pendulo simple

download pendulo simple

of 22

  • date post

    09-Nov-2015
  • Category

    Documents

  • view

    239
  • download

    0

Embed Size (px)

description

presicion

Transcript of pendulo simple

investigando un fenmeno de la naturaleza

UNIVERSIDAD NACIONALMAYOR DE SAN MARCOS (Universidad del Per, Decana De Amrica)

CURSO : LABORATORIO DE FISICA ITEMA : ANALIZANDO UN FENMENO DE LA NATURALEZA (MOVIMIENTO PENDULAR)PROFESOR : Acevedo Poma, FlixALUMNOS : TURNO : 4:00 p.m.-6:00 p.m.

Ciudad Universitaria, octubre del 2010

INTRODUCCIN

Mediante este informe hemos querido dar a conocer todo lo aprendido experimentalmente en el laboratorio 3 que trata sobre la investigacin de un fenmeno de la naturaleza llamado movimiento pendular, aqu mediante clculos matemticos se ha deducido la frmula tan conocida y hemos comprobado que el periodo solo depende de la longitud de la cuerda y de la gravedad. Hemos realizado cinco clculos por cada resultado debido a que hemos tenido un cierto porcentaje de error y para tener una precisin positiva hemos realizado las mediciones necesarias. A continuacin se presentara el marco terico, procedimiento, cuestionario y conclusiones.

I. OBJETIVOS

Establecer una ley mediante el movimiento de un pndulo simple.

Medir tiempos de eventos con una precisin determinada.

Calcular la aceleracin de la gravedad (g) experimental en el laboratorio.

II. EQUIPOS Y MATERIALES

Soportes universales Prensas medianas Varilla Clamp Cuerdas Masas cilndricas con ganchos Cronometro Regla patrn y transportador circular Juego de pesas pequeas: 100g, 50g, 20g, 10g. Hojas de papel milimetrado

III. INFORMACIN TERICA

El Pndulo Simple: Es un objeto cualquiera que est suspendido, a un punto fijo, mediante una cuerda. Se define tambin como una partcula de masa m suspendida en un punto, por medio de una cuerda inextensible de longitud L y de masa despreciable.

L

B B m A mg

Elementos y caractersticas del pndulo simplea) LONGITUD L: longitud de la cuerda desde el punto de suspensin hasta el centro de gravedad del objeto suspendido.b) OSCILACIN: Es el arco recorrido por el pndulo desde sus posiciones extremas hasta la otra, ms su regreso a su posicin inicial.c) PERIODO T:Tiempo que emplea en realizar una oscilacin.d)

AMPLITUD : Es el ngulo formado por la cuerda del pndulo con una de sus posiciones extremas y la vertical. (las leyes del pndulo se cumplen slo cuando < 10).e) FRECUENCIA f: Es el nmero de oscilaciones en cada unidad de tiempo, se calcula as:

Razn de la oscilacin de un pndulo.1) En la posicin de equilibrio el peso m del cuerpo es anulado por la cuerda R.2) Si se lleva a la posicin extrema A, el peso del cuerpo es anulado por la cuerda solo en parte.3) En esta posicin extrema y la componente m1 del peso le da el movimiento uniformemente acelerado, hasta O, posicin inicial (vertical), ahora posicin o instante de mayor velocidad.

4) A partir de este punto, al cual lo pasa por inercia, empieza el movimiento desacelerado, porque la componente P1 cambia de sentido.5) La componente P1 va aumentando por consiguiente frenando al pndulo hasta que consigue detenerlo en el punto B.6) Del punto B empieza a regresar por la presencia de la componente P1 y as contina el movimiento pendular.

Leyes del pndulo

Primera Ley: El periodo T de un pndulo es independiente de su oscilacin.Sean dos pndulos de la misma masa m y longitud L. Se ponen en posiciones extremas distintas y se sueltan, se mide el tiempo que demoran 10 oscilaciones, se divide entre 10, ese tiempo ser el valor del perodo en ambos casos, comprobado experimentalmente, es el mismo.

Segunda Ley: El perodo T de un pndulo es independiente de su masa.Sean dos pndulos de igual longitud L pero de masas distintas (M y m), si se llevan a una posicin inicial similar y se sueltan, ambos tienen el mismo perodo T.

Tercera Ley: L, perodo T de un pndulo es directamente proporcional a la raz cuadrada de su longitud L.

Cuarta Ley: El perodo T de un pndulo es inversamente proporcional a la raz cuadrada de la gravedad g.

FRMULA DEL MOVIMIENTO PENDULAR

Con la Tercera y Cuarta leyes se concluye:

Dividiendo la longitud L y controlando el tiempo T se ha comprobado experimentalmente que:K= 6.2832 = 2

Luego:

De donde:

Tratamiento del movimiento del pndulo simple:a) Se aleja el pndulo de su posicin de equilibrio, considerando una amplitud angular no mayor de 15. Se observa que el pndulo oscila bajo la accin de su peso que no se equilibra con la tensin de la cuerda; resultando oscilaciones iscronas.b) Se realiza la combinacin de la energa potencial y energa cintica para este movimiento oscilatorio.El siguiente espacio dibuje identificando en que parte del movimiento el pndulo almacena energa potencial y en que tramo discurre su energa cintica.c) Se puede relacionar el movimiento del pndulo simple con el movimiento circular uniforme. Observe que la causa de la trayectoria curva es la fuerza centrpeta, fuerza que tiene una correspondencia con la tensin de la cuerda del pndulo. Observe tambin que en la posicin de equilibrio la fuerza centrpeta es igual al peso del pndulo.

W(peso)

IV. PROCEDIMIENTO EXPERIMENTAL

PRIMERA PARTE

1. Observe el cronometro y analice a sus caractersticas. Aprenda su manejo. Cul es el valor mnimo de la escala?, Cul es el error instrumental a considerar?, consulte con su profesor. 2. Disponga un pndulo de masa m=100 g y de longitud L=100 cm.3. Aleje ligeramente la masa a una posicin cerca de la posicin de equilibrio formando un ngulo menor igual a 12 grados.4. Suelte la masa y mida con el cronometro el tiempo t que se tarda en realizar 10 oscilaciones completas.5. Cuando el pndulo se mueve con una L igual a 100 cm, que por efecto de ser desplazado a una amplitud de 12 grados de la posicin de equilibrio, inicia un movimiento de vaivn hacia el otro extremo equidistante de esta posicin, y continua este movimiento oscilatorio de 20 segundos que corresponden aproximadamente a 10 oscilaciones completas; numero y tiempo optimo para medir el tiempo T de una oscilacin completa.6. Determine el periodo T de una oscilacin de una oscilacin completa experimental de acuerdo a la siguiente relacin T=t/N, donde N es el numero de oscilaciones completas.7. A continuacin revisar la medida L del pndulo que hizo oscilar. Observe si la cuerda tiene el comportamiento de cuerda inextensible o hay una variacin en su medida? Coloque la nueva medida como L final en la tabla numero 1.8. Hacer mediciones para 10 oscilaciones completas para cada medida de L, revisando las Li como el paso 7.); colocar los Ti medios en la tabal numero 1 asi como los nuevos valores de Li.

TABLA N1

Longitud antes (cm)Longitud final (cm)t de 10 oscilaciones completas (s) (experimental)T de periodo(s) (experimental)T2(s2) (experimental)

1009919.081.9083.640

807818.901.8903.572

605914.941.4942.232

505313.431.3431.804

404212.521.2521.568

303110.341.0341.069

20198.230.8230.677

1096.720.6720.452

9. En el papel milimetrado grafique T versus L` y L` versus T Qu graficas obtiene? Cul es ms fcil reconocer, segn sus estudios?Rpta: En este caso la curva tiene la forma de una grfica exponencial o logartmica.

10. En el mismo papel milimetrado, grafique T2 versus L` Qu tipo de grafica obtiene usted ahora?Rpta: En este caso se obtiene una grafica en lnea recta.11. Se establece una proporcionalidad directa entre T2 y L` ?Rpta: Se establece una proporcionalidad directa entre L y T2 , la cual es la siguiente formula.

L = m x T2

SEGUNDA PARTE

12. Realice mediciones para pndulos de 46 cm de longitud y diferentes valores de masas. Considere una amplitud angular de 10. Complete la tabla N2.

TABLA N 2m(g)30405060708090100

t(s)13.5213.4713.4613.4413.4313.4213.3813.01

T(s)1.3521.3471.3461.3441.3431.3421.3381.301

13. Realize mediciones en un pndulo de 54 cm de longitud y la masa 50 g para diferentes amplitudes angulares. Complete la Tabla N3.

TABLA N 3()246810123045

t(s)13.3013.3214.5914.9815.0715.1815.3415.41

T(s)1.3301.3321.4591.4981.5071.5181.5341.541

V. CUESTIONARIO

1. De la tabla N1, grafique usted T2 (s2) vs. L (cm) en papel milimetrado. A partir del grfico determine el valor experimental de la aceleracin de la gravedad en el laboratorio. Calcule el error experimental porcentual con respecto al valor g=9.78 m/s2 (aceleracin de la gravedad en Lima).

La gravedad cuando L = 99 cm. Longitud antes (cm)Longitud final (cm)t de 10 oscilaciones completas (s) (experimental)T de periodo(s) (experimental)T2(s2) (experimental)

1009919.081.9083.640

807818.901.8903.572

605914.941.4942.232

505313.431.3431.804

404212.521.2521.568

303110.341.0341.069

20198.230.8230.677

1096.720.6720.452

La gravedad cuando L = 78 cm.

La gravedad cuando L = 59 cm.

La gravedad cuando L = 53 cm.

La gravedad cuando L = 42 cm.

La gravedad cuando L = 31 cm. La gravedad cuando L = 19 cm.

La gravedad cuando L = 9 cm.

La aceleracin de gravedad en el laboratorio es :

g = 10.29 m/s2

El error experimental porcentual con respecto al valor g = 9.78 m/s2 (aceleracin de la gravedad en Lima) es :

% error = |9.78 10.29|*