Metodo falsa Posición.pdf

22
Métodos Numéricos Método de la Falsa-Posición

Transcript of Metodo falsa Posición.pdf

Métodos Numéricos

Método de la Falsa-Posición

(1)

(2)

1

Introducción

2 http://numericalmethods.eng.usf.edu

Uxf

Uxrx

Lxf

Lx

O

xf

x

Exact root

0)( xf

0)(*)( UL xfxf

Método de Bisección:

2

ULr

xxx

(3)

Figura 1 Método de Falsa-Posición

http://numericalmethods.eng.usf.edu3

Método de Falsa-Posición

Basedo en triángulos similares, mostrado en Figura 1, tenemos:

Ur

U

Lr

L

xx

xf

xx

xf

)()(

0;0)(

0;0)(

UrU

LrL

xxxf

xxxf

Los signos para ambos lados of Eq. (4):

(4)

http://numericalmethods.eng.usf.edu4

LUrULr xfxxxfxx

ULrULLU xfxfxxfxxfx

De la Eq. (4), obtenemos

De resolver la ecuación anterior obtenemos la próximapredicción de la raíz

UL

ULLUr

xfxf

xfxxfxx

rx

(5)

http://numericalmethods.eng.usf.edu5

De la ecuación de arriba,

UL

ULUUr

xfxf

xxxfxx

LU

LU

LLr

xx

xfxf

xfxx

o

(6)

(7)

http://numericalmethods.eng.usf.edu6

Step-By-Step False-Position Algorithms

as two guesses for the root such1. Choose Lx Uxand

that 0UL xfxf

2. Estimate the root, UL

ULLUm

xfxf

xfxxfxx

3. Now check the following

, then the root lies between (a) If

and ; then

0mL xfxfLx

mx LL xx and mU xx

, then the root lies between (b) If

and ; then

0mL xfxfmx

Ux mL xx and UU xx

http://numericalmethods.eng.usf.edu7

, then the root is(c) If 0mL xfxf .mx

Stop the algorithm if this is true.

4. Find the new estimate of the root

UL

ULLUm

xfxf

xfxxfxx

Find the absolute relative approximate error as

100

new

m

old

m

new

ma

x

xx

http://numericalmethods.eng.usf.edu8

where

= estimated root from present iteration

= estimated root from previous iteration

new

mxold

mx

.001.010 3

ssay5. If sa , then go to step 3,

else stop the algorithm.

Notes: The False-Position and Bisection algorithms are quite similar. The only difference is the formula used to calculate the new estimate of the root ,mx shown in steps#2 and 4!

http://numericalmethods.eng.usf.edu9

Example 1The floating ball has a specific gravity of 0.6 and has aradius of 5.5cm.You are asked to find the depth to which the ball issubmerged when floating in water.

The equation that gives the depth x to which the ball issubmerged under water is given by

010993.3165.0 423 xx

Use the false-position method of finding roots ofequations to find the depth to which the ball issubmerged under water. Conduct three iterations toestimate the root of the above equation. Find theabsolute relative approximate error at the end of eachiteration, and the number of significant digits at leastcorrect at the converged iteration.

x

http://numericalmethods.eng.usf.edu10

Solution

From the physics of the problem

11.00

)055.0(20

20

x

x

Rx

x

water

Figure 2 :Floating ballproblem

http://numericalmethods.eng.usf.edu11

Let us assume

11.0,0 UL xx

4423

4423

10662.210993.311.0165.011.011.0

10993.310993.30165.000

fxf

fxf

U

L

Hence,

010662.210993.311.00 44 ffxfxf UL

http://numericalmethods.eng.usf.edu12

Iteration 1

0660.0

10662.210993.3

10662.2010993.311.044

44

UL

ULLUm

xfxf

xfxxfxx

5

423

101944.3

10993.30660.0165.00660.00660.0

fxf m

00660.00 ffxfxf mL

0660.0,0 UL xx

http://numericalmethods.eng.usf.edu13

Iteration 2

0611.0

101944.310993.3

101944.3010993.30660.054

54

UL

ULLUm

xfxf

xfxxfxx

5

423

101320.1

10993.30611.0165.00611.00611.0

fxf m

00611.00 ffxfxf mL

0660.0,0611.0 UL xxHence,

http://numericalmethods.eng.usf.edu14

%81000611.0

0660.00611.0

a

Iteration 3

0624.0

101944.310132.1

101944.30611.010132.10660.055

55

UL

ULLUm

xfxf

xfxxfxx

http://numericalmethods.eng.usf.edu15

7101313.1 mxf

00624.00611.0 ffxfxf mL

Hence,0624.0,0611.0 UL xx

%05.21000624.0

0611.00624.0

a

http://numericalmethods.eng.usf.edu16

Iteration

1 0.0000 0.1100 0.0660 N/A -3.1944x10-5

2 0.0000 0.0660 0.0611 8.00 1.1320x10-5

3 0.0611 0.0660 0.0624 2.05 -1.1313x10-7

4 0.0611 0.0624 0.0632377619 0.02 -3.3471x10-10

LxUx mx %a mxf

010993.3165.0 423 xxxfTable 1: Root of

for False-Position Method.

http://numericalmethods.eng.usf.edu17

m

m

m

a

2

2

2

1004.0

105.002.0

105.0

3,

3979.3

)3979.1(2

)04.0log(2

2)04.0log(

mSo

m

m

m

m

The number of significant digits at least correct in the estimated root of 0.062377619 at the end of 4th iteration is 3.

http://numericalmethods.eng.usf.edu18

References

1. S.C. Chapra, R.P. Canale, Numerical Methods for

Engineers, Fourth Edition, Mc-Graw Hill.

THE END

http://numericalmethods.eng.usf.edu

This instructional power point brought to you by

Numerical Methods for STEM undergraduate

http://numericalmethods.eng.usf.edu

Committed to bringing numerical methods to the undergraduate

Acknowledgement

For instructional videos on other topics, go to

http://numericalmethods.eng.usf.edu/videos/

This material is based upon work supported by the National Science Foundation under Grant # 0717624. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

The End - Really