PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN...

36
UNIVERSIDAD DE BARCELONA FACULTAD DE FARMACIA DEPARTAMENTO BIOQUIMICA Y BIOLOGIA MOLECULAR PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN PACIENTES CON CARCINOMA ESCAMOSO DE CABEZA Y CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009

Transcript of PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN...

Page 1: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

UNIVERSIDAD DE BARCELONA

FACULTAD DE FARMACIA

DEPARTAMENTO BIOQUIMICA Y BIOLOGIA MOLECULAR

PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN PACIENTES CON

CARCINOMA ESCAMOSO DE CABEZA Y CUELLO

MIGUEL ANGEL PAVÓN RIBAS 2009

Page 2: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

IX. ANEXOS

Page 3: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados
Page 4: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

IX ANEXOS ANEXO 1. Genes expresados diferencialmente al comparar los tumores del cluster 1 con los tumores del cluster 2 y 3

ANEXO 2. Genes expresados diferencialmente al comparar los tumores del cluster 3 con los tumores del cluster 1 y 2

ANEXO 3. Genes expresados diferencialmente al comparar los tumores del cluster 2 con los tumores del cluster 1 y 3

ANEXO 4. Genes expresados diferencialmente en función de la rediviva local a los 2 años ANEXO 5. Genes expresados diferencialmente en función de la supervivencia a 3 años

ANEXO 6. Genes expresados diferencialmente en función de la respuesta a la quimioterapia de inducción

ANEXO 7. Genes expresados diferencialmente tras comparar los niveles de expresión de los tumores respecto a las mucosas normales ANEXO 8. Publicación de los resultados obtenidos en el estudio de los niveles de expresión de los genes del sistema NHEJ en biopsias pre-tratamiento de pacientes con carcinoma escamosos de cabeza y cuello localmente avanzado tratados con quimioterapia de inducción (Int J Cancer. 2008 Sep 1;123(5):1068-79)

181

Page 5: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados
Page 6: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

AN

EX

O 1

: Gen

es e

xpre

sado

s di

fere

ncia

lmen

te a

l com

para

r lo

s tu

mor

es d

el c

lust

er 1

con

los

tum

ores

del

clu

ster

2 y

3 (

p a

just

ada<

0,05

)

Prob

eSy

mbo

lD

escr

ipti

onC

ytob

and

t-st

atis

tic

p-va

lue

adjp

2026

27_s

_at

SER

PIN

E1

serp

in p

eptid

ase

inhi

bito

r, cl

ade

E (n

exin

, pla

smin

ogen

act

ivat

or in

hibi

tor t

ype

1),

mem

ber 1

7q21

.3-q

226.

8453

41e

-04

9e-0

4

2011

09_s

_at

TH

BS1

thro

mbo

spon

din

115

q15

6.77

397

1e-0

49e

-04

2105

11_s

_at

INH

BA

inhi

bin,

bet

a A

7p15

-p13

6.76

322

1e-0

49e

-04

2124

73_s

_at

MIC

AL

2m

icro

tubu

le a

ssoc

iate

d m

onox

ygen

ase,

cal

poni

n an

d LI

M d

omai

n co

ntai

ning

211

p15.

36.

5396

61e

-04

0.00

1722

1471

_at

SER

INC

3se

rine

inco

rpor

ator

320

q13.

1-q1

3.3

6.48

186

1e-0

40.

0023

2026

20_s

_at

PLO

D2

proc

olla

gen-

lysi

ne, 2

-oxo

glut

arat

e 5-

diox

ygen

ase

23q

23-q

246.

4366

11e

-04

0.00

2620

1105

_at

LG

AL

S1le

ctin

, gal

acto

side

-bin

ding

, sol

uble

, 1 (g

alec

tin 1

)22

q13.

16.

3553

91e

-04

0.00

3520

2949

_s_a

tFH

L2

four

and

a h

alf L

IM d

omai

ns 2

2q12

-q14

6.20

728

1e-0

40.

0061

2119

45_s

_at

ITG

B1

inte

grin

, bet

a 1

(fib

rone

ctin

rece

ptor

, bet

a po

lype

ptid

e, a

ntig

en C

D29

incl

udes

MD

F2,

MSK

12)

10p1

1.2

6.16

237

1e-0

40.

0074

2011

08_s

_at

TH

BS1

thro

mbo

spon

din

115

q15

6.10

825

1e-0

40.

0087

2038

89_a

tSC

G5

secr

etog

rani

n V

(7B

2 pr

otei

n)15

q13-

q14

6.09

843

1e-0

40.

0089

2026

19_s

_at

PLO

D2

proc

olla

gen-

lysi

ne, 2

-oxo

glut

arat

e 5-

diox

ygen

ase

23q

23-q

246.

0384

21e

-04

0.01

02

2075

43_s

_at

P4H

A1

proc

olla

gen-

prol

ine,

2-o

xogl

utar

ate

4-di

oxyg

enas

e (p

rolin

e 4-

hydr

oxyl

ase)

, alp

hapo

lype

ptid

e I

10q2

1.3-

q23.

15.

9989

92e

-04

0.01

14

2196

55_a

tC

7orf

10ch

rom

osom

e 7

open

read

ing

fram

e 10

7p14

.15.

9905

51e

-04

0.01

1720

3735

_x_a

tP

PF

IBP

1PT

PRF

inte

ract

ing

prot

ein,

bin

ding

pro

tein

1 (l

iprin

bet

a 1)

12p1

1.23

-p11

.22

5.87

329

1e-0

40.

0175

2222

35_s

_at

GA

LN

AC

T-2

chon

droi

tin su

lfate

Gal

NA

cT-2

10q1

1.21

5.85

546

1e-0

40.

0182

2041

40_a

tT

PST

1ty

rosy

lpro

tein

sulfo

trans

fera

se 1

7q11

.21

5.82

066

1e-0

40.

0197

2183

68_s

_at

TN

FR

SF12

Atu

mor

nec

rosi

s fac

tor r

ecep

tor s

uper

fam

ily, m

embe

r 12A

16p1

3.3

5.79

667

1e-0

40.

0212

2007

55_s

_at

CA

LU

calu

men

in7q

325.

7953

91e

-04

0.02

1221

2472

_at

MIC

AL

2m

icro

tubu

le a

ssoc

iate

d m

onox

ygen

ase,

cal

poni

n an

d LI

M d

omai

n co

ntai

ning

211

p15.

35.

7233

71e

-04

0.02

5320

6026

_s_a

tT

NF

AIP

6tu

mor

nec

rosi

s fac

tor,

alph

a-in

duce

d pr

otei

n 6

2q23

.35.

7205

71e

-04

0.02

5620

3736

_s_a

tP

PF

IBP

1PT

PRF

inte

ract

ing

prot

ein,

bin

ding

pro

tein

1 (l

iprin

bet

a 1)

12p1

1.23

-p11

.22

5.64

557

1e-0

40.

0335

2120

97_a

tC

AV

1ca

veol

in 1

, cav

eola

e pr

otei

n, 2

2kD

a7q

31.1

5.62

559

1e-0

40.

036

2186

18_s

_at

FN

DC

3Bfib

rone

ctin

type

III d

omai

n co

ntai

ning

3B

3q26

.31

5.62

314

1e-0

40.

0361

mpavon
183
Page 7: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

2030

65_s

_at

CA

V1

cave

olin

1, c

aveo

lae

prot

ein,

22k

Da

7q31

.15.

6083

91e

-04

0.03

7520

1110

_s_a

tT

HB

S1th

rom

bosp

ondi

n 1

15q1

55.

6055

41e

-04

0.03

7721

4845

_s_a

tC

AL

Uca

lum

enin

7q32

5.56

538

1e-0

40.

0425

2099

35_a

tA

TP2

C1

ATP

ase,

Ca+

+ tra

nspo

rting

, typ

e 2C

, mem

ber 1

3q22

.15.

5318

81e

-04

0.04

6920

2395

_at

NSF

N-e

thyl

mal

eim

ide-

sens

itive

fact

or17

q21

-5.5

2875

1e-0

40.

047

2039

14_x

_at

HP

GD

hydr

oxyp

rost

agla

ndin

deh

ydro

gena

se 1

5-(N

AD

)4q

34-q

35-5

.584

651e

-04

0.04

0521

3236

_at

SASH

1SA

M a

nd S

H3

dom

ain

cont

aini

ng 1

6q24

.3-5

.588

21e

-04

0.03

9837

201_

atIT

IH4

inte

r-al

pha

(glo

bulin

) inh

ibito

r H4

(pla

sma

Kal

likre

in-s

ensi

tive

glyc

opro

tein

)3p

21-p

14-5

.612

571e

-04

0.03

721

9727

_at

DU

OX

2du

al o

xida

se 2

15q1

5.3

-5.7

9467

1e-0

40.

0212

2093

89_x

_at

DB

Idi

azep

am b

indi

ng in

hibi

tor (

GA

BA

rece

ptor

mod

ulat

or, a

cyl-C

oenz

yme

A b

indi

ngpr

otei

n)2q

12-q

21-5

.829

481e

-04

0.01

91

2181

86_a

tR

AB

25R

AB

25, m

embe

r RA

S on

coge

ne fa

mily

1q22

-5.8

4865

1e-0

40.

0183

2200

17_x

_at

CY

P2C

9cy

toch

rom

e P4

50, f

amily

2, s

ubfa

mily

C, p

olyp

eptid

e 9

10q2

4-5

.891

951e

-04

0.01

6620

6004

_at

TG

M3

trans

glut

amin

ase

3 (E

pol

ypep

tide,

pro

tein

-glu

tam

ine-

gam

ma-

glut

amyl

trans

fera

se)

20q1

1.2

-5.9

2236

1e-0

40.

0154

4164

4_at

SASH

1SA

M a

nd S

H3

dom

ain

cont

aini

ng 1

6q24

.3-5

.933

581e

-04

0.01

4320

7935

_s_a

tK

RT

13ke

ratin

13

17q1

2-q2

1.2

-6.0

2933

1e-0

40.

0107

2139

29_a

t-6

.121

361e

-04

0.00

83

2110

70_x

_at

DB

Idi

azep

am b

indi

ng in

hibi

tor (

GA

BA

rece

ptor

mod

ulat

or, a

cyl-C

oenz

yme

A b

indi

ngpr

otei

n)2q

12-q

21-6

.462

661e

-04

0.00

25

2024

28_x

_at

DB

Idi

azep

am b

indi

ng in

hibi

tor (

GA

BA

rece

ptor

mod

ulat

or, a

cyl-C

oenz

yme

A b

indi

ngpr

otei

n)2q

12-q

21-6

.503

241e

-04

0.00

2

2053

79_a

tC

BR

3ca

rbon

yl re

duct

ase

321

q22.

2-6

.549

641e

-04

0.00

1720

8126

_s_a

tC

YP

2C18

cyto

chro

me

P450

, fam

ily 2

, sub

fam

ily C

, pol

ypep

tide

1810

q24

-6.7

3238

1e-0

40.

0011

2128

41_s

_at

PP

FIB

P2

PTPR

F in

tera

ctin

g pr

otei

n, b

indi

ng p

rote

in 2

(lip

rin b

eta

2)11

p15.

4-6

.804

131e

-04

9e-0

421

5103

_at

CY

P2C

18cy

toch

rom

e P4

50, f

amily

2, s

ubfa

mily

C, p

olyp

eptid

e 18

10q2

4-7

.606

741e

-04

1e-0

421

4070

_s_a

tA

TP

10B

ATP

ase,

Cla

ss V

, typ

e 10

B5q

34-7

.63

1e-0

41e

-04

mpavon
mpavon
184
Page 8: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

AN

EX

O 2

: Gen

es e

xpre

sado

s di

fere

ncia

lmen

te a

l com

para

r lo

s tu

mor

es d

el c

lust

er 3

con

los

tum

ores

del

clu

ster

1 y

2 (

p aj

usta

da<0

,05

)

Prob

eSy

mbo

lD

escr

ipti

onC

ytob

and

t-st

atis

tic

p-va

lue

adjp

2115

97_s

_at

HO

Pho

meo

dom

ain-

only

pro

tein

4q11

-q12

8.57

654

1e-0

41e

-04

2049

52_a

tL

YPD

3LY

6/PL

AU

R d

omai

n co

ntai

ning

319

q13.

318.

4423

51e

-04

1e-0

421

4536

_at

SLU

RP

1se

cret

ed L

Y6/

PLA

UR

dom

ain

cont

aini

ng 1

8q24

.38.

3415

31e

-04

1e-0

420

5185

_at

SPIN

K5

serin

e pe

ptid

ase

inhi

bito

r, K

azal

type

55q

327.

8147

51e

-04

1e-0

422

0620

_at

CR

CT

1cy

stei

ne-r

ich

C-te

rmin

al 1

1q21

7.69

724

1e-0

41e

-04

2061

25_s

_at

KL

K8

kalli

krei

n-re

late

d pe

ptid

ase

819

q13.

3-q1

3.4

7.41

616

1e-0

41e

-04

2195

29_a

tC

LIC

3ch

lorid

e in

trace

llula

r cha

nnel

39q

34.3

7.32

736

1e-0

41e

-04

2204

13_a

tSL

C39

A2

solu

te c

arrie

r fam

ily 3

9 (z

inc

trans

porte

r), m

embe

r 214

q11.

27.

0241

81e

-04

2e-0

420

3747

_at

AQ

P3

aqua

porin

3 (G

ill b

lood

gro

up)

9p13

6.49

846

1e-0

46e

-04

2049

71_a

tC

STA

cyst

atin

A (s

tefi

n A

)3q

216.

4276

71e

-04

0.00

121

9554

_at

RH

CG

Rh

fam

ily, C

gly

copr

otei

n15

q25

6.42

418

1e-0

40.

0011

3924

8_at

AQ

P3

aqua

porin

3 (G

ill b

lood

gro

up)

9p13

6.24

541e

-04

0.00

23

2197

22_s

_at

GD

PD3

glyc

erop

hosp

hodi

este

r pho

spho

dies

tera

se d

omai

nco

ntai

ning

316

p11.

26.

2016

81e

-04

0.00

29

2126

57_s

_at

IL1R

Nin

terle

ukin

1 re

cept

or a

ntag

onis

t2q

14.2

6.19

893

1e-0

40.

0029

2057

78_a

tK

LK

7ka

llikr

ein-

rela

ted

pept

idas

e 7

19q1

3.33

6.17

859

1e-0

40.

0031

3924

9_at

AQ

P3

aqua

porin

3 (G

ill b

lood

gro

up)

9p13

6.12

927

1e-0

40.

004

2057

59_s

_at

SUL

T2B

1su

lfotra

nsfe

rase

fam

ily, c

ytos

olic

, 2B

, mem

ber 1

19q1

3.3

6.07

189

1e-0

40.

0048

2195

97_s

_at

DU

OX

1du

al o

xida

se 1

15q1

5.3

6.04

634

1e-0

40.

0051

2068

84_s

_at

SCE

Lsc

ielli

n13

q22

5.94

222

1e-0

40.

0082

2076

02_a

tT

MP

RSS

11D

trans

mem

bran

e pr

otea

se, s

erin

e 11

D4q

13.2

5.92

51e

-04

0.00

8722

2223

_s_a

tIL

1F5

inte

rleuk

in 1

fam

ily, m

embe

r 5 (d

elta

)2q

145.

8776

1e-0

40.

0120

3021

_at

SLP

Ise

cret

ory

leuk

ocyt

e pe

ptid

ase

inhi

bito

r20

q12

5.85

279

1e-0

40.

0112

2034

07_a

tP

PL

perip

laki

n16

p13.

35.

8515

91e

-04

0.01

1221

4599

_at

IVL

invo

lucr

in1q

215.

8476

11e

-04

0.01

12

2060

08_a

tT

GM

1tra

nsgl

utam

inas

e 1

(K p

olyp

eptid

e ep

ider

mal

type

I,pr

otei

n-gl

utam

ine-

gam

ma-

glut

amyl

trans

fera

se)

14q1

1.2

5.81

622

1e-0

40.

0122

2012

01_a

tC

STB

cyst

atin

B (s

tefin

B)

21q2

2.3

5.77

212

1e-0

40.

0132

2148

38_a

tSF

T2D

2SF

T2 d

omai

n co

ntai

ning

21q

24.2

5.74

449

1e-0

40.

0148

mpavon
185
Page 9: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

2216

65_s

_at

EPS

8L1

EPS8

-like

119

q13.

425.

7257

21e

-04

0.01

5721

0397

_at

DE

FB

1de

fens

in, b

eta

18p

23.2

-p23

.15.

7131

81e

-04

0.01

6220

5470

_s_a

tK

LK

11ka

llikr

ein-

rela

ted

pept

idas

e 11

19q1

3.3-

q13.

45.

7040

61e

-04

0.01

726

6_s_

atC

D24

CD

24 m

olec

ule

6q21

5.69

613

1e-0

40.

0174

2216

67_s

_at

HSP

B8

heat

shoc

k 22

kDa

prot

ein

812

q24.

235.

6486

41e

-04

0.02

1420

8650

_s_a

tC

D24

CD

24 m

olec

ule

6q21

5.63

916

1e-0

40.

0222

2064

00_a

tL

GA

LS7

lect

in, g

alac

tosi

de-b

indi

ng, s

olub

le, 7

(gal

ectin

7)

19q1

3.2

5.62

061e

-04

0.02

3420

1939

_at

PLK

2po

lo-li

ke k

inas

e 2

(Dro

soph

ila)

5q12

.1-q

13.2

5.61

335

1e-0

40.

0243

2188

53_s

_at

MO

SPD

1m

otile

sper

m d

omai

n co

ntai

ning

1X

q26.

35.

5937

71e

-04

0.02

5520

5627

_at

CD

Acy

tidin

e de

amin

ase

1p36

.2-p

355.

5419

61e

-04

0.03

0120

9792

_s_a

tK

LK

10ka

llikr

ein-

rela

ted

pept

idas

e 10

19q1

3.3-

q13.

45.

5186

21e

-04

0.03

2321

0128

_s_a

tL

TB

4Rle

ukot

riene

B4

rece

ptor

14q1

1.2-

q12

5.51

518

1e-0

40.

0326

2047

33_a

tK

LK

6ka

llikr

ein-

rela

ted

pept

idas

e 6

19q1

3.3

5.51

391e

-04

0.03

2722

0782

_x_a

tK

LK

12ka

llikr

ein-

rela

ted

pept

idas

e 12

19q1

3.3-

q13.

45.

5120

91e

-04

0.03

2920

5863

_at

S100

A12

S100

cal

cium

bin

ding

pro

tein

A12

1q21

5.51

139

1e-0

40.

0329

2145

49_x

_at

SPR

R1A

smal

l pro

line-

rich

prot

ein

1A1q

21-q

225.

5101

61e

-04

0.03

2922

2242

_s_a

tK

LK

5ka

llikr

ein-

rela

ted

pept

idas

e 5

19q1

3.3-

q13.

45.

5089

1e-0

40.

0331

2098

00_a

tK

RT

16ke

ratin

16

(foc

al n

on-e

pide

rmol

ytic

pal

mop

lant

arke

rato

derm

a)17

q12-

q21

5.50

785

1e-0

40.

0332

2204

12_x

_at

KC

NK

7po

tass

ium

cha

nnel

, sub

fam

ily K

, mem

ber 7

11q1

35.

4610

91e

-04

0.03

7220

1454

_s_a

tN

PE

PP

Sam

inop

eptid

ase

puro

myc

in se

nsiti

ve17

q21

5.45

814

1e-0

40.

0373

2053

63_a

tB

BO

X1

buty

robe

tain

e (g

amm

a), 2

-oxo

glut

arat

e di

oxyg

enas

e(g

amm

a-bu

tyro

beta

ine

hydr

oxyl

ase)

111

p14.

25.

4556

51e

-04

0.03

73

2066

05_a

tP

1126

serin

e pr

otea

se12

q13.

15.

4324

61e

-04

0.04

0621

8779

_x_a

tE

PS8L

1EP

S8-li

ke 1

19q1

3.42

5.42

746

1e-0

40.

0414

2057

83_a

tK

LK

13ka

llikr

ein-

rela

ted

pept

idas

e 13

19q1

3.3-

q13.

45.

4188

71e

-04

0.04

2920

3535

_at

S100

A9

S100

cal

cium

bin

ding

pro

tein

A9

1q21

5.39

759

1e-0

40.

0455

2061

99_a

tC

EA

CA

M7

carc

inoe

mbr

yoni

c an

tigen

-rel

ated

cel

l adh

esio

nm

olec

ule

719

q13.

25.

3896

11e

-04

0.04

64

2136

80_a

tK

RT

6Cke

ratin

6C

12q1

3.13

5.38

696

1e-0

40.

0465

2181

86_a

tR

AB

25R

AB

25, m

embe

r RA

S on

coge

ne fa

mily

1q22

5.37

569

1e-0

40.

0485

9182

6_at

EPS

8L1

EPS8

-like

119

q13.

425.

3675

1e-0

40.

049

mpavon
186
Page 10: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

AN

EX

O 3

: Gen

es e

xpre

sado

s di

fere

ncia

lmen

te a

l com

para

r lo

s tu

mor

es d

el c

lust

er 2

con

los

tum

ores

del

clu

ster

1 y

3 (

p a

just

ada<

0,05

)

Prob

eSy

mbo

lD

escr

ipti

onC

ytob

and

t-st

atis

tic

p-va

lue

adjp

2016

50_a

tK

RT

19ke

ratin

19

17q2

1.2

6.65

757

1e-0

42e

-04

2184

40_a

tM

CC

C1

met

hylc

roto

noyl

-Coe

nzym

e A

carb

oxyl

ase

1 (a

lpha

)3q

276.

0847

91e

-04

0.00

1520

9205

_s_a

tL

MO

4LI

M d

omai

n on

ly 4

1p22

.36.

0346

31e

-04

0.00

221

8546

_at

C1o

rf11

5ch

rom

osom

e 1

open

read

ing

fram

e 11

51q

415.

7837

41e

-04

0.00

6220

1908

_at

DV

L3

dish

evel

led,

dsh

hom

olog

3 (D

roso

phila

)3q

275.

3920

31e

-04

0.02

620

4734

_at

KR

T15

kera

tin 1

517

q21.

25.

1976

21e

-04

0.04

99

2086

36_a

tA

CT

N1

actin

in, a

lpha

114

q24.

1-q2

4.2

14q2

4 14

q22-

q24

-5.2

4627

1e-0

40.

043

2088

98_a

tA

TP

6V1D

ATP

ase,

H+

tran

spor

ting,

lyso

som

al 3

4kD

a, V

1 su

buni

t D14

q23-

q24.

2-5

.257

641e

-04

0.04

120

2693

_s_a

tST

K17

Ase

rine/

thre

onin

e ki

nase

17a

7p12

-p14

-5.4

0438

1e-0

40.

0251

2032

34_a

tU

PP

1ur

idin

e ph

osph

oryl

ase

17p

12.3

-5.4

3455

1e-0

40.

0233

2009

85_s

_at

CD

59C

D59

mol

ecul

e, c

ompl

emen

t reg

ulat

ory

prot

ein

11p1

3-5

.510

341e

-04

0.01

8620

8899

_x_a

tA

TP

6V1D

ATP

ase,

H+

tran

spor

ting,

lyso

som

al 3

4kD

a, V

1 su

buni

t D14

q23-

q24.

2-5

.543

911e

-04

0.01

6320

5627

_at

CD

Acy

tidin

e de

amin

ase

1p36

.2-p

35-5

.563

291e

-04

0.01

5121

9165

_at

PDL

IM2

PDZ

and

LIM

dom

ain

2 (m

ystiq

ue)

8p21

.2-5

.565

71e

-04

0.01

5

2158

13_s

_at

PT

GS1

pros

tagl

andi

n-en

dope

roxi

de sy

ntha

se 1

(pro

stag

land

in G

/Hsy

ntha

se a

nd c

yclo

oxyg

enas

e)9q

32-q

33.3

-5.6

5713

1e-0

40.

0104

2178

73_a

tC

AB

39ca

lciu

m b

indi

ng p

rote

in 3

92q

37.1

-5.6

6127

1e-0

40.

0103

2057

67_a

tE

RE

Gep

iregu

lin4q

13.3

-5.6

8622

1e-0

40.

0091

2099

46_a

tV

EG

FCva

scul

ar e

ndot

helia

l gro

wth

fact

or C

4q34

.1-q

34.3

-5.7

6699

1e-0

40.

007

2186

44_a

tPL

EK

2pl

ecks

trin

214

q23.

3-5

.805

51e

-04

0.00

5520

2949

_s_a

tFH

L2

four

and

a h

alf L

IM d

omai

ns 2

2q12

-q14

-6.0

2845

1e-0

40.

0021

2101

38_a

tR

GS2

0re

gula

tor o

f G-p

rote

in si

gnal

ing

208q

12.1

-6.3

7452

1e-0

44e

-04

2019

39_a

tPL

K2

polo

-like

kin

ase

2 (D

roso

phila

)5q

12.1

-q13

.2-6

.490

471e

-04

4e-0

4

mpavon
187
Page 11: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

AN

EX

O 4

: G

enes

exp

resa

dos

dife

renc

ialm

ente

en

func

ión

de la

rec

idiv

a lo

cal a

los

2 añ

os (p

<0,0

01)

Prob

eSy

mbo

lD

escr

ipti

onC

ytob

and

t-st

atis

tic

p-va

lue

adjp

2179

93_s

_at

MA

T2B

met

hion

ine

aden

osyl

trans

fera

se II

, bet

a5q

34-q

35.1

4.57

716

2e-0

40.

4089

2007

48_s

_at

FTH

1fe

rriti

n, h

eavy

pol

ypep

tide

111

q13

4.36

626

3e-0

40.

5913

2178

65_a

tR

NF

130

ring

finge

r pro

tein

130

5q35

.34.

2445

63e

-04

0.70

0520

7277

_at

CD

209

CD

209

mol

ecul

e19

p13

4.22

255e

-04

0.71

7621

9318

_x_a

tM

ED

31m

edia

tor c

ompl

ex su

buni

t 31

17p1

3.2

4.13

949

2e-0

40.

7866

2061

29_s

_at

AR

SBar

ylsu

lfata

se B

5q11

-q13

4.13

633

7e-0

40.

7885

2092

87_s

_at

CD

C42

EP

3C

DC

42 e

ffec

tor p

rote

in (R

ho G

TPas

e bi

ndin

g) 3

2p21

4.06

079

4e-0

40.

8417

3798

6_at

EP

OR

eryt

hrop

oiet

in re

cept

or19

p13.

3-p1

3.2

4.04

038

4e-0

40.

8536

2089

64_s

_at

FA

DS1

fatty

aci

d de

satu

rase

111

q12.

2-q1

3.1

3.93

975

1e-0

40.

9101

2092

88_s

_at

CD

C42

EP

3C

DC

42 e

ffec

tor p

rote

in (R

ho G

TPas

e bi

ndin

g) 3

2p21

3.91

379e

-04

0.92

4221

4211

_at

FTH

1fe

rriti

n, h

eavy

pol

ypep

tide

111

q13

3.91

065

3e-0

40.

9249

2083

54_s

_at

SLC

12A

3so

lute

car

rier f

amily

12

(sodi

um/c

hlor

ide

trans

porte

rs),

mem

ber 3

16q1

33.

9089

43e

-04

0.92

56

2188

52_a

tP

PP

2R3C

prot

ein

phos

phat

ase

2 (f

orm

erly

2A

), re

gula

tory

subu

nit

B'',

gam

ma

14q1

3.2

3.89

281

4e-0

40.

9308

2026

23_a

tE

AP

PE2

F-as

soci

ated

pho

spho

prot

ein

14q1

3.1

3.89

032

6e-0

40.

9313

2041

85_x

_at

PPID

pept

idyl

prol

yl is

omer

ase

D (c

yclo

phili

n D

)4q

31.3

3.88

913

4e-0

40.

9318

2028

92_a

tC

DC

23ce

ll di

visi

on c

ycle

23

hom

olog

(S. c

erev

isia

e)5q

313.

8614

54e

-04

0.94

1820

4140

_at

TPS

T1

tyro

sylp

rote

in su

lfotra

nsfe

rase

17q

11.2

13.

8470

43e

-04

0.94

5720

0013

_at

RP

L24

ribos

omal

pro

tein

L24

3q12

3.83

201

9e-0

40.

9511

2013

30_a

tR

AR

Sar

giny

l-tR

NA

synt

heta

se5q

35.1

3.81

124

3e-0

40.

9584

2043

49_a

tM

ED

7m

edia

tor c

ompl

ex su

buni

t 75q

33.3

3.80

747e

-04

0.95

92

2081

98_x

_at

KIR

2DS1

kille

r cel

l im

mun

oglo

bulin

-like

rece

ptor

, tw

o do

mai

ns,

shor

t cyt

opla

smic

tail,

119

q13.

43.

7956

48e

-04

0.96

24

2090

46_s

_at

GA

BA

RA

PL

2G

AB

A(A

) rec

epto

r-as

soci

ated

pro

tein

-like

216

q22.

3-q2

4.1

3.79

255

5e-0

40.

9629

2007

30_s

_at

PTP4

A1

prot

ein

tyro

sine

pho

spha

tase

type

IVA

, mem

ber 1

6q12

3.77

523

8e-0

40.

9669

2015

03_a

tG

3BP

1G

TPas

e ac

tivat

ing

prot

ein

(SH

3 do

mai

n) b

indi

ng p

rote

in 1

5q33

.13.

7294

79e

-04

0.97

8320

6307

_s_a

tFO

XD

1fo

rkhe

ad b

ox D

15q

12-q

133.

7057

66e

-04

0.98

1422

1597

_s_a

tH

SPC

171

HSP

C17

1 pr

otei

n16

q22.

13.

7056

7e-0

40.

9814

2183

39_a

tM

RP

L22

mito

chon

dria

l rib

osom

al p

rote

in L

225q

33.1

-q33

.33.

6819

88e

-04

0.98

48

mpavon
188
Page 12: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

2204

16_a

tA

TP

8B4

ATP

ase,

Cla

ss I,

type

8B

, mem

ber 4

15q2

1.2

3.67

825

4e-0

40.

985

2012

72_a

tA

KR

1B1

aldo

-ket

o re

duct

ase

fam

ily 1

, mem

ber B

1 (a

ldos

ere

duct

ase)

7q35

3.65

533

7e-0

40.

9874

2091

81_s

_at

RA

BG

GT

BR

ab g

eran

ylge

rany

ltran

sfer

ase,

bet

a su

buni

t1p

313.

6481

34e

-04

0.98

8321

0278

_s_a

tA

P4S

1ad

apto

r-re

late

d pr

otei

n co

mpl

ex 4

, sig

ma

1 su

buni

t14

q12

3.60

072

9e-0

40.

993

2214

23_s

_at

YIP

F5Y

ip1

dom

ain

fam

ily, m

embe

r 55q

323.

5815

19e

-04

0.99

46

2116

71_s

_at

NR

3C1

nucl

ear r

ecep

tor s

ubfa

mily

3, g

roup

C, m

embe

r 1(g

luco

corti

coid

rece

ptor

)5q

31.3

3.55

595

8e-0

40.

996

2203

32_a

tC

LD

N16

clau

din

163q

283.

5502

58e

-04

0.99

6520

4191

_at

IFN

AR

1in

terf

eron

(alp

ha, b

eta

and

omeg

a) re

cept

or 1

21q2

2.1

21q2

2.11

3.51

619

5e-0

40.

9976

2175

85_a

tN

EB

Lne

bule

tte10

p12

-3.0

8968

9e-0

41

2215

07_a

tT

NPO

2tra

nspo

rtin

2 (im

porti

n 3,

kar

yoph

erin

bet

a 2b

)19

p13.

13-3

.256

338e

-04

0.99

9921

5063

_x_a

tL

RR

C40

leuc

ine

rich

repe

at c

onta

inin

g 40

1p31

.1-3

.481

829e

-04

0.99

82

2154

04_x

_at

FGFR

1fib

robl

ast g

row

th fa

ctor

rece

ptor

1 (

fms-

rela

ted

tyro

sine

kina

se 2

, Pfe

iffer

synd

rom

e)8p

11.2

-p11

.1-3

.537

477e

-04

0.99

69

2089

65_s

_at

PYH

IN1

pyrin

and

HIN

dom

ain

fam

ily, m

embe

r 11q

23.1

-3.6

141

3e-0

40.

9922

2027

25_a

tP

OL

R2A

poly

mer

ase

(RN

A) I

I (D

NA

dire

cted

) pol

ypep

tide

A,

220k

Da

17p1

3.1

-3.6

203

8e-0

40.

9912

2145

94_x

_at

AT

P8B

1A

TPas

e, C

lass

I, ty

pe 8

B, m

embe

r 118

q21-

q22

18q2

1.31

-3.6

3359

9e-0

40.

9898

2035

46_a

tIP

O13

impo

rtin

131p

34.1

-3.6

4354

7e-0

40.

9886

2104

21_s

_at

SLC

24A

1so

lute

car

rier f

amily

24

(sodi

um/p

otas

sium

/cal

cium

exch

ange

r), m

embe

r 115

q22

-3.6

651

3e-0

40.

9862

2207

20_x

_at

FA

M12

8Bfa

mily

with

sequ

ence

sim

ilarit

y 12

8, m

embe

r B2q

21.1

-3.6

8598

9e-0

40.

9841

2215

06_s

_at

TN

PO2

trans

porti

n 2

(impo

rtin

3, k

aryo

pher

in b

eta

2b)

19p1

3.13

-3.7

0103

4e-0

40.

9818

2122

80_x

_at

AT

G4B

ATG

4 au

toph

agy

rela

ted

4 ho

mol

og B

(S. c

erev

isia

e)2q

37.3

-3.7

0414

9e-0

40.

9814

2206

59_s

_at

C7o

rf43

chro

mos

ome

7 op

en re

adin

g fr

ame

437q

22.1

-3.7

2321

9e-0

40.

9796

2210

71_a

t-3

.753

313e

-04

0.97

1921

5455

_at

TIM

EL

ESS

timel

ess h

omol

og (D

roso

phila

)12

q12-

q13

-3.9

2562

3e-0

40.

9181

2120

51_a

tW

IPF2

WA

S/W

ASL

inte

ract

ing

prot

ein

fam

ily, m

embe

r 217

q21.

2-3

.941

793e

-04

0.90

9220

0098

_s_a

tA

NA

PC

5an

apha

se p

rom

otin

g co

mpl

ex su

buni

t 512

q24.

31-3

.946

413e

-04

0.90

7822

2159

_at

PLX

NA

2pl

exin

A2

1q32

.2-4

.032

85e

-04

0.85

8221

1950

_at

UB

R4

ubiq

uitin

pro

tein

liga

se E

3 co

mpo

nent

n-r

ecog

nin

41p

36.1

3-4

.042

283e

-04

0.85

21

mpavon
189
Page 13: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

2024

24_a

tM

AP2

K2

mito

gen-

activ

ated

pro

tein

kin

ase k

inas

e 2

19p1

3.3

-4.0

8718

4e-0

40.

825

2042

92_x

_at

STK

11se

rine/

thre

onin

e ki

nase

11

19p1

3.3

-4.1

4233

4e-0

40.

7846

2188

19_a

tIN

TS6

inte

grat

or c

ompl

ex su

buni

t 613

q14.

12-q

14.2

-4.2

9471

3e-0

40.

6553

2201

13_x

_at

PO

LR

1Bpo

lym

eras

e (R

NA

) I p

olyp

eptid

e B

, 128

kDa

2q13

-4.4

7848

2e-0

40.

4907

2216

10_s

_at

STA

P2

sign

al tr

ansd

ucin

g ad

apto

r fam

ily m

embe

r 219

p13.

3-4

.681

341e

-04

0.33

3521

8758

_s_a

tR

RP1

ribos

omal

RN

A p

roce

ssin

g 1

hom

olog

(S. c

erev

isia

e)21

q22.

3-4

.818

22e

-04

0.24

96

mpavon
190
Page 14: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

AN

EX

O 5

. Gen

es e

xpre

sado

s di

fere

ncia

lmen

te e

n fu

nció

n de

la s

uper

vive

ncia

a 3

año

s ( p

<0,

001

)Pr

obe

Sym

bol

Des

crip

tion

Cyt

oban

dt-

stat

isti

cp-

valu

ead

jp21

1828

_s_a

tT

NIK

TRA

F2 a

nd N

CK

inte

ract

ing

kina

se3q

26.2

-q26

.31

4.42

673

1e-0

40.

759

2179

93_s

_at

MA

T2B

met

hion

ine

aden

osyl

trans

fera

se II

, bet

a5q

34-q

35.1

4.41

078

3e-0

40.

7694

2073

29_a

tM

MP

8m

atrix

met

allo

pept

idas

e 8

(neu

troph

il co

llage

nase

)11

q22.

34.

3875

93e

-04

0.78

52

2041

60_s

_at

EN

PP

4ec

tonu

cleo

tide

pyro

phos

phat

ase/

phos

phod

iest

eras

e 4

(put

ativ

e fu

nctio

n)6p

12.3

4.35

355

4e-0

40.

806

2040

81_a

tN

RG

Nne

urog

rani

n (p

rote

in k

inas

e C

subs

trate

, RC

3)11

q24

4.26

46e

-04

0.86

08

2012

72_a

tA

KR

1B1

aldo

-ket

o re

duct

ase

fam

ily 1

, mem

ber B

1 (a

ldos

ere

duct

ase)

7q35

4.25

977

2e-0

40.

8628

2097

35_a

tA

BC

G2

ATP

-bin

ding

cas

sette

, sub

-fam

ily G

(WH

ITE)

, mem

ber

24q

224.

2315

51e

-04

0.87

78

2096

83_a

tF

AM

49A

fam

ily w

ith se

quen

ce si

mila

rity

49, m

embe

r A2p

24.3

4.18

493

3e-0

40.

9011

2080

92_s

_at

FA

M49

Afa

mily

with

sequ

ence

sim

ilarit

y 49

, mem

ber A

2p24

.34.

0960

55e

-04

0.93

720

3988

_s_a

tFU

T8

fuco

syltr

ansf

eras

e 8

(alp

ha (1

,6) f

ucos

yltra

nsfe

rase

)14

q24.

34.

0829

24e

-04

0.94

0820

9122

_at

AD

FP

adip

ose

diff

eren

tiatio

n-re

late

d pr

otei

n9p

22.1

4.08

128

3e-0

40.

9415

2221

57_s

_at

WD

R48

WD

repe

at d

omai

n 48

3p21

.33

4.07

736

5e-0

40.

9432

2137

12_a

tE

LO

VL

2el

onga

tion

of v

ery

long

cha

in fa

tty a

cids

(FEN

1/El

o2,

SUR

4/El

o3, y

east

)-lik

e 2

6p24

.24.

0163

13e

-04

0.96

08

2100

04_a

tO

LR

1ox

idiz

ed lo

w d

ensi

ty li

popr

otei

n (l

ectin

-like

) rec

epto

r 112

p13.

2-p1

2.3

3.89

865e

-04

0.98

39

2041

61_s

_at

EN

PP

4ec

tonu

cleo

tide

pyro

phos

phat

ase/

phos

phod

iest

eras

e 4

(put

ativ

e fu

nctio

n)6p

12.3

3.89

224

9e-0

40.

9846

2077

94_a

tC

CR

2ch

emok

ine

(C-C

mot

if) re

cept

or 2

3p21

.31

3.88

967

3e-0

40.

9849

2054

04_a

tH

SD11

B1

hydr

oxys

tero

id (1

1-be

ta) d

ehyd

roge

nase

11q

32-q

413.

8864

33e

-04

0.98

5521

3515

_x_a

tH

BG

2he

mog

lobi

n, g

amm

a G

11p1

5.5

3.83

116

8e-0

40.

9909

2106

50_s

_at

PCL

Opi

ccol

o (p

resy

napt

ic c

ytom

atrix

pro

tein

)7q

11.2

3-q2

1.3

3.80

343

9e-0

40.

9935

2160

14_s

_at

ZX

DB

zinc

fing

er, X

-link

ed, d

uplic

ated

BX

p11.

213.

7965

86e

-04

0.99

3721

3484

_at

3.75

909

4e-0

40.

9952

2048

48_x

_at

HB

G1

hem

oglo

bin,

gam

ma

A11

p15.

53.

7157

31e

-04

0.99

6721

0288

_at

KL

RG

1ki

ller c

ell l

ectin

-like

rece

ptor

sub

fam

ily G

, mem

ber 1

12p1

2-p1

33.

7115

32e

-04

0.99

7121

3109

_at

TN

IKTR

AF2

and

NC

K in

tera

ctin

g ki

nase

3q26

.2-q

26.3

13.

6671

26e

-04

0.99

84

mpavon
191
Page 15: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

2199

24_s

_at

ZM

YM

6zi

nc fi

nger

, MY

M-ty

pe 6

1p34

.23.

6395

17e

-04

0.99

8820

6834

_at

HB

Dhe

mog

lobi

n, d

elta

11p1

5.5

3.42

215e

-04

122

0807

_at

HB

Q1

hem

oglo

bin,

thet

a 1

16p1

3.3

3.35

742

5e-0

41

2132

45_a

tA

DC

Y1

aden

ylat

e cy

clas

e 1

(bra

in)

7p13

-p12

3.26

561

9e-0

41

2101

27_a

tR

AB

6BR

AB

6B, m

embe

r RA

S on

coge

ne fa

mily

3q22

.13.

2436

12e

-04

122

1427

_s_a

tC

CN

L2

cycl

in L

21p

36.3

3-3

.381

269e

-04

120

0621

_at

CSR

P1

cyst

eine

and

gly

cine

-ric

h pr

otei

n 1

1q32

-3.4

8745

8e-0

40.

9999

2042

51_s

_at

CE

P16

4ce

ntro

som

al p

rote

in 1

64kD

a11

q23.

3-3

.508

46e

-04

0.99

9920

2115

_s_a

tN

OC

2Lnu

cleo

lar c

ompl

ex a

ssoc

iate

d 2

hom

olog

(S. c

erev

isia

e)1p

36.3

3-3

.515

499e

-04

0.99

98

2027

74_s

_at

SFR

S8sp

licin

g fa

ctor

, arg

inin

e/se

rine-

rich

8 (s

uppr

esso

r-of

-w

hite

-apr

icot

hom

olog

, Dro

soph

ila)

12q2

4.33

-3.5

2184

9e-0

40.

9998

2020

39_a

tT

IAF1

TGFB

1-in

duce

d an

ti-ap

opto

tic fa

ctor

117

q11.

2-3

.549

879e

-04

0.99

9722

1794

_at

DO

CK

6de

dica

tor o

f cyt

okin

esis

619

p13.

2-3

.572

959e

-04

0.99

9622

0402

_at

P53

AIP

1p5

3-re

gula

ted

apop

tosi

s-in

duci

ng p

rote

in 1

11q2

4-3

.581

544e

-04

0.99

9621

7950

_at

NO

SIP

nitri

c ox

ide

synt

hase

inte

ract

ing

prot

ein

19q1

3.33

-3.5

8331

9e-0

40.

9995

2146

95_a

tU

BA

P2L

ubiq

uitin

ass

ocia

ted

prot

ein

2-lik

e1q

21.3

-3.5

9096

5e-0

40.

9994

2159

09_x

_at

MIN

K1

mis

shap

en-li

ke k

inas

e 1

(zeb

rafis

h)17

p13.

2-3

.631

894e

-04

0.99

920

8874

_x_a

tP

PP

2R4

prot

ein

phos

phat

ase

2A ac

tivat

or, r

egul

ator

y su

buni

t 49q

34-3

.701

69e

-04

0.99

7521

1282

_x_a

tT

NF

RSF

25tu

mor

nec

rosi

s fac

tor r

ecep

tor s

uper

fam

ily, m

embe

r 25

1p36

.2-3

.741

469e

-04

0.99

6138

269_

atPR

KD

2pr

otei

n ki

nase

D2

19q1

3.3

-3.7

7634

9e-0

40.

9949

2138

12_s

_at

CA

MK

K2

calc

ium

/cal

mod

ulin

-dep

ende

nt p

rote

in k

inas

e kin

ase

2,be

ta12

q24.

2-3

.783

859e

-04

0.99

44

2019

79_s

_at

PP

P5C

prot

ein

phos

phat

ase

5, c

atal

ytic

subu

nit

19q1

3.3

-3.7

8944

6e-0

40.

9939

2006

95_a

tP

PP

2R1A

prot

ein

phos

phat

ase

2 (f

orm

erly

2A

), re

gula

tory

subu

nit

A ,

alph

a is

ofor

m19

q13.

33-3

.818

265e

-04

0.99

21

2041

41_a

tT

UB

B2A

tubu

lin, b

eta

2A6p

25-3

.818

927e

-04

0.99

221

1002

_s_a

tT

RIM

29tri

parti

te m

otif-

cont

aini

ng 2

911

q22-

q23

-3.8

5555

7e-0

40.

989

2034

31_s

_at

RIC

SR

ho G

TPas

e-ac

tivat

ing

prot

ein

11q2

4-q2

5-3

.859

299e

-04

0.98

8320

2504

_at

TR

IM29

tripa

rtite

mot

if-co

ntai

ning

29

11q2

2-q2

3-3

.859

789e

-04

0.98

82

2184

84_a

tN

DU

FA

4L2

NA

DH

deh

ydro

gena

se (u

biqu

inon

e) 1

alp

ha su

bcom

plex

,4-

like

212

q13.

3-3

.870

786e

-04

0.98

71

mpavon
192
Page 16: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

2089

87_s

_at

FB

XL

11F-

box

and

leuc

ine-

rich

repe

at p

rote

in 1

111

q13.

1-3

.874

935e

-04

0.98

6820

9885

_at

RH

OD

ras h

omol

og g

ene

fam

ily, m

embe

r D11

q14.

3-3

.931

59e

-04

0.97

7820

9282

_at

PRK

D2

prot

ein

kina

se D

219

q13.

3-3

.994

053e

-04

0.96

63

2121

46_a

tPL

EK

HM

2pl

ecks

trin

hom

olog

y do

mai

n co

ntai

ning

, fam

ily M

(with

RUN

dom

ain)

mem

ber 2

1p36

.21

-4.0

0689

1e-0

40.

9638

2114

52_x

_at

LR

RF

IP1

leuc

ine

rich

repe

at (i

n FL

II) i

nter

actin

g pr

otei

n 1

2q37

.3-4

.010

333e

-04

0.96

2220

1480

_s_a

tSU

PT

5Hsu

ppre

ssor

of T

y 5

hom

olog

(S. c

erev

isia

e)19

q13

-4.0

1411

9e-0

40.

9615

2220

06_a

tL

ET

M1

leuc

ine

zipp

er-E

F-ha

nd c

onta

inin

g tra

nsm

embr

ane

prot

ein

14p

16.3

-4.0

1545

6e-0

40.

9609

2018

51_a

tSH

3GL

1SH

3-do

mai

n G

RB

2-lik

e 1

19p1

3.3

-4.0

2886

4e-0

40.

9567

2180

64_s

_at

AK

AP

8LA

kin

ase

(PR

KA

) anc

hor p

rote

in 8

-like

19p1

3.12

-4.0

3906

4e-0

40.

9538

2013

96_s

_at

SGT

Asm

all g

luta

min

e-ric

h te

tratri

cope

ptid

e re

peat

(TPR

)-co

ntai

ning

, alp

ha19

p13

-4.0

5052

7e-0

40.

9509

2101

45_a

tP

LA

2G4A

phos

phol

ipas

e A

2, g

roup

IVA

(cyt

osol

ic, c

alci

um-

depe

nden

t)1q

25-4

.076

086e

-04

0.94

38

2142

46_x

_at

MIN

K1

mis

shap

en-li

ke k

inas

e 1

(zeb

rafis

h)17

p13.

2-4

.081

92e

-04

0.94

1222

1188

_s_a

tC

IDE

Bce

ll de

ath-

indu

cing

DFF

A-li

ke e

ffec

tor b

14q1

2-4

.094

797e

-04

0.93

75

2018

20_a

tK

RT

5ke

ratin

5 (e

pide

rmol

ysis

bul

losa

sim

plex

, Dow

ling-

Mea

ra/K

obne

r/W

eber

-Coc

kayn

e ty

pes)

12q1

2-q1

3-4

.116

18e

-04

0.93

06

2191

86_a

tZ

BT

B7A

zinc

fing

er a

nd B

TB d

omai

n co

ntai

ning

7A

19p1

3.3

-4.1

1726

2e-0

40.

9299

2051

09_s

_at

AR

HG

EF

4R

ho g

uani

ne n

ucle

otid

e ex

chan

ge fa

ctor

(GEF

) 42q

22-4

.126

124e

-04

0.92

68

2187

49_s

_at

SLC

24A

6so

lute

car

rier f

amily

24

(sodi

um/p

otas

sium

/cal

cium

exch

ange

r), m

embe

r 612

q24.

13-4

.186

192e

-04

0.90

07

2024

24_a

tM

AP2

K2

mito

gen-

activ

ated

pro

tein

kin

ase k

inas

e 2

19p1

3.3

-4.2

0348

2e-0

40.

893

2064

91_s

_at

NA

PA

N-e

thyl

mal

eim

ide-

sens

itive

fact

or a

ttach

men

t pro

tein

,al

pha

19q1

3.32

-4.2

0557

8e-0

40.

8919

2032

43_s

_at

PDL

IM5

PDZ

and

LIM

dom

ain

54q

22-4

.223

456e

-04

0.88

2821

9476

_at

C1o

rf11

6ch

rom

osom

e 1

open

read

ing

fram

e 11

61q

32.1

-4.2

911

3e-0

40.

8451

2157

14_s

_at

SMA

RC

A4

SWI/S

NF

rela

ted,

mat

rix a

ssoc

iate

d, a

ctin

dep

ende

ntre

gula

tor o

f chr

omat

in, s

ubfa

mily

a, m

embe

r 419

p13.

2-4

.317

033e

-04

0.83

02

2032

39_s

_at

CN

OT

3C

CR

4-N

OT

trans

crip

tion

com

plex

, sub

unit

319

q13.

4-4

.321

813e

-04

0.82

7821

1822

_s_a

tN

LR

P1

NLR

fam

ily, p

yrin

dom

ain

cont

aini

ng 1

17p1

3.2

-4.3

2779

2e-0

40.

8227

mpavon
193
Page 17: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

2190

47_s

_at

ZN

F66

8zi

nc fi

nger

pro

tein

668

16p1

1.2

-4.3

4226

2e-0

40.

8145

2032

87_a

tL

AD

1la

dini

n 1

1q25

.1-q

32.3

-4.3

4949

3e-0

40.

8087

2122

80_x

_at

AT

G4B

ATG

4 au

toph

agy

rela

ted

4 ho

mol

og B

(S. c

erev

isia

e)2q

37.3

-4.3

5364

5e-0

40.

806

2134

78_a

tK

IAA

1026

kazr

in1p

36.2

1-4

.395

65e

-04

0.77

87

2087

51_a

tN

AP

AN

-eth

ylm

alei

mid

e-se

nsiti

ve fa

ctor

atta

chm

ent p

rote

in,

alph

a19

q13.

32-4

.409

4e-0

40.

7701

2192

78_a

tM

AP3

K6

mito

gen-

activ

ated

pro

tein

kin

ase k

inas

e ki

nase

61p

36.1

1-4

.443

873e

-04

0.74

7221

6641

_s_a

tL

AD

1la

dini

n 1

1q25

.1-q

32.3

-4.4

851

4e-0

40.

7155

5899

4_at

CC

2D1A

coile

d-co

il an

d C

2 do

mai

n co

ntai

ning

1A

19p1

3.12

-4.4

913e

-04

0.71

07

2087

94_s

_at

SMA

RC

A4

SWI/S

NF

rela

ted,

mat

rix a

ssoc

iate

d, a

ctin

dep

ende

ntre

gula

tor o

f chr

omat

in, s

ubfa

mily

a, m

embe

r 419

p13.

2-4

.531

543e

-04

0.68

06

2157

92_s

_at

DN

AJC

11D

naJ

(Hsp

40) h

omol

og, s

ubfa

mily

C, m

embe

r 11

1p36

.31

-4.5

8501

2e-0

40.

6402

2125

20_s

_at

SMA

RC

A4

SWI/S

NF

rela

ted,

mat

rix a

ssoc

iate

d, a

ctin

dep

ende

ntre

gula

tor o

f chr

omat

in, s

ubfa

mily

a, m

embe

r 419

p13.

2-4

.606

194e

-04

0.62

56

2107

91_s

_at

RIC

SR

ho G

TPas

e-ac

tivat

ing

prot

ein

11q2

4-q2

5-4

.620

332e

-04

0.61

35

2137

66_x

_at

GN

A11

guan

ine

nucl

eotid

e bi

ndin

g pr

otei

n (G

pro

tein

), al

pha

11(G

q cl

ass)

19p1

3.3

-4.6

531

2e-0

40.

5862

2034

11_s

_at

LM

NA

lam

in A

/C1q

21.2

-q21

.3-4

.656

761e

-04

0.58

3122

1506

_s_a

tT

NPO

2tra

nspo

rtin

2 (im

porti

n 3,

kar

yoph

erin

bet

a 2b

)19

p13.

13-4

.709

982e

-04

0.54

1522

1507

_at

TN

PO2

trans

porti

n 2

(impo

rtin

3, k

aryo

pher

in b

eta

2b)

19p1

3.13

-4.7

6858

1e-0

40.

4975

2119

50_a

tU

BR

4ub

iqui

tin p

rote

in li

gase

E3

com

pone

nt n

-rec

ogni

n 4

1p36

.13

-4.7

9467

1e-0

40.

4773

2006

01_a

tA

CT

N4

actin

in, a

lpha

419

q13

-5.9

9771

1e-0

40.

0346

2179

03_a

tST

RN

4st

riatin

, cal

mod

ulin

bin

ding

pro

tein

419

q13.

2-6

.019

861e

-04

0.03

3

mpavon
194
Page 18: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

AN

EX

O 6

: Gen

es e

xpre

sado

s di

fere

ncia

lmen

te e

n fu

nció

n de

la r

espu

esta

a la

qui

mio

tera

pia

de in

ducc

ión

( p<

0,00

1 )

Prob

eSy

mbo

lD

escr

ipti

onC

ytob

and

t-st

atis

tic

p-va

lue

adjp

2020

65_s

_at

PPFI

A1

prot

ein

tyro

sine

pho

spha

tase

, rec

epto

r typ

e, f

poly

pept

ide

(PTP

RF)

, int

erac

ting

prot

ein

(lip

rin),

alph

a 1

11q1

3.3

4.37

776

4e-0

40.

5335

2169

03_s

_at

CB

AR

A1

calc

ium

bin

ding

ato

py-r

elat

ed a

utoa

ntig

en 1

10q2

2.1

3.90

132

5e-0

40.

9114

2112

62_a

tPC

SK6

prop

rote

in c

onve

rtase

subt

ilisi

n/ke

xin

type

615

q26.

33.

6870

63e

-04

0.98

2121

62_a

tK

IDIN

S220

kina

se D

-inte

ract

ing

subs

trat

e of

220

kD

a2p

243.

6632

19e

-04

0.98

3821

7921

_at

MA

N1A

2m

anno

sida

se, a

lpha

, cla

ss 1

A, m

embe

r 21p

133.

2617

39e

-04

1

2019

06_s

_at

CT

DSP

LC

TD (c

arbo

xy-te

rmin

al d

omai

n, R

NA

pol

ymer

ase

II, p

olyp

eptid

e A

) sm

all p

hosp

hata

se-li

ke3p

21.3

-3.9

2216

3e-0

40.

8979

mpavon
195
Page 19: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

AN

EX

O 7

: Gen

es e

xpre

sado

s di

fere

ncia

lmen

te tr

as c

ompa

rar

los

nive

les

de e

xpre

sión

en

los

tum

ores

res

pect

o a

las

muc

osas

nor

mal

es( p

aju

stad

a <

0,05

)Pr

obe

Sym

bol

Des

crip

tion

Cyt

oban

dt-

stat

isti

cp-

valu

ead

jp21

9000

_s_a

tD

CC

1de

fect

ive

in si

ster

chr

omat

id c

ohes

ion

hom

olog

1 (S

. cer

evis

iae)

8q24

.12

15.1

934

1e-0

48e

-04

2068

58_s

_at

HO

XC

6ho

meo

box

C6

12q1

3.3

14.4

493

1e-0

40.

0017

2044

75_a

tM

MP

1m

atrix

met

allo

pept

idas

e 1

(int

erst

itial

col

lage

nase

)11

q22.

313

.701

91e

-04

0.00

48

2107

76_x

_at

TC

F3tra

nscr

iptio

n fa

ctor

3 (E

2A im

mun

oglo

bulin

enh

ance

r bin

ding

fact

ors E

12/E

47)

19p1

3.3

13.3

014

1e-0

40.

0068

2039

05_a

tP

AR

Npo

ly(A

)-sp

ecifi

c rib

onuc

leas

e (d

eade

nyla

tion

nucl

ease

)16

p13

12.1

953

1e-0

40.

0182

2140

39_s

_at

LA

PT

M4B

lyso

som

al a

ssoc

iate

d pr

otei

n tra

nsm

embr

ane

4 be

ta8q

22.1

12.0

178

1e-0

40.

021

2194

93_a

tSH

CB

P1

SHC

SH

2-do

mai

n bi

ndin

g pr

otei

n 1

16q1

1.2

12.0

057

1e-0

40.

021

2105

11_s

_at

INH

BA

inhi

bin,

bet

a A

7p15

-p13

11.8

133

1e-0

40.

0254

2137

30_x

_at

TC

F3tra

nscr

iptio

n fa

ctor

3 (E

2A im

mun

oglo

bulin

enh

ance

r bin

ding

fact

ors E

12/E

47)

19p1

3.3

11.7

075

1e-0

40.

0277

2054

83_s

_at

ISG

15IS

G15

ubi

quiti

n-lik

e m

odifi

er1p

36.3

311

.701

21e

-04

0.02

7821

8991

_at

HE

AT

R6

HEA

T re

peat

con

tain

ing

617

q23.

111

.692

61e

-04

0.02

820

4415

_at

IFI6

inte

rfer

on, a

lpha

-indu

cibl

e pr

otei

n 6

1p35

11.6

833

1e-0

40.

0282

2038

56_a

tV

RK

1va

ccin

ia re

late

d ki

nase

114

q32

11.5

896

1e-0

40.

0313

2085

46_x

_at

HIS

T1H

2BH

hist

one

clus

ter 1

, H2b

h6p

21.3

11.5

361e

-04

0.03

3120

4033

_at

TR

IP13

thyr

oid

horm

one

rece

ptor

inte

ract

or 1

35p

15.3

311

.404

81e

-04

0.03

7520

4197

_s_a

tR

UN

X3

runt

-rel

ated

tran

scrip

tion

fact

or 3

1p36

11.3

576

1e-0

40.

0387

2137

54_s

_at

PA

IP1

poly

(A) b

indi

ng p

rote

in in

tera

ctin

g pr

otei

n 1

5p12

11.2

728

1e-0

40.

0431

2035

14_a

tM

AP3

K3

mito

gen-

activ

ated

pro

tein

kin

ase k

inas

e ki

nase

317

q23.

3-1

1.11

731e

-04

0.04

9920

7935

_s_a

tK

RT

13ke

ratin

13

17q1

2-q2

1.2

-11.

194

1e-0

40.

0467

2114

65_x

_at

FUT

6fu

cosy

ltran

sfer

ase

6 (a

lpha

(1,3

) fuc

osyl

trans

fera

se)

19p1

3.3

-11.

2168

1e-0

40.

0455

2103

98_x

_at

FUT

6fu

cosy

ltran

sfer

ase

6 (a

lpha

(1,3

) fuc

osyl

trans

fera

se)

19p1

3.3

-11.

2419

1e-0

40.

0443

2023

13_a

tP

PP

2R2A

prot

ein

phos

phat

ase

2 (f

orm

erly

2A

), re

gula

tory

subu

nit B

, alp

hais

ofor

m8p

21.2

-11.

2567

1e-0

40.

0438

2044

84_a

tP

IK3C

2Bph

osph

oino

sitid

e-3-

kina

se, c

lass

2, b

eta

poly

pept

ide

1q32

-11.

5077

1e-0

40.

0339

2134

51_x

_at

TN

XB

tena

scin

XB

6p21

.3-1

1.55

141e

-04

0.03

2321

5288

_at

LO

C65

0465

sim

ilar t

o Sh

ort t

rans

ient

rece

ptor

pot

entia

l cha

nnel

2 (T

rpC

2)-1

1.70

32e

-04

0.02

78

mpavon
196
Page 20: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

(mTr

p2)

2138

95_a

tE

MP1

epith

elia

l mem

bran

e pr

otei

n 1

12p1

2.3

-11.

8069

1e-0

40.

0255

2158

00_a

tD

UO

X1

dual

oxi

dase

115

q15.

3-1

2.00

361e

-04

0.02

121

0609

_s_a

tT

P53I

3tu

mor

pro

tein

p53

indu

cibl

e pr

otei

n 3

2p23

.3-1

2.02

11e

-04

0.02

0720

8126

_s_a

tC

YP

2C18

cyto

chro

me

P450

, fam

ily 2

, sub

fam

ily C

, pol

ypep

tide

1810

q24

-12.

1425

1e-0

40.

0191

2094

98_a

tC

EA

CA

M1

carc

inoe

mbr

yoni

c an

tigen

-rel

ated

cel

l adh

esio

n m

olec

ule

1(b

iliar

y gl

ycop

rote

in)

19q1

3.2

-12.

148

1e-0

40.

0189

2101

55_a

tM

YO

Cm

yoci

lin, t

rabe

cula

r mes

hwor

k in

duci

ble

gluc

ocor

ticoi

d re

spon

se1q

23-q

24-1

2.20

111e

-04

0.01

8220

8116

_s_a

tM

AN

1A1

man

nosi

dase

, alp

ha, c

lass

1A

, mem

ber 1

6q22

-12.

2206

1e-0

40.

018

2118

82_x

_at

FUT

6fu

cosy

ltran

sfer

ase

6 (a

lpha

(1,3

) fuc

osyl

trans

fera

se)

19p1

3.3

-12.

2423

1e-0

40.

0176

2144

21_x

_at

CY

P2C

9cy

toch

rom

e P4

50, f

amily

2, s

ubfa

mily

C, p

olyp

eptid

e 9

10q2

4-1

2.26

921e

-04

0.01

721

2230

_at

PP

AP

2Bph

osph

atid

ic a

cid

phos

phat

ase

type

2B

1pte

r-p2

2.1

-12.

2907

1e-0

40.

0165

2134

78_a

tK

IAA

1026

kazr

in1p

36.2

1-1

2.29

921e

-04

0.01

6421

8035

_s_a

tF

LJ2

0273

RN

A-b

indi

ng p

rote

in4p

13-p

12-1

2.65

951e

-04

0.01

1621

5103

_at

CY

P2C

18cy

toch

rom

e P4

50, f

amily

2, s

ubfa

mily

C, p

olyp

eptid

e 18

10q2

4-1

2.75

571e

-04

0.01

07

2036

58_a

tSL

C25

A20

solu

te c

arrie

r fam

ily 2

5 (c

arni

tine/

acyl

carn

itine

tran

sloc

ase)

,m

embe

r 20

3p21

.31

-12.

9394

1e-0

40.

0089

2163

33_x

_at

TN

XB

tena

scin

XB

6p21

.3-1

2.95

891e

-04

0.00

8722

0026

_at

CL

CA

4ch

lorid

e ch

anne

l, ca

lciu

m a

ctiv

ated

, fam

ily m

embe

r 41p

31-p

22-1

3.03

071e

-04

0.00

83

2142

35_a

tC

YP

3A5P

2cy

toch

rom

e P4

50, f

amily

3, s

ubfa

mily

A, p

olyp

eptid

e 5

pseu

doge

ne 2

7q21

.3-q

22.1

-13.

0555

1e-0

40.

0082

2131

72_a

tT

TC

9te

tratri

cope

ptid

e re

peat

dom

ain

914

q24.

2-1

3.18

911e

-04

0.00

7220

9763

_at

CH

RD

L1

chor

din-

like

1X

q22.

3-1

3.74

191e

-04

0.00

4320

4829

_s_a

tFO

LR

2fo

late

rece

ptor

2 (f

etal

)11

q13.

3-q1

3.5

-13.

7673

1e-0

40.

0042

2083

35_s

_at

DA

RC

Duf

fy b

lood

gro

up, c

hem

okin

e re

cept

or1q

21-q

22-1

3.95

061e

-04

0.00

33

2096

87_a

tC

XC

L12

chem

okin

e (C

-X-C

mot

if) li

gand

12

(stro

mal

cel

l-der

ived

fact

or1)

10q1

1.1

-14.

0868

1e-0

40.

0028

2014

12_a

tL

RP

10lo

w d

ensi

ty li

popr

otei

n re

cept

or-r

elat

ed p

rote

in 1

014

q11.

2-1

4.18

491e

-04

0.00

2621

7846

_at

QA

RS

glut

amin

yl-tR

NA

syn

thet

ase

3p21

.3-p

21.1

-15.

1385

1e-0

48e

-04

2094

87_a

tR

BPM

SR

NA

bin

ding

pro

tein

with

mul

tiple

splic

ing

8p12

-p11

-15.

5269

1e-0

46e

-04

2094

88_s

_at

RB

PMS

RN

A b

indi

ng p

rote

in w

ith m

ultip

le sp

licin

g8p

12-p

11-1

5.78

71e

-04

6e-0

4

mpavon
197
Page 21: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

2052

00_a

tC

LE

C3B

C-ty

pe le

ctin

dom

ain

fam

ily 3

, mem

ber B

3p22

-p21

.3-2

3.08

841e

-04

1e-0

421

9747

_at

C4o

rf31

chro

mos

ome

4 op

en re

adin

g fr

ame

314q

27-2

4.12

491e

-04

1e-0

4

mpavon
198
Page 22: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

ANEXO 8. Los resultados obtenidos en el estudio de los niveles de expresión de losgenes del sistema NHEJ en biopsias pre-tratamiento de pacientes con carcinomaescamoso de cabeza y cuello localmente avanzado tratados con quimioterapia deinducción han sido publicados en la revista “International Journal of Cancer”.

“Ku70 predicts response and primary tumor recurrence after therapyin locally advanced head and neck cancer”

Miguel Angel Pavón, Matilde Parreño, Xavier León, Francesc J. Sancho, MariaVirtudes Céspedes, Isolda Casanova, Antonio Lopez-Pousa, Maria Antonia Mangues,Miquel Quer, Agustí Barnadas and Ramón Mangues.

Int J Cancer. 2008 Sep 1;123(5):1068-79.

mpavon
199
Page 23: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados
Page 24: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

Ku70 predicts response and primary tumor recurrence after therapy

in locally advanced head and neck cancer

Miguel Angel Pav�on1, Matilde Parre~no1*, Xavier Le�on2, Francesc J. Sancho3, Maria Virtudes C�espedes1, Isolda Casanova1,Antonio Lopez-Pousa4, Maria Antonia Mangues5, Miquel Quer2, Agust�ı Barnadas4 and Ram�on Mangues1*

1Grup d’Oncogenesi i Antitumorals (GOA), Networking Research Center on Bioengineering,Biomaterials and Nanomedicine (CIBER-BBN) and Institut de Recerca, Hospital de la Santa Creu i Sant Pau,Barcelona, Spain2Department of Otorhinolaryngology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain3Department of Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain4Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain5Department of Pharmacy, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain

5-Fluorouracil and cisplatin-based induction chemotherapy (IC) iscommonly used to treat locally advanced head and neck squamouscell carcinoma (HNSCC). The role of nonhomologous end joining(NHEJ) genes (Ku70, Ku80 and DNA-PKcs) in double-strandbreak (DSB) repair, genomic instability and apoptosis suggest apossible impact on tumor response to radiotherapy, 5-fluorouracilor cisplatin, as these agents are direct or indirect inductors ofDSBs. We evaluated the relationship between Ku80, Ku70 or DNAPKcs mRNA expression in pretreatment tumor biopsies, andtumor response to IC or local recurrence, in 50 patients withHNSCC. Additionally, in an independent cohort of 75 patientswith HNSCC, we evaluated the relationship between tumor Ku70protein expression and the same clinical outcomes or patient sur-vival. Tumors in the responder group had significantly highermRNA levels for Ku70, Ku80 and DNA-PKcs than those in thenonresponder group. Ku70 mRNA was the marker most signifi-cantly associated with response to IC. Moreover, high tumorKu70 mRNA expression was associated with significantly longerlocal recurrence-free survival (LRFS). Ku70 protein expressionwas also significantly related to response, and patients with higherpercentage of tumor cells expressing Ku70 had longer LRFS. Inaddition, the percentage of Ku70 positive cells, tumor localizationand node involvement were significantly associated with overallsurvival of patient. Therefore, Ku70 expression is a candidate pre-dictive marker that could distinguish patients who are likely tobenefit from chemoradiotherapy or radiotherapy after the induc-tion chemotherapy treatment, suggesting a contribution of theNHEJ system in HNSCC clinical outcome.' 2008 Wiley-Liss, Inc.

Key words: Ku70; Ku80; DNA-PKcs; NHEJ; predictive marker;HNSCC; induction chemotherapy

Therapy for locally advanced head and neck squamous cell car-cinoma (HNSCC) aims at organ preservation, having displacedradical surgery. Concomitant platinum-based chemoradiotherapy(CRT) has become the standard treatment for this disease.1 5-Flu-orouracil (5-FU) and cisplatin-based induction chemotherapy (IC),followed by CRT or radiotherapy (RT), has also been used to treatlocally advanced HNSCCs, after demonstrating a benefit for organpreservation, loco-regional control and overall survival.2,3

Tumor response to IC predicts response to RT and patient sur-vival in locally advanced HNSCC.4–6 The IC response distin-guishes sensitive carcinomas, which will follow a conservativetreatment, from nonsensitive carcinomas, which will be treatedwith surgery. Conservative treatment consists of the administra-tion of CRT (formerly RT alone) aimed at preventing the mutilat-ing effect of surgery.

Despite conventional TNM information having a strong prog-nostic value in HNSCC,7 few predictive molecular markers ofresponse to therapy exist in this pathology. Consequently, uncov-ering predictors of response to IC may improve our ability toanticipate tumor response to subsequent CRT, identifying patientswho could benefit from a conservative treatment.

The cytotoxicity of the classic antineoplasic agents (5-FU, cis-platin, radiotherapy) depends of their ability to produce DNAdamage in tumor cells. Despite these agents producing differenttypes of DNA damage, all of them directly or indirectly produceDNA double strand breaks (DSB).8–10 CDDP produces interstrandcrosslinks, stops DNA replication and generates DSBs.11 5-FU isan analog of uracil that is converted intracellularly to fluorodeoxy-uridine monophosphate (FdUMP), a potent inhibitor of theenzyme thymidylate synthetase. This results in a deoxynucleotide(dNTP) pool imbalance, which disrupts DNA replication, generat-ing DSBs.10 DNA DSB is the most toxic and mutagenic of allDNA lesions. Two mechanisms exist for DSB repair: homologousrecombination and nonhomologous end joining (NHEJ). NHEJhas been described as the predominant DSB repair mechanism inmammalian cells.12

We hypothesized that the expression of NHEJ DNA repair(Ku70, Ku80 and DNA-PKcs) genes will influence tumorresponse to therapy on the basis of the following: (i) A highfrequency of chromosomal translocations and alteration ofdouble strand break (DSB) DNA repair in HNSCCs13–15; (ii)Direct induction of DSBs by radiation9 or indirectly by5-FU10,16 or cisplatin8,11; (iii) The major importance of NHEJin DSB repair, genomic stability maintenance and suppressionof translocations in mammalian cells17,18; (iv) An increasedin vitro sensitivity to radiation by NHEJ protein inactivation andrecovery of resistance by restoration of activity19–21 and (v) Involve-ment of Ku70, Ku80 and DNA-PKcs in apoptotic signaling afterradiation- or chemotherapy-induced DSBs.22–24

Grant sponsor: Spanish Ministerio de Educaci�on y Ciencia; Grant number:SAF03-07437. Grant sponsor: Fondo de Investigaciones Sanitarias; Grantnumbers: FIS PI052591, FIS PI051776, FIS 98/3197, FIS01/3085. Grantsponsor: Fundaci�on Mutua Madrile~na; Grant number: FMM 2006/169. Grantsponsor: Fundaci�o Marat�o de TV3; Grant number: MaratoTV3 04/050510.Grant sponsor: AGAUR; Grant number: SGR1050. Grant sponsor: ISCIIICIBER-BBN; Grant number: CB06/01/1031.*Correspondence to: GOA, Laboratori d’Investigaci�o Gastrointestinal,

Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Av. SantAntoni M. Claret, 167, 08025 Barcelona, Spain. Phone: 134-93-2919106,Fax:134-93-4552331. E-mail: [email protected] or [email protected] 26 October 2007; Accepted after revision 14 March 2008DOI 10.1002/ijc.23635Published online 10 June 2008 in Wiley InterScience (www.interscience.

wiley.com).

Abbreviations: 5-FU, 5-fluorouracil; CDDP, cis-diamminedichloridopla-tinum; CRT, chemoradiotherapy; CT, computed tomography; dNTP, deox-ynucleotide; DSB, double strand break; ES, embryonic stem; FdUMP,fluorooxyuridinine monophosphate; HNSCC, head and neck squamous cellcarcinoma; HPV, human papillomavirus; HR, hazard ratio; HSCSP, Hospi-tal de la Santa Creu i Sant Pau; IC, induction chemotherapy; IHC, immu-nohistochemistry; LRFS, local recurrence-free survival; MEFs, mouseembryo fibroblasts; MR, magnetic resonance; NHEJ, nonhomologous endjoining; OS, overall survival; ROC, receiver-operating-characteristics; RT,radiotherapy.

Int. J. Cancer: 123, 1068–1079 (2008)' 2008 Wiley-Liss, Inc.

Publication of the International Union Against Cancer

mpavon
201
Page 25: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

Patients with locally advanced (Stage III or IV) HNSCC, treatedat our institution with induction chemotherapy followed by eitherCRT/RT or surgery depending on tumor response, participated ina prospective mRNA study (n 5 50) or in an independent retro-spective immunohistochemistry (IHC) study (n 5 75). We eval-uated the relationship between Ku70, Ku80 or DNA-PKcs mRNA,or Ku70 protein expression in pretreatment tumor biopsies, andthe degree of tumor response to IC, local recurrence and patientsurvival. Our aim was to test the capacity of the expression ofthese genes in identifying patients likely to benefit from a conserv-ative treatment.

Patients and methods

Patient characteristics and treatment plan

Accrual for the mRNA prospective study (n 5 50) was initiatedin 2002. Patients in the IHC retrospective study (n 5 75) weretreated during the 1995–2003 period at the Hospital de la SantaCreu i Sant Pau (HSCSP). All patients had pathologically con-firmed, untreated, locally advanced (Stage III or IV) HNSCCs.The HSCSP Ethics Committee approved the study.

In both studies, patients were treated with IC consisting of theadministration of cisplatin at a dose of 100 mg/m2 on day 1, and5-FU at a dose of 1,000 mg/m2/day by continuous intravenousinfusion on days 2–6 every 3 weeks, per 3 courses. Patients whopresented a high tumor response after IC followed a conservativetreatment, which consisted of the administration of RT or CRT.

Patients treated from 1995 to 2002 who presented a high tumorresponse after IC followed treatment with radiotherapy (RT). CRTwas introduced in 2003 as an alternative to RT to treat patientswith a substantial IC response. Progressively, CRT displaced RTas the treatment of choice after IC.

RT was administered to the primary tumor and clinically posi-tive nodes in 35 fractions of 2 Gy, each over a 7-week period at atotal dose of 70 Gy. Nodal areas not clinically involved by tumorreceived a total dose of 50 Gy. CRT consisted of RT at the samedoses plus 3 cycles of cisplatin at a dose of 100 mg/m2 on day 1every 3 weeks.

Patients without significant response to IC were usually treatedwith surgery followed by RT. The characteristics of patientsincluded in both studies are summarized in Table I.

RNA extraction, cDNA synthesis and quantitative PCR

The prospective study was performed using fresh pretreatmentprimary tumor biopsies obtained from patients with HNSCC. Asample aliquot was used for pathological diagnosis of the malig-nancy. Samples with a low content of tumor tissue were excludedfrom the study. Another aliquot was frozen immediately after tak-ing the biopsy, in cold isopentane (histobath), and placed in liquidnitrogen until RNA processing.

Total RNA was extracted with Trizol1 (Invitrogen, Paisley,UK) and the phenol–chloroform method. Samples were then pre-cipitated twice with isopropanol and 70% ethanol, and cleaned-upusing RNeasy1 Spin columns (Qiagen, Valencia, CA). TotalRNA was quantified espectrophotometrically. Reverse transcrip-tion was performed using 1.5 lg of total RNA and the HighCapacity cDNA Archive Kit (Applied Biosystems, Foster City,CA), in a 50 lL final reaction volume, containing 5 lL of 103 RTbuffer, 2 lL of 253 dNTPs mixture, 5 lL of 103 Random Hex-amer Primers, 125 U of Multiscribe Reverse transcriptase and 40U of RNase inhibitor (Invitrogen, Paisley, UK). These mixtureswere incubated at 25�C for 20 min, and then at 37�C for 2 hr.Finally, heating at 95�C for 3 min inactivated the reverse tran-scriptase.

mRNA expression was measured on an ABIPrism 7000 SequenceDetection System (Applied Biosystems, Foster City, CA), using pre-designed Taqman1 Gene Expression Primer and probe Assays(Applied Biosystems, Foster City, CA), which were available forKu70, Ku80, and b-actin (http://www.appliedbiosystems.com). Allprobes were FAM-labeled, except for b-actin that was VIC-labeled.For DNA-PKcs detection, we used Primer Express software v2.0(Applied Biosystems, Foster City, CA) to design the forward (50-TGGGAGCATCACTTGCCTTTAATAA-30) and reverse (50-CAAACTGTTCCACCAGAGACTCTT-30) primers and a Taqman1

probe (50-CTTCCCTGAATTCCC-30) (Table II).mRNA quantitation was performed, in duplicates, in 20 lL total

volume PCR reactions, using 2 lL of each sample cDNA, 10 lLof 23 Universal Taqman Master Mix, 1 lL of primers and probemixture and 7 lL of H2O, following the manufacturer’s recom-mendations (Applied Biosystems, Foster City, CA). Thermal cy-cling conditions were 2 min at 50�C, 10 min at 95�C, and 40cycles at 95�C for 15 s and 60�C for 1 min.

TABLE I – CHARACTERISTICS OF PATIENTS INCLUDED IN THEPROSPECTIVE AND RETROSPECTIVE STUDIES

Patients characteristics Prospective mRNAstudy (n 5 50)

Retrospective IHCstudy (n 5 75)

SexMen 45 (90%) 71 (95%)Women 5 (10%) 4 (5%)

Tumor localizationOral cavity 11 (22%) 7 (9.3%)Oropharynx 7 (14%) 18 (24%)Hypopharynx 14 (28%) 12 (16%)Larynx 18 (36%) 38 (51%)

Lynph node involvementPresent 40 (80%) 41 (55%)Absent 10 (20%) 34 (45%)

Tumor size (T)2 8 (16%) 9 (12%)3 24 (48%) 50 (67%)4 18 (36%) 16 (21%)

Histological tumor gradeGood 5 (10%) 2 (3%)Moderate 39 (78%) 65 (87%)Poor 6 (12%) 8 (11%)

Tumor staging (TNM)III 12 (24%) 40 (53%)IV 38 (76%) 35 (47%)

Treatment subsequent to ICRadiotherapy 16 (32%) 38 (51%)Chemoradiotherapy 15 (30%) 4 (5%)Surgery 19 (38%) 33 (44%)

TABLE II – DESCRIPTION OF THE AMPLIFICATION AND HYBRIDIZATION REGIONS FOR mRNA GENEEXPRESSION ANALYSIS BY qPCR IN THE PROSPECTIVE STUDY

Gene Assay1 RefSeq2 Interexonic union Amlicon size (bp)

Ku70 Hs00750856_s1 NM_001469 Exon 1 99Ku80 Hs00221707_m1 NM_021141 Exon 2/Exon 3 72DNA-PKcs –3 NM_006904 Exon 27/Exon 28 72b-actin Hs99999903_m1 NM_00101 Exon 1 171

1Number assigned to predesigned Taqman Gene Expression Assay (Applied Biosystems; http://www.appliedbiosystems.com).–2mRNA Reference Sequence amplified using Taqman Gene ExpressionAssays. Available at the NCBI reference Sequence Database (Refseq).–3Custom-made sequence (seePatients and Methods section).

1069Ku70 PREDICTS RESPONSE AND PRIMARY TUMOR RECURRENCE

mpavon
202
Page 26: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

Gene expression results were calculated applying the compara-tive CT method (22(DDCt)) as previously described.25,26 Using the22(DDCt) method, the data are presented as the fold change ingene expression normalized to an endogenous gene and relative toa calibration sample. b-actin was used as the endogenouscontrol to normalize the PCR results for the amount ofRNA added to the reverse transcription reaction. We extractedRNA from the HNSCC UM-SCC-22A cell line (a gift fromDr. R.H. Brakenhoff), which was used as the calibrationsample.27 First, we subtracted the endogenous gene expression fromtarget gene expression (DCT 5 CTtarget gene(Ku80, Ku70 or DNA-PKcs) 2CTendogenous gene(b-actin)) and, afterwards, calculated the expres-sion in the tumor relative to the calibration sample (DDCT 5DCTtumor sample 2 DCTcalibrator(UM-SCC-22A)). Each gene mea-sure was expressed in relation to the level of the same gene inthe UM-SCC-22A cell line. This cell line was maintained in10% FBS DMEM (Invitrogen, Paisley, UK), with 2 mmol/Lglutamine, 50U/mL penicillin and 50U/mL streptomycin, at37�C in a humidified atmosphere containing 5% CO2.

Immunohistochemistry

We used pretreatment formalin-fixed and paraffin-embeddedbiopsies of primary HNSCCs, with high tumor tissue content, toperform the retrospective study. Four-micron sections were depar-affinized in xylol and rehydrated using decreasing ethanol concen-trations (100, 96, 80, 70 and 50%) and distilled H2O. The sampleswere immersed in 13 Target Retrieval Solution pH 5 6 (DakoCytomation S.A., St Just Desvern, Spain) and autoclaved over10 min at 121�C for antigenic retrieval. Endogenous tissue peroxi-dase was inactivated by incubating samples in a 3% H2O2 solutionfor 10 min. Samples were then incubated with a mouse monoclo-nal antibody against Ku70 (Ab-4) (Lab Vision, Freemont, CA) ata 1:200 dilution. For primary antibody detection, we used theEnVison 1 Dual Link System-HRP Kit in an automatic Autos-tainer System (DakoCytomation S.A., St Just Desvern, Spain),according to manufacturer’s instructions. Counterstaining was per-formed with hematoxylin (DakoCytomation S.A., St Just Desvern,Spain). Samples were dehydrated in a growing ethanol and xylolgradient, and mounted with DPX media (Sigma Aldrich, TresCantos, Spain). Negative controls were processed substituting theprimary antibody by nonimmunized mouse serum. A normalmucousa and 2 HNSCC samples were used to control for IHCbatch staining variability.

Immunohistochemistry analysis

We took three 1003-magnified images per sample, using aDP50 camera and an Olympus DX51 microscope, under the samelighting and time exposure conditions. The ViewFinder Lite v1.0and Studio Lite v1.0 software (Olympus, USA) were used to cap-ture and store all images. Afterwards, we eliminated all areas con-taining no tumor cells, using AdobePhotoshop software v7.0(AdobePhotoshop systems, USA). We quantitated the IHC stain-ing of the areas containing tumor cells, using the Metamorph v 5.0(Universal Imaging, Downingtown, PA) software and applied theHSI (HUE-saturation-intensity) model,28,29 which selects a partic-ular area according to its color, as defined by its HUE (the domi-nant wavelength of transmitted light), saturation and intensity. Foreach pixel in an image, the values of HUE, saturation and intensityare independently transformed to one of 256 integral values withina 0–255 range. Setting a range between 0 and 255 for each of these3 parameters makes it possible the selection of the particular areasof interest.28,29

Evaluation of tumor response, local recurrence andpatient survival

In both, the prospective and retrospective studies, tumorresponse was evaluated by comparing tumor volume before ICand after the third cycle of IC. Response was defined as a reduc-tion in primary tumor volume, as measured by physical examina-

tion, fiber optic laryngoscopy, and CT scan/MR imaging followingRECIST criteria.30

The responder group was composed of tumors presenting acomplete response or a partial response higher than 50%. The non-responder group included all tumors presenting a stable disease(<25% progression or <50% reduction) or progressive disease(>25% of progression in tumor volume).

We recorded local recurrence-free survival (LRFS), which wasdefined as time from diagnosis to recurrence at the primary loca-tion of the tumor. In addition, we recorded overall survival,defined as the time from diagnosis to patient death. The medianfollow-up time in the prospective study was 2.1 years. The medianfollow-up time for the retrospective study was 4.0 years. Themolecular analysis was performed with no knowledge of clinicaloutcomes.

Statistical analysis

We compared tumor mRNA levels and the percentage of posi-tively stained tumor cells between the responder and nonrespondergroups by applying the Mann–Whitney U test. We performed anonparametric receiver-operating characteristics (ROC) analysisto evaluate the diagnostic usefulness of Ku80, Ku70 and DNA-PKcs mRNA levels and Ku70 protein levels to discriminatebetween responding and nonresponding tumors. We established acut-off level for mRNA and protein levels for each studied vari-able to distinguish tumors with high or low expression levels.These cut-off values were determined selecting the most accuratevalues obtained from the nonparametric ROC analysis, taking intoaccount the best balances between sensitivity and specificity.Logistic regression analysis was used to evaluate the associationsof Ku70, Ku80 and DNA-PKcs expression above or below thedefined cut-off values, tumor size (T), node involvement andtumor localization, with IC response. Adjusted LRFS curves wereestimated using the Kaplan–Meier method. We applied a 2-tailedlog-rank test to evaluate the differences in LRFS between patientswith tumor expression above or below the defined cut-off values.The association of Ku70, Ku80 and DNA-PKcs gene expression,node involvement, tumor size and localization with LRFS and OSwas assessed applying a univariate and a multivariate Cox regres-sion model analysis.

Differences were considered significant at p values <0.05 in allapplied statistical tests. All statistical analyses were performedusing the SPSS software v.14.01 (SPSS, Chicago, IL).

Results

Differences in Ku70, Ku80 and DNA-PKcs mRNA levels betweenresponder and nonresponder tumors (prospective study)

The characteristics of the patients included in the prospectivestudy are summarized in Table I. Twenty-eight out of 50 patientshad a tumor response to IC higher than 50% (responder group),whereas 22 tumors showed responses lower than 50% (nonres-ponder group). The median mRNA level was 4.4 (range0.5–309.8) for Ku70, 2.3 (0.1–36.8) for Ku80 and 3.3 (0.1–59.9)for DNA-PKcs when considering all samples (responders and non-responders) included in the prospective study. The median mRNAlevel in the responder group was 6.6 (range 1.2–236.4) for Ku70,3.2 (range 0.7–36.8) for Ku80 and 4.2 (range 0.2–59.9) for DNA-PKcs. The median mRNA level in the nonresponder group was3.3 (range 0.5–309.0) for Ku70, 1.8 (range 0.1–3.3) for Ku80 and2.4 (range 0.1–11.5) for DNA-PKcs.

We observed significantly higher mRNA tumor values for Ku70(p 5 0.005), Ku80 (p 5 0.002) or DNA-PKcs (p 5 0.017) in res-ponders than in nonresponders (Figs. 1a–1c). Afterwards, we per-formed a ROC analysis to test the sensitivity and specificity ofKu70, Ku80 or DNA-PKcs mRNA levels in evaluating responseto IC (Fig. 1d). The areas under the curve (AUC) were 0.73 [CI(95%) 5 0.59–0.88, p 5 0.005] for Ku70, 0.76 [CI (95%) 50.63–0.90, p 5 0.002] for Ku80 and 0.70 [CI (95%) 5 0.55–0.88,

1070 PAV�ON ET AL.

mpavon
203
Page 27: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

p 5 0.017] for DNA-PKcs. We next established a cut-off levelbetween high and low mRNA levels for each gene by selecting themost accurate value obtained in the ROC analysis. Thus, we dis-tributed all patients between 2 groups, one above and anotherbelow the following mRNA thresholds: 3.6 for Ku70, 2.6 forKu80 and 5.0 for DNA-PKcs. The sensitivity, specificity and accu-racy in predicting IC response with the established cut-offs wereas follows: Ku70 (sensitivity 86%, specificity 68%, accuracy78%), Ku80 (sensitivity 57%, specificity 77%, accuracy 66%) andDNA-PKcs (sensitivity 43%, specificity 86%, accuracy 62%).

Logistic regression analysis was conducted to evaluate the asso-ciations of mRNA levels, tumor localization, lymph node involve-ment and tumor size (T) with IC response. Only high (above 3.6)Ku70 mRNA levels were significantly associated with response toIC higher than 50% [p 5 0.03; odds ratio 5.9; CI (95%) 5 1.28–29.6]. Therefore, ROC and logistic regression analysis indicatedthat Ku70 mRNA gene expression was the best marker to discrim-inate between responding and nonresponding tumors.

Ku70 and Ku80 mRNA levels are associated with localrecurrence-free survival (prospective study)

We next analyzed whether the mRNA expression of these geneswas associated with primary tumor recurrence (Fig. 2a). Patientswhose tumors expressed Ku70 mRNA levels above the established3.6 threshold had a significantly higher probability of survivingwithout having primary tumor recurrence (increased LRFS) thanpatients bearing tumors with lower mRNA levels (p 5 0.043).

Similarly, patients whose tumors expressed Ku80 mRNA levelsabove the 2.6 threshold had a higher LRFS than patients bearingtumors with lower mRNA levels (p 5 0.04). DNA-PKcs mRNAlevels did not show an association with patient’s LRFS (p 50.457).

We also applied a Cox model analysis to study the associationof mRNA levels, tumor size (T), localization, lymph node involve-ment and IC response, with LRFS (Table III). On a Cox univariateanalysis, we found that Ku70 mRNA levels (p 5 0.05) and Ku80mRNA levels (p 5 0.05) were associated with LRFS. On a multi-variate Cox analysis, Ku70 mRNA levels (p 5 0.04) and tumorsize (p 5 0.03) were significant independent risk factors of LRFS.Therefore, in our study, Ku70 gene expression remains the onlymarker able to consistently predict local control of the disease.Thus, patients with tumors showing high Ku70 mRNA levels pre-sented a higher probability of surviving without primary tumor re-currence than patients with tumors showing low expression of thisgene. Ku80 mRNA, despite displaying the same trend as Ku70and being also a predictive marker of response, showed a weakerassociation with LRFS.

After applying a Cox model analysis to assess the association ofmRNA levels, tumor size (T), localization, lymph node involve-ment and IC response with overall survival, we observed that highKu70 levels displayed the same trend towards associating withlonger overall survival, as it happened with LRFS; however, theobserved differences did not reach statistical significance (p 50.14).

FIGURE 1 – Significant differences in Ku70 (a), Ku80 (b) and DNA-PKcs (c) mRNA levels in pretreatment biopsies between tumors with aresponse to induction chemotherapy higher than 50% (Resp > 50%) and tumors with response lower than 50% (Resp < 50%) in the prospectivestudy. Differences in NHEJ gene expression between the responder group and the nonresponder group were compared using the nonparametricMann–Whitney U test. (d) Curves obtained applying receiver-operating-characteristics (ROC) analysis for Ku70, Ku80 and DNA-PKcs.

1071Ku70 PREDICTS RESPONSE AND PRIMARY TUMOR RECURRENCE

mpavon
204
Page 28: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

FIGURE 2 – Analysis of patient LRFS in the prospective study. Differences in adjusted local recurrence-free survival (LRFS) between patientsbearing tumors expressing pretreatment Ku70, Ku80 or DNA-PKcs mRNA levels above or below the depicted cut-off levels. (a) Analysis per-formed including all patients treated with induction chemotherapy, followed by either surgery or conservative treatment. (b) Analysis performedonly with the group of patients who followed a conservative treatment after IC.

1072 PAV�ON ET AL.

mpavon
205
Page 29: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

Ku70 mRNA levels are associated with local recurrence-freesurvival in patients who followed a conservative treatment(prospective study)

We next searched for the possible differences in adjusted LRFSwithin the subset of patients who received CRT or RT after IC (n531), excluding those treated with surgery after IC (n 5 19) (Fig.2b). Our objective was to study Ku70, Ku80 and DNA-PKcs as pos-sible markers of tumor response and primary tumor recurrence aftergenotoxic therapy. Surgery is applied to patients with poor responseto IC, and their inclusion could have altered the LRFS registered inpatients under genotoxic treatment. All patients (n 5 28) of the re-sponder group followed a treatment with CRT or RT after IC. Nine-teen patients of the nonresponder group underwent surgical excisionof their tumors after IC. Three patients of the nonresponder grouprefused mutilating surgery and, contrarily to medical advice, weretreated with RT or CRT. Out of the 31 IC patients who followed aconservative treatment (CRT or RT) after IC, those whose tumorsexpressed Ku70 mRNA levels above the 3.6 threshold had a signifi-cantly higher probability of surviving without having a primary tu-mor recurrence (increases LRFS) than patients bearing tumors withlower mRNA levels (p 5 0.001). Moreover, patients whose tumorsexpressed Ku80 mRNA levels above the 2.6 threshold showed atrend towards increased LRFS, but it did not reach statistical signifi-cance (p 5 0.113). DNA-PKcs mRNA levels did not show signifi-cant differences in patient’s LRFS (p5 0.442).

A univariate Cox model analysis confirmed the significant asso-ciation between Ku70 mRNA levels and LRFS (p < 0.01) (TableIII). Moreover, a multivariate Cox model analysis showed thatKu70 mRNA was the only independent risk factor for local recur-rence-free survival in patients who followed conservative treat-ment after IC (p 5 0.02) (Table III).

On a multivariate analysis, the difference in relative risk of pri-mary tumor recurrence between high and low Ku70 mRNA tumorpatients was 6 times higher when only conservatively treatedpatients were included in the analysis than when all patients wereincluded (HR: 28.2 vs. 4.7, Table III). A univariate (p 5 0.23) anda multivariate (p 5 0.64) Cox model analysis in patients treatedwith surgery after IC showed no association between Ku70mRNA levels and LRFS. The capacity of Ku70 mRNA in predict-ing local recurrence after conservative treatment was improvedwhen the data on LRFS after mutilating surgery were excludedfrom the analysis, indicating that Ku70 mRNA is a better markerof local recurrence after CRT/RT than of recurrence after surgery.

Differences in Ku70 protein expression between responder andnonresponder tumors (retrospective study)

Patient characteristics in the retrospective study are summarizedin Table I. Out of 75 analyzed patients, 39 had a tumor response to

IC greater than 50% (responder group), whereas 36 patientsshowed a tumor response lower than 50% (nonresponder group).Ku70 immunohistochemical analysis showed an exclusively nu-clear staining pattern. Using the ‘‘Set color threshold’’ tool ofMetamorph v5.0 software and the HSI color model (Fig. 3a), weestablished a 180–255 HUE range to select all brown primary anti-body-stained areas (positive nuclei) (Fig. 3c), which ensured theabsence of any selected area in negative control samples. More-over, we established a 160–255 HUE range to select all (brown 1blue) tumor cell nuclei present in the sample (Fig. 3d), leaving outcell cytoplasm, membrane or keratin deposits. Since all tumornuclei present in each sample image displayed a similar size, wecalculated the percentage of positive tumor cells dividing the areaoccupied by positive tumor nuclei by the area occupied by allnuclei. Two experienced pathologists validated this method.

Figure 4a shows Ku70 staining in 2 tumors from patients withdifferent responses to IC treatment. The median of the percentageof Ku70 positively stained cells was 63.31 (range 7.4–92.8) for allsamples (responders and nonresponders) included in the retrospec-tive study. The median of the percentage of Ku70 positively stainedcells in the responder group was 70.7% (range 19.0–92.8%) and inthe nonresponder group was 57.7% (range 7.4–88.3%). Weobserved a significantly higher percentage of Ku70 positive tumorcells in responders than in nonresponders (p 5 0.036) (Fig. 4b).Using ROC analysis, we obtained an AUC of 0.64 [CI (95%) 50.51–0.77, p 5 0.036] for Ku70 positive cells (Fig. 4c). The cut-offvalue between high and low percentage of positive Ku70 cells wasestablished at 74%, which was the most accurate value obtained inthe ROC analysis. Its sensitivity, specificity and accuracy in predict-ing IC response was 47, 69 and 59%, respectively. Thus, in pretreat-ment tumor samples, the percentage of Ku70 positive tumor cellswas significantly associated with response to IC.

Association between the percentage of Ku70 positive cells andlocal recurrence-free survival (retrospective study)

Patients whose tumors contained a percentage of Ku70 positivecells above the 74% threshold had a significantly increased proba-bility of surviving without having a primary tumor recurrence(longer LRFS), as compared to patients whose percentage of posi-tive tumor cells were below this threshold (p 5 0.013) (Fig. 4d).Cox univariate (p 5 0.03) and multivariate (p 5 0.02) analysesrevealed the percentage of Ku70 positive tumor cells as the mostsignificant factor associated with LRFS (Table IV).

Similar to the mRNA prospective study, in this study, we ana-lyzed the adjusted LRFS within the subset of patients whoreceived RT or CRT after IC, excluding patients who underwent asurgery procedure after IC. All patients (n 5 39) of the respondergroup followed a treatment with CRT or RT after IC. Thirty-three

TABLE III – HAZARD RATIOS FOR LOCAL RECURRENCE OBTAINED APPLYING COX MODEL ANALYSIS IN THEPROSPECTIVE STUDY

Local recurrence-free survival

Univariate Multivariate

HR (95% CI) p value HR (95% CI) p value

All patientsKU70 mRNA (<3.6 vs. >3.6) 2.8 (1.0–7.7) 0.05 4.7 (1.1–19.8) 0.04KU80 mRNA (<2.6 vs. >2.6) 3.5 (1.0–12.4) 0.05 2.1 (0.5–9.3) 0.34DNA-PKcs (<5.0 vs. >5.0) 1.5 (0.5–4.9) 0.46 1.7 (0.2–12.6) 0.59Tumor size (T) (T3–T4 vs. T1–T2) 2.3 (0.8–6.6) 0.14 7.4 (1.3–42.9) 0.03Node involvement (N1 vs. N0) 2.1 (0.5–9.3) 0.33 1.0 (0.2–6.0) 0.97Localization 1.4 (0.4–4.3) 0.60 2.1 (0.5–8.6) 0.32

Conservative treatmentKu70 mRNA (<3.6 vs. >3.6) 6.9 (1.9–26.5) <0.01 28.2 (1.7–47.0) 0.02Ku80 mRNA (<2.6 vs. >2.6) 2.9 (0.7–11.8) 0.13 0.9 (0.0–8.6) 0.95DNA-PKcs (<5.0 vs. >5.0) 1.7 (0.4–6.9) 0.45 0.4 (0.02–7.3) 0.53Tumor size(T) (T3–T4 vs. T1–T2) 1.8 (0.4–7.2) 0.42 4.9 (0.7–36.1) 0.12Node involvement (N1 vs. N0) 2.6 (0.3–20.6) 0.37 1.3 (0.1–16.5) 0.85Localization 1.1 (0.2–5.1) 0.94 0.5 (0.1–3.2) 0.45

The bold values indicate the existence of statistically significant differences.

1073Ku70 PREDICTS RESPONSE AND PRIMARY TUMOR RECURRENCE

mpavon
206
mpavon
Page 30: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

patients of the nonresponder group followed a surgery treatmentafter IC. Three patients of the nonresponder group, contrarily tomedical advice, rejected mutilating surgery and followed CRT orRT treatment. A total of forty-two patients followed a conserva-tive treatment after IC. Patients whose tumors contained a percent-age of Ku70 positive nuclei above the established 74% thresholdhad a significantly longer LRFS as compared to patients whosepercentage of positive tumor nuclei were below this threshold(p 5 0.008) (Fig. 4e). Cox univariate (p 5 0.03) and multivariate(p 5 0.02) analyses confirmed the association between the per-centage of Ku70 positive tumor cells and LRFS in patients whofollowed conservative treatment after IC (Table IV). A univariate(p 5 0.51) and a multivariate (p 5 0.48) Cox model analyses inpatients treated with surgery after IC showed no associationbetween the percentage of Ku70 positive tumor cells and LRFS.

In summary, high percentage of Ku70 positive cells was signifi-cantly associated with a longer local primary-recurrence-free sur-vival. In addition, the predictive capacity of Ku70 protein expres-sion became more significant when analyzing only patients underconservative treatment than when including all patients (conserva-tive plus surgical) in the analysis (see Figs. 4d and 4e).

Association between the percentage of Ku70 positive cells andoverall survival (retrospective study)

On a Cox univariate analysis, we found that the percentage oftumor Ku70 positive cells (p 5 0.03), node involvement (p 50.03) and tumor localization (p < 0.01) were significantly associ-ated with patient’s overall survival (Table IV). Moreover, on amultivariate Cox analysis, only the percentage of Ku70 positive

cells (p < 0.01) and tumor localization (p < 0.01) were significantindependent risk factors of overall survival (Table IV). Perform-ance of the same analysis only on patients who underwent con-servative treatment after IC yielded similar results (Table IV).

Discussion

The aim of this work was to obtain predictive markers ofresponse to therapy in locally advanced HNSCCs. In the prospec-tive study, we have described that tumors showing a responsehigher than 50% to induction chemotherapy (IC) had significantlyhigher pretreatment Ku70, Ku80 or DNA-PKcs mRNA levels thantumors with a response lower than 50%. In the retrospective study,which was carried out in a distinct cohort of patients, we analyzedKu70 tumor expression, because it was the best marker ofresponse and local recurrence in the prospective analysis. Thisstudy included a higher number of patients and longer follow-uptimes allowing to perform a more extensive local recurrence andoverall survival analysis. Here, our goal was to know if theobserved relationship between Ku70 expression and the clinicalvariables described in the prospective study was also found in theretrospective study and whether these findings went in the samedirection, despite using a different methodology (IHC instead ofqPCR).

In the retrospective study, Ku70 was the most significant inde-pendent factor in predicting LRFS, being also associated with OS.In contrast, node involvement and tumor localization were associ-ated with overall survival, but they did not predict LRFS. Theobserved differences between the LRFS and OS analyses suggest

FIGURE 3 – Ku70 Immunohistochemistry quantification used in the retrospective study. (a) We used the ‘‘Set Color Threshold’’ tool, imple-mented in Metamorph software v5.0, to establish a suitable HUE range that selects areas presenting specific immunostaining characteristics. (b)Immunohistochemistry quantification was performed in 1003 magnified images. Ku70 shows a nuclear staining pattern. (c) All positive immu-nostained nuclei, present in the image, were selected using a 180–255 HUE range (green areas). (d) All the nuclei (positive and negative), pres-ent in the image, were selected using a 165–255 HUE range (green areas).

1074 PAV�ON ET AL.

mpavon
207
Page 31: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

that clinical factors other than primary tumor recurrence areinvolved in determining overall survival. Indeed, node involve-ment and distant metastases, together with primary tumor recur-rence, are the factors showing the highest association with poorprognosis in patients with HNSCC.7,31

These results support the notion that Ku70 expression is a pre-dictive marker of response and recurrence after adjuvant therapy.In this sense, it differs from classical prognostic factors such as tu-mor localization or node involvement, which associate with clini-cal outcomes independently of the applied treatment. Thus, prog-nostic markers are related to tumor aggressiveness and to the na-ture of the mutations driving cell growth, motility anddissemination capacity, which may not necessarily relate to tumorresponse to therapy. In contrast, predictive markers are related tothe interaction between the tumor and the therapeutic agents andanticipate tumor response. In HNSCC, prognosis largely dependson conventional TNM information, which stratifies patients interms of tumor aggressiveness, and indicates the requirement ornot for systemic therapy. However, this information has so far pro-

ven inadequate in predicting response to nonsurgical therapy.7,32

Thus, despite lymph node involvement is the single most adverseindependent prognostic factor31; it is, however, not useful in pre-dicting response to adjuvant therapy.32

Our finding of Ku70 gene or protein expression as a marker oftumor response to IC, as well as a marker of local disease controland patient survival after genotoxic therapy, suggest that this pro-tein contributes to determine tumor response. These associationsare consistent with the previous demonstration that tumor responseto IC predicts response to subsequent RT4,33 and patient survival.5

To our knowledge, no previous report has addressed the predictionof response to therapy by NHEJ genes/proteins in patient biopsiesof locally advanced head and neck squamous cell carcinoma(HNSCC) treated with chemoradiotherapy. We are aware of only2 related studies, 1 performed in primary cultures from mostlyStage IV head and neck carcinoma biopsies, which found no cor-relation between DNA-PKcs protein levels and in vitro radiosensi-tivity.34 Another study evaluated DNA-PKcs, Ku70 and Ku80 ex-pression in head and neck cancer patients treated with radiotherapy

FIGURE 4 – Analysis of Ku70protein expression in the retro-spective study. (a) Differences inKu70 immunostaining in pre-treatment biopsies between a rep-resentative tumor in the re-sponder group and a representa-tive tumor in the nonrespondergroup. (b) Significant differencesin the percentage of Ku70 posi-tive tumor cells between tumorswith a response to inductionchemotherapy higher than 50%(Resp >50%) and tumors withresponse lower than 50% (Resp<50%). (c) Receiver-operating-characteristics (ROC) curvesapplied to the percentage ofKu70 positive cells. (d, e) Differ-ences in adjusted local recur-rence-free survival (LRFS)between patients bearing tumorswith a percentage of Ku70 pro-tein staining higher or lower than74%. (d) Analysis performedincluding all patients treated withinduction chemotherapy, fol-lowed by either surgery or con-servative treatment. (e) Analysisperformed only in the group ofpatients who followed a conserv-ative treatment after IC.

1075Ku70 PREDICTS RESPONSE AND PRIMARY TUMOR RECURRENCE

mpavon
208
Page 32: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

and found no relationship with radiosensitivity.35 Nevertheless,there are some clinical reports regarding NHEJ protein predictionof response to therapy on related tumor types. Thus, in agreementwith our results, high expression of DNA-PKcs, detected byimmunohistochemistry, is associated with response to chemora-diation in esophageal carcinomas.36 Similarly, high expression ofKu80 or DNA-PKcs protein associates with increased survival intonsillar carcinoma patients treated with radiotherapy.37 In con-trast to these and to our results, high levels of Ku70 or DNA-PKcs, measured by IHC, associate with lower locoregional controlafter concurrent chemoradiotherapy in patients with nasopharyn-geal carcinoma38; nevertheless, this is considered a tumor entitydifferent from HNSCCs.39 In addition, results predicting responseby Ku70 and/or Ku80 proteins by IHC, in a direction opposed toour findings, are also found in other tumor types such as cervicalcarcinoma, since high levels of these proteins associate with lowerresponse and survival to radiotherapy in patients with cervicalcancer.40,41

Cell type-dependent response to therapy involvingNHEJ proteins

Despite our identification of Ku70 and, to a lesser degree, Ku80or DNA-PKcs as possible predictive markers of response to CRTin HNSCC, our findings went in a direction contrary to that antici-pated. We were expecting higher NHEJ protein levels, orincreased DNA-PK complex activity, being related to enhancedDNA damage repair, which in turn would lead to lower tumorresponses to therapy. This assumption is based on previous in vitroand clinical reports involving DNA repair proteins. For instance,in vitro inactivation of NHEJ proteins associates with higherradiosensitivity, whereas restoration of repair activity restores re-sistance.21 Moreover, high Ercc1 levels predict for poor responsein nonsmall cell lung42 or ovarian43 carcinoma patients.

Searching for a possible mechanistic explanation of the unanti-cipated direction of our findings, we have exhaustively reviewedthe in vitro and in vivo literature that evaluates the role of NHEJproteins in response to DNA damage. Despite recognizing incon-sistency of our results with some previous work, we also foundsolid work agreeing with our findings. Overall, the literaturereports that response to genotoxic therapy by DNA repair proteinsdepends on the studied cell type,44 on its differentiation state45 oreven on its degree of functional activation.46 In the following, weare describing findings, in specific cell types, in which inactiva-tion, or low level of activity, of the NHEJ system decreases theirsensitivity to genotoxic agents, and its possible mechanistic basis.Afterwards, we are describing results in other cell types, in whichinactivation of NHEJ proteins leads to increased cell sensitivity.

In agreement with the direction of our findings, inactivation ofKu70, in the chicken B lymphocyte cell line DT40, significantlyincreases their viability when exposed to high doses of doublestrand break (DSB) inducers, such as g-radiation or methyl metha-nesulfonate, as compared with wild type cells.47 Similarly,enhanced cell survival, through suppression of p53-dependent ap-optosis, has been reported in thymocytes of DNA-PKcs2/2 micetreated with whole body-ionizing radiation, as compared to wildtype mice.48 In addition, DNA damage-induced apoptosis by ion-izing g-radiation is abolished in DNA-PKcs2/2 mouse embryofibroblasts (MEFs) expressing E1A.49 Moreover, cisplatin inducesmarked cell death in Ku801/1 immortalized MEFs, Ku801/1Chinese hamster ovary-derived (CHO) cells or SCID cells com-plemented with human DNA-PK, as compared with their matcheddeficient counterparts. This cisplatin induced-death is mediated bythe kinase function of the DNA-PK complex and conveyed toneighboring cells through gap junctions, whereas cells deficient inKu80 or DNA-PKcs are markedly resistant to the drug.24 In agree-ment with a role for the DNA-PK complex proteins in apoptosis,the exposure of MEFs or glioma cell lines to g-radiation leads toDNA-PK and Chk2 phosphorylation of p53, which mediates sub-sequent induction of apoptosis.50,51 Similarly, the apoptosis

TABLE

IV–HAZARD

RATIO

SFOR

LOCAL

RECURRENCE

AND

CANCER

DEATH

OBTAIN

ED

APPLYIN

GCOX

MODEL

ANALYSIS

INTHE

RETROSPECTIV

ESTUDY

Localrecurrence-freesurvival

Overallsurvival

Univariate

Multivariate

Univariate

Multivariate

HR(95%

CI)

pvalue

HR(95%

CI)

pvalue

HR(95%

CI)

pvalue

HR(95%

CI)

pvalue

Allpatients

%Ku70positivecells(<

74%

vs.>74%)

5.2

(1.2–22.9)

0.03

5.6(1.3–24.3)

0.02

3.9

(1.2–13.3)

0.03

5.1(1.5–17.4)

<0.01

Tumorsize

(T)(T3–T4vs.T1–T2)

2.7

(0.4–20.1)

0.34

2.7(0.4–21.4)

0.34

1.4

(0.3–6.0)

0.65

2.2(0.5–9.6)

0.30

Nodeinvolvem

ent(N

1vs.N0)

1.1

(0.5–2.8)

0.78

1.0(0.4–3.0)

0.97

3.1

(1.1–8.3)

0.03

1.9(0.6–5.8)

0.26

Localization

1.9

(0.8–4.9)

0.17

2.3(0.8–6.7)

0.12

5.9

(2.0–17.4)

<0.01

5.6(1.7–18.4)

<0.01

Conservativetreatm

ent

%Ku70positivecells(<

74%

vs.>74%)

9.5

(1.3–73.1)

0.03

12.3

(1.6–96.6)

0.02

2.0

(0.7–13.9)

0.16

5.5(1.1–26.5)

0.03

Tumorsize

(T)(T3–T4vs.T1–T2)

3.3

(0.4–25.0)

0.26

4.6(0.6–38.2)

0.16

2.4

(0.3–18.4)

0.42

5.6(0.7–46.9)

0.11

Nodeinvolvem

ent(N

1vs.N0)

1.0

(0.4–2.9)

0.99

1.7(0.5–5.2)

0.37

2.2

(0.6–8.1)

0.26

2.5(0.6–10.2)

0.19

Localization

2.0

(0.7–6.0)

0.22

2.8(0.9–9.0)

0.08

12.3

(1.6–96.6)

0.02

16.4

(2.0–134.3)

<0.01

Thebold

values

indicatetheexistence

ofstatisticallysignificantdifferences.

1076 PAV�ON ET AL.

mpavon
209
Page 33: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

induced by IGFBP-3 in glioblastoma or prostate cancer cell linesis blocked when DNA-PK is knocked out or chemically inhib-ited.52 In addition, in breast cancer cells exposed to ionizing radia-tion, a nuclear trimeric protein complex, including clusterin, Ku70and Ku80, is formed that constitutes a death signal for severelydamaged cells.53

In contrast to the results described above, the role of the NHEJproteins in DNA repair is consistent with the association betweenlow Ku70 expression or DNA-PK activity and sensitization to radi-ation in fourteen esophageal cancer cell lines.54 Similarly, downre-gulation of Ku70 or DNA-PKcs by siRNA induces sensitization tocisplatin, etoposide or topotecan in the human cervical carcinomaHeLa cell line.20 Also, in low-passage normal human fibroblasts,siRNA knockdown of DNA-PKcs resulted in increased radiosensi-tivity.19 Moreover, enhanced NHEJ DNA repair activity is associ-ated with lower sensitivity to genotoxic agents in primary culturesof human B-chronic lymphocytic leukemia cells, so that treatmentwith DNA-PK inhibitors increases their sensitivity to the DSBinducers g-radiation, etoposide or neocarzinostatin.55 Similarly,Ku702/2 embryonic stem cells have showed an increased sensi-tivity to g-radiation as compared to Ku70 heterozygous or wildtype embryonic stem cells.56 These findings suggest that NHEJ pro-teins may function in DNA repair.46,57 Moreover, DNA-PKcs mayalso participate in a NFkB-dependent antiapoptotic pathway thatprotects cells from death induced by toposisomerase inhibitors, inSV40-transformed human fibroblasts or CHO cells or p53 nullMEFs.58 Similarly, DNA-PKcs inhibits apoptosis induced by heatshock treatment in HeLa, CHO or mouse lung fibroblast cells, a dis-tinct function from its involvement in DNA repair.59

Therefore, the apparent contradiction between the results sup-porting and opposing our findings is solved when considering theexistence of a cell type-dependent response to genotoxic therapy.Consistent with this notion, response to DNA damage by doublestrand break (DSB) inducers, involving the NHEJ system, is celltype-dependent.46 Thus, a cell type-dependent response to DNAdamage, mechanistically involving the DNA-PK complex, hasbeen proposed on the basis of 2 main and alternate functions. Theactivation of the DNA-PK complex by radiation or other geno-toxic agents could trigger signaling pathways that result in apopto-sis or cell cycle arrest.44 Cells, whose physiological functioninvolves their rapid proliferation (e.g., lymphocytes), may requireactive apoptotic pathways to avoid tumorogenesis after genotoxicdamage; in contrast, cells playing a supportive role to other celltypes (e.g., stroma providing growth factors to epithelial cells)may instead enter senescence, to maintain their function whileavoiding transformation.44 In agreement with the described celltype dependency, cells with the same genetic background, but atdistinct differentiation states, respond differently to genotoxicagents, in the same mouse model. Thus, DNA-PKcs2/2 embry-onic stem (ES) cells show a similar level of sensitivity to IR thanwild type ES, whereas DNA PK2/2 fibroblasts (differentiated)cell line derived from the same mice are significantly more sensi-tive to IR than its wild type counterpart.45 On the other hand,some cell types change the NHEJ protein function, as they changetheir activation status. Thus, in nonactivated human multiple my-eloma (MM) cells, Ku80 confers sensitivity to DNA damage;however, CD40 activation of MM cells induce Ku80 and Ku70translocation to the plasma membrane changing their functiontowards antiapoptosis, which then leads to protection against apo-ptosis triggered by irradiation or doxorubicin.60

Further support for a cell type-dependent role of NHEJ inresponse to genotoxic therapy comes from findings in some celltypes, in which the DNA complex does not appear to play any rolein determining response to genotoxic agents. Thus, the sensitivityto IR in mouse ES cells knock out for Artemis, a member of theNHEJ pathway, does not vary as compared to ES wild type cells.61

Similarly, DNA-PK-deficient murine SCID embryogenic fibro-blast or the DNA-PKcs2/2 human glioma cell line MO59J showsa similar sensitivity to etoposide as wild type MEFs or the DNA-PKcs1/1 MO59K glioma cell line.62 Moreover, in human lym-

phoblastic cell lines, siRNA knockdown of DNA-PKcs results inno significant increase in radiosensitivity.19

We also reviewed whether other proteins involved in DNA repairfollowed a cell type-dependent response to genotoxic agents. Wechoose to focus on p53 role, because it is the most extensively stud-ied gene regarding response to chemotherapy and/or radiotherapy,and because of its involvement in processes similar to those of theNHEJ proteins (DNA repair, apoptosis, genomic stability) and ofits functional link with NHEJ signaling.48–50 We observed a patternof response to DNA damage similar to that described above for theNHEJ system. Thus, p53 mutation may be a predictive marker ofresponse to 5-FU and cisplatin-based neoadjuvant chemotherapy inHNSCC patients, since tumors with no response have a signifi-cantly higher prevalence of p53 mutations than responder tumors.63

Moreover, we also found a clear cell-type-dependent pattern ofresponse to genotoxic agents in tumors other than HNSCC, as afunction of their p53 status. Thus, inactivation of p53 shows eithersensitivity or resistance to DNA damage depending on the tumortype, cancer cell line or primary cell line being tested.57 Tumorsbearing a p53 wild type gene show higher response to radiotherapy/chemotherapy, which associates with longer patient survival, whileits mutational inactivation leads to lower response and survival innonsmall cell lung,64 breast65 or ovarian66 carcinoma. In contrast tothese results, an increased response in p53 mutant testicular,67 gli-oma68 or bladder69 tumors has been observed, as compared to p53wild type tumors.67 Moreover, and similar to NHEJ proteins, p53functions in DNA repair as well as in apoptotic regulation,57 whichcould lead to contrary outcomes regarding response to genotoxictherapy. Therefore, some of the p53 results that have been reportedcould be unexpected if only the participation of p53 in DNA repairwas considered rather than acknowledging a complex and cell-de-pendent role in DNA repair and apoptosis.

Overall, the literature reports that cell response to genotoxictherapy in human tumors, or in in vitro and in vivo models, afterthe inactivation of NHEJ proteins (and also of p53) depends onthe studied cell type, and or its differentiation state or functionalactivation. These studies demonstrate the increasing complexity ofthis area of research; thus, in addition to its function in DNArepair and stress response, the proteins of the DNA-PK complex(DNA-PKcs, Ku70 and Ku80) are implicated in multiple and/orseparated pathways that regulate distinct cell death pathways.

In summary, our results in HNSCCs could be explained consid-ering that, in addition to their expected DNA repair function, theNHEJ proteins participate in cell apoptotic regulation. Thus, in aparticular cell type (e.g., head and neck carcinoma), higher levelsof each of these proteins could enhance apoptosis (signalingthrough the pathways available for this cell type, considering thatthey remain active after transformation) and lead to a higher tumorresponse. In contrast, in other cell types, in which apoptotic path-ways are blocked, or in which NHEJ proteins participate only inrepair functions, higher levels of these proteins would lead toincreased repair and lower tumor responses. Therefore, the cross-talk between the available repair and apoptotic functions of thespecific repair system (e.g., NHEJ) in a specific cell type (e.g.,HNSCC) could determine if the treated cell is sensitive or resistantto the damaging agent (e.g., DSB inducer). Nevertheless, the com-plexity of this area requires the mechanistic dissection of the can-didate pathways, as they relate to our results, before we could es-tablish a definite role for some of the NHEJ proteins in HNSCCcells. We are now starting to address this issue.

Clinical implications of our findings

Independent of the exact role that Ku70 gene plays, our resultssupport its use as a predictor of response to therapy, primary tumorrecurrence and patient survival. Moreover, our results need to bevalidated in independent studies before their clinical introduction,as it should happen with other proposed markers (e.g., p53 orHPV infection), which are not still in use.63,70,71 Finally, in anattempt to extend their possible predictive capacity, we are now

1077Ku70 PREDICTS RESPONSE AND PRIMARY TUMOR RECURRENCE

mpavon
210
Page 34: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

evaluating whether NHEJ genes may also predict HNSCCresponse to primary concomitant CRT.

In summary, our results suggest that Ku70 mRNA could be agood candidate to be validated as a predictive marker of responseto genotoxic therapy. Thus, in biopsies of locally advancedHNSCCs, the levels of tumor mRNA or the percentage of proteinpositive tumor cells for Ku70 can identify patients with high prob-ability of response to induction chemotherapy and longer local re-currence-free survival, leading to longer overall survival. Thesepatients would benefit from a conservative treatment based on

chemoradiotherapy or radiotherapy and would differ from thosewho would not respond and would require surgical resection orthe exploration of alternative therapies.

Acknowledgements

We would like to thank Mr. Luis Carlos Navas for his technicalsupport and Dr. Montserrat Lopez for her collaboration in biopsysampling. We also wish to thank the patients who gave permissionto use their tissue for research.

References

1. Pfister DG, Laurie SA, Weinstein GS, Mendenhall WM, AdelsteinDJ, Ang KK, Clayman GL, Fisher SG, Forastiere AA, Harrison LB,Lefebvre JL, Leupold N, et al. American Society of Clinical Oncologyclinical practice guideline for the use of larynx-preservation strategiesin the treatment of laryngeal cancer. J Clin Oncol 2006;24:3693–704.

2. Lamont EB, Vokes EE. Chemotherapy in the management of squa-mous-cell carcinoma of the head and neck. Lancet Oncol 2001;2:261–9.

3. Posner MR, Haddad RI, Wirth L, Norris CM, Goguen LA, Mahade-van A, Sullivan C, Tishler RB. Induction chemotherapy in locallyadvanced squamous cell cancer of the head and neck: evolution of thesequential treatment approach. Semin Oncol 2004;31:778–85.

4. Ensley JF, Jacobs JR, Weaver A, Kinzie J, Crissman J, Kish JA, Cum-mings G, Al-Sarraf M. Correlation between response to cisplatinum-combination chemotherapy and subsequent radiotherapy in previouslyuntreated patients with advanced squamous cell cancers of the headand neck. Cancer 1984;54:811–4.

5. Spaulding MB, Fischer SG, Wolf GT. Tumor response, toxicity, andsurvival after neoadjuvant organ-preserving chemotherapy foradvanced laryngeal carcinoma. The Department of Veterans AffairsCooperative Laryngeal Cancer Study Group. J Clin Oncol 1994;12:1592–9.

6. Altundag O, Gullu I, Altundag K, Yalcin S, Ozyar E, Cengiz M,Akyol F, Yucel T, Hosal S, Sozeri B. Induction chemotherapy withcisplatin and 5-fluorouracil followed by chemoradiotherapy or radio-therapy alone in the treatment of locoregionally advanced resectablecancers of the larynx and hypopharynx: results of single-center studyof 45 patients. Head Neck 2005;27:15–21.

7. Patel SG, Shah JP. TNM staging of cancers of the head and neck:striving for uniformity among diversity. CA Cancer J Clin 2005;55:242–58; quiz 61–2, 64.

8. Sorenson CM, Eastman A. Mechanism of cis-diamminedichloroplati-num(II)-induced cytotoxicity: role of G2 arrest and DNA double-strand breaks. Cancer Res 1988;48:4484–8.

9. Whitaker SJ, Powell SN, McMillan TJ. Molecular assays of radiation-induced DNA damage. Eur J Cancer 1991;27:922–8.

10. Yoshioka A, Tanaka S, Hiraoka O, Koyama Y, Hirota Y, Ayusawa D,Seno T, Garrett C, Wataya Y. Deoxyribonucleoside triphosphateimbalance. 5-Fluorodeoxyuridine-induced DNA double strand breaksin mouse FM3A cells and the mechanism of cell death. J Biol Chem1987;262:8235–41.

11. McHugh PJ, Sones WR, Hartley JA. Repair of intermediate structuresproduced at DNA interstrand cross-links in Saccharomyces cerevi-siae. Mol Cell Biol 2000;20:3425–33.

12. Haber JE. Partners and pathwaysrepairing a double-strand break.Trends Genet 2000;16:259–64.

13. Korabiowska M, Voltmann J, Honig JF, Bortkiewicz P, Konig F, Cor-don-Cardo C, Jenckel F, Ambrosch P, Fischer G. Altered expressionof DNA double-strand repair genes Ku70 and Ku80 in carcinomas ofthe oral cavity. Anticancer Res 2006;26:2101–5.

14. Gollin SM. Chromosomal alterations in squamous cell carcinomas ofthe head and neck: window to the biology of disease. Head Neck2001;23:238–53.

15. Shin KH, Kang MK, Kim RH, Kameta A, Baluda MA, Park NH.Abnormal DNA end-joining activity in human head and neck cancer.Int J Mol Med 2006;17:917–24.

16. Peters GJ, van Triest B, Backus HH, Kuiper CM, van der Wilt CL,Pinedo HM. Molecular downstream events and induction of thymidy-late synthase in mutant and wild-type p53 colon cancer cell lines aftertreatment with 5-fluorouracil and the thymidylate synthase inhibitorraltitrexed. Eur J Cancer 2000;36:916–24.

17. van Gent DC, Hoeijmakers JH, Kanaar R. Chromosomal stability andthe DNA double-stranded break connection. Nat Rev Genet 2001;2:196–206.

18. Ferguson DO, Sekiguchi JM, Chang S, Frank KM, Gao Y, DePinhoRA, Alt FW. The nonhomologous end-joining pathway of DNA repair

is required for genomic stability and the suppression of translocations.Proc Natl Acad Sci USA 2000;97:6630–3.

19. Peng Y, Zhang Q, Nagasawa H, Okayasu R, Liber HL, Bedford JS.Silencing expression of the catalytic subunit of DNA-dependent pro-tein kinase by small interfering RNA sensitizes human cells for radia-tion-induced chromosome damage, cell killing, and mutation. CancerRes 2002;62:6400–4.

20. Tian X, Chen G, Xing H, Weng D, Guo Y, Ma D. The relationshipbetween the down-regulation of DNA-PKcs or Ku70 and the chemo-sensitization in human cervical carcinoma cell line HeLa. Oncol Rep2007;18:927–32.

21. Salles B, Calsou P, Frit P, Muller C. The DNA repair complex DNA-PK, a pharmacological target in cancer chemotherapy and radio-therapy. Pathol Biol (Paris) 2006;54:185–93.

22. Chu G. Double strand break repair. J Biol Chem 1997;272:24097–100.

23. Brown KD, Lataxes TA, Shangary S, Mannino JL, Giardina JF, ChenJ, Baskaran R. Ionizing radiation exposure results in up-regulationof Ku70 via a p53/ataxia-telangiectasia-mutated protein-dependentmechanism. J Biol Chem 2000;275:6651–6.

24. Jensen R, Glazer PM. Cell-interdependent cisplatin killing by Ku/DNA-dependent protein kinase signaling transduced through gapjunctions. Proc Natl Acad Sci USA 2004;101:6134–9.

25. Espinosa E, Vara JA, Redondo A, Sanchez JJ, Hardisson D, ZamoraP, Pastrana FG, Cejas P, Martinez B, Suarez A, Calero F, Baron MG.Breast cancer prognosis determined by gene expression profiling: aquantitative reverse transcriptase polymerase chain reaction study.J Clin Oncol 2005;23:7278–85.

26. Livak KJ, Schmittgen TD. Analysis of relative gene expression datausing real-time quantitative PCR and the 2(-Delta Delta C(T))method. Methods 2001;25:402–8.

27. Nieuwenhuis EJ, Jaspars LH, Castelijns JA, Bakker B, Wishaupt RG,Denkers F, Leemans CR, Snow GB, Brakenhoff RH. Quantitative mo-lecular detection of minimal residual head and neck cancer in lymphnode aspirates. Clin Cancer Res 2003;9:755–61.

28. Castleman KR. Concepts in imaging and microscopy: color imageprocessing for microscopy. Biol Bull 1998;194:100–7.

29. Maximova OA, Taffs RE, Pomeroy KL, Piccardo P, Asher DM. Com-puterized morphometric analysis of pathological prion protein deposi-tion in scrapie-infected hamster brain. J Histochem Cytochem 2006;54:97–107.

30. Therasse P, Arbuck SG, Eisenhauer EA,Wanders J, Kaplan RS, Rubin-stein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC,Gwyther SG. New guidelines to evaluate the response to treatment insolid tumors. European Organization for Research and Treatment ofCancer, National Cancer Institute of the United States, National CancerInstitute of Canada. J Natl Cancer Inst 2000;92:205–16.

31. Layland MK, Sessions DG, Lenox J. The influence of lymph nodemetastasis in the treatment of squamous cell carcinoma of the oralcavity, oropharynx, larynx, and hypopharynx: N0 versus N1. Laryn-goscope 2005;115:629–39.

32. Hasina R, Lingen MW. Head and neck cancer: the pursuit of molecu-lar diagnostic markers. Semin Oncol 2004;31:718–25.

33. Panis X, Coninx P, Nguyen TD, Legros M. Relation betweenresponses to induction chemotherapy and subsequent radiotherapy inadvanced or multicentric squamous cell carcinomas of the head andneck. Int J Radiat Oncol Biol Phys 1990;18:1315–8.

34. Bjork-Eriksson T, West C, Nilsson A, Magnusson B, Svensson M,Karlsson E, Slevin N, Lewensohn R, Mercke C. The immunohisto-chemical expression of DNA-PKCS and Ku (p70/p80) in head andneck cancers: relationships with radiosensitivity. Int J Radiat OncolBiol Phys 1999;45:1005–10.

35. Shintani S, Mihara M, Li C, Nakahara Y, Hino S, Nakashiro K,Hamakawa H. Up-regulation of DNA-dependent protein kinase corre-lates with radiation resistance in oral squamous cell carcinoma. Can-cer Sci 2003;94:894–900.

1078 PAV�ON ET AL.

mpavon
211
Page 35: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados

36. Noguchi T, Shibata T, Fumoto S, Uchida Y, Mueller W, Takeno S.DNA-PKcs expression in esophageal cancer as a predictor for chemo-radiation therapeutic sensitivity. Ann Surg Oncol 2002;9:1017–22.

37. Friesland S, Kanter-Lewensohn L, Tell R, Munck-Wikland E, Lewen-sohn R, Nilsson A. Expression of Ku86 confers favorable outcome oftonsillar carcinoma treated with radiotherapy. Head Neck 2003;25:313–21.

38. Lee SW, Cho KJ, Park JH, Kim SY, Nam SY, Lee BJ, Kim SB, ChoiSH, Kim JH, Ahn SD, Shin SS, Choi EK, et al. Expressions of Ku70and DNA-PKcs as prognostic indicators of local control in nasopha-ryngeal carcinoma. Int J Radiat Oncol Biol Phys 2005;62:1451–7.

39. Spano JP, Busson P, Atlan D, Bourhis J, Pignon JP, Esteban C,Armand JP. Nasopharyngeal carcinomas: an update. Eur J Cancer2003;39:2121–35.

40. Wilson CR, Davidson SE, Margison GP, Jackson SP, Hendry JH,West CM. Expression of Ku70 correlates with survival in carcinomaof the cervix. Br J Cancer 2000;83:1702–6.

41. Harima Y, Sawada S, Miyazaki Y, Kin K, Ishihara H, Imamura M,Sougawa M, Shikata N, Ohnishi T Expression of Ku80 in cervicalcancer correlates with response to radiotherapy and survival. Am JClin Oncol 2003;26:e80–e85.

42. Olaussen KA, Dunant A, Fouret P, Brambilla E, Andre F, Haddad V,Taranchon E, Filipits M, Pirker R, Popper HH, Stahel R, Sabatier L,et al. DNA repair by ERCC1 in non-small-cell lung cancer and cispla-tin-based adjuvant chemotherapy. N Engl J Med 2006;355:983–91.

43. Dabholkar M, Bostick-Bruton F, Weber C, Bohr VA, Egwuagu C,Reed E. ERCC1 and ERCC2 expression in malignant tissues fromovarian cancer patients. J Natl Cancer Inst 1992;84:1512–7.

44. Smith GC, Jackson SP. The DNA-dependent protein kinase. GenesDev 1999;13:916–34.

45. Gao Y, Chaudhuri J, Zhu C, Davidson L, Weaver DT, Alt FW. A tar-geted DNA-PKcs-null mutation reveals DNA-PK-independent func-tions for KU in V(D)J recombination. Immunity 1998;9:367–76.

46. Dip R, Naegeli H. More than just strand breaks: the recognition ofstructural DNA discontinuities by DNA-dependent protein kinase cat-alytic subunit. FASEB J 2005;19:704–15.

47. Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, UtsumiH, Yamaguchi-Iwai Y, Shinohara A, Takeda S. Homologous recombi-nation and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chro-mosomal integrity in vertebrate cells. EMBO J 1998;17:5497–508.

48. Wang S, Guo M, Ouyang H, Li X, Cordon-Cardo C, Kurimasa A,Chen DJ, Fuks Z, Ling CC, Li GC. The catalytic subunit of DNA-de-pendent protein kinase selectively regulates p53-dependent apoptosisbut not cell-cycle arrest. Proc Natl Acad Sci USA 2000;97:1584–8.

49. Woo RA, Jack MT, Xu Y, Burma S, Chen DJ, Lee PW. DNA dam-age-induced apoptosis requires the DNA-dependent protein kinase,and is mediated by the latent population of p53. EMBO J 2002;21:3000–8.

50. Jack MT, Woo RA, Hirao A, Cheung A, Mak TW, Lee PW. Chk2 isdispensable for p53-mediated G1 arrest but is required for a latentp53-mediated apoptotic response. Proc Natl Acad Sci USA 2002;99:9825–9.

51. Jack MT, Woo RA, Motoyama N, Takai H, Lee PW. DNA-dependentprotein kinase and checkpoint kinase 2 synergistically activate a latentpopulation of p53 upon DNA damage. J Biol Chem 2004;279:15269–73.

52. Cobb LJ, Liu B, Lee KW, Cohen P. Phosphorylation by DNA-de-pendent protein kinase is critical for apoptosis induction by insulin-like growth factor binding protein-3. Cancer Res 2006;66:10878–84.

53. Yang CR, Leskov K, Hosley-Eberlein K, Criswell T, Pink JJ, KinsellaTJ, Boothman DA. Nuclear clusterin/XIP8, an x-ray-induced Ku70-binding protein that signals cell death. Proc Natl Acad Sci USA2000;97:5907–12.

54. Zhao HJ, Hosoi Y, Miyachi H, Ishii K, Yoshida M, Nemoto K, TakaiY, Yamada S, Suzuki N, Ono T. DNA-dependent protein kinase activ-

ity correlates with Ku70 expression and radiation sensitivity in esoph-ageal cancer cell lines. Clin Cancer Res 2000;6:1073–8.

55. Deriano L, Guipaud O, Merle-Beral H, Binet JL, Ricoul M, Potocki-Veronese G, Favaudon V, Maciorowski Z, Muller C, Salles B, Sabat-ier L, Delic J. Human chronic lymphocytic leukemia B cells canescape DNA damage-induced apoptosis through the nonhomologousend-joining DNA repair pathway. Blood 2005;105:4776–83.

56. Gu Y, Jin S, Gao Y, Weaver DT, Alt FW. Ku70-deficient embryonicstem cells have increased ionizing radiosensitivity, defective DNAend-binding activity, and inability to support V(D)J recombination.Proc Natl Acad Sci USA 1997;94:8076–81.

57. Gudkov AV, Komarova EA. The role of p53 in determining sensitiv-ity to radiotherapy. Nat Rev Cancer 2003;3:117–29.

58. Panta GR, Kaur S, Cavin LG, Cortes ML, Mercurio F, Lothstein L,Sweatman TW, Israel M, Arsura M. ATM and the catalytic subunit ofDNA-dependent protein kinase activate NF-kappaB through a com-mon MEK/extracellular signal-regulated kinase/p90(rsk) signalingpathway in response to distinct forms of DNA damage. Mol Cell Biol2004;24:1823–35.

59. Nueda A, Hudson F, Mivechi NF, Dynan WS. DNA-dependent proteinkinase protects against heat-induced apoptosis. J Biol Chem 1999;274:14988–96.

60. Tai YT, Podar K, Kraeft SK, Wang F, Young G, Lin B, Gupta D,Chen LB, Anderson KC. Translocation of Ku86/Ku70 to the multiplemyeloma cell membrane: functional implications. Exp Hematol 2002;30:212–20.

61. Rooney S, Alt FW, Lombard D, Whitlow S, Eckersdorff M, FlemingJ, Fugmann S, Ferguson DO, Schatz DG, Sekiguchi J. Defective DNArepair and increased genomic instability in Artemis-deficient murinecells. J Exp Med 2003;197:553–65.

62. Jin S, Inoue S, Weaver DT. Differential etoposide sensitivity of cellsdeficient in the Ku and DNA-PKcs components of the DNA-depend-ent protein kinase. Carcinogenesis 1998;19:965–71.

63. Cabelguenne A, Blons H, de Waziers I, Carnot F, Houllier AM,Soussi T, Brasnu D, Beaune P, Laccourreye O, Laurent-Puig P. p53alterations predict tumor response to neoadjuvant chemotherapy inhead and neck squamous cell carcinoma: a prospective series. J ClinOncol 2000;18:1465–73.

64. Rusch V, Klimstra D, Venkatraman E, Oliver J, Martini N, Gralla R,Kris M, Dmitrovsky E. Aberrant p53 expression predicts clinical re-sistance to cisplatin-based chemotherapy in locally advanced non-small cell lung cancer. Cancer Res 1995;55:5038–42.

65. Bergh J, Norberg T, Sjogren S, Lindgren A, Holmberg L. Completesequencing of the p53 gene provides prognostic information in breastcancer patients, particularly in relation to adjuvant systemic therapyand radiotherapy. Nat Med 1995;1:1029–34.

66. Buttitta F, Marchetti A, Gadducci A, Pellegrini S, Morganti M, Carni-celli V, Cosio S, Gagetti O, Genazzani AR, Bevilacqua G. p53 altera-tions are predictive of chemoresistance and aggressiveness in ovariancarcinomas: a molecular and immunohistochemical study. Br J Can-cer 1997;75:230–5.

67. Eid H, Van der Looij M, Institoris E, Geczi L, Bodrogi I, Olah E, BakM. Is p53 expression, detected by immunohistochemistry, an impor-tant parameter of response to treatment in testis cancer? AnticancerRes 1997;17:2663–9.

68. Tada M, Matsumoto R, Iggo RD, Onimaru R, Shirato H, SawamuraY, Shinohe Y. Selective sensitivity to radiation of cerebral glioblasto-mas harboring p53 mutations. Cancer Res 1998;58:1793–7.

69. Cote RJ, Esrig D, Groshen S, Jones PA, Skinner DG. p53 and treat-ment of bladder cancer. Nature 1997;385:123–5.

70. Koch WM, Brennan JA, Zahurak M, Goodman SN, Westra WH,Schwab D, Yoo GH, Lee DJ, Forastiere AA, Sidransky D. p53 muta-tion and locoregional treatment failure in head and neck squamouscell carcinoma. J Natl Cancer Inst 1996;88:1580–6.

71. Fakhry C, Gillison ML. Clinical implications of human papillomavi-rus in head and neck cancers. J Clin Oncol 2006;24:2606–11.

1079Ku70 PREDICTS RESPONSE AND PRIMARY TUMOR RECURRENCE

mpavon
212
Page 36: PREDICCIÓN DE RESPUESTA AL TRATAMIENTO EN ...diposit.ub.edu/dspace/bitstream/2445/36297/6/06.MAPR...CUELLO MIGUEL ANGEL PAVÓN RIBAS 2009 IX. ANEXOS IX ANEXOS ANEXO 1. Genes expresados