Lte Resumen

download Lte Resumen

If you can't read please download the document

Transcript of Lte Resumen

Antecedentes Generaciones de la Telefona Celular En la seccin anterior se present una muestra de la evolucin de la telefona celular a lo largo de los aos. Las distintas necesidades y avances dieron lugar a generaciones tecnolgicas bien diferenciadas que se comentan a continuacin. En dicha evolucin se aprecia como se van cumpliendo las necesidades del mercado para tener acceso mltiple al canal de comunicacin, as como la necesaria migracin de los sistemas analgicos a sistema digital con el fin de permitir mayor volumen de usuarios y ofrecer los niveles de seguridad que se demandaban. Generacin Cero (0G) 0G representa a la telefona mvil previa a la era celular. Estos telfonos mviles eran usualmente colocados en autos o camiones, aunque modelos en portafolios tambin eran realizados. Por lo general, el transmisor (Transmisor-Receptor) era montado en la parte trasera del vehculo y unido al resto del equipo (el dial y el tubo) colocado cerca del asiento del conductor. Eran vendidos a travs de WCCs (Empresas Telefnicas almbricas), RCCs (Empresas Radio Telefnicas), y proveedores de servicios de radio doble va. El mercado estaba compuesto principalmente por constructores, celebridades, etc. Esta tecnologa, conocida como Autoradiopuhelin (ARP), fue lanzada en 1971 en Finlandia; conocido ahora como el pas con la primera red comercial de telefona mvil. Primera generacin (1G) La 1G de la telefona mvil hizo su aparicin en 1979, si bien prolifer durante los aos 80. Introdujo los telfonos Celulares, basados en las redes Celulares con mltiples estaciones de base relativamente cercanas unas de otras, y protocolos para el traspaso entre las celdas cuando el telfono se mova de una celda a otra. La transferencia analgica y estrictamente para voz son caractersticas identificatorias de la generacin. Con calidad de enlaces muy reducida, la velocidad de conexin no era mayor a (2400 bauds). En cuanto a la transferencia entre celdas, era muy imprecisa ya que contaban con una baja capacidad (Basadas en FDMA, Frequency Division Multiple Access), lo que limitaba en forma notable la cantidad de usuarios que el servicio poda ofrecer en forma simultnea ya que los protocolos de asignacin de canal estticos padecen de sta limitacin.

Con respecto a la seguridad, las medidas preventivas no formaban parte de esta primitiva Telefona Celular. La tecnologa predominante de esta generacin es AMPS (Advanced Mobile Phone System), desarrollada principalmente por Bell. Si bien fue introducida inicialmente en los Estados Unidos, fue usada en otros pases en forma extensiva. Otro sistema conocido como Sistema de Comunicacin de Acceso Total (TACS) fue introducido en el Reino Unido y muchos otros pases. Si bien haba diferencias en la especificacin de los sistemas, eran conceptualmente muy similares. La informacin con la voz era transmitida en forma de frecuencia modulada al proveedor del servicio. Un canal de control era usado en forma simultnea para habilitar el traspaso a otro canal de comunicacin de serlo necesario. La frecuencia de los canales era distinta para cada sistema. MNT usaba canales de 12.5KHz, AMPS de 30KHz y TACS de 25KHz. A su vez, el tamao de los aparatos era mayor al de hoy en da; fueron originalmente diseados para el uso en los automviles. Motorola fue la primera compaa en introducir un telfono realmente porttil. Motorola DynaTAC Estos sistemas (NMT, AMPS, TACS, RTMI, C-Netz, y Radiocom 2000) fueron conocidos luego como la Primera Generacin (G1) de Telfonos Celulares. En Setiembre de 1981 la primera red de Telefona Celular con roaming automtico comenz en Arabia Saudita; siendo un sistema de la compaa NMT. Un mes ms tarde los pases Nrdicos comenzaron una red NMT con roaming automtico entre pases. Segunda generacin (2G) Si bien el xito de la 1G fue indiscutible, el uso masivo de la propia tecnologa mostr en forma clara las deficiencias que posea. El espectro de frecuencia utilizado era insuficiente para soportar la calidad de servicio que se requera. Al convertirse a un sistema digital, ahorros significativos pudieron realizarse. Un nmero de sistemas surgieron en la dcada del 90 debido a estos hechos, y su historia es tan exitosa como la de la generacin anterior. La Segunda Generacin (2G) de Telefona Celular, como ser GSM, IS-136 (TDMA), iDEN and IS-95 (CDMA) comenz a introducirse en el mercado. La primera llamada digital entre telfonos Celulares fue realizada en Estados Unidos en 1990. En 1991 la primera red GSM fue instalada en Europa.

La generacin se caracteriz por circuitos digitales de datos conmutados por circuito y la introduccin de la telefona rpida y avanzada a las redes. Us a su vez acceso mltiple de tiempo dividido (TDMA) para permitir que hasta ocho usuarios utilizaran los canales separados por 200MHz. Los sistemas bsicos usaron frecuencias de banda de 900MHz, mientras otros de 1800 y 1900MHz. Nuevas bandas de 850MHz fueron agregadas en forma posterior. El rango de frecuencia utilizado por los sistemas 2G coincidi con algunas de las bandas utilizadas por los sistemas 1G (como a 900Hz en Europa), desplazndolos rpidamente. La introduccin de esta generacin trajo la desaparicin de los ladrillos que se conocan como telfonos Celulares, dando paso a pequesimos aparatos que entran en la palma de la mano y oscilan entre los 80-200gr. Mejoras en la duracin de la batera, tecnologas de bajo consumo energtico. Telfono GSM de diseo regular EL sistema 2G utiliza protocolos de codificacin ms sofisticados y se emplea en los sistemas de Telefona Celular actuales. Las tecnologas predominantes son: GSM (Global System por Mobile Communications); IS-136 (conocido tambin como TIA/EIA136 o ANSI-136) y CDMA (Code Division Multiple Access) y PDC (Personal Digital Communications), ste ltimo utilizado en Japn. Se encontrar informacin detallada de los protocolos en la seccin correspondiente ms adelante. Los protocolos empleados en los sistemas 2G soportan velocidades de informacin por voz ms altas, pero limitados en comunicacin de datos. Se pueden ofrecer servicios auxiliares, como datos, fax y SMS (Short Message Service). La mayora de los protocolos de 2G ofrecen diferentes niveles de encripcin. En Estados Unidos y otros pases se le conoce a 2G como PCS (Personal Communication Services). Generacin 2.5 G Una vez que la segunda generacin se estableci, las limitantes de algunos sistemas en lo referente al envo de informacin se hicieron evidentes. Muchas aplicaciones para transferencia de informacin eran vistas a medida que el uso de laptops y del propio Internet se fueron popularizando. Si bien la tercera generacin estaba en el horizonte, algunos servicios se hicieron

necesarios previa a su llegada. El General Packet Radio Service (GPRS) desarrollado para el sistema GSM fue de los primeros en ser visto. Hasta este momento, todos los circuitos eran dedicados en forma exclusiva a cada usuario. Este enfoque es conocido como Circuit Switched, donde por ejemplo un circuito es establecido para cada usuario del sistema. Esto era ineficiente cuando un canal transfera informacin slo en un pequeo porcentaje. El nuevo sistema permita a los usuarios compartir un mismo canal, dirigiendo los paquetes de informacin desde el emisor al receptor. Esto permite el uso ms eficiente de los canales de comunicacin, lo que habilita a las compaas proveedoras de servicios a cobrar menos por ellos.

An ms cantidad de mejoras fueron realizadas a la taza de transferencia de informacin al introducirse el sistema conocido como EDGE (Enhanced Data rates aplicado a GSM Evolution). ste bsicamente es el sistema GPRS con un nuevo esquema de modulacin de frecuencia. Mientras GPRS y EDGE se aplicaron a GSM, otras mejoras fueron orientadas al sistema CDMA, siendo el primer paso de CDMA a CDMA2000 1x. 2.5G provee algunos de los beneficios de 3G (por ejemplo conmutacin de datos en paquetes) y puede usar algo de la infraestructura utilizada por 2G en las redes GSM and CDMA. La tecnologa ms comunmente conocida de 2.5G es GPRS (nombrada anteriormente), que provee transferencia de datos a velocidad moderada usando canales TDMA no utilizados en la red GSM. Algunos protocolos, como ser EDGE para GSM y CDMA2000 1x-RTT para CDMA, califican oficialmente como servicios "3G" (debido a que su taza de transferencia de datos supera los 144 kbit/s), pero son considerados por la mayora como servicios 2.5G (o 2.75G, que luce an mas sofisticado) porque son en realidad varias veces ms lentos que los servicios implementados en una red 3G. Mientras los trminos "2G" y "3G" estn definidos oficialmente, no lo est "2.5G". Fue inventado con fines nicamente publicitarios. Muchos de los proveedores de servicios de telecomunicaciones se movern a las redes 2.5G antes de entrar masivamente a la 3. La tecnologa 2.5G es ms rpida, y ms econmica para actualizar a 3G. Tercera generacin (3G). No mucho luego de haberse introducido las redes 2G se comenz a desarrollar los sistemas 3G.

Como suele ser inevitable, hay variados estndares con distintos competidores que intentan que su tecnologa sea la predominante. Sin embargo, en forma muy diferencial a los sistemas 2G, el significado de 3G fue estandarizado por el proceso IMT-2000. Este proceso no estandariz una tecnologa sino una serie de requerimientos (2 Mbit/s de mxima taza de transferencia en ambientes cerrados, y 384 kbit/s en ambientes abiertos, por ejemplo). Hoy en da, la idea de un nico estndar internacional se ha visto dividida en mltiples estndares bien diferenciados entre s. Existen principalmente tres tecnologas 3G. Para Europa existe UMTS (Universal Mobile Telecommunication System) usando CDMA de banda ancha (W-CDMA). Este sistema provee transferencia de informacin de hasta 2Mbps. Estn a su vez las evoluciones de CDMA2000. La primera en ser lanzada fue CDMA2000 1xEVDO, donde EV-DO viene de Evolution Data Only. La idea atrs de este sistema era que muchas de las aplicaciones slo requirieran conexin de datos, como sera el caso si se usara el celular para conectar una PC a Internet en forma inalmbrica. En caso de requerir adems comunicacin por voz, un canal 1X estndar es requerido. Adems de usar tecnologa CDMA, EV-DO usa tecnologa TDMA para proveer de la velocidad de transferencia necesaria y mantener la compatibilidad con CDMA y CDMA2000 1X. La siguiente evolucin de CDMA2000 fue CDMA2000 1xEV-DV. Esto fue una evolucin del sistema 1X totalmente distinto a CDMA2000 1xEV-DO, ofreciendo servicios totales de voz y datos. Este sistema tambin es compatible con CDMA y CDMA2000 1X y es capaz de ofrecer tasas de transferencia de 3.1Mbps. Estos dos protocolos usaron lo que se conoce como FDD (Frequency Division Duplex), donde los links de ida y vuelta usan distintas frecuencias. Dentro de UMTS existe una especificacin conocida como TDD (Time Division Duplex), donde los links poseen la misma frecuencia pero usan distintos segmentos de tiempo. Sin embargo, TDD no se implementar en los mercados por un tiempo. Un tercer sistema 3G fue desarrollado en China que usa TDD. Conocido como TD-SCDMA (Time Division Synchronous CDMA), usa un canal de 1.6MHz y fue pensado para que abarque el mercado Chino y de los pases vecinos. Algunos de los sistemas 2.5G, como ser CDMA2000 1x y GPRS, proveen de algunas de las funcionalidades de 3G sin llegar a los niveles de transferencia de datos o usos multimedia de la nueva generacin. Por ejemplo, CDMA2000-1X puede, en teora, transferir informacin hasta a 307 kbit/s. Justo por encima de esto se encuentra el sistema EDGE, el cual puede en teora superar los

requerimientos de los sistemas 3G; aunque esto es por tan poco que cualquier implementacin prctica quedara probablemente por debajo del lmite deseado. Al comienzo del siglo 21, sistemas 3G como UMTS y CDMA2000 1xEV-DO han comenzado a estar al alcance del pblico en los pases del primer mundo. Sin embargo, el xito de estos sistemas an est por probarse.

HSPA Esquema de modulacin

GSM

CDMA

UTMS

WiMAX OFDM

LTE OFDM

OPORTUNIDADES

AMENAZAS

flexibilidad en trminos de implementacin Los operadores pueden aplicar ms ancho de banda en puntos de conexin con gran demanda de capacidad

bloques de hasta 1,4 MHz para conseguir una cobertura nacional bsica a bajo costo

FORTALEZAS

DEBILIDADES

La eficiencia espectral de LTE ofrece una tremenda flexibilidad en trminos de implementacin. Los operadores pueden aplicar ms ancho de banda en puntos de conexin con gran demanda de capacidad y bloques de hasta 1,4 MHz para conseguir una cobertura nacional bsica a bajo costo."

Kai Sahala, Director de ventas de soluciones estratgicas de la unidad Radio Access de Nokia Siemens Networks

1G Analgica Acceso TDMA Digital

2G TDMA/GSM, CDMA

3G

4G

TDMA/GSM LTE, Wimax (GPRS), EDGE, CDMA, UMTS/HSPA Datos, multimedia, acceso a internet, TV en tiempo real

Servicio

Voz

ID llamada, Llamada en conferencia, transferencia de datos a baja velocidad y SMS

Nro limitado de canales

2mbps

En muchos pases en donde la tercera generacin est firmemente afianzada, estn a la espera de una cuarta generacin. A diferencia de las redes de 3G, la cuales estn construidas sobre la infraestructura de conmutacin de circuitos de las redes de 2G. La 4G ser totalmente otra red que utilizar el Protocolo de Internet (IP, Internet Protocol) como base y velocidades similares a la de las redes cableadas de banda ancha. La Union Internacional de Telecomunicaciones (www.itu.ch) es una de las organizaciones que ha puesto las directivas o lineamientos de los atributos que deben tener algunos servicios o tecnologas como la telefona celular. La ITU como autoridad reconocida internacionalmente puso orden cuando varias compaas empezaron a ofrecer servicios de 3G sin cumplir con los requerimientos mnimos establecidos por esta organizacin. A las compaas celulares que ofreceran servicios que no cumplieron con lo definido por la ITU para 3G, se les conoci como servicios de 2.5G. Con la llegada de la 4G, la ITU-R (la divisin de radiocomunicaciones de la ITU) redact un documento conocido como 4G/IMT, donde establece los requerimientos mnimos para los servicios de cuarta generacin, y as poner orden desde el principio. En este documento la ITU ha establecido que la 4G "deber ser una red completamente nueva, una red de redes y un sistema de sistemas

integrados totalmente basados en el protocolo IP, resultado despus de la convergencia de las redes cableadas e inalmbricas". Las redes 4G sern enteramente por conmutacin de paquetes IP. De acuerdo con la ITU, las redes de 4G sern capaces de proveer velocidades de datos de bajada de 100 Mbps y 1 Gbps, en ambientes exteriores (mviles) e interiores (fijos), respectivamente. Para que se den una idea, la ITU estableci una velocidad mxima de 2 Mbps en ambiente de interiores para las redes de 3G, las velocidades esperadas para la 4G superan por mucho esa cifra. Las redes 4G tendrn calidad de servicio (QoS) y alta seguridad extremo a extremo. Ofrecern cualquier tipo de servicio en cualquier momento, en cualquier lugar, con interoperatibilidad transparente, siempre activo, con costo accesible, en un slo recibo y totalmente personalizado.

Los puntos claves del documento 4G/IMT de la ITU-R para la cuarta generacin son los siguientes: - Alto grado de coincidencia de la funcionabilidad en todo el mundo, manteniendo al mismo tiempo la flexibilidad necesaria para soportar una amplia gama de servicios y aplicaciones a un costo eficiente. - Compatibilidad de servicios con las redes mviles y con las redes fijas.

Capacidad de interconexin con otros sistemas de radio. Alta calidad en los servicios mviles. Aplicaciones, servicios y equipos amigables al usuario capacidad de conexin mundial (roaming) Altas velocidades de datos para soportar servicios y aplicaciones avanzadas.

Por ltimo las tecnologas de radio de 4G debern incluir:

OFDMA (Orthogonal Frequency-Division Multiple Access), un esquema de modulacin multiportadora altamente eficiente

MIMO (Multiple Input Multiple Output), un sistema de mltiples antenas que minimiza los errores de datos y la velocidad.

Tecnologas contendientes por la 4G En la actualidad hay dos tecnologas contendientes para la cuarta generacin de telefona mvil. Por un lado se encuentra WiMAX (Worldwide Interoperability for Microwave Access), y por el

otro LTE (Long-Term Evolution).

WiMAX es un sistema de comunicacin digital inalmbrico definido en el estndar del IEEE 802.16 para redes de rea metropolitana (MAN, Metropolitan Area Network). Provee comunicaciones de banda ancha con cobertura de hasta 50 kms para estaciones fijas o de 5 a 15 kms para estaciones mviles. El estndar 802.16m, conocido como WiMAX mvil, es el que se emplear por las compaas celulares para servicios de 4G. LTE, mientras tanto, es una tecnologa definida por la organizacin 3GPP (3rd Generation Partnership Project, www.3gpp.org) en donde participan ms de 60 operadores, fabricantes e institutos de investigacin que estn participando en conjunto para definir los estndares de LTE.

Ambas tecnologas tcnicamente son muy similares, en la forma de transmitir las seales y en las velocidades de transmisin. Tanto LTE, como WiMAX, utilizan MIMO, es decir, la informacin es enviada en dos o ms antenas por celda para mejorar la recepcin. Ambos sistemas tambin utilizan OFDM (Orthogonal Frequency Division Multiplexing), una tecnologa que soporta transmisiones de video y multimedia. OFDM es una tecnologa madura y altamente probada y que funciona separando las seales en mltiples frecuencias angostas, con bits de datos enviados a la vez en forma paralela.

Muchos expertos se han preguntado si LTE y WiMAX son tecnologas rivales o complementarias. Por ejemplo, desde la 2G, 2.5G y 3G, las tecnologas basadas en TDMA como GSM, tomaron un rumbo diferente a las tecnologas basadas en CDMA, debido a que tenan esquemas de modulacin totalmente diferentes e incompatibles. Por el contrario, LTE y WiMAX tienen el mismo esquema de modulacin (OFDM) y la misma forma de enviar las seales al aire por antenas mltiples (MIMO), adems, ambas estarn basadas en el protocolo IP. En la tabla 1 se muestra una comparacin de caractersticas tcnicas entre ambas tecnologas.

Sobre la posibilidad de que LTE y WiMAX sean tecnologas complementarias, algunos expertos afirman que ambas tecnologas podrn co-existir en algunas regiones, y que los operadores podrn utilizar WiMAX para algunos servicios y LTE para otros.

Tabla 1. Comparacin entre las tecnologas de 4G, WiMAX & LTE Parmetros/Tecnologa WiMAX 802.16e WiMAX 802.16m 2010 2011 IEEE & WiMAX Forum Menor de 6 GHz 2009 2010 3GPP 700, 850, 900, 1800, 1900, 2100, 2500 LTE

Disponibilidad Infraestructura 2007 de red Disponibilidad equipo terminal 2008 Organizacin de estndares IEEE & WiMAX Forum 2300, 2500, 3300, 3500, 3700

Frecuencia (MHz) Ancho de banda del canal

3.5, 5, 7, 8.75, Escalable 5-20 1.4, 1.6, 3.5, 10 MHz MHz 10, 15, 20 ~3.5 Mbps/Hz enlace de bajada 35 Mbps, 1 sector, canal 10 MHz ~5 Mbps/Hz ~5 Mbps/Hz enlace de enlace de bajada 50 bajada 50 Mbps, 1 sector, Mbps, 1 sector, canal 10 MHz canal 10 MHz

Caudal eficaz del canal

TDD: Time Division Duplex FDD: Frequency Division Duplex Fuente: Motorola.com

Conclusin Tanto LTE como WiMAX tcnicamente son muy similares, las diferencias tienen que ver ms con polticas de los propios proveedores de servicios de telecomunicaciones, ya que estos sern los responsables de cual tecnologa emplear, para posteriormente hacer una fuerte inversin de miles de millones de dlares para ver cristalizada la infraestructura de su red de cuarta generacin. Un punto a favor de WiMAX, es que es una tecnologa madura y que est basada en estndares. Mientras que LTE es una tecnologa relativamente nueva que est siendo estandarizada, pero que est bien respalda por la 3GPP. Pero ambas, son tecnologas prometedoras que brindaran a los usuarios velocidades nunca imaginadas en el mundo de la telefona mvil. En muchos pases, compaas celulares ya estn haciendo pruebas con LTE o WiMAX, en otros, estn atorados en la parte regulatoria, debido a que no se han subastado las frecuencias para ofrecer

estos servicios de manera legal. En muchos de los pases subdesarrollados apenas estn entrando los servicios de 3G; y como las tarifas no estn al alcance del bolsillo de la mayora de los usuarios, seguimos estancados utilizando servicios de segunda generacin. As que al escuchar la venida de una cuarta generacin, slo la vemos como un sueo y tendremos que esperar unos aos ms, tal vez muchos, para hacer de ese sueo una realidad. Long Term Evolution Lte Ebook - Presentation Transcript 1. EVOLUTION IN COMMUNICATION LONG TERM EVOLUTION Antonis Hontzeas 2. About : Antonis Hontzeas has been In the forefront of the Telecommunications industry for twenty years. Tenure includes positions ranging from design and technical management up to and including executive positions dealing with solution management and strategic marketing management. The authors current interest lies in designing and executing strategies for engaging profitably new business opportunities in current and emerging communications markets. ______________ Contact Info: [email protected] Linkedin Antonis Hontzeas http://considerations.wordpress.com 2009 Antonis Hontzeas for free public use 3. L O N G T E R M E V O L U T I O N Long Term Evolution LTE (Long Term Evolution) or 3G Long Term Evolution is the evolution of mobile cellular communications technology towards a full edge to edge broadband ip network, and is introduced in 3rd Generation Partnership Project (3GPP) Release 8. The aim of this 3GPP project is to further develop the Universal Mobile Telecommunications System (UMTS) standard and provide an enhanced user experience and simplified technology for next generation mobile broadband. Scientists and design engineers from more than 60 operators, vendors and research institutes have teamed up to realise this radio access standardization effort. Much of the 3GPP Release 8 standard will be oriented towards upgrading UMTS to 4G mobile communications technology, and an all-IP flat architecture system. 4. L O N G T E R M E V O LU T IO N LTE targets requirements of next generation networks including downlink peak rates of at least 100Mbit/s, uplink rates of 50 Mbit/s and RAN (Radio Access Network) round-trip times of less than 10ms. LTE supports flexible carrier bandwidths, from 1.4MHz up to 20MHz as well as both FDD (Frequency Division Duplex) and TDD (Time Division Duplex). LTE further aspires to improve considerably spectral efficiency, lowering costs, improving services, making use of new spectrum and refarmed spectrum opportunities, and better integration with other open standards. The resulting architecture is referred to as EPS (Evolved Packet System) and comprises the E-UTRAN (Evolved UTRAN) on the access side and EPC (Evolved Packet Core) via the System Architecture Evolution concept (SAE), on the core network side. 4 5. L O N G T E R M E V O LU T IO N LTE advantages include high throughput, low latency, plug and play from day one, FDD and TDD in the same platform, superior end-user experience and simple architecture resulting in low operating expenditures (OPEX). LTE will also support seamless connection to existing networks, such as GSM, CDMA and WCDMA. However LTE requires a completely new RAN and core network deployment and is not backward compatible with existing UMTS systems. The standard includes: Peak download rates of 326.4 Mbit/s for 4x4 antennas, 172.8 Mbit/s for 2x2 antennas for every 20 MHz of spectrum. Peak upload rates of 86.4 Mbit/s for every 20 MHz of spectrum. 5 different terminal classes ranging from a voice centric class up to a high end terminal that supports the peak data rates. All terminals will be able to process 20 MHz bandwidth. At least 200 active users in every 5 MHz cell. (i.e., 200 active data clients) Sub-5ms latency for

small IP packets. Increased spectrum flexibility, with spectrum slices as small as 1.5 MHz .and as large as 20 MHz. W-CDMA requires 5 MHz slices, leading to some problems with roll-outs in 5 6. L O N G T E R M E V O LU T IO N countries where the 5 MHz spectrum is already allocated to 2 - 2.5G legacy GSM and cdmaOne. The 5 MHz chunks also limit the amount of bandwidth per handset. Optimal cell size of 5 km, 30 km sizes with reasonable performance, and up to 100 km cell sizes supported with acceptable performance. Coexistence with legacy standards (users can transparently start a call or transfer of data in an area using an LTE standard, and should coverage be unavailable, continue the operation without any action on their part using GSM/GPRS or W-CDMA-based UMTS or even 3GPP2 networks such as cdmaOne or CDMA2000) . Support for MBSFN (Multicast Broadcast Single Frequency Network). This feature can deliver services such as MBMS using the LTE infrastructure, and is a competitor to DVB-h. A large amount of the work is aimed at simplifying the architecture of the system, as it evolves from the existing hybrid (packet and circuit switching) network, to an all-IP flat architecture system. 6 7. L O N G T E R M E V O LU T IO N Why LTE ? Why is the cellular industry reconsidering the overall architecture of the GSM based mobile communication system after only a decade from the introduction of the very first 3G/UMTS networks? This is a common question and the chief answer has to do with the fact that the world is very different today that it was ten years ago. Fixed broadband connectivity is now ubiquitous with multi-megabit speeds available at reasonable cost to customers and business users via DSL, fiber and cable connections. Broadband is part of todays mobile customer experience. This shift in user perception is demonstrated by the rapid increase in the uptake of WCDMA and HSPA networks worldwide. As of January 2009, there are over 4 billion wireless subscribers and over 254 operators in more than 110 countries supporting WCDMA. 7 8. L O N G T E R M E V O LU T IO N In January 2009 237 operators had commercially launched HSPA in 105 countries and over 70% of HSDPA networks supported 3.6 Mbps (peak) or higher, and over 34 % of HSDPA networks supported 7.2 Mbps (peak) or higher. There were 66 commercial HSUPA systems commercially launched in 47 countries. The natural counterpart to HSDPA, HSUPA boosts mobile uplink speeds as high as 5.8 Mbit/s. This provides a valuable complement for operators wishing to introduce mobile broadband services demanding greater capacity and speed on both uplink and downlink. An example of this is Voice over IP (VoIP), where voice calls are delivered over the Internet or other IP networks in a packet-based session. Furthermore, other technologies have matured since UMTS was first commercialised in 2001. Mobile WiMAX which was accepted by ITU as the sixth radio access method for IMT-2000 (IMT-2000O FDMA TDD WMAN) is being deployed by operators in Asia-Pacific and the Americas. Some European carriers have expressed interest in deploying the technology as a complement to their current 3G/UMTS operations. The acceptance of mobile WiMAX as a part of IMT-2000 opens up the possibility of operators deploying the technology in 8 9. L O N G T E R M E V O LU T IO N their existing licensed 3G/UMTS spectrum allocations. Operators are thus presented with a choice of technologies to provide their customers with wireless broadband services. This will allow them either to compete with fixed operators or to provide broadband services in areas where the fixed infrastructure does not exist and would be too expensive to deploy. Against this backdrop, LTE offers compelling attractions for incumbent UMTS/HSPA operators such as the ability to re-use significant portions of their existing infrastructure, together with re-use existing spectrum assets. While LTE looks firmly to the future, it does so with a Return of Investment (ROI) approach. As a result, LTE will allow operators to generate fresh sources of value from their existing network investments while enjoying the significant economies of scale that flow from participation in the worlds biggest and most successful family of evolving cellular systems that are

specified by 3GPP. 9 10.L O N G T E R M E V O L U T I O N Flat Architecture A characteristic of next generation networks is that all connectivity and session control relies on TCP/IP. Since different functional domains can now communicate and interact easily, the result is a richer communications experience including enhanced voice, video, messaging services and advanced multimedia solutions. In 2004, 3GPP proposed Transmission Control Protocol/Internet Protocol (TCP/IP) as the future for next generation networks and began feasibility studies into All IP Networks (AIPN). Proposals developed included recommendations for 3GPP Release 7(2005), which acts as the foundation of 11.L O N G T E R M E V O L U T I O N higher level protocols and applicatons which form the LTE concept. These recommendations are part of the 3GPP System Architecture Evolution (SAE). Some aspects of All-IP networks, however, were already defined as early as release 4. 3GPP is defining IP-based, flat network architecture as part of the System Architecture Evolution (SAE) effort. LTESAE architecture and concepts have been designed for efficient support of mass-market usage of any IP-based service. The architecture is based on an evolution of the existing GSM/WCDMA core network, with simplified operations and smooth, cost-efficient deployment. The main component of the SAE architecture is the Evolved Packet Core (EPC), also known as SAE Core. The EPC will serve as equivalent of GPRS networks (via the Mobility Management Entity, Serving Gateway and PDN Gateway subcomponents). The subcomponents of the EPC are: MME (Mobility Management Entity): The MME is the key control node for the LTE access network. It is responsible for idle mode UE (User Equipment) tracking and paging procedure including retransmissions. It is involved in the bearer activation/deactivation process and is also responsible for choosing the SGW for a UE at the initial attach and at time of intra-LTE handover involving Core Network (CN) node relocation. It is responsible for authenticating the user (by interacting with the HSS). The Non-Access 11 12.L O N G T E R M E V O L U T I O N Stratum (NAS) signaling terminates at the MME and it is also responsible for generation and allocation of temporary identities to UEs. It checks the authorization of the UE to camp on the service providers Public Land Mobile Network (PLMN) and enforces UE roaming restrictions. The MME is the termination point in the network for ciphering/integrity protection for NAS signaling and handles the security key management. Lawful interception of signaling is also supported by the MME. The MME also provides the control plane function for mobility between LTE and 2G/3G access networks with the S3 interface terminating at the MME from the SGSN. The MME also terminates the S6a interface towards the home HSS for roaming UEs. S-GW (Serving Gateway): The SGW routes and forwards user data packets, while also acting as the mobility anchor for the user plane during inter-eNB handovers and as the anchor for mobility between LTE and other 3GPP technologies (terminating S4 interface and relaying the traffic between 2G/3G systems and PDN GW). For idle state UEs, the SGW terminates the DL data path and triggers paging when DL data arrives for the UE. It manages and stores UE contexts, e.g. parameters of the IP bearer service, network internal routing information. It also performs replication of the user traffic in case of lawful interception. P-GW (PDN gateway): The PDN GW provides connectivity to the UE to external packet data 12 13.L O N G T E R M E V O L U T I O N networks by being the point of exit and entry of traffic for the UE. A UE may have simultaneous connectivity with more than one PDN GW for accessing multiple PDNs. The PDN GW performs policy enforcement, packet filtering for each user, charging support, lawful interception and packet screening. Another key role of the PDN GW is to act as the anchor for mobility between 3GPP and non- 3GPP technologies such as WiMAX and 3GPP2 (CDMA 1X and EvDO). Radio The Release 8 air interface, E-UTRA (Evolved UTRA, the E- prefix being common to the evolved equivalents of older UMTS components) would be used by UMTS operators deploying their own

wireless networks. It's important to note that Release 8 is intended for use over any IP network, including WiMAX and WiFi, and even wired networks. 13 14.L O N G T E R M E V O L U T I O N The proposed E-UTRA system uses OFDMA for the downlink (tower to handset) and Single Carrier FDMA (SC-FDMA) for the uplink and employs MIMO (Multiple Input Multiple Output) with up to four antennas per station. The channel coding scheme for transport blocks is turbo coding couple with a contention-free quadratic permutation polynomial (QPP) turbo code internal interleaver. Orthogonal Frequency-Division Multiple Access (OFDMA) is a multi-user version of the popular Orthogonal frequency-division multiplexing (OFDM) digital modulation scheme. Multiple access is achieved in OFDMA by assigning subsets of subcarriers to individual users as shown in the illustration below. This allows simultaneous low data rate transmission from several users. 14 15.L O N G T E R M E V O L U T I O N OFDMA Advantages: Flexibility of deployment across various frequency bands with little needed modification to the air interface. Averaging interferences from neighboring cells, by using different basic carrier permutations between users in different cells. Interferences within the cell are averaged by using allocation with cyclic permutations. Orthogonality in the uplink by synchronizing users in time and frequency. Single Frequency Network coverage, where coverage problem exists and gives excellent coverage. Adaptive carrier allocation in multiplication of 23 carriers = nX23 carriers up to 1587 carriers (all data carriers). Frequency diversity by spreading the carriers all over the used spectrum. Time diversity by optional interleaving of carrier groups in time. Optimal cell capacity through adaptivity to the highest modulation a user can use. Less carriers means higher gain per carrier (up to 18dB gain for 23 carrier allocation instead of 1587 carriers), and increase in overall cell capacity. 15 16.L O N G T E R M E V O L U T I O N Recognised disadvantages of OFDMA: Higher sensitivity to frequency offsets and phase noise. Asynchronous data communication services such as web access are characterized by short communication bursts at high data rate. The complex OFDM electronics, including the FFT algorithm and forward error correction is constantly active independent of the data rate. This results in inefficient power consumption even though the FFT algorithm may hibernate during certain time intervals. The OFDM diversity gain and resistance to frequency-selective fading may partly be lost if very few sub-carriers are assigned to each user, and if the same carrier is used in every OFDM symbol. Adaptive sub-carrier assignment based on fast feedback information about the channel, or sub-carrier frequency hopping, is therefore desirable. Co-channel interference processing from neighbouring cells is more complex in OFDM than in CDMA. It would require dynamic channel allocation with advanced coordination among adjacent base stations. Fast channel feedback information and adaptive sub-carrier assignment is more complex than CDMA fast power control. 16 17.L O N G T E R M E V O L U T I O N Characteristics and principles of operation Adaptive user-to-subcarrier assignment is achieved from received channel condition feedback. If the assignment is done sufficiently fast, this further improves the OFDM robustness to fast fading and narrow-band cochannel interference, and makes it possible to achieve even better system spectral efficiency. Different number of sub-carriers can be assigned to different users, in view to support differentiated Quality of Service (QoS), i.e. to control the data rate and error probability individually for each user. OFDMA resembles code division multiple access (CDMA) spread spectrum, where users can achieve different data rates by assigning a different code spreading factor or a different number of spreading codes to each user. OFDMA can be seen as an alternative to combining OFDM with time division multiple access (TDMA) or time-domain statistical multiplexing, i.e. packet mode communication. Low-data-rate users can send continuously with low transmission power instead of using a "pulsed" high-power carrier. Constant delay, and shorter delay, can be achieved. OFDMA

can also be described as a combination of frequency domain and time domain multiple accesses, where the resources are partitioned in the 17 18.L O N G T E R M E V O L U T I O N time-frequency space and slots are assigned along the OFDM symbol index as well as OFDM sub- carrier index. OFDMA is considered as highly suitable for broadband wireless networks, due to advantages including scalability and MIMO-friendliness, and ability to take advantage of channel frequency selectivity. In spectrum sensing cognitive radio, OFDMA is a possible approach to filling free radio frequency bands adaptively. Single-carrier FDMA (SC-FDMA) is frequency- division multiple access scheme. It is a multi-user version of Single-carrier frequency domain equalization (SC-FDE) modulation scheme. SC-FDE can be viewed as a linearly precoded OFDM scheme (LP-OFDMA) or as a single carrier multiple access scheme. One prominent advantage over conventional OFDM and OFDMA is that the SC-FDE and LP-OFDMA/SCFDMA signals have lower peak- to-average power ratio (PAPR) because of its inherent single carrier structure. Just like in OFDM, guard intervals with cyclic repetition are introduced between blocks of symbols in view to efficiently eliminate time spreading (caused by multi-path propagation) among the blocks. In OFDM, fast Fourier transform (FFT) is applied on the receiver side on each block of symbols, and inverse 18 19.L O N G T E R M E V O L U T I O N FFT (IFFT) on the transmitter side. In SC-FDE, both FFT and IFFT are applied on the receiver side, but not on the transmitter side. In SC-FDMA, both FFT and IFFT are applied on the transmitter side, and also on the receiver side. In OFDM as well as SC-FDE and SC-FDMA, equalization is achieved on the receiver side after the FFT calculation, by multiplying each Fourier coefficient by a complex number. This helps combat frequency-selective fading and phase distortion. In SC-FDMA, multiple access is made possible by inserting silent fourier-coefficients on the transmitter side before the IFFT, and removing them on the receiver side before the IFFT. Different users are assigned to different fourier-coefficients (sub- carriers). The use of OFDM, a system where the available spectrum is divided into many thin carriers, each on a different frequency, each carrying a part of the signal, enables E-UTRA to be much more flexible in its use of spectrum than the older CDMA based systems that dominated 3G. CDMA networks require large blocks of spectrum to be allocated to each carrier, to maintain high chip rates, and thus maximize efficiency. Building radios capable of coping with different chip rates (and spectrum bandwidths) is more complex than creating radios that only send and receive one size of carrier, so generally CDMA based systems standardize both. 19 20.L O N G T E R M E V O L U T I O N Standardizing on a fixed spectrum slice has consequences for the operators deploying the system: too narrow a spectrum slice would mean the efficiency and maximum bandwidth per handset suffers; too wide a spectrum slice implies deployment issues and spectrum cramming with legacy systems. This became a major issue in the US roll-out of UMTS over W-CDMA, where W- CDMA's 5 MHz requirement often left no room in some markets for operators to co-deploy it with existing GSM standards. LTE supports both FDD and TDD mode. Each mode has its own frame structure within LTE and these are aligned with each other meaning that similar hardware can be used in the base stations and terminals to allow for economy of scale. The TDD mode in LTE is aligned with TD-SCDMA as well allowing for coexistence. Ericsson demonstrated at the MWC 2008 in Barcelona for the first time in the world both LTE FDD and TDD mode on the same base station platform. Downlink LTE uses OFDM for the downlink that is, from the base station to the terminal. OFDM meets the LTE requirement for spectrum flexibility and enables cost- efficient solutions for very wide carriers with high peak rates. It is a well-established technology, for example in standards such as IEEE 802.11a/b/g, 802.16, HIPERLAN-2, DVB and DAB. 20 21.L O N G T E R M E V O L U T I O N In the time domain you have a radio frame that is 10 ms long and consists of 10 sub frames of 1 ms each. Every sub frame consists of 2 slots

where each slot is 0.5 ms. The subcarrier spacing in the frequency domain is 15 kHz. Twelve of these subcarriers together (per slot) is called a resource block so one resource block is 180 kHz. 6 Resource blocks fit in a carrier of 1.4 MHz and 100 resource blocks fit in a carrier of 20 MHz. Supported modulation formats on the downlink data channels are QPSK, 16QAM and 64QAM. For MIMO operation, a distinction is made between single user MIMO, for enhancing one user's data throughput, and multi user MIMO for enhancing the cell throughput. In MIMO systems, a transmitter sends multiple streams by multiple transmit antennas. The transmit streams go through a matrix channel which consists of multiple paths between multiple transmit antennas at the transmitter and multiple receive antennas at the receiver. Then, the receiver gets the received signal vectors by the multiple receive antennas and decodes the received signal vectors into the original information. Spatial multiplexing techniques makes the receivers very complex, and therefore it is 21 22.L O N G T E R M E V O L U T I O N typically combined with orthogonal frequencydivision multiplexing (OFDM) or with Orthogonal Frequency Division Multiple Access (OFDMA) modulation, where the problems created by multi-path channel are handled efficiently. Uplink In the uplink, LTE uses a pre-coded version of OFDM called Single Carrier Frequency Division Multiple Access (SC-FDMA). This is to compensate for a drawback with normal OFDM, which has a very high Peak to Average Power Ratio (PAPR). High PAPR requires expensive and inefficient power amplifiers with high requirements on linearity, which increases the cost of the terminal and drains the battery faster. SC-FDMA solves this problem by grouping together the resource blocks in such a way that reduces the need for linearity, and so power consumption, in the power amplifier. A low PAPR also improves coverage and the cell-edge performance. Supported modulation formats on the uplink data channels are QPSK, 16QAM and 64QAM. If virtual MIMO / Spatial division multiple access (SDMA) is introduced the data rate in the uplink direction can be increased depending on the number of antennas at the base station. With this technology more than one mobile can reuse the same resources. 22 23.L O N G T E R M E V O L U T I O N Spectrum LTE and WIMAX each have their own benefits and are suited to address different target market segments.WiMAX is primarily TDD (Time-Division- Duplex) and will address operators that have unpaired spectrum whereas LTE is FDD (Frequency- Division-Duplex) and will address operators that have paired spectrum. TDD allows the up-link and down-link to share the same spectrum, whereas FDD has the up-link and down-link transmit on different frequencies. Advanced Wireless Services (AWS) In September 2006 the FCC completed an auction of AWS licenses (Auction No. 66) in which the winning bidders won a total of 1,087 licenses. In the spirit of the U.S. governments free-market policies, the FCC does not usually mandate that specific technologies be used in specific bands. Therefore, owners of AWS spectrum are free to use it for just about any 2G, 3G or 4G, technology. This is the foundation of the tech neutrality concept. This spectrum uses 1.710-1.755 GHz for the uplink and 2.110-2.155 GHz for the downlink. The 90 MHz of spectrum is divided into six frequency blocks labeled A through F. Blocks A, B, and F are 20 23 24.L O N G T E R M E V O L U T I O N megahertz each and blocks C, D, and E, are 10 megahertz each. The FCC wanted to harmonize its new AWS spectrum as closely as possible with Europes UMTS 2100 band. However, the lower half of Europes UMTS 2100 band almost completely overlaps with the U.S PCS band, so complete harmonization wasnt an option. Given this constraint, the FCC harmonized AWS as much as possible with the rest of the world. The upper AWS band aligns with Europes UMTS 2100 base transmit band, and the lower AWS band aligns with Europes GSM 1800 mobile transmit band. 700 MHz In the U.S. this includes 62 MHz of spectrum broken into 4 blocks; Lower A (12 MHz), Lower B (12 MHz), Lower E (6 MHz unpaired), Upper C (22 MHz), Upper D (10 MHz). These bands are highly prized chunks of spectrum and a tremendous resource: the low

frequency is efficient and will allow for a network that doesnt require a dense buildout and provides better in-building penetration than higher frequency bands. In 2005, the President of the U.S. signed the Digital Television Transition and Public Safety Act of 2005 into law, designating February 17, 2009 as the date that all U.S. TV stations must complete the transition from analog to digital broadcasts, vacating the 700 MHz radio frequency spectrum, and thereby making it fully available for new services. The upper C block will have open access rules. In the FCCs context open access means that there will be no locking and no blocking by the network operator. That is, 24 25.L O N G T E R M E V O L U T I O N the licensee must allow any device to be connected to the network as long as the device is compatible with, and will not harm the network (i.e., no locking), and the licensee cannot impose restrictions against content, applications, or services that may be accessed over the network (i.e., no blocking). The upper D block will include a Public/Private Partnership obligation. As part of the 700 MHz FCC decision, the commercial license owner will combine this asset with an additional 10 MHz of adjacent spectrum licensed to a national Public Safety Broadband Licensee (PSBL), creating a public-private partnership. In exchange for constructing and operating the shared network to Public Safety specifications, the D Block commercial licensee will gain access to spectrum, on a secondary basis, held by the PSBL to provide it with additional capacity to furnish nonpriority communications services to commercial subscribers. Indications are strong that in Europe and much of the rest of the world, the so-called digital dividend the freeing up of spectrum brought about by the switch from analog to digital TV- will also allow a significant amount of spectrum to be carved out for wireless broadband in the UHF band. While the details of the digital dividend outside of the U.S are still being debated, the expectation is that allocations will align with, or as closely as possible with the U.S. allocations in order to facilitate Global Roaming. 25 26.L O N G T E R M E V O L U T I O N Refarming GSM 900 MHz The 900 MHz band is the most ubiquitous and the most harmonized worldwide wireless telecommunication spectrum band available today. It also has the benefit of increased coverage and subsequent reduction in network deployment costs compared to deployments at higher frequencies, making it a highly strategic spectrum band. Furthermore, 900MHz offers improved building penetration and is particularly well suited to supporting those regions that have a predominantly rural population. The ongoing subscriber migration from GSM to UMTS taking place in over 150 countries worldwide is relieving pressure on the GSM900 networks and is starting to free up some spectrum capacity in that band. Consequently, many operators are evaluating the potential for deploying UMTS (HSPA/HSPA+) in this GSM900 band. On the other hand a number of operators are considering keeping that freed-up GSM spectrum until LTE becomes available in the beginning of 2010.From a planning perspective, UMTS deployments require a full 5 MHz of spectrum to be freed up before being deployed in that band. Additionally, the availability of mobile devices able to support 900 MHz is not planned until 2010 and counting. In contrast, LTE will be able to be deployed in spectrum bands as small as 1.25MHz and it provides good initial deployment scalability as it can be literally squeezed in as the GSM spectrum is freed-up, and grow as more spectrum becomes available. These factors reduce the time advantage of deploying UMTS (HSPA/HSPA+) in the 900 MHz band.In addition, 26 27.L O N G T E R M E V O L U T I O N with the improved spectrum efficiency, LTE deployment in the 900 MHz band would bring the highest capacity benefit and also provide operators the ability to deploy an LTE network with greater coverage at a much reduced cost compared to higher frequency spectrum hence provide a good mobile broadband data countrywide layer. Finally, deploying LTE in 900MHz can also bring the additional cost and logistic benefits of being able to deploy LTE at existing GSM sites as the coverage of GSM/LTE in 900MHz should be very similar.It is unlikely that operators in Europe would

shut down their GSM networks as GSM still provides the backbone of voice communication and global roaming. GSM networks with EDGE or future E- EDGE upgrades do provide a good data sub-layer to hand over to, when, initially, LTE coverage will not available. The most likely scenario is that LTE at 900 MHz could run alongside GSM900 for a 5-10 year period after which time a GSM shutdown might be considered. The willingness of operators to commit to refarming 900 MHz will in many cases hinge on discussions at the EU level on the continuing legal applicability of the GSM Directives. Based on recent development, it now looks like the EU Parliament has endorsed the refarming of GSM spectrum paving the way for potential deployments of LTE into 900MHz. IMT Extension Band WRC-2000 identified three additional bands for terrestrial IMT-2000 including 2500-2690 MHz. As a result, starting in 2008, as much as 140 MHz of IMT2000 FDD expansion spectrum will be allocated 27 28.L O N G T E R M E V O L U T I O N in Europe; 2500-2570 MHz for uplink and 26202690 MHz for downlink. Additionally up to 50 MHz (2570 MHz-2620 MHz) will be allocated as an unpaired TDD band. As a globally common band plan, this spectrum band will also enable economies of scale and global roaming. It is likely that LTE will be deployed in the FDD portion of this band due to its benefits as compared to HSPA/ HSPA+. In addition, this band is the only one of 2 bands that offers the unique opportunity for the deploymentof LTE in maximum spectrum bandwidth by providing channels of up to 20 MHz. In that sense, it is largely expected that current mobile operators will try and secure the maximum 20 MHz allocation to provide themwith the ability to support future mobile broadband capacity requirement. Other Candidate Bands GSM 1800: Interest from Americas, Asia Pac and some countries in EMEA, especially for the refarming of existing GSM spectrum. UMTS Core Band 2.1 GHz: This is the core 3-3.5G band for EMEA, AsiaPac & LAC with deployments of networks in over 150 countries. Most operators were awarded 2, 3 and in some limited instances 4 x 5 MHz carriers in this spectrum band. Most operators have so far only used one band, but with mobile data growth and subscriber migration to UMTS/HSPA, it is yet unclear if and how many carriers will be available in that band for LTE services in 2010 - 2012. 28 29.L O N G T E R M E V O L U T I O N PCS 1900: Alternative to core band, which is not available in EMEA. Service providers may refarm this spectrum after the new 700 MHz and AWS spectrum is consumed. Cellular 850: Refarm this spectrum after the new 700 MHz and AWS spectrum is consumed. Very popular alternative in former Warsaw pact countries that have joined NATO. Future Spectrum Requirements ITU (ITU-R M.2078) projects overall spectrum requirements for the future development of IMT-2000 and for IMT-Advanced. The results assert that additional spectrum demand of between 500 MHz and 1 GHz will be needed in all ITU Regions by 2020. This report expresses traffic growth factors of 2 to 3 by 2010 for Europe compared to today. It is clear that existing bands will not be enough for IMT services approximately after the year 2015 and additional bands are needed. In order to deliver a true broadband experience, large blocks of spectrum will need to be identified and allocated. One of the goals of WRC-07 was to identify additional, harmonized, worldwide spectrum, to enable global roaming services while bringing economies of scale to vendors. In this regard, WRC-07 identified the 450-470 MHz and 2300-2400 MHz bands for IMT (which includes both IMT-2000 and IMT-Advanced) on a global basis. In addition, WRC-07 identified portions or all of 698-862 MHz and 3400-3600 MHz. The identification and use of these bands varies from region-to-region and country-to-country as detailed in 29 30.L O N G T E R M E V O L U T I O N below. The Final Acts from WRC-07 provide full details on these identifications. WC-07 made positive steps towards making spectrum available for future LTE deployments. In particular, WRC-07 began the process of migrating broadcast spectrum in the 698- 806 MHz band to mobile applications. The next steps will be working with individual countries to ensure spectrum is recovered and licensed for mobile

systems at a national or regional level around the world. In addition, achieving an internationally harmonized band plan for use of the spectrum is also important. 30 31.L O N G T E R M E V O L U T I O N NETWORK EVOLUTION In parallel with its advanced new radio interface, realising the full potential of LTE requires an evolution from todays hybrid packet/circuit switched networks to a simplified, all-IP (Internet Protocol) environment. From an operators point of view, the pay-off is reduced delivery costs for rich, blended applications combining voice, video and data services plus simplified interworking with other fixed and wireless networks. By creating new value-added service possibilities, LTE promises long-term revenue stability and growth for around two hundred mobile operators that are already firmly committed to the UMTS/HSPA family of 3G systems. Just as 31 32.L O N G T E R M E V O L U T I O N importantly, it provides a powerful tool to attract customers who are provided with an increasing number of technology options for broadband connectivity on the move. Based on the UMTS/HSPA family of standards, LTE will enhance the capabilities of current cellular network technologies to satisfy the needs of a highly demanding customer accustomed to fixed broadband services. As such, it unifies the voiceoriented environment of todays mobile networks with the data-centric service possibilities of the fixed Internet. Another key goal of the project is the harmonious coexistence of LTE systems alongside legacy circuit switched networks. This will allow operators to introduce LTEs all-IP concept progressively, retaining the value and preserving the ROI of their existing voice-based service platforms while benefiting from the performance boost that LTE delivers for data services. 3GPP proposed migrating towards an all-IP core network as early as Release 4, hinting at what would become a prominent feature of later UMTS/HSPA releases and ultimately LTE. The concept of Long Term Evolution for todays 3G/UMTS standard was discussed in detail in 2004, when a RAN (Radio Access Network) 32 33.L O N G T E R M E V O L U T I O N Evolution Workshop in Toronto accepted contributions from more than 40 operators, manufacturers and research institutes (including 3GPP members as well as non-member organisations). Contributors offered a range of views and proposals on the evolution of the UTRAN (Universal Terrestrial Radio Access Network). Following the Toronto workshop, in December 2004, 3GPP launched a feasibility study in order to develop a framework for the evolution of the 3GPP radioaccess technology towards a high-data-rate, low-latency and packet- optimised radio -access technology. In other words, the study would map out specifications for a radio access network (RAN) capable of supporting the broadband Internet user experience we already enjoy in todays fixed networks with the addition of full mobility to enable exciting new service possibilities. Today, specifications for LTE are encapsulated in 3GPP Release 8, the newest set of standards that defines the technical evolution of 3GPP mobile network systems. Release 8 succeeds the previous iteration of 3G standards Release 7 that includes specifications for HSPA+, the missing link between HSPA and LTE. Defined in 3GPP Releases 7 and 8, HSPA+ allows the introduction of a simpler, flat, IP-oriented network architecture while bypassing many of the legacy equipment requirements of UMTS/HSPA. 33 34.L O N G T E R M E V O L U T I O N Peak data rates with HSPA+ are 28 Mbit/s on the downlink and 11.5 Mbit/s on the uplink using 2x2 MIMO (Multiple-Input Multiple-Output) antenna techniques and 16QAM (Quadrature Amplitude Modulation). However, HSPA+ can further boost data rates up to 42 Mbit/s on the downlink and 23 Mbit/s on the uplink using 2x2MIMO and 64QAM, a combination that is part of Release 8. As such, HSPA+ slots neatly between the already impressive performance of HSPA (with its theoretical downlink performance of up to 14.4 Mbit/s) and LTE that promises rates of 300 Mbit/s in the downlink and 75 Mbit/s in the uplink forevery 20 MHz of paired spectrum. 34

35.L O N G T E R M E V O L U T I O N SERVICES Through a combination of very high downlink (and uplink) transmission speeds, more flexible, efficient use of spectrum and reduced packet latency, LTE promises to enhance the delivery of mobile broadband services while adding exciting new value-added service possibilities. But what does this mean in terms of operator revenues and subscriber growth in a market where broadband connectivity is rapidly becoming commoditised? An overarching objective for LTE is the stabilisation and reversal of steadily declining ARPU (Average Revenue per User) that is characteristic of many mobile markets. A study conducted in 2007 for the UMTS Forum, compared the services supported by todays mobile network technologies with the richer service possibilities that LTE enables through higher downlink speeds and reduced latency for packet- based services. 35 36.L O N G T E R M E V O L U T I O N For consumers, this enriched user experience will be typified by the large- scale streaming, downloading and sharing of video, music and rich multimedia content. All these services will need significantly greater throughput to provide adequate quality of service, particularly as users future expectations will be increased by the growing popularity of other high- bandwidth platforms like High Definition TV transmission. For business customers it will mean high-speed transfer of large files, highquality videoconferencing and secure nomadic access to corporate networks. Similarly, LTE brings the characteristics of todays Web 2.0 into the mobile space for the first time. Alongside secure e-commerce, this will span real- time peer-topeer applications like multiplayer gaming and file sharing. In addition, the study considered a distinct set of services that do not have clear analogies in todays fixed network environment. These include machine to machine (M2M) applications and the large-scale exchange of community based projects. 36 37.L O N G T E R M E V O L U T I O N 37 38.L O N G T E R M E V O L U T I O N LTE ADVANCED Being defined as a 3G technology LTE does not meet the requirements for 4G also called IMT Advanced as defined by the International Telecommunication Union such as peak data rates up to 1 Gbit/s. The ITU has invited the submission of candidate Radio Interface Technologies (RITs) following their requirements as mentioned in a circular letter. The mobile communication industry and standardisation organisations have therefore started to work on 4G access technologies such as LTE Advanced. At a workshop in April 2008 in China 3GPP agreed the plans for future work on Long Term Evolution (LTE) a first set of 3GPP requirements on LTE Advanced has been approved in June 2008. Besides the peak data rate 1 Gbit/s that fully supports the 4G requirements as defined by the ITU- R, it also targets faster switching between power states and improved performance at the cell edge. Detailed proposals are being studied within the working groups. 38 39.L O N G T E R M E V O L U T I O N Proposed Features: Backward compatibility with LTE and 3gpp legacy systems. Peak data rate 1 Gbps DL and 500 Mbps UL. BW about 70 MHz in DL and 40 MHz in UL. C plane latency from Idle with IP address to Connected less than 50 ms and U plane latency shorter than 5 ms towards RAN, taking into account 30% retransmissions (FFS). Cell edge throughput twice that of LTE. 3 times higher average user throughput than LTE. 3 times more spectral efficient than LTE. Support of scalable BW and spectrum aggregation. Peak spectrum efficiency 30 bps/Hz in DS and 15 bps/Hz in UL. 39 40.L O N G T E R M E V O L U T I O N Technology proposals The proposals could roughly be categorized into: UE Dual TX antenna solutions for SU-MIMO and diversity MIMO scalable system bandwidth exceeding 20 MHz, potentially up to 100MHz. Local area optimization of air interface. Nomadic / Local Area network and mobility solutions. Flexible Spectrum Usage. Cognitive Radio. Various concepts for Relay Nodes. Automatic and autonomous network configuration and operation. Enhanced precoding and forward error

correction. Interference management and suppression. Asymmetric bandwidth assignment for FDD. Hybrid OFDMA and SC-FDMA in uplink. UL/DL inter eNB coordinated MIMO. As can be seen most of the proposals address the PHY layer. 40 41.L O N G T E R M E V O L U T I O N Support of larger bandwidth in LTE Advanced In 4G, bandwidths up to 100MHz are foreseen to provide peak data rates up to 1 Gbps. In general OFDM provides simple means to increase bandwidth by adding additional subcarrier. Since Release 8 UE capabilities only support 20MHz bandwidth, the scheduler must consider a mix of terminals. Due to a fragmented spectrum the available bandwidth might also be not contiguous. To ensure backward compatibility to current LTE the control channels such as synchronisation, broadcast or PDCCH/PUCCH might be needed per 20MHz. Some of the main challenges for 100 MHz terminals are: Availability of RF filter for such an large bandwidth and bandwidths of variable range Availability of Analog Digital Converter with such a high sampling rate and quantization resolution Increased decoding complexity e.g. for channel decoding and increased soft buffer size Minimum changes to the specifications will be required if Resource Allocation, MIMO, Link Adaptation, HARQ etc are done per 20MHz. The scheduler must operate across the bandwidth and there will be a larger number of transport blocks per transmission time interval. Currently the Frequency Division Duplex (FDD) schemes as defined for LTE in Release 8 are limited to operate in a fully symmetric allocation of paired spectrum. This makes it difficult to find suitable FDD spectrum allocations 41 42.L O N G T E R M E V O L U T I O N and also cannot efficiently support asymmetric traffic. For LTE Advanced more flexible bandwidth allocations are currently being considered. LTE Advanced will be standardised in the 3GPP specification Release 10 and will be designed to meet the 4G requirements as defined by ITU. Amongst others 4G technologies must support various bandwidth allocations up to 100MHz and shall support peak data rates up to 1 Gbps for stationary terminals. LTE Advanced, which is likely to be the first true 4G technology, will be a smooth evolution of the LTE standard will be based on same principles. Work on the requirements is already progressing in 3GPP while work on technology proposals is expected to go on for some time within the working groups. Several changes on the physical layer can be expected to support larger bandwidths with more flexible allocations and to make use of further enhanced antenna technologies. Coordinated base stations with coordinated scheduling, coordinated MIMO or interference management and suppression will also require changes on the network architecture. 42 43.L O N G T E R M E V O L U T I O N Strategic Marketing Perspective Long Term Evolution has been, directly or indirectly, about 14 years in the making when the cellular industry decided to slowly, but surely, abandon the circuit switched global title/ISDN/SS7 network (which had been around in one way or another since the beginning of the 1940s) and migrate to an all ip framework (GSM- GPRS-3G (incl. HSPA)-SAE/LTE - 4G LTE Advanced). A number of LTE promotional materials state that LTE gives equivalent fixed line and better voice service. This kind of positioning does injustice to mobile communication technologies and generates unrealistic expectations. Mobile throughput and quality will never be able to compete with state of the art fixed and should not be positioned to. Fixed technology propagates within a controlled environment (ex. a wire) while mobile technology (propagation based) is always challenged by nature (propagation effects etc). If LTE boasts 100 Mbps downlink and 50 Mbps uplink, fixed can 43 44.L O N G T E R M E V O L U T I O N deliver via fiber 100Gbps symmetrical. If mobile reaches 100 Gbps (which will require a good portion of spectrum), then fixed will top 100 Tbps. Mobile technologies should be marketed for the benefit that they add, i.e. that they offer mobility with an adequate infrastructure to accommodate the required services with resilience and certainty. Mobility is the key word and not Compare. LTE goes a long way in offering mobility based broadband services. In addition, the flattened network will make it

more manageable and less expensive to maintain. The fact that it rests (finally) on a common architecture/protocol (ip) implies that it can eventually align its roadmaps with other ip based systems, including an ip based fixed network (implying an eventual technical convergence to a common core network for fixed/mobile systems). LTE does not go a long way in opening up the network to accommodate third party initiatives, even though the IMS subsystem will indeed provide APIs to independent approved software developers. LTE is still very much a telecom network and not an open network as many from the other side of the fence wouldve hoped. The fact that LTE is an IMS based network (implying SIP based central core network control) implies limited accommodation of peer advancements and surrogate based technologies which are emerging rapidly and accelerating the evolution at the edge of the network. 44 45.L O N G T E R M E V O L U T I O N Summary Most operators will upgrade their packet core network (SGSN, GGSN etc) towards the Evolved Packet Core functionality (initially this will be a pure software upgrade but eventually, once the CS functionality is totally removed, this will be replaced by high capacity routing mechanisms). These boxes will then be replaced by high capacity high speed dumb ip routers and the mobility intelligence will reside in servers. This means that voice call handling (which will be ip based) will be nothing more than another software application and pcm based communication will be, at least for mobile technology, a thing of the past. 45

Digitel 3G Banda Ancha Mvil. HSPA/GSM Movistar Movilnet CDMA 1X acceso mltiple para redes digitales (voz, datos, sealizacin) Uno de los problemas a resolver en comunicaciones de datos es cmo repartir entre varios usuarios el uso de un nico canal de comunicacin o medio de transmisin, para que puedan gestionarse varias comunicaciones al mismo tiempo. Sin un mtodo de organizacin, apareceran interferencias que podran bien resultar molestas, o bien directamente impedir la comunicacin. Este concepto se denomina multiplexado o control de acceso al medio, segn el contexto. Para resolverlo, CDMA emplea una tecnologa de espectro expandido y un esquema especial de codificacin, por el que a cada transmisor se le asigna un cdigo nico, escogido de forma que sea ortogonal respecto al del resto; el receptor capta las seales emitidas por todos los transmisores al mismo tiempo, pero gracias al esquema de codificacin (que emplea cdigos ortogonales entre s) puede seleccionar la seal de inters si conoce el cdigo empleado.