesor: Dr. Ing. Marcelo Tulio Piovan