Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.-...

52
Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.- Interpretación de espectros. Tema 8. ESPECTROSCOPIA DE RMN.- Introducción.- Principios básicos de la RMN.- Desplazamiento químico.- Acoplamiento spin-spin.- Constante de acoplamiento.- Intercambio químico. TEMA 8 1

Transcript of Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.-...

Page 1: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

Módulo 2. ESPECTROSCOPIA

Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.- Interpretación de espectros.

Tema 8. ESPECTROSCOPIA DE RMN.- Introducción.- Principios básicos de la RMN.- Desplazamiento químico.- Acoplamiento spin-spin.- Constante de acoplamiento.- Intercambio químico.

TEMA 8

1

Page 2: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

TEMA 8. ESPECTROSCOPIA DE RMN

2

1. Introducción

2. Principios básicos de la espectroscopia RMN

2.1. Momento nuclear y momento magnético

2.2. Niveles poblacionales

2.3. El proceso de la resonancia

3. Espectrómetros de RMN

4. Apantallamiento nuclear. Desplazamiento químico (). Factores de los que depende

5. Núcleos equivalentes. Integral

6. Acoplamiento spin-spin. Constante de acoplamiento (J). Sistemas de spin

7. Intercambio químico

8. Interpretación de espectros. Ejemplos

Page 3: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

LONGITUDDE ONDA 10 13 10 11 10 9 10 7 10 5 10 3 10 2 10 1 10 0 10 2 10 3 metros (m)

FRECUENCIA 10 21 10 19 10 17 10 15 10 13 10 11 10 10 10 9 10 8 10 6 10 5 Hertz (Hz)

RAYOS GAMMA RAYOS X UV VISIBLE INFRARROJO MICROONDAS ONDAS DE RADIO

RMN

Grupos funcionales Núcleos individuales

IRUV

1. Introducción1. Introducción

El fenómeno de la RMN fue descubierto por Purcell y Bloch (Premio Nobel de Física 1952)

El fenómeno de la RMN fue descubierto por Purcell y Bloch (Premio Nobel de Física 1952)

3

Page 4: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

4

I = Número cuántico de espín nuclear (0, 1/2, 1, 3/2, 2, 5/2, ...)

P (momento angular)

Principios básicos de la RMN

Número cuántico de espín

nuclear (I) de algunos núcleos comunes

I Núcleo

Un núcleo con un número atómico impar tiene un espín nuclear. Se dice que estos núcleos tienen I (número cuántico de espín nuclear) distinto de cero. Este tipo de núcleos son magnéticamente activos, es decir poseen espín, y poseen un movimiento de rotación sobre un eje que hace que se comporten como si fueran pequeños imanes. Los núcleos con número de spin nuclear I = 0, como el núcleo de 12C, o el 16O no tienen momento angular y por tanto no son observables por RMN.

Page 5: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

5

Principios básicos de la RMN

Para I = ½, m = +1/2, -1/2 Para I = 1, m = +1, 0, -1

z

z

Bm = +1/2

m = -1/2

z

z

Bm = +1

m = -1

(momento magnético)

m = número cuántico magnético (+I,...-I)Número de orientaciones posibles de = 2I + 1

++

P

P

= cte magnetogírica (ó giromagnética)

Núcleo Constante Frecuencia Abundanciagiromagnéticade resonancia natural (%) (107T-1s-1) (MHz)

1H 26,76 400,0 99,985

13C 6,73 100,6 1,108

Debido a la carga nuclear, los núcleos llevan asociado un momento magnético (), que es un vector de igual dirección y sentido que el vector momento angular y es proporcional a éste. En presencia de un campo magnético externo, el momento magnético nuclear se orienta en un número discreto de posiciones, determinadas por el número cuántico magnético (m)

Page 6: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

6

Polo magnético

Polo magnético

B0

(m=+1/2)

(m=-1/2)

E = h

E

INFLUENCIA DE UN CAMPO MAGNÉTICO EXTERNO

Núcleos con I = 1/2

Page 7: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

7

Campo Magnético (B0)

En

erg

ía

INFLUENCIA DE UN CAMPO MAGNÉTICO EXTERNO

hBo

2h =

Frecuencia de LarmorBo

2 =

Frecuencia de Larmor

La frecuencia requerida para pasar del estado al (que en realidad es simplemente un cambio en la orientación del spin nuclear), se denomina frecuencia de resonancia () y es proporcional a Bo y a .

Page 8: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

8

Núcleo Constante Frecuencia Abundanciagiromagnética de resonancia natural (%) (107T-1s-1) (MHz)

Para un campo magnetico Bo = 9.4 T

1H 26,76 400,0 99,9852H 4,11 61,4 0,015

13C 6,73 100,6 1,10814N 1,93 28,9 99,6315N -2,71 40,5 0,3717O -3,63 54,3 0,03719F 25,18 376,5 100,031P 10,84 162,1 100,0

Principios básicos de la RMN

Cada núcleo tiene su

frecuencia de resonancia

característica, que depende

de su constante

giromagnética y del campo magnético

externo aplicado.

Page 9: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

9

2.2. Niveles poblacionales, 1

E

kTN

N

= e

Ej.: Para Bo = 4,7 Teslas y T = 300 K kT

E= 6,4 x 105

N

N = 1.00006

E << kT N NEn RMN

E >> kT N >> NEn otras espectroscopias

En RMN es como si detectáramos sólo 1 de cada 100.000 núcleos presentesEn RMN es como si detectáramos sólo 1 de cada 100.000 núcleos presentes

PROBLEMAS DE SENSIBILIDADPROBLEMAS DE SENSIBILIDAD

E = hLey de distribución de Boltzmann

Page 10: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

10

2.2. Niveles poblacionales, 2

UV

IR

RMN

E E E

Se muestra aquí la diferencia de energía entre los distintos estados energéticos que dan lugar a las distintas espectrocopias.

Page 11: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

11

Irradiación conabsorción de h

Irradiación conabsorción de h

E

A favordel campo

Contrael campo

Estado

Polo magnético

Polo magnético

B0

Polo magnético

Polo magnético

B0

Estado

2.3. El proceso de la resonancia, 1

Page 12: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

12

RELAJACIÓN DE ESPÍN

El retorno al equilibrio se denomina RELAJACIÓNEl retorno al equilibrio se denomina RELAJACIÓN

2.3. El proceso de la resonancia, 2

Pulso de radiofre-cuencia relajación

Cuando se deja de aplicar el pulso, el vector magnetización tiende a recuperar su posición de equilibrio mediante un proceso de relajación (emite la energía absorbida). Este proceso de relajación da lugar a la FID, que es una onda sinusoidal exponencialmente amortiguada. Esto es lo que se denomina caída libre de inducción (FID, free induction decay).

Page 13: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

13

Tres requerimientos esenciales:

Un campo magnético (Bo) homogéneo e intenso

Una fuente de radiación de radiofrecuencia (B1) para excitar losnúcleos de la muestra

Un método para detectar la señal de RMN

El campo magnético es suministrado por:

• Imán permanente• Electroimán

• Bobina superconductora

60-90 MHz

100-850 MHzBobina superconductora

Espectrómetro de RMN, 1

Page 14: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

14

Antiguamente (1950-70)ONDA CONTINUA

Actualmente (desde 1970)TECNICA DE PULSOS (FT)

Espectrómetro de RMN, 2

Page 15: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

15

Espectrómetro de RMN, 3 El solenoide es superconductor sólo a muy bajas temperaturas, por eso se encuentra

rodeado de He líquido (T = 4 K), para evitar que el He se evapore rápidamente, está protegido

por alrededor por N2 líquido (T = -196 oC)

Page 16: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

16

Espectrómetro de RMN, 4 Diagrama de la adquisición de un espectro de RMN:

Page 17: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

17

Nube electrónica circulantebajo la influencia de Bo

Campo magnético externo, Bo

Núcleo

Campo local inducido, B’opuesto a Bo en el núcleo

Apantallamiento nuclear, 1

Reproducido de Volhardt, “Organic Chemistry”, 3ª Ed, 1999

Los núcleos están rodeados de nubes de electrones que circulan en el campo magnético alrededor del núcleo. Estos electrones, al moverse en sus órbitas, son equivalentes a pequeños circuitos eléctricos que, en presencia de Bo originan pequeños campos magnéticos que se orientan a favor o en contra del campo magnético externo Bo. Dependiendo de la posición relativa del núcleo respecto al campo magnético generado por los electrones, puede ocurrir que:

Page 18: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

18

Apantallamiento nuclear, 2

Bnúcleo = Bo + B’electrones

Nube electrónica circulantebajo la influencia de Bo

Campo magnético externo, Bo

Núcleo

Campo local inducido, B’opuesto a Bo en el núcleo

Efecto Núcleo

Bnúcleo < Bo Diamagnético Apantallado

Bnúcleo > Bo Paramagnético Desapantallado

Bo B’e

Bo B’e

Page 19: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

19

480 Hz

320 Hz

Apantallamiento nuclear, 3

Reproducido de Volhardt, “Organic Chemistry”, 3ª Ed, 1999

B Bo = 2.1 Tesla Para Bo = 2.1 T o = 90.000.000 Hz (1H resuena a 90 MHz)

TMS (Ref)

En un espectro de RMN no se representan frecuencias absolutas de resonancia, porque darían lugar a números demasiado altos. Para evitarlo, se elige una señal como referencia y lo que se determina es la separación entre la frecuencia de resonancia de un núcleo y una frecuencia de referencia. Esta magnitud se mide en Hz.

Page 20: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

20

Apantallamiento nuclear, 4

Se trabaja con la diferencia respecto a una referencia

(señal – ref)

Se trabaja con la diferencia respecto a una referencia

(señal – ref)

Problema: dependencia de de Bo

Solución: dividir por o ( aparato)

(señal – ref)

o

Problema: dependencia de de Bo

Solución: dividir por o ( aparato)

(señal – ref)

o

Para Bo = 2.1 T o = 90.000.000 Hz480 / 90.000.000 = 5.33 x 10-6

Para Bo = 4.2 T o = 180.000.000 Hz960 /180.000.000 = 5.33 x 10-6

Problema: números muy pequeños

Solución: multiplicar por 106 (ppm)

(señal – ref)

o

Problema: números muy pequeños

Solución: multiplicar por 106 (ppm)

(señal – ref)

o

106 =

ClCH2OCH3

480 Hz 320 Hz

Bo (T)

2.1

4.2 960 Hz 640 Hz

Si

CH3

CH3

CH3

H3C

Tetrametilsilano (TMS)

REFERENCIA INTERNA:

Page 21: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

21

Desplazamiento químico, 1

(señal – ref)o

(señal – ref)o

106 =

Desplazamiento químico () : Posición de una señal en el espectroSe expresa en función de la de una sustancia de referencia

depende de la envoltura electrónica depende de la estructura

Como patrón se utiliza TETRAMETILSILANO (TMS)

Ventajas del TMS :1) Señal única2) Líquido volátil3) Aparece a < señales ( TMS = 0 ppm)4) No interacciona con la muestra

Partes por millón(ppm)

Page 22: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

22

480 Hz

320 Hz

TMS (Ref)

5.33 ppm

3.55 ppm

¡ Observa: 1 ppm = 90 Hz !

Desplazamiento químico, 2

Page 23: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

23

012345678 (1H) ppm

TMS

MeCN

Me2CO

Me2SOC6H6

APANTALLAMIENTO

Desapantallado apantallado

A medida que el núcleo está más apantallado (como consecuencia de su entorno electónico) el campo magnético efectivo que percibe es menor y por tanto resuena a menor frecuencia, es decir, aparece a menor desplazamiento químico en el espectro.

Desplazamiento químico, 3

Page 24: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

24

El desplazamiento químico de un protón depende de su entorno, y aquí se muestran los desplazamientos químicos aproximados para distintos tipos de compuestos.

El desplazamiento químico depende, entre otros factores, del grado de sustitución y de la electronegatividad de los sustituyentes. Así, hay diferencias

entre protones de grupos alquilo primarios, secundarios o terciarios. Afecta también la electronegatividad del sustituyente al que está unido el protón y la distancia al

sustituyente electronegativo. Hay casos muy interesantes como los de los protones aromáticos, vinílicos y aldehídicos, en los que el desplazamiento químico tiene valores

anormalmente altos…

Desplazamiento químico, 4

Page 25: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

25

Desplazamiento químico, 5

Page 26: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

Campo externo, B0

Blocal

Blocal

BlocalBlocal

ALQUENOS

Desplazamiento químico, 6

La circulación de los electrones origina un campo inducido que se suma al campo externo Bo en la zona ocupada

por los protones y éstos resuenan a frecuencias más altas, mostrando

valores de desplazamiento químico,

entre 5 y 6 ppm.

La distribución de la densidad electrónica alrededor de los enlaces no es simétrica y el desplazamiento químico de los núcleos vecinos dependerá de su posición relativa con respecto a ella. Este efecto anisótropo generado por la circulación de electrones en átomos vecinos se da fundamentalmente en moléculas con electrones .

26

Page 27: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

27

Factores de los que depende

1. Grado de sustitución

2. Electronegatividad del sustituyente (desprotección magnética local)

3. Distancia del sustituyente

4. Presencia de dobles y/o triples enlaces (anisotropía magnética local)

5. Interacciones intermoleculares: puentes de hidrógeno, disolvente, etc.

1. Grado de sustitución

2. Electronegatividad del sustituyente (desprotección magnética local)

3. Distancia del sustituyente

4. Presencia de dobles y/o triples enlaces (anisotropía magnética local)

5. Interacciones intermoleculares: puentes de hidrógeno, disolvente, etc.

CH3X EN (X) (ppm)

CH3F 4.0 4.26

CH3OH 3.4 3.40

CH3Cl 3.2 3.05

CH3Br 3.0 2.68

CH3I 2.7 2.16

CH3H 2.2 0.23 aumenta con la EN del sustituyente

Desprotección magnética local

Desplazamiento químico, 7

Un efecto - I producirá un desapantalla-miento y un aumento del

valor de desplazamiento

químico

alcanosalquinosalquenos

1. Grado de sustitución 2. Electronegatividad del sustituyente

Page 28: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

28

ALQUENOS ALDEHIDOS

Desplazamiento químico, 8

Hidrógenos olefínicos:desplazamiento químico ) 5 - 6 ppm

Hidrógeno de aldehído:desplazamiento químico ) 9 - 10 ppm

El hidrógeno de aldehído está aún más desapantallado que los olefínicos y aromáticos. La razón es que el H aldehídico está desprotegido tanto por la circulación de los electrones en el doble enlace, como por el efecto atractor de electrones del oxígeno.

Page 29: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

29

AROMÁTICOS

Campo externo, B0

Blocal

Blocal

Corriente de anilloBlocal

Blocal

Desplazamiento químico, 9

El campo magnético Bo induce una corriente circular a través de los orbitales del anillo aromático. Dicha corriente (corriente de anillo) induce un campo magnético que se opone al campo externo Bo en el centro del anillo. Los átomos de hidrógeno unidos directamente al anillo aromático se encuentran en la zona donde el campo magnético generado por los electrones se suma al externo, por lo que éstos resultan desapantallados.

H del benceno:desplazamiento químico ) 7.3 ppm aprox.

Page 30: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

30

ALQUINOSDesplazamiento químico, 10

El acetileno es una molécula lineal, la nube de electrones que constituye el triple enlace tiene una simetría axial alrededor del eje de la molécula y en presencia de un campo magnético externo,orientado en la dirección del eje de la molécula, la circulación de electrones origina un campo magnético que se opone al exterior en la posición que ocupan los protones, por lo que éstos resultan apantallados (efecto diamagnético, resuenan a menor frecuencia).

Page 31: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

31

10 9 8 7 6 5 4 3 2 1 0

COOHAr–OH

R–OHR–NH

R–CHOAr–H

CCHCCH

CCH–CHn

CO–CHn

Ar–CHn

Hal–CHn

O–CHn

N–CHn

C–CHn

TMS

Aromático Olefínico Alifático

Desplazamiento químico, 11

Page 32: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

32

Protones equivalentes

Protones equivalentes son los que están en el mismo entorno químico y originan una única señal en el espectro de 1H-RMN. En este caso los protones del Me del metanol originan los tres la misma señal, el protón unido al átomo de oxígeno sale a mayor .

Page 33: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

33

La integral de una señal es proporcional al número de núcleos equivalentes que la originan

Integral = área total del pico

Protones equivalentes. Integral, 1

Page 34: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

34

La integral de una señal es proporcional al número de núcleos equivalentes que la originan

Integral = área total del pico

Protones equivalentes. Integral, 2

Page 35: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

35

EL ESPECTRO DEL ETANOL

Reproducido de P.J. Hore, “Nuclear Magnetic Resonance”, OCP, 199530 MHz

400 MHzReproducido de D. Canet,

“Nuclear Magnetic Resonance”, Wiley, 1996

6. Acoplamiento spin-spin

El campo magnético que rodea a los núcleos está influído por el resto de los momentos magnéticos de la molécula, como son los de otros núcleos vecinos. Así, si un protón debería dar una señal a una frecuencia correspondiente a su , esta señal puede aparecer desdoblada en varias dependiendo de la orientación magnética de los núcleos vecinos.

Page 36: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

36

XA

R1 C

HA

R2

C R4

HX

R3

(frecuencia)

JAX JXA

JAX = JXA

J = constante de acoplamiento. Se mide en (Hz)

J no depende del campo magnético aplicado Bo, sino de la relación entre los núcleos(mismo valor en cualquier aparato)

Doblete Doblete

6. Acoplamiento spin-spin. Constante de acoplamiento (J)

Page 37: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

37

Cuando el protón Ha cercano está alineado y en el mismo sentido del campo magnético externo, desapantalla a Hb. Cuando Ha está alineado en contra del campo, apantalla a Hb. La señal para los protones Hb se acoplará en picos de la misma altura (doblete).

La absorción Ha está afectada por tres combinaciones de espines Hb: Si los protones Hb refuerzan el campo externo, esto desapantallará a Ha. Si un Hb está alineados en contra del campo y el otro Hb refuerza el campo, el efecto se cancelará. Si los protones Hb están en contra del campo externo, esto apantallará a Ha . La señal de Ha será un triplete (relación 1:2:1).

6. Acoplamiento spin-spin. Constante de acoplamiento (J)

DOBLETE

TRIPLETE

Page 38: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

38

JA,X JA,X

A x

A,X

Origina espectros dePRIMER ORDEN

A,X >> JA,X

JA,B

A B

A,B

JA,B

Origina espectrosCOMPLEJOS

A,B JA,B

1) ACOPLAMIENTO DÉBIL

2) ACOPLAMIENTO FUERTE

Acoplamiento spin-spin. Espectros de PRIMER ORDEN

Page 39: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

39

6. Acoplamiento spin-spin. Constantes de acoplamiento (J)

Dos enlaces entre protones 2J1,2 C

H1

1

2 3

4

1 2 La constante de acoplamiento es observada (si son H no equivalentes)

C1

2 C

H2H13

Tres enlaces entre protones 3J1,2

La constante de acoplamiento es observada (si son H no equivalentes)

C C

H1

C

H2La constante de acoplamiento

generalmente no es observada.Si existe acoplamiento 4J1,2 = 1 - 3 Hz

Cuatro enlaces entre protones 4J1,2

Acoplamiento a larga distanciaLos acoplamientos a larga distancia son raros.

H2

El valor de J, que depende de distintos factores en especial del tipo de hibridación de los átomos implicados, disminuye con el número de enlaces:

2J = 12-15 Hz

3J = 6-8 Hz

Page 40: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

40

Constantes de acoplamiento

Page 41: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

41

Reglas de desdoblamiento

Válidas para espectros de primer orden (Hz) >10 JA,X

1. Los núcleos equivalentes no se acoplan entre sí.

2. El acoplamiento con n núcleos equivalentes origina un desdoblamiento en (2nI+1) líneas. En el caso del protón, I = 1/2 por tanto el acoplamiento con n núcleos equivalentes origina un desdoblamiento en (n +1) líneas.

3. Todas las líneas de un multiplete están igualmente separadas. La separación corresponde al valor de la constante de acoplamiento.

4. La intensidad relativa de las líneas de un multiplete viene dada por el triangulo de Pascal.

Page 42: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

42

Patrones de acoplamiento, 1

Espectros de primer orden

Acoplamiento a n núcleos equivalentes (sistema AXn) Acoplamiento a n núcleos equivalentes (sistema AXn)

En general A se desdobla en n + 1 líneas, separadas cada una por una distancia = JAX

11 1

1 2 11 3 3 1

1 4 6 4 11 5 10 10 5 1

1 6 15 20 15 6 1

A singulete (s)

AX doblete (d)

AX2 triplete (t)

AX3 cuartete (c)

AX4 quintuplete (q)

AX5 sextete (m)

AX6 septete (m)

Triangulo de Pascal

Ej.: Acoplamiento a tres núcleos equivalentes (sistema AX3)

Ej.: Acoplamiento a tres núcleos equivalentes (sistema AX3)

1 1

A

JAX

CUARTETE

JAX JAX

3

JAX JAX JAX

3

C C

HA HX

HX

HX

Page 43: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

43

CH CH2

A X

Sistema AX2

CH CH3

A X

Sistema AX3

FRAGMENTOS MOLECULARES TÍPICOS

A X

A X

CH (CH3)2A X

Sistema AX6 A

X

Patrones de acoplamiento, 2

CH2 CH3

A X

Sistema A2X3

A X

1 2

1

3

23

1

6

Page 44: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

44

Espectros de primer orden. Acoplamiento con núcleos con distinta J

Acoplamiento a dos núcleos no equivalentes (sistema AMX)Acoplamiento a dos núcleos no equivalentes (sistema AMX)

1 1

A

JAM

DOBLE DOBLETE

JAX JAX

1 1

Ej.:

C C

HA HX

C

HM

JAM JAXJAM JAX

JAM > JAX

Acoplamiento a tres núcleosno equivalentes (sistema AMPX)Acoplamiento a tres núcleosno equivalentes (sistema AMPX)

DOBLE DOBLE DOBLETE

Ej.:

C C

HA HP

C HX

HM A

JAM

JAP JAP

JAX JAX

JAM > JAP > JAX

Patrones de acoplamiento, 3

Page 45: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

45

7. Intercambio químico, 11. En muchas

ocasiones no se observe el acoplamiento con los H unidos a heteroátomos

2. Sólo se observa en protones unidos a heteroátomos (OH, NH, SH).

3. La explicación de este fenómeno se basa en la existencia de un intercambio químico rápido catalizado por ácidos y bases

Page 46: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

46

Este proceso de intercambio se puede dar tan rápidamente que el tiempo requerido por el aparato para observar la resonancia sea mayor, y la señal que aprecia el detector es una señal promediada debido al enlace del protón con distintas moléculas de ROH. Por ejemplo, a temperatura ambiente un protón hidroxílico permanece en una misma molécula aproximadamente 10-5 s que es un tiempo menor que el que tarda el aparato en tomar la información. Por ello, en los alcoholes, ácidos, tioalcoholes, tioácidos y aminas se observa este fenómeno. • Si el intercambio es muy rápido se ve una señal aguda y promediada.• Si es muy lento se ve algún desdoblamiento y si es moderadamente lento se puede ver una señal ancha.El desplamiento químico () de este tipo de protones depende de la concentración de la muestra y del disolvente.

Aplicación: en D2O desaparecen las señales de H-X (apreciable

en RMN de alcoholes, tioles y aminas). ROH + D2O ROD + DOH

7. Intercambio químico, 2

Page 47: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

47

El grupo etilo aparece como un triplete a δ 1.2 ppm (-CH3) y un cuadruplete a δ 2.6 ppm (-CH2-). Los protones aromáticos aparecen como un multiplete próximos a δ = 7.2 ppm. El acoplamiento del grupo etilo es muy frecuente

8. Interpretación de espectros. Ejemplos

Ejemplo 1

Page 48: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

48

Ejemplo 2

El grupo isopropilo aparece como un doblete intenso a desplazamiento químico más bajo y como un multiplete débil (un septuplete) adesplazamiento químico más alto. El grupo metilo aparece como un singulete a δ = 2.1 ppm. El protón c tiene 6 hidrógenos en el átomo de carbono adyacente, por lo que su señal será un septeto (6 + 1 = 7). Los hidrógenos de los grupos  metilo tienen un hidrógeno en el átomo de carbono adyacente por lo que su señal será un doblete (1 + 1 = 2) .

Page 49: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

49

Hay dos protones vinílicos en la 4,4-dimetilciclohex-2-en-1-ona y son cis. La constante de acoplamiento para el acoplamiento cis es aproximadamente 10 Hz, de manera que los picos deberían estar separados por esta medida.

Ejemplo 3

Page 50: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

50

El p-nitrotolueno tiene dos pares de protones aromáticos equivalentes a y b. Dado que la constante de acoplamiento para los hidrógenos orto es aproximadamente 8 Hz, los picos de la señal estarán separados aproximadamente por 8 Hz.

Ejemplo 4

Page 51: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

51

Ejemplo 5

Page 52: Módulo 2. ESPECTROSCOPIA Tema 7. ESPECTROSCOPIA INFRARROJA.- Introducción.- Tipos de vibraciones.- Frecuencias características de grupos funcionales.-

52

Ejemplo 6