METEORIZACIÓN EXPERIMENTO STANLEY MILLER...

16
METEORIZACIÓN EXPERIMENTO STANLEY MILLER HAROLD UREY (1952, UNIV. CHICAGO) Abiogénesis experimental (Alex. Oparin) vs. Panspermia (Anaxágoras) Ácido acético, glucosa y aminoácidos (glicina, alanina, ác. glutámico y ác. aspártico). Un aminoácido es una molécula orgánica compuesta por un grupo amino y un grupo carboxilo. METEORIZACIÓN Y PRODUCCIÓN DE SEDIMENTO Interacciones del agua con las rocas. La meteorización física, química y bioquímica de la roca madre. Generación de regolito y sedimentos. Geoquímica de las rocas sedimentarias. INTRODUCCIÓN Aunque la meteorización suele dividirse en física, química y bioquímica, los procesos están íntimamente relacionados. Las rocas clásticas sedimentarias son diferentes a sus rocas madres plutónicas y metamórficas. Por ejemplo, el feldespato forma el 60% de las rocas cristalinas pero en las rocas sedimentarias, rara vez supera el 25%. La composición de las rocas sedimentarias es extremadamente variable, pero es similar, en promedio, a una granodiorita La Piedra de Rosetta es un fragmento de una antigua estela egipcia de granodiorita inscripta con un decreto publicado en Menfis en el año 196 a. C. en nombre del faraón Ptolomeo V. El decreto aparece en tres escrituras distintas: el texto superior en jeroglíficos egipcios, la parte intermedia en escritura demótica (egipcio antiguo) y la inferior en griego antiguo. Gracias a que presenta esencialmente el mismo contenido en las tres inscripciones, con diferencias menores entre ellas, esta piedra facilitó la clave para el entendimiento moderno de los jeroglíficos egipcios. EL AGUA Es el principal reactivo de la naturaleza. Actúa de tres maneras, como: o solvente, o medio de transporte y o lubricante en sedimentos densos transportados por gravedad. Las soluciones acuosas tienen gran sesgo bioquímico (efecto de selección). Algunos componentes son agregados por la atmósfera (CO 2 , O 2 ) y otros por la acción de la biota. La composición varía estacionalmente según el clima local y la posición en el perfil del suelo.

Transcript of METEORIZACIÓN EXPERIMENTO STANLEY MILLER...

Page 1: METEORIZACIÓN EXPERIMENTO STANLEY MILLER …ecaths1.s3.amazonaws.com/sedimentologiaunt/561375807.Clase 1.2... · METEORIZACIÓN EXPERIMENTO STANLEY MILLER – HAROLD UREY (1952,

METEORIZACIÓN EXPERIMENTO STANLEY MILLER – HAROLD UREY (1952, UNIV. CHICAGO) Abiogénesis experimental (Alex. Oparin) vs. Panspermia (Anaxágoras)

Ácido acético, glucosa y aminoácidos (glicina, alanina, ác. glutámico y ác. aspártico). Un aminoácido es una molécula orgánica compuesta por un grupo amino y un grupo carboxilo.

METEORIZACIÓN Y PRODUCCIÓN DE SEDIMENTO

• Interacciones del agua con las rocas. • La meteorización física, química y bioquímica de la roca madre. • Generación de regolito y sedimentos. • Geoquímica de las rocas sedimentarias.

INTRODUCCIÓN • Aunque la meteorización suele dividirse en física, química y

bioquímica, los procesos están íntimamente relacionados. • Las rocas clásticas sedimentarias son diferentes a sus rocas madres

plutónicas y metamórficas. Por ejemplo, el feldespato forma el 60% de las rocas cristalinas pero en las rocas sedimentarias, rara vez supera el 25%.

• La composición de las rocas sedimentarias es extremadamente variable, pero es similar, en promedio, a una granodiorita

La Piedra de Rosetta es un fragmento de una antigua estela egipcia de granodiorita inscripta con un decreto publicado en Menfis en el año 196 a. C. en nombre del faraón

Ptolomeo V. El decreto aparece en tres escrituras distintas: el texto superior en jeroglíficos egipcios, la parte intermedia en escritura demótica (egipcio antiguo) y la inferior en griego

antiguo. Gracias a que presenta esencialmente el mismo contenido en las tres inscripciones, con diferencias menores entre ellas, esta piedra facilitó la clave para el entendimiento moderno de

los jeroglíficos egipcios.

EL AGUA • Es el principal reactivo de la naturaleza. • Actúa de tres maneras, como:

o solvente, o medio de transporte y o lubricante en sedimentos densos transportados por gravedad.

• Las soluciones acuosas tienen gran sesgo bioquímico (efecto de selección). Algunos componentes son agregados por la atmósfera (CO2, O2) y otros por la acción de la biota. La composición varía estacionalmente según el clima local y la posición en el perfil del suelo.

Page 2: METEORIZACIÓN EXPERIMENTO STANLEY MILLER …ecaths1.s3.amazonaws.com/sedimentologiaunt/561375807.Clase 1.2... · METEORIZACIÓN EXPERIMENTO STANLEY MILLER – HAROLD UREY (1952,

LA NATURALEZA DEL AGUA EN LOS SEDIMENTOS • No existe agua químicamente pura. • El CO2 disuelto en el agua depende de lo introducido por el agua de lluvia desde la atmósfera y de la

evapotranspiración en el suelo. • El carbonato de calcio en el suelo depende de la presencia de CO2 atmosférico disuelto en el agua vadosa. Este

proceso libera protones y ácido carbónico (H2CO3). • La difusión de CO2 en el suelo es baja de manera que el agua vadosa es más ácida que la de lluvia y

químicamente más activa. El ácido carbónico es un ácido anhídrido del dióxido de carbono (CO2). El ácido carbónico puede atacar a muchos de los minerales que comúnmente forman las rocas, descomponiéndolos.

El ciclo hidrológico se define como la secuencia de fenómenos por medio de los cuales el agua pasa de la

superficie terrestre, en la fase de vapor, a la atmósfera y regresa en sus fases líquida y sólida. Se calcula que al año se evaporan aproximadamente 505.000 km3 de agua de los océanos.

Sin embargo, de este total unos 458.000 son inaprovechables porque se precipitan nuevamente en los mismos océanos. Sólo unos 47.000 km3 llegan lo suficientemente lejos para precipitarse sobre la tierra y esa cantidad es la que se dispone para los múltiples usos: domésticos, agropecuarios e industriales. En realidad, la precipitación total anual sobre la tierra firme es muy superior a esa, pues se sitúa alrededor de los 119.000 km3. El añadido de 72.000 km3 proviene del agua que se conserva permanentemente como humedad en la atmósfera, el suelo y la vegetación, en un ciclo de transpiración de los vegetales y de precipitación desde la atmósfera. Los 47.000 km3 de agua evaporados de los océanos volverán a ellos en forma de ríos y de corrimiento de las aguas subterráneas.

Page 3: METEORIZACIÓN EXPERIMENTO STANLEY MILLER …ecaths1.s3.amazonaws.com/sedimentologiaunt/561375807.Clase 1.2... · METEORIZACIÓN EXPERIMENTO STANLEY MILLER – HAROLD UREY (1952,

Una estimación de la distribución del agua global:

Fuente de agua

Volumen de

agua, en metros

cúbicos

Volumen de

agua, en millas

cúbicas

Porcentaje de

agua dulce

Porcentaje

total de agua

Océanos, Mares y Bahías 1,338,000,000 321,000,000 -- 96.5

Capas de hielo, Glaciares y

Nieves Perpetuas 24,064,000 5,773,000 68.7 1.74

Agua subterránea 23,400,000 5,614,000 -- 1.7

Dulce 10,530,000 2,526,000 30.1 0.76

Salada 12,870,000 3,088,000 -- 0.94

Humedad del suelo 16,500 3,959 0.05 0.001

Hielo en el suelo y gelisuelo

(permafrost) 300,000 71,970 0.86 0.022

Lagos 176,400 42,320 -- 0.013

Dulce 91,000 21,830 0.26 0.007

Salada 85,400 20,490 -- 0.006

Atmósfera 12,900 3,095 0.04 0.001

Agua de pantano 11,470 2,752 0.03 0.0008

Ríos 2,120 509 0.006 0.0002

Agua biológica 1,120 269 0.003 0.0001

Total 1,386,000,000 332,500,000 - 100

Fuente: Gleick, P. H., 1996: Water resources. In Encyclopedia of Climate and Weather, ed. by S. H. Schneider,

Oxford University Press, New York, vol. 2, pp.817-823.

Page 4: METEORIZACIÓN EXPERIMENTO STANLEY MILLER …ecaths1.s3.amazonaws.com/sedimentologiaunt/561375807.Clase 1.2... · METEORIZACIÓN EXPERIMENTO STANLEY MILLER – HAROLD UREY (1952,

LA METEORIZACIÓN Depende de:

• El agua involucrada • El estado de disociación de los iones H+ y OH-. • Concentraciones de CO2 y O2. • Temperatura media y el rango de variación diurno y estacional.

Sapropel (griego, sapro: putrefacción; pelo: roca desintegrada que yace en su lugar de origen.

EL CICLO DEL OXÍGENO

• El principal reservorio es la atmósfera. • La fuente principal es la fotosíntesis. • Los ámbitos que lo retienen son: respiración de los

suelos, descomposición de materia orgánica, la materia orgánica acumulada en superficie y los constituyentes reducidos de la corteza.

Mol • Es una unidad de medida usada en química que expresa la

cantidad de una sustancia química. • Es la cantidad de cualquier sustancia que contiene tantas

entidades elementales (ejemplo: átomos, moléculas, iones, electrones) como átomos hay en 12 gramos de

12C.

• Es una de las siete magnitudes físicas fundamentales del Sistema Internacional de Unidades.

• Número de Avogadro: es el número de moléculas que contiene un mol.

Leeder (1999)

Leeder (1999)

Page 5: METEORIZACIÓN EXPERIMENTO STANLEY MILLER …ecaths1.s3.amazonaws.com/sedimentologiaunt/561375807.Clase 1.2... · METEORIZACIÓN EXPERIMENTO STANLEY MILLER – HAROLD UREY (1952,

EL CICLO DEL CO2 PRE-REVOLUCIÓN INDUSTRIAL

• Hay una enorme cantidad de CO2 en los carbonatos y combustibles fósiles.

• La atmósfera y los organismos vivos contienen una fracción menor.

• El segundo reservorio en importancia es el CO2 disuelto en el mar.

• El intercambio entre el océano y la atmósfera es por transferencia gaseosa. Entre la biota y la atmósfera es por fotosíntesis.

LA METEORIZACIÓN

• Es la fragmentación física, química y/o bioquímica de los materiales en la interfase entre la litósfera y la atmósfera.

• Involucra todos los procesos de alteración supergénica de las rocas por acción de clima, relieves locales, la hidrósfera y la atmósfera.

o Enriquecimiento supergénico: cerca de la superficie la oxidación produce soluciones ácidas que separan los metales llevándolos hacia abajo y precipitando nuevamente; de esta manera se enriquecen los sulfuros.

Supergénico: se dice de un depósito mineral o enriquecimiento formado cerca de la superficie, comúnmente por soluciones descendentes.

MECANISMOS DE ALTERACIÓN QUÍMICA Disolución: es una mezcla homogénea a nivel molecular o iónico de dos o más especies químicas que no reaccionan entre sí, cuyos componentes se encuentran en proporción que varía entre ciertos límites. Toda disolución está formada por un soluto y un medio dispersante denominado disolvente. Oxidación: La oxidación es una reacción química muy poderosa donde un compuesto cede electrones, y por lo tanto aumenta su estado de oxidación. Las reacciones de reducción-oxidación (también conocidas como reacciones redox) son las reacciones de transferencia de electrones. Esta transferencia se produce entre un conjunto de elementos químicos, uno oxidante y uno reductor (una forma reducida y una forma oxidada respectivamente). Para que exista una reacción redox, en el sistema debe haber un elemento que ceda electrones y otro que los acepte. Hidrólisis: es una reacción química entre el agua y otra sustancia, como sales. Al ser disueltas en agua, sus iones se combinan con los iones hidronio u oxonio, H3O

+ o con los iones oxidrilo OH-. Esto produce un desplazamiento del equilibrio de disociación del agua y como consecuencia se modifica el valor del pH. pH= -log (a H

+), es el logaritmo (en base 10) negativo de la actividad del ión Hidrógeno en solución. Una sustancia con pH>7 tiende a aceptar protones, una sustancia con pH<7 tiende a entregar protones. Hidrólisis ácida: está relacionada a la química orgánica en la que los enlaces se rompen al azar. MECANISMOS DE ALTERACIÓN FÍSICA

• Sobrecarga o alivio. • Congelamiento y descongelamiento (crioclastía). • Contracción térmica (diaclasas). • Crecimiento de sales minerales en las fracturas y poros de las rocas. • Hidratación de sales anhidras dentro de las rocas.

Leeder (1999)

Page 6: METEORIZACIÓN EXPERIMENTO STANLEY MILLER …ecaths1.s3.amazonaws.com/sedimentologiaunt/561375807.Clase 1.2... · METEORIZACIÓN EXPERIMENTO STANLEY MILLER – HAROLD UREY (1952,

Eh y pH EN LOS AMBIENTES NATURALES • La presencia de O2 en la atmósfera y suelos induce la oxidación de los elementos metálicos tales como Fe y Al.

Los compuestos de Fe3+ son más estables y más insolubles que los de Fe2+. • En suelos y sedimentos pantanosos el pH es ácido (rara vez debajo de 4) y cuando hay mucho carbonato puede

ser alcalino (no superior a 9). • La mayor parte de las reacciones son ácidas oxidantes, pero en ambientes de agua estancada y debajo del

fréatico en los suelos, las bacterias anaeróbicas, favorecen la disolución de óxidos de Fe3+ y el pase a solución como Fe2+.

Las letras pH son una abreviación de "pondus hydrogenii", traducido como potencial de hidrógeno, y fueron propuestas por Sorensen en 1909, que

las introdujo para referirse a concentraciones muy pequeñas de iones hidrógeno. Sorensen, por tanto, fue el creador del concepto de pH, que se

define como el logaritmo cambiado de signo de la actividad de los iones hidrógeno en una solución: pH = -log |H+|

AMBIENTES Y CLIMAS Tundra (del ruso): llanura sin árboles; (del lapón) tierra infértil.

• Es un bioma circumpolar en el hemisferio norte y en el hemisferio sur en la península antártica e islas adyacentes. La vegetación es de crecimiento lento. También puede encontrarse en las zonas montañosas por arriba del límite superior de los árboles pero son de extensión reducida.

Taiga (del ruso del yakuto): territorio inhabitado cubierto por bosques espesos. • Es un bioma que limitado al norte por la tundra y al sur por la estepa. Vegetación dominante: coníferas.

La podzolización engloba la queluviación de Al y Fe, junto con materia orgánica, de las zonas superficiales y su acumulación en las zonas profundas del perfil del suelo. Queluviación es el proceso por el cual hierro, aluminio y humus (formando compuestos organometálicos) son desplazados de la superficie al interior del suelo. La ferralitización es un proceso de alteración máxima. Se desarrolla únicamente en climas tropicales, con fuertes precipitaciones, con un drenaje intenso, con una casi constante percolación de agua. En estas condiciones se produce una intensa alteración de los minerales ya que se encuentran sometidos a la constante acción hidrolítica de un agua de lluvia constantemente renovada y por tanto, permanentemente agresiva, sin que llegue a saturarse en ningún momento con los iones liberados de los minerales (lo que disminuirían su poder hidrolítico, caso que ocurriría si el medio no fuese tan permeable). Se caracteriza pues este proceso por una alteración extrema de los minerales, con un profundo lavado de alcalinos y alcalinotérreos, llegándose a producir hasta importantes pérdidas de silicio, aunque la eliminación de sílice del perfil no llega a ser nunca completa (ya que el silicio es poco soluble y bajo la forma de mineral de cuarzo es muy estable). En definitiva, se produce un enriquecimiento de solamente los compuestos muy estables, fundamentalmente óxidos e hidróxidos de hierro y aluminio (hematites, goethita y gibsita), de cuarzo y también de los filosilicatos de la arcilla más estables, como son aquellos con una relación Si/Al baja, como es el caso de la caolinita.

Simplificado de

Chesworth

(1992); tomado y

modificado de

Leeder (1999)

Page 7: METEORIZACIÓN EXPERIMENTO STANLEY MILLER …ecaths1.s3.amazonaws.com/sedimentologiaunt/561375807.Clase 1.2... · METEORIZACIÓN EXPERIMENTO STANLEY MILLER – HAROLD UREY (1952,

LOS SILICATOS DURANTE LA METEORIZACIÓN • Los elementos disueltos que llegan al mar se generan por el contacto con O2 y CO2 (producidos por la

vegetación, los desechos orgánicos y los gases de respiración de los suelos). • La meteorización química separa los minerales en:

o resistatos (aumentan su proporción en el suelo o regolito), o lábiles (disminuyen) y, o muy lábiles (desaparecen).

• Las disolución puede ser: o congruente (todo el soluto pasa a solución) e, o incongruente (sólo parte), en este último caso aparecen los hidrolizatos.

Cuarzo • El cuarzo constituye el 20% del total de la corteza superficial. • Es extremadamente resistente y pasa a solución formando el ácido ortosilícico (H4SiO4). • En suelos alcalinos (pH > 9) la solubilidad crece geométricamente. • La hidroxilación de la sílice forma grupos SiOH, llamados silanol que polimeriza formando geles o sols que

pueden ser arrastrados por aguas corrientes. • Los geles precipitan formando ópalo (A y CT) y calcedonia.

Feldespato • Los feldespatos son el grupo de minerales más abundantes (60%) de la corteza. • En pH bajo se alteran por hidrólisis, siendo removidos principalmente los iónes silicio. La disolución

incongruente produce caolinita, Si, Ca, Na y K en solución. • En pH alto priva la hidroxilación y es el aluminio el principal evacuado, precipitando sílice amorfa o silicato de

sodio (Magaadita). Micas

• La naturaleza hojosa de la mica la hace proclive a la alteración paralela a los planos de clivaje. • La curva de disolución tiene un mínimo en pH = 6. La biotita se altera 5 veces más rápido que el feldespato. El

mineral residual es caolinita. Otros silicatos

• Los piroxenos y anfíboles se alteran por hidrólisis ácida y protonización. Los pH bajos aceleran este proceso.

• Los minerales con alto contenido en Fe y Mg son fácilmente oxidables (olivino, anfiboles, piroxenos) y forman costras ferruginosas en climas húmedos y áridos.

LAS ROCAS SEDIMENTARIAS EN LA CORTEZA Lutitas 45%, areniscas 37% y calizas 18%. CLASIFICACIÓN DE PETTIJOHN 1975

Page 8: METEORIZACIÓN EXPERIMENTO STANLEY MILLER …ecaths1.s3.amazonaws.com/sedimentologiaunt/561375807.Clase 1.2... · METEORIZACIÓN EXPERIMENTO STANLEY MILLER – HAROLD UREY (1952,

FLUORESCENCIA DE RAYOS X POR ENERGÍA DISPERSIVA (EDXRF)

Espectros elementales

CLASIFICACIÓN QUÍMICA DE LAS ROCAS

El cociente SiO2 / Al2O3 es empleado como un índice químico de madurez mineralógica, separando las rocas altamente silíceas, intermedias y de bajo contenido. El Cociente Na2O / K2O es empleado para separar los vaques de las arcosas. Pettijohn y otros (1972, 1987)

Page 9: METEORIZACIÓN EXPERIMENTO STANLEY MILLER …ecaths1.s3.amazonaws.com/sedimentologiaunt/561375807.Clase 1.2... · METEORIZACIÓN EXPERIMENTO STANLEY MILLER – HAROLD UREY (1952,

COMPOSICIÓN DE LAS ROCAS

• Si: corresponde a cuarzo, pero también asociado con otros minerales detríticos de rocas silicoclásticas. • Al: corresponde a minerales de arcilla y micas. Valores muy elevados de Al son atribuidos a la presencia de

caolinita. • Ti y Nb: corresponde a minerales pesados, principalmente rutilo, anatasa y minerales opacos portadores de Ti

como ilmenita y leucoxeno. • Fe: en las capas rojas está asociado con hidróxilos de Fe como hematita y goethita, cementos dolomíticos

ferrosos en las areniscas; en las capas verdes y carbón, el Fe está vinculado a siderita, pirita, y dolomita ferrosa.

Page 10: METEORIZACIÓN EXPERIMENTO STANLEY MILLER …ecaths1.s3.amazonaws.com/sedimentologiaunt/561375807.Clase 1.2... · METEORIZACIÓN EXPERIMENTO STANLEY MILLER – HAROLD UREY (1952,

• Ca, Mn, Mg y Sr: minerales de carbonatos, principalmente siderita, calcita y dolomita. Estos elementos tienen asociaciones subordinadas con minerales de arcilla, con Mg vinculado a clorita.

• K, Rb y Cs: las concentraciones de estos elementos están controladas por la abundancia y distribución de illita + mica, y en menor medida por feldespatos potásicos.

• P: en las arcillitas limosas, el P tiene afinidad con los minerales de arcilla, en particular, illita + mica. Altos niveles de P pueden ser registrados para horizontes sideríticos, donde está vinculado con Fe, Mn y TR (Tierras Raras). Niveles similares de P se encuentran con U, Mo, Ca y Ce en altos gamma, en arcillitas grises oscuras, en las que el P está asociado con fosfato biogénico (restos de peces) y macrofósiles calcáreos.

• Zr: circones detríticos. • Co, Ni, Zn, V y Cu: minerales de arcilla y micas. Estos elementos también están relacionados a material orgánico

y son liberados durante la oxidación y removilizados durante la diagénesis. • Th: altos valores de Th en relación a valores conspicuos de Al, Ga, y Sc se interpretan como arcillitas caoliníticas

meteorizadas. En otros casos el Th está relacionado con otros minerales de arcilla, mica y apatito. • U: material orgánico y minerales detríticos. Los altos valores de U se registran en capas marinas. Este elemento

también se asocia con Th y Zr; todos tienen afinidad con los circones. • TR-L (Tierras Raras – Livianas: La, Ce, Pr y Nd): minerales de arcilla y micas. Valores altos de TR-L y Al indican la

presencia de abundante caolinita. El enriquecimiento de TR-L es un buen indicador de paleosuelos (Pearce et al., 2005b).

• Sc y Ga: asociados típicamente con Al y TR-L, lo que sugiere que tienen afinidad con minerales de arcillas caoliníticas.

COMPOSICIÓN MINERALÓGICA

PROPORCIÓN DE TIPOS ROCOSOS

Page 11: METEORIZACIÓN EXPERIMENTO STANLEY MILLER …ecaths1.s3.amazonaws.com/sedimentologiaunt/561375807.Clase 1.2... · METEORIZACIÓN EXPERIMENTO STANLEY MILLER – HAROLD UREY (1952,

PRODUCCIÓN DE SEDIMENTOS EN RÍO Y REGIONES GEOGRÁFICAS

PRECIPITACIONES Y PRODUCCIÓN DE SEDIMENTO

PRODUCCIÓN DE SEDIMENTO Y TIEMPO GEOLÓGICO 1 el pre-Silúrico, anterior a la aparición de vegetación terrestre 2 la aparición de la vegetación terrestre primitiva en el Siluro-Devónico 3 la aparición de las gramíneas post-Cretácicas 4 actual

Page 12: METEORIZACIÓN EXPERIMENTO STANLEY MILLER …ecaths1.s3.amazonaws.com/sedimentologiaunt/561375807.Clase 1.2... · METEORIZACIÓN EXPERIMENTO STANLEY MILLER – HAROLD UREY (1952,

ÍNDICE CIA

INFLUENCIA DE LA DERIVA CONTINENTAL EN LOS PALEOCLIMAS

Page 13: METEORIZACIÓN EXPERIMENTO STANLEY MILLER …ecaths1.s3.amazonaws.com/sedimentologiaunt/561375807.Clase 1.2... · METEORIZACIÓN EXPERIMENTO STANLEY MILLER – HAROLD UREY (1952,

LEVANTAMIENTO DESDE LA ÚLTIMA GLACIACIÓN

LA ELEVACIÓN ISOSTÁTICA DE ESCANDINAVIA LUEGO DE LA FUSIÓN DE LA CALOTA GLACIAL

TASA DE DENUDACIÓN Y RELIEVE

Page 14: METEORIZACIÓN EXPERIMENTO STANLEY MILLER …ecaths1.s3.amazonaws.com/sedimentologiaunt/561375807.Clase 1.2... · METEORIZACIÓN EXPERIMENTO STANLEY MILLER – HAROLD UREY (1952,

TASAS DE DENUDACIÓN EN ÁREAS ESCOGIDAS

TASAS DE LEVANTAMIENTO

POTENCIAL DE PRESERVACIÓN

Page 15: METEORIZACIÓN EXPERIMENTO STANLEY MILLER …ecaths1.s3.amazonaws.com/sedimentologiaunt/561375807.Clase 1.2... · METEORIZACIÓN EXPERIMENTO STANLEY MILLER – HAROLD UREY (1952,

ESPESOR DE LA CORTEZA SEDIMENTARIA

ESCALA DE EVENTOS SEDIMENTARIOS

Page 16: METEORIZACIÓN EXPERIMENTO STANLEY MILLER …ecaths1.s3.amazonaws.com/sedimentologiaunt/561375807.Clase 1.2... · METEORIZACIÓN EXPERIMENTO STANLEY MILLER – HAROLD UREY (1952,

REFERENCIAS Gleick, P. H., 1996: Water resources. In Encyclopedia of Climate and Weather, ed. by S. H. Schneider, Oxford University Press, New York, vol. 2, pp.817-823. Leeder (1999)

Pettijohn y otros (1972, 1987)

Herron 1988

Pearce et al., 2005b

Flint 1971, Rexon y McDougall 1967

Blatt, Middleton y Murray 1972

Dott 1983