Propiedades Reológicas de los Fluidos de Perforación

32
Propiedades Reológicas de los Fluidos de Perforación Ciencia que estudia la deformación y del flujo de la Materia. Es posible determinar el comportamiento de un fluido bajo diversas condiciones, incluyendo la Temperatura, Presión y la Velocidad de Corte. Reología Viscosidad Resistencia de un Fluido al movimiento. Viscosidad, es el término reológico mas conocido. Términos para describir las propiedades reológicas del Fluido de Perforación: • Viscosidad de Embudo.- seg/qt ó seg/Lt • Viscosidad Aparente.- Centipoises (cP) ó mPa*seg. • Viscosidad Efectiva.- Centipoises ó mPa*seg. • Viscosidad Plástica.- lb/100ft2 ó Pa. • Viscosidad a baja velocidad de corte.- cP ó mPa*seg • Esfuerzos de Gel .- lb/100ft2 ó Pa. • 100 centipoise (cp) = 1 poise • Centipoise es la dimensión usada para expresar: • Viscosidad plástica • Viscosidad aparente • Viscosidad efectiva

Transcript of Propiedades Reológicas de los Fluidos de Perforación

Page 1: Propiedades Reológicas de los Fluidos de Perforación

Propiedades Reológicas de los Fluidos de Perforación

Ciencia que estudia la deformación y del flujo de la Materia.Es posible determinar el comportamiento de un fluido bajo diversas condiciones, incluyendo la Temperatura, Presión y la Velocidad de Corte.

Reología

Viscosidad

Resistencia de un Fluido al movimiento.

Viscosidad, es el término reológico masconocido.

Términos para describir las propiedades reológicas del

Fluido de Perforación:

• Viscosidad de Embudo.- seg/qt ó seg/Lt• Viscosidad Aparente.- Centipoises (cP) ó mPa*seg.• Viscosidad Efectiva.- Centipoises ó mPa*seg.• Viscosidad Plástica.- lb/100ft2 ó Pa.• Viscosidad a baja velocidad de corte.- cP ó mPa*seg• Esfuerzos de Gel .- lb/100ft2 ó Pa.• 100 centipoise (cp) = 1 poise• Centipoise es la dimensión usada para expresar:• Viscosidad plástica• Viscosidad aparente• Viscosidad efectiva

Las dimensiones de lbs/100 pies cuadrados son usadas para expresar:

• Punto cedente• Gel inicial (10 segundos)• Gel a 10 minutos (10 minutos)

Viscosidad de Embudo

Page 2: Propiedades Reológicas de los Fluidos de Perforación

Esfuerzo de corte, Velocidad de corte

Viscosidad = Esfuerzo de Corte/ Velocidad de Corte

Otra forma de describir a la Viscosidad es larelación entre el Esfuerzo de Corte y Velocidadde Corte

Page 3: Propiedades Reológicas de los Fluidos de Perforación

Viscosidad

Fuerza/VelocidadoIndicación del Cuadrante/RPM

Esfuerzo de Corte

• Fuerza interna que resiste al flujo• Reportado como indicación delcuadrante en un viscosímetro VG• Pérdida de presión del sistema.

Velocidad de Corte

• La velocidad (media o calculada) depropagación del fluido en el medio• La velocidad es indicada por RPM enun viscosímetro VG• La velocidad anular en el sistema decirculación es un ejemplo de lavelocidad de propagación en el medio.

Page 4: Propiedades Reológicas de los Fluidos de Perforación

Viscosidad Efectiva

VE = Viscosidad Efectiva, centipoiseVE = 300 x Indicación del Cuadrante/ RPM

Factores Afectados por la Reología del Fluido• Limpieza del pozo• Suspensión de sólidos• Estabilidad del pozo• Control de sólidos• Densidades equivalentes de circulación• Presiones de surgencia / pistoneo.

Page 5: Propiedades Reológicas de los Fluidos de Perforación

Perfil Transversal de un Viscosímetro

Diferentes nombres para el Viscosímetro Concéntrico

• Viscosímetro• Reómetro• Viscosímetro VG

Viscosidad Plástica

Definición

• Resistencia al flujo debido a la fricciónmecánica.

Afectada por:

• Concentración de sólidos• Tamaño y forma de los sólidos• Viscosidad de la fase fluida

Cómo calcular la Viscosidad Plástica (VP):• VP = q600 - q300Ejemplo:• VP = 40 - 25 = 15

Page 6: Propiedades Reológicas de los Fluidos de Perforación

Viscosidad Plástica Aumentada por:

•Sólidos Perforados Hidratables– Arcillas, lutitas.

•Sólidos Perforados Inertes– Arena, caliza, etc.

•Materia Coloidal– Almidón, CMC.

• Material densificante para aumentar ladensidad

• Descomposición de las partículas, lo cualaumenta el área superficial y resulta enmayor fricción

Área Superficial vs. Tamaño de las Partículas

Page 7: Propiedades Reológicas de los Fluidos de Perforación

Efecto del Tamaño de las Partículas sobre la Viscosidad

VP, PC vs. Peso del Lodo, lbs/gal

Page 8: Propiedades Reológicas de los Fluidos de Perforación

Viscosidad Plástica Reducida por:

Eliminación de Sólidos

• Zaranda• Desarenadores, desarcilladores y centrífugas• La reducción del esfuerzo de gel permite lasedimentación de partículas más grandes• Dilución de sólidos con agua

Impacto de la concentración de Sólidos en laViscosidad del Fluido.

Impacto de la concentración de Sólidos en la Viscosidad del Fluido.

Punto CedenteDefinición:• Resistencia al flujo causada por la dispersión o la atracción eléctrica entre los sólidos.

Afectado por:

• Tipo de sólidos y cargas asociadas.• Concentración de estos sólidos.• Sales disueltas.

Page 9: Propiedades Reológicas de los Fluidos de Perforación

El Punto Cedente se incrementa debido a:

• Arcillas y lutitas perforadas hidratables que aumentan el contenido de sólidos reactivos.

• Concentración insuficiente de desfloculantes.

• Sobre tratamiento con Carbonato de Sodio o Bicarbonato de Sodio.• Adición de sólidos inertes (como la barita) .• Contaminantes.

– Sal, cemento, anhidrita, gases ácidos, etc.

Neutralizan las cargas de las partículas de arcilla, causando la floculación• La fracturación de partículas de arcilla hace que fuerzas residuales permanezcan en los bordes de las partículas, resultando en la floculación.

El Punto Cedente es controlado por:

• Desfloculación de las arcillas.• Eliminación del ion contaminante.

El Punto Cedente es reducido por:

• La floculación es un problema de química y debe ser tratado con un producto químico.• La adición de agua minimizará la floculación, pero no soluciona el problema.• Grandes adiciones de agua también reducen el peso del lodo. Esto puede requerir grandes adiciones de material densificante, lo cual podría ser muy costoso.

Interpretación de los Valores de VG

¿Qué significa cuando se aumenta el PC y la VP apenas cambia?ØSe trata de un problema químico que se puede reducir sólo con la adición de un desfloculante.¿Qué significa cuando se aumenta la VP y el PC apenas cambia?ØIndica un problema de alta concentración de sólidos que se puede reducir bien con dilución o con el uso apropiado del equipo para control de sólidos.¿Qué indican generalmente los Grandes Aumentos Simultáneos de la VP y del PC?ØUn aumento en el contenido de arcillas reactivas en el lodo.¿Cómo debería tratarse esta situación?ØCon el uso de desfloculanes y dilución simultánea.

Page 10: Propiedades Reológicas de los Fluidos de Perforación

Esfuerzo de Gel

• Los Esfuerzos de Gel reducen la velocidadde sedimentación de los recortes cuando seinterrumpe la circulación

• La estructura de gel se desarrolla cuando ellodo está estático.

• El esfuerzo de gel depende del tiempo, dela temperatura, y de la concentración yresistencia de las partículas en atracción.

Problemas Atribuidos a Viscosidad y Esfuerzos de Gel Altos

• Mayor presión de bombeo para romper la circulación.• Pérdida de circulación causada por aumentos bruscos de la presión.• Pistoneo de la lutita y de los fluidos de la formación dentro del pozo.• Arena abrasiva transportada en el lodo.

Page 11: Propiedades Reológicas de los Fluidos de Perforación

Tipos de fluidos

Newtonianos

No Newtonianos

Page 12: Propiedades Reológicas de los Fluidos de Perforación

Fluidos Newtonianos

El fluido es Newtoniano si la indicación del cuadrante (IC) a 600 RPM es el doble de la indicación del cuadrante a 300 RPMEl Punto Cedente es 0q 600 = 80q 300 = 40VP = 40PC = 0

Page 13: Propiedades Reológicas de los Fluidos de Perforación

Fluidos No Newtonianos

• La viscosidad depende de la velocidad de corte• Disminuyen su viscosidad con el esfuerzo de corte• En un flujo laminar, los fluidos No Newtonianos son menos viscosos a altas velocidades de corte que a bajas velocidades de corte.

Si la indicación del cuadrante (q) a 600 RPM es menos del doble de la indicación del cuadrante a 300 RPM, se trata de un fluido que disminuye su viscosidad con el esfuerzo de corte, o de un fluidoNo Newtoniano

NO NEWTONIANOq 600 = 68q 300 = 40

Page 14: Propiedades Reológicas de los Fluidos de Perforación

Modelos Reológicos

Modelos Reológicos

Flujo Plástico de BinghamLey Exponencial

Ecuación de Flujo Plástico de Bingham

F = PC + VP (R/300)

VP = Viscosidad PlásticaPC = Punto CedenteR = Velocidad Rotacional en RPMF = Indicación del Cuadrante a laVelocidad R

Page 15: Propiedades Reológicas de los Fluidos de Perforación

Modelo de Flujo - Plástico de Bingham

Ecuación de Ley Exponencial

F = K (RPM)n

F = Esfuerzo de Corte, unidades del cuadranteRPM = Velocidad de Corte, velocidad rotacionalK = Índice de Consistencian = Índice de Ley Exponencial

Page 16: Propiedades Reológicas de los Fluidos de Perforación

Modelo de Ley Exponencial

Valor n

• Índice de ley exponencial• Indica la capacidad de un fluido para disminuir su viscosidad con el esfuerzo de corte• A medida que “n” disminuye, el fluido disminuye cada vez más su viscosidad con el esfuerzo de corte

Valor n para la Tubería de Perforaciónnp = 3,32 log (q600/ q300)

Valor n para el Espacio Anularna = 0,657 log (q100/ q3)

Page 17: Propiedades Reológicas de los Fluidos de Perforación

Qué Causa el Aumento de n

• Eliminación de sólidos reactivos• Adición de diluyentes químicos

Qué Causa la Disminución de n

• Adición de sólidos reactivos• Contaminación química

Valor K

• Índice de Consistencia• Indica la viscosidad de un sistema a una baja velocidad de corte (un segundo recíproco)• Afectado por la concentración de viscosificador y sólidos

Valor K para la Tubería de Perforación

Valor K para el Espacio Anular

Qué Causa el Aumento de K

• Adición de sólidos reactivos y no reactivos• Contaminación química

Qué Causa la Disminución de K

• Eliminación de sólidos reactivos y no reactivos• Adición de desfloculantes químicos

Page 18: Propiedades Reológicas de los Fluidos de Perforación

REGIMENES DEFLUJO REOLÓGICOS

Determinación del Régimen de Flujo

• Número de Reynolds• Geometría del pozo• Propiedades del fluido

Número de Reynolds

Depende de:

• Densidad del Fluido• Geometría del pozo• Gasto de Bomba, Caudal• Viscosidad del fluido

Page 19: Propiedades Reológicas de los Fluidos de Perforación

Etapa 1: Ningún Flujo

Page 20: Propiedades Reológicas de los Fluidos de Perforación

Etapa 2: Flujo Tapón

Page 21: Propiedades Reológicas de los Fluidos de Perforación

Etapa 3: Transición(Tapón a Laminar)

Page 22: Propiedades Reológicas de los Fluidos de Perforación

Etapa 4: Flujo Laminar (Ordenado)

Page 23: Propiedades Reológicas de los Fluidos de Perforación

Etapa 5: Transición(Laminar a Turbulento).

Page 24: Propiedades Reológicas de los Fluidos de Perforación

Etapa 6: Flujo Turbulento

Page 25: Propiedades Reológicas de los Fluidos de Perforación

Número de Reynolds

Tipo de Flujo

Page 26: Propiedades Reológicas de los Fluidos de Perforación

El Sistema de Circulación Funciona a Diferentes Velocidades de Corte

Geometría Anular

Page 27: Propiedades Reológicas de los Fluidos de Perforación

Secuencia de Cálculos para la Tubería y el Espacio Anular