Metabolismo y enzimas

40

Transcript of Metabolismo y enzimas

Es un conjunto de reacciones químicas que permiten al organismo transformar la energía almacenada en los enlaces químicos de los nutrientes, en los casos de organismos heterótrofos, y transformar la energía de la luz solar en energía química útil para el ser vivo en el caso de los autótrofos.

Se distinguen dos tipos de reacciones químicas en el metabolismo:

1. Reacciones Catabólicas 2. Reacciones Anabólicas

Son todas aquellas reacciones en que un compuesto es degradado a sustancias más simples.

Estas reacciones son de tipo exergónicas, es decir, cuando ocurren liberan energía.

A + B C + D + ENERGÍA

El catabolismo es un proceso metabólico de tipo degradativo. A partir de sustancias complejas se obtienen sustancias simples.

Son todas aquellas reacciones en que a partir de sustancias simples se obtienen sustancias complejas.

Estas reacciones son de tipo endergónicas, es decir, para que ocurran necesitan de energía.

A + B + ENERGÍA C + D

El Anabolismo es un proceso metabólico de tipo constructivo o de síntesis. A partir de sustancias simples se obtienen sustancias complejas.

El Catabolismos y el Anabolismo son reacciones químicas que por separado no pueden ocurrir y en conjunto forman parte de un reciclado y renovación de los constituyentes de la célula.

Proteínas Carbohidratos Lípidos

Aminoácidos Monosacáridos Ácidos grasos

Acetil Co- A

C

A

T

A

B

O

L

I

S

M

O

Proteínas Carbohidratos Lípidos

Aminoácidos Monosacáridos Ácidos grasos

A

N

A

B

O

L

I

S

M

O

Glucosa Acido Graso Aminoacidos

Piruvato Acetil co ANH4, Piruvato, acetil coA etc. Urea

GlucolisisATP, NADH B Oxidación

Transaminación y desaminación

Etanol, Acido láctico

NADHFermentación

Acido Cítrico

CO2

ATP

NADHFADH2 Cadena

Respiratoria

O2 H2O

Fosforilación Oxidativa

ADP + Pi ATP

Glucosa Acido Graso Aminoácidos

ATP, NADHGluconeogenesis Síntesis ac. Grasos y

aa.

Proceso catabólico:

Proceso Anabólico:

C6H12O6 + 6O2 6CO2 + 6 H2O+ ATP

2 piruvato+ 4 ATP+ H2O C6H12O6 Reacción no

equilibrada

Todas las reacciones que ocurren en el metabolismo se producen gracias a la presencia de biocatalizadores también llamadas enzimas.Son proteínas que aceleran las velocidades de las reacciones, es decir, compatibilizan los tiempos requeridos para las reacciones con los que requiere la vida.

Las enzimas son proteínas globulares con formas tridimensionales complejas que presentan un sitio activo donde se unen los sustratos ( sustancias sobre la que actúa la enzima).

Muchas enzimas proteicas trabajan con un colaborador llamado cofactor.

Los cofactores pueden ser inorgánicos como Fe++, Mg++, Mn++, Zn++ o pueden ser orgánicos donde pasan a llamarse coenzimas.

Cuando los cofactores o las coenzimas se encuentran unidos covalentemente al enzima se llaman grupos prostéticos.

El enzima unida a su grupo prostético, se llama holoenzima. La parte proteica de un holoenzima (inactiva) se llama apoenzima.

Modelo de la llave y la cerradura

Modelo del encaje inducido.

Sustrato

Enzima

Complejo

Enzima-Sustrato

Sustrato

Enzima

Complejo

Enzima-Sustrato

La sustancia sobre la que actúa el enzima se llama sustrato.

El sustrato se une a una región concreta del enzima, llamada sitio activo.

El centro activo comprende :(1) un sitio de unión formado por los aminoácidos que están en contacto directo con el sustrato.(2) un sitio catalítico, formado por los aminoácidos directamente implicados en el mecanismo de la reacción

Una vez formados los productos el enzima puede comenzar un nuevo ciclo de reacción

1.- El enzima y su sustrato 2.- Unión al centro activo 3.- Formación de productos

Son muy especificasActúan a temperatura ambienteAumentan la velocidad de una reacción entre un millón a un trillón de veces.Trabajan en condiciones de acidez particulares.

Las enzimas son capaces de detectar el más mínimo detalle de su sustrato reconociendo a parientes muy similares y rechazándolos.

Como proteínas, poseen una conformación natural más estable que las demás conformaciones posibles. Así, cambios en la conformación suelen ir asociados en cambios en la actividad catalítica. Los factores que influyen de manera más directa sobre la actividad de un enzima son:

pH temperatura

Los enzimas poseen grupos químicos ionizables (carboxilos –COOH y amino -NH2) en las cadenas laterales de sus aminoácidos. Según el pH del medio, estos grupos pueden tener carga eléctrica positiva, negativa o neutra. Como la conformación de las proteínas depende, en parte, de sus cargas eléctricas, habrá un pH en el cual la conformación será la más adecuada para la actividad catalítica. Este es el llamado pH óptimo

La mayoría de los enzimas son muy sensibles a los cambios de pH. Desviaciones de pocas décimas por encima o por debajo del pH óptimo pueden afectar drásticamente su actividad.

En general, los aumentos de temperatura aceleran las reacciones químicas: por cada 10ºC de incremento, la velocidad de reacción se duplica. Las reacciones catalizadas por enzimas siguen esta ley general. Sin embargo, al ser proteínas, a partir de cierta temperatura, se empiezan a desnaturalizar por el calor. La temperatura a la cual la actividad catalítica es máxima se llama temperatura óptima

Las enzimas pueden ser inhibidas reversible o irreversiblemente.

Inhibición irreversible:

Este tipo de inhibidores forman un enlace covalente con las enzimas cerca del centro activo. Un ejemplo son los gases nerviosos, como el fluorofosfato de diisopropilo (DFP) que forma un complejo con la enzima acetilcolinesterasa. Los animales envenenados con este gas quedan paralizados, debido a la imposibilidad de transmitir adecuadamente los impulsos nerviosos.

* Otra inhibición irreversible puede provocarse por la denaturación de la enzima por un aumento considerable de la temperatura.

Inhibición competitiva.

Es cuando el inhibidor compite con el substrato por la unión con el centro activo de la enzima. Este tipo de inhibición puede reducirse si se aumenta la concentración de substrato. E + I = E I   en competencia con la reacción normal E +S = ES

Inhibición no competitiva:

El inhibidor y el sustrato no se relacionan estructuralmente pero se unen por otros puntos de sus moléculas, este tipo de inhibición no pueden anularse con concentraciones altas del sustrato.

E + I = EI=X

Glicolisis

Organismos aeróbicosOrganismos aeróbicos

Ciclo de Krebs

Cadena Transportadora de Electrones

Es el proceso inicial de la oxidación de la glucosa, se produce en el citosol en ausencia de oxígeno.

Un conjunto de 10 enzimas catalizan reacciones que degradan la molécula de glucosa (6 carbonos) a dos moléculas de piruvato (3 carbonos).

Glucosa + 2NAD + 4 ADP +Pi

2 NADH,H +2 ATP + 2 Piruvatos

En organismos aeróbicos el piruvato pasa a acetil-coenzima A, donde ingresa a la mitocondria específicamente al ciclo de Krebs.

El ciclo de Krebs tiene la función de generar moléculas potencialmente energéticas que generaran ATP en la cadena transportadores de electrones, éstas moléculas son el NADH y FADH a partir de FAD y NAD

ATP

NADH

NADH NADH

NADH

NADH

FADH

2 piruvatos = 4 NADH + 2 FADH + 2 ATP

Nº de ATP formados

Nº de NADH formados

Nº de FADH2 formados

Glucolisis 2 2

Oxidación del piruvato

2

Ciclo ácido cítrico 2 6 2

TOTAL MOLÉCULAS

4 10 2

TOTAL ATP 4 30 4

38 ATP