libro Física II 2015.pdf

100
Calidad que se acredita internacionalmente ASIGNATURA FÍSICA II (TEXTO UNIVERSITARIO)

Transcript of libro Física II 2015.pdf

Page 1: libro Física II 2015.pdf

Pág. 1

Asignatura: FISICA II

Calidad que se acredita internacionalmente

ASIGNATURA

FÍSICA II

(TEXTO UNIVERSITARIO)

Page 2: libro Física II 2015.pdf

Pág. 2

Asignatura: FISICA II

Universidad Continental

Material publicado con fines de estudio

Distribución Gratuita

Sexta edición

Huancayo, 2015

MISIÓN

Somos una universidad privada,

innovadora y comprometida con el

desarrollo del Perú, que se dedica a formar personas competentes, íntegras y

emprendedoras, con visión internacional;

para que se conviertan en ciudadanos

responsables e impulsen el desarrollo de

sus comunidades, impartiendo

experiencias de aprendizaje vivificantes e inspiradoras; y generando una alta

valoración mutua entre todos los grupos de interés.

VISIÓN

Ser una de las 10 mejores universidades privadas del Perú al año 2020,

reconocidos por nuestra excelencia

académica y vocación de servicio, líderes

en formación integral, con perspectiva

global; promoviendo la competitividad del país.

Page 3: libro Física II 2015.pdf

Pág. 3

Asignatura: FISICA II

PRESENTACIÓN

La física es una ciencia natural que estudia las propiedades del

espacio, el tiempo, la materia, la energía, así como sus interacciones.

La física no es sólo una ciencia teórica; es también una ciencia

experimental. Como toda ciencia, busca que sus conclusiones puedan ser

verificables mediante experimentos y que la teoría pueda realizar predicciones

de experimentos futuros. Dada la amplitud del campo de estudio de la física,

así como su desarrollo histórico en relación a otras ciencias, se la puede

considerar la ciencia fundamental o central, ya que incluye dentro de su campo

de estudio a la química, la biología y la electrónica, además de explicar sus

fenómenos.

Las competencias a desarrollar son: Analiza y aplica los conceptos, leyes, teorías y modelos más importantes y generales de la física, con una visión global y un manejo científico básico, demostrando una actitud crítica con respecto a la información producida y recibida. Identifica los fenómenos cotidianos, físicos, y tecnológicos; aplicando sus conocimientos de los fenómenos ondulatorios, mecánicos, térmicos, electromagnéticos, ópticos y la relatividad, reconociendo el valor de cada uno como una forma de investigación científica y sus consecuencias. En general, los contenidos propuestos en el texto universitario, se dividen

en diez y seis capítulos: Movimiento periódico, mecánica de fluidos, ondas

mecánicas, calor y termodinámica, carga eléctrica y campo eléctrico, ley de

gauss, corriente, resistencia y fuerza electromotriz, circuitos de corriente

continua, campo magnético y fuerzas magnéticas, inducción electromagnética,

inductancia y corriente alterna, ondas electromagnéticas, óptica y física

moderna, desarrollados a partir del texto (Francis W. Sears, Mark W.

Zemansky, Hugh D. Young y Roger A. Freedman. Física Universitaria. Vol 1

y 2. XI Edición Pearson Education; México; 2006.).

Se recomienda al estudiante desarrollar ejercicios relacionados con el

cálculo integral; así como una permanente lectura de estudio junto a una

minuciosa investigación de campo, vía internet, la consulta a expertos y los

resúmenes. El contenido del material se complementará con las lecciones

presenciales y a distancia que se desarrollan en la asignatura.

Deseo expresar mi agradecimiento a las personas que confiaron en encomendarme la elaboración del presente material de estudio, el cual será de gran utilidad en el desempeño académico del estudiante.

El Autor

Page 4: libro Física II 2015.pdf

Pág. 4

Asignatura: FISICA II

ÍNDICE PRESENTACIÓN ..................................................................................................... 3

ÍNDICE................................................................................................................. 4

UNIDAD I

MAS-ONDAS-FLUIDOS-TERMODINAMICA , CALOR Y ELECTROSTATICA

Tema 01 ..............................................................................................................26 Movimiento Periódico ............................................................................................26

Práctica Dirigida N° 01 ..........................................................................................27

Tema 02 ..............................................................................................................31

Mecánica de Fluidos ..............................................................................................31 Práctica Dirigida N° 02 ..........................................................................................33

Tema 03 .................................................................................................................

Ondas Mecánicas .....................................................................................................

Práctica Dirigida N° 03 ............................................................................................. Tema 04 .................................................................................................................

Calor y Termodinámica.............................................................................................

Práctica Dirigida N° 04 .............................................................................................

Tema 05 ................................................................................................................

Carga Eléctrica y Campo Eléctrico .............................................................................. Práctica Dirigida N° 05 .............................................................................................

Tema 06 .................................................................................................................

Ley de Gauss .......................................................................................................62

Práctica Dirigida N° 06 ............................................................................................. Tema 07 .................................................................................................................

Potencial Eléctrico....................................................................................................

Práctica Dirigida N° 07 ..........................................................................................69

Tema 08 ................................................................................................................. Capacitancia y Dieléctricos...................................................................................... 1

Práctica Dirigida N° 08 .............................................................................................

UNIDAD II

CIRCUITOS ELECTRICOS Y ELECTROMAGNETISMO Tema 09 .............................................................................................................78

Corriente, Resistencia y F.E.M ................................................................................78

Práctica Dirigida N° 09 ..........................................................................................80

Tema 10 ..............................................................................................................84

Circuitos de Corriente Continua ..............................................................................84 Práctica Dirigida N° 10 ..........................................................................................86

Tema 11 ..............................................................................................................90

Campo Magnético y Fuerzas Magnéticas ..................................................................90

Práctica Dirigida N° 11 ..........................................................................................92 Tema 12 ..............................................................................................................96

Fuentes de Campo Magnético e Inducción Electromagnética ......................................96

Práctica Dirigida N° 12 ..........................................................................................98

Tema 13 ............................................................................................................ 101 Inductancia y Corriente Alterna ............................................................................ 101

Práctica Dirigida N° 13 ........................................................................................ 103

Tema 14 ............................................................................................................ 106

Ondas Electromagnéticas..................................................................................... 106

Práctica Dirigida N° 14 ........................................................................................ 108 Tema 15 ............................................................................................................ 109

Óptica ............................................................................................................... 109

Práctica Dirigida N° 15 ........................................................................................ 110

Tema 16 ............................................................................................................ 113 Física Moderna ................................................................................................... 113

Práctica Dirigida N° 16 ........................................................................................ 115

Anexos .............................................................................................................. 117

Page 5: libro Física II 2015.pdf

Pág. 5

Asignatura: FISICA II

GUÍA DE PRÁCTICA DE LABORATORIO

PRIMERA UNIDAD

GUÍA DE PRÁCTICA N° 1 (MOVIMIENTO ARMONICO SIMPLE – PENDULO SIMPLE)

GUÍA DE PRÁCTICA N° 2 (PRINCIPIO DE ARQUIMIDEZ)

GUÍA DE PRÁCTICA N° 3 (MEDICION ELECTRICA BASICA)

GUÍA DE PRÁCTICA N° 4 (CARGA Y DESCARGA DE UN CONDENSADOR)

Page 6: libro Física II 2015.pdf

Pág. 6

Asignatura: FISICA II

LABORATORIO N° 1

(Tema: Movimiento Armónico Simple)

INSTRUCCIONES: constatar lo teórico con lo práctico y muestre conclusiones

I. INTRODUCCIÓN

En esta actividad analizaremos el periodo de oscilación de una masa, sujeta a un resorte, para ello determinaremos primero la constante del resorte en forma experimental

aproximada sin mucha rigurosidad para una pequeña muestra de datos, con lo que el error

debe ser relativamente alto para este tipo de diseño experimental, pero podremos juzgar la

veracidad del modelo newtoniano del oscilador a pesar de la aproximación de ello

II. OBJETIVOS

III. MATERIALES Y EQUIPOS

Nº DESCRIPCION CANTIDAD

01 Soporte Universal con Nuez 02

02 Varilla de aprox. 1m 01

03 Resorte 01

04 Regla milimetrada 01

05 Cronometro Digital 01

06 Pesas de diferentes valores 01

07 Cinta Adhesiva 01

08 Balanza digital 01

IV. FUNDAMENTO TEORICO

Consideremos un cuerpo de masa m suspendido del extremo inferior de un resorte vertical de masa despreciable, fijo en su extremo superior, como se

muestra la Figura 1. Si se aplica una fuerza al cuerpo desplazándolo una

pequeña distancia y luego se le deja en libertad, entonces oscilará a ambos

lados de la posición de equilibrio (N.R) entre las posiciones + A y – A, debido a la acción de la fuerza elástica que aparece en el resorte. Este

movimiento se denomina Movimiento Armónico. Si este movimiento se

realiza en ausencia de fuerzas de rozamiento, entonces se definirá un

Movimiento Armónico Simple ( M.A.S. ).

Si, x es la posición del cuerpo, respecto a la posición de equilibrio, en el instante de tiempo t, entonces la ecuación de movimiento es:

kxma (1)

Como, 2

2

dt

xda

, remplazando y ordenando términos en la ecuación anterior, tenemos:

0)(

2

2

xm

k

dt

xd

(2)

Sección : …………………………..………………………... Docente : Escribir el nombre del docente Unidad: Indicar Unidad Semana: Indicar Semana

Apellidos : ……………………………..…………………………. Nombres : …………………………………..……………………. Fecha : …../..…/2015

Explicar algunos aspectos del movimiento armónico simple de un resorte en suspensión vertical.

Establecer la relación entre cantidades físicas tales como: Periodo T, la masa m, la Amplitud A, de las oscilaciones simples de un sistema masa- resorte.

Encontrar la constante elástica del resorte y verificar la veracidad de la ley de Hooke.

Determinar el periodo de oscilación y compararlo con el valor teórico del modelo.

Page 7: libro Física II 2015.pdf

Pág. 7

Asignatura: FISICA II

La solución matemática a ésta Ecuación Diferencial, son las funciones armónicas seno o

coseno, coincidiendo en la práctica con lo observado, es decir la masa ocupa la misma

posición después de intervalos iguales de tiempo, siendo por lo tanto un movimiento

periódico. Entonces la solución de la ecuación (2) es:

).cos( tAx (3) Donde:

A, ω y α, son constantes características del Movimiento Armónico Simple.

Amplitud del Movimiento ( A ) : Representa el desplazamiento máximo medido a partir del origen, siendo las posiciones –A y +A, los límites del desplazamiento de la partícula.

Angulo de Fase ( ω t + α ): Representa el argumento de la función armónica. Cuando

éste ángulo varía en 2π radianes, la posición, la velocidad y la aceleración del cuerpo son

iguales, esto es, el sistema ha regresado a la misma etapa del ciclo. Frecuencia Angular ( ω ): Es la rapidez con la que el ángulo de fase cambia en la unidad

de tiempo.

Constante de Fase o Fase inicial del Movimiento ( α ) : Este valor se determina

utilizando las condiciones iniciales del movimiento: el desplazamiento y la velocidad inicial,

o sea, seleccionando el punto del ciclo a partir del cual se inicia la cuenta del tiempo ( t = 0 ). También puede evaluarse cuando se conozca otra información equivalente.

Frecuencia ( f ): es el número de oscilaciones completas o ciclos de movimiento que se

producen en la unidad de tiempo. Está relacionada con la frecuencia angular por la

ecuación:

f.2 (4)

Periodo (T): Es el tiempo que se emplea para que el sistema efectúe una oscilación o ciclo completo. Por definición se obtiene que:

T

f1

ó

21

fT (5)

Velocidad ( v ) : Por definición dtdxv / , entonces de la ecuación (3) se obtiene que:

22).( xAtAsenv (6)

Aceleración ( a ) : Como dxdva / , entonces de la ecuación (6) :

xtAa 22 ).cos( (7)

La ecuación (7) nos indica que en el M.A.S, la aceleración es siempre proporcional y opuesta

al desplazamiento.

Por ser la ecuación (3) una solución de la Ecuación Diferencial (2), entonces al remplazar la ecuación (3) en (2) y simplificando términos se obtiene que:

m

k (8)

Reemplazando la ecuación (8) en la ecuación (5) se obtiene:

k

mT 2 (9)

V. PROCEDIMIENTOS

ACTIVIDAD 1: DETERMINACION DE LA CONSTANTE ELASTICA DEL RESORTE

Disponga el soporte, y resorte como se muestra en la Figura 2.

Page 8: libro Física II 2015.pdf

Pág. 8

Asignatura: FISICA II

Cuelgue del extremo inferior del resorte una masa. Cuando el sistema esté en

equilibrio haga coincidir el extremo inferior del resorte con un punto de la regla como

la mostrada en la Figura 1, y mida cuánto se ha estirado el resorte, considerando la

longitud no estirada como Lo y L la nueva longitud estirada, entonces la elongación será la diferencia:

x=L - Lo

Para 05 masas diferentes, complete el siguiente cuadro de medidas de estiramiento

y pesos

Tabla N° 1: Medidas de pesos versus elongaciones

Pesa Masa (kg) Peso (N)

W=mg

X=elongación

(m)

X= L - Lo

1

2

3

4

5

Con esta muestra de datos experimentales proceda a graficar en papel milimetrado

―peso vs elongaciones‖

Determine el valor de la pendiente al cual llamaremos k, usando el método de

mínimos cuadrados que usa la siguiente fórmula para determinar la pendiente:

22 )( XXn

YXXYnm

En nuestro caso n es el número de datos (n=5) X son las elongaciones en metros.

Y son los pesos en newtons.

m es la pendiente que en nuestro caso es la constante elástica del

resorte de acuerdo a la ley de Hooke.

Fig. 2: Medición de los estiramientos del resorte. El peso y las elongaciones son graficados en papel milimetrado

Page 9: libro Física II 2015.pdf

Pág. 9

Asignatura: FISICA II

Serway, Raymond (2006). Física para las Ciencias e Ingeniería. Tomo I, Ed. Thomson

6ta Ed. Tipler, Paul (1995). Física General. Tomo I, Ed. Reverte

Anote el valor calculado de K: k ________________

ACTIVIDAD 2: DETERMINACIÓN DEL PERIODO DE UN OSCILADOR

Cuelgue del extremo inferior del

resorte una masa colgante (el peso

mediano). Cuando el sistema esté en

equilibrio estire un poco la masa y mida el tiempo de 10 oscilaciones

completas, luego de lo cual anote en la

siguiente tabla, repitiendo la

experiencia por unas 10 veces. ¿Importa la amplitud de oscilación?

TABLA N°2:

Medición del Periodo y comparación con el valor del modelo teórico

Masa

(Kg)

Tiempo de 10 oscilaciones (s) Tiempo

promedio

Texp

(s)

Tteo

(s)

%

error t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Donde

Texp = Periodo experimental

Tteo = Periodo según el cálculo teórico, es decir: k

mT 2 , donde m es masa en Kg y k

es la constante del resorte ya calculado con los datos de la tabla 1.

El porcentaje de error es obtenido mediante la fórmula: 100exp

% xVteo

VteoVerror

donde

Vexp= Valor obtenido experimentalmente y Vteo es el valor teórico calculado según el

modelo de acuerdo a las leyes de la mecánica.

CUESTIONARIO

1. ¿Por qué el periodo o la frecuencia angular no depende de la amplitud de oscilación en el

experimento realizado? 2. Presente y discuta la tabla 1, el gráfico y el cálculo de la pendiente con el método de los

mínimos cuadrados,

3. Investigue otros métodos de obtener la constante elástica.

4. Presente y discuta la tabla 2, el porcentaje de error en el cálculo del periodo.

REFERENCIAS BIBLIOGRÁFICAS, ENLACES Y DIRECCIONES ELECTRÓNICAS

Fig.3: Disposición del equipo a fin de determinar el periodo del oscilador para ser comparado con lo que indica el modelo teórico obtenido con la segunda ley de Newton

Page 10: libro Física II 2015.pdf

Pág. 10

Asignatura: FISICA II

LABORATORIO N° 2

(Tema: PRINCIPIO DE ARQUIMIDES)

INSTRUCCIONES: constatar lo teórico con lo práctico y muestre conclusiones I. OBJETIVOS

II. MATERIALES Y EQUIPOS

Nº DESCRIPCION CANTIDAD

01 Soporte Universal con Nuez 02

02 Varilla de aprox. 1m 01

03 Resorte-----SE PUEDE REEMPLAZAR POR DINAMOMETRO 01

04 Wincha 01

05 Pesas de diferentes valores REEMPLAZAR POR DINAMOMETRO 01

06 Probeta de 100ml 01

07 Pabilo 01

III. DESCRIPCION TEORICO

La densidad ρ de una sustancia es la relación de su masa m a su volumen v es decir, v

m , entonces su peso puede ser

expresado vgmgw

. Para determinar la densidad un cuerpo irregular se puede tener dificultad de calcular su

volumen. Sin embargo este problema puede ser superado aplicando el principio de Arquímedes dicho principio se define “Todo

cuerpo sumergido total o parcialmente en un fluido ya sea liquido o gas en equilibrio, experimenta una disminución aparente

de su peso, como consecuencia de la fuerza vertical y hacia arriba, llamada empuje, que el fluido ejerce sobre dicho cuerpo”. La

magnitud del empuje es igual al peso del volumen del fluido desalojado es decir: gVρgmE ff

(1)

m:masa del cuerpo sumergido. g: aceleración de la gravedad. f, :densidad del fluido. Vf, es el volumen de fluido desplazado.

Si el cuerpo esta totalmente sumergido, el volumen Vf de fluido desplazado es igual al volumen Vc del cuerpo, entonces el

volumen sumergido es igual al área de la sección, A del cuerpo, multiplicado por la altura sumergida, h, por lo que el empuje

E

, puede describirse ahora como

g(Ah)ρE f

(2)

Por consiguiente podemos decir entonces que todo cuerpo en contacto con un fluido ésta sometida a la acción de dos fuerzas

por lo menos: Una fuerza que es peso del cuerpo: gvw cc

y otra es el empuje E

. Entonces la fuerza resultante lo

llamamos el peso aparente (o peso en el fluido) del cuerpo denotamos 'w entonces: Eww

' (3)

La densidad específica de un cuerpo es el peso del mismo en el aire dividido por el peso de un volumen igual de agua.

aguaensumergidocuandopesodePerdida

aireelencuerpodelPeso

aguadeigualvolumenundePeso

aireelencuerpodelPesoespecificaDensidad

IV. PROCEDIMIENTO

Actividad 1: CALCULO DE LA CONSTANTE ELASTICA DEL RESORTE (esto en caso no se tenga

dinamómetro) 1. Disponga el soporte, varilla y un resorte como muestra en la Figura 1 (laboratorio 1) del experimento anterior. 2. Haga coincidir el extremo inferior del resorte con un punto de la wincha mostrada en dicha Figura 1, para

W = 0 (sin peso colgante). Este será el sistema de referencia para medir los estiramientos del resorte.

Al término del laboratorio los alumnos deberán estar en condiciones de:

Comprobar experimentalmente el Principio de Arquímedes.

Aplicar éste principio en la determinación experimental de la densidad de un material.

Sección : ……..………………………...

Docente : Escribir el nombre del docente

Unidad: Indicar Unidad Semana: Indicar

Apellidos y nombres………..…………………

Fecha : …../..…/2015

Page 11: libro Física II 2015.pdf

Pág. 11

Asignatura: FISICA II

3. Suspenda del extremo inferior del resorte sucesivamente diferentes masas , y anote en cada caso el valor de la elongación del resorte en la Tabla.1

4. En un papel milimetrado grafique fuerza (en newton) vs elongación del resorte (en metros).

5. Del gráfico anterior halle la constante elástica del resorte. Recordar ;2/8.9 smg

6. RESULTADOS

TABLA 1

Actividad 2: CALCULO DE LA DENSIDAD (ρc) DE LA MASA COLGANTE

1. Antes de llenar agua en la probeta sumergir la masa

colgante en la probeta sin tocar las paredes, ni el fondo del depósito, suspenda una masa fija de aprox. 0.050Kg.

2. En otra probeta medir la cantidad de agua y agregar lentamente como en la Figura 1.

3. Medir el volumen de agua desplazada por el cuerpo, observando la diferencia de niveles de agua en la probeta y registre sus datos en al Tabla 2.

4. Con la regla medir la elongación del resorte inicial, a partir de ésta calcule el Peso de la masa colgante w . Luego

medir con la regla la elongación del resorte cuando esta

sumergido en agua y calcule el peso aparente 'w . A partir

de la fórmula dada en clase calcule la densidad de la masa colgante.

5. Repita los pasos 2, 3 y 4 considerando nuevos valores de masa, tales como 0.100Kg, 0.150Kg y 0.200Kg. Anote estos datos en la Tabla 2 y completar.

TABLA 2

VI. CUESTIONARIO: 1. Determinar la densidad y el peso específico del cuerpo en estudio y buscar en la bibliografía el valor de dicho resultado e

indicar aproximadamente de que material está hecho.

2. Calcular la densidad y el peso específico del líquido usado en el experimento y comparar su valor con lo encontrado en la

bibliografía consultada (si el líquido es agua la, 3/1000 mKgf ).

3. En la figura del experimento si se adiciona un líquido no miscible, hacer un esquema de las fuerzas presentes y como calcularía la densidad del cuerpo sumergido.

4. Hacer el experimento en casa. Un cubo de hielo que flota en un vaso con agua. Cuando el cubo se funde, se elevará el nivel del

agua? . Explicar por qué. 5. Si cubo de hielo contiene un trozo de plomo. ¿El nivel del agua descenderá al fundirse el hielo? Explicar por qué.

6. Siempre es más fácil flotar en el mar que en una piscina común. Explique por qué

7. Considere la densidad especifica del oro es19,3. Si una corona de oro puro pesa 8N en el aire, ¿Cuál será su peso cuando se

sumerge en agua.

Masa(Kg)

Fuerza(N)

Elongación (m)

Material A B C D E F

Masa (Kg)

VDesalojado (m3)

W = mg (Newton)

'w = (K.x) Newton

E = (w- 'w ) Newton

ρC (Kg/m3)

ρC (Kg/m3) (según el libro)

Nombre del material

Page 12: libro Física II 2015.pdf

Pág. 12

Asignatura: FISICA II

LABORATORIO N° 3

(Tema: MEDICION ELECTRICA BASICA)

INSTRUCCIONES: constatar lo teórico con lo práctico y muestre conclusiones

I. OBJETIVOS

Conectar adecuadamente un multímetro (voltímetro y/o amperímetro) en un circuito de corriente.

Distinguir una corriente continua, directa y alterna.

Conectar adecuadamente una fuente de poder fijándose en el simbolismo de su panel de conexión.

Dado un multímetro, medir con él corriente, voltaje y resistencia.

II. FUNDAMENTO TEORICO

La Física es una disciplina que se interesa por describir los

fenómenos de manera cualitativa y también cuantitativa,

esta última implica el manejo y uso de instrumentos

especializados para medir las distintas magnitudes de

interés. Es así como en mecánica las magnitudes de mayor

interés son longitud y tiempo, en termodinámica se mide

temperatura y en electromagnetismo las magnitudes de

mayor uso son diferencia de potencial y corriente eléctrica.

Para medirlas se utilizan instrumentos especializados, como

el multímetro. En éste laboratorio se hará uso y

empleo de instrumentos básicos, como el multímetro,

fuente de alimentación, etc.

Y debemos resaltar la importancia que debe poner en el uso

y la lectura de las distintas posiciones del selector del

instrumento usado.

III. MATERIAL DIDÁCTICO:

Para el desarrollo del tema, los alumnos utilizaran lo siguiente:

Nº DESCRIPCIÓN MODELO CANTIDAD

01 Fuente de alimentación regulable 01

02 Multímetro digital ( BK precisión ) 2890 A 01

03 Protoboard 01

04 Cables con conectores mordaza-cocodrilo 02

05 Cables de extensión 01

06 Resistencias ( diversos colores ) 05

07 LEDs ( diversos colores ) 05

08 Pequeños cables o conectores ( cable de

teléfono )

05

IV. TECNICA OPERATORIA / PROCEDIMIENTO / RECOLECCION DE DATOS /

RESULTADOS

4.1.- Fuente de Voltaje.- Consiste en un transformador incorporado que reduce el voltaje de

entrada que es generalmente 220 volts (CA) a voltajes menores los que son rectificados a

corriente continua (CC) obteniéndose salidas en el rango de 0-30 voltios. También podemos

utilizar baterías ( pilas ) de diferentes diferencias de potencial ( voltaje ).

4.2.- Multímetro.- Un multímetro es una poderosa herramienta de prueba de electricidad que

puede detectar los niveles de voltaje (V), corriente (I), resistencia (R) y los circuitos

abiertos/cerrados. Puede verificar tanto el voltaje de de la corriente alterna (CA) como el de

Sección : …………………………..………………………... Docente : Escribir el nombre del docente Unidad: Indicar Unidad Semana: Indicar Semana

Apellidos : ……………………………..…………………………. Nombres : …………………………………..……………………. Fecha : …../..…/2015

Page 13: libro Física II 2015.pdf

Pág. 13

Asignatura: FISICA II

corriente continua (CC).

4.3.- Resistencia: Es un componente eléctrico muy frecuentemente empleado en los circuitos.

Los valores van desde unos pocos Ohmios(Ω) hasta los Kiloohmios (KΩ) o Megohmios(M ). El

valor en Ohmios de una resistencia viene expresado mediante un conjunto de bandas de colores

impreso en la envoltura de la resistencia. El valor de estas bandas es de acuerdo con la siguiente

cuadro:

Tabla 1: Código de colores para lectura de resistencias

COLOR 1ª

BANDA

BANDA

BANDA

4ª BANDA

Figura 1 Un resistor típico

mostrando su código de

colores

Negro 0 0 x1 Ω Plateado:

±10%

tolerancia.

Dorado:

±5%

tolerancia.

Sin Banda:

±20%

tolerancia.

Marrón 1 1 x10 Ω

Rojo 2 2 x100 Ω

Naranja 3 3 x1 KΩ

Amarillo 4 4 x10 KΩ

Verde 5 5 x100

Azul 6 6 x1 MΩ

Violeta 7 7 x10 MΩ

Gris 8 8 x100

Blanco 9 9 x1 G Ω

En la Fig. 1 en su superficie tiene cuatro bandas de colores, igualmente espaciadas,

muy cercanas a uno de los extremos. Si sujetamos la resistencia con la mano izquierda,

por el lado donde esta ubicadas las bandas de colores, podemos deducir su valor de la

resistencia con tabla mostrada. El resultado se confecciona como 24×103Ω, o 24 KΩ

con un error del 10%.

4.4.- USO DEL MULTIMETRO COMO OHMIMETRO

Utilizando el código de colores, determine el valor nominal (según los colores) de cada una de las 5

resistencias de diferentes valores proporcionadas y anote su valor y la tolerancia en la Tabla 2.

Calcular la resistencia mínima y la resistencia máxima para cada resistencia.

Seguidamente, tome el multímetro digital para su operación como Ohmímetro, girando el selector

de Rango a la posición adecuada para la medición de resistencias. Mida el valor (real) de cada

resistencia. Anote su lectura en la Tabla 2.

TABLA No. 2: Uso de multímetro como ohmímetro para cinco resistencias

SEGÚN CODIGO DE COLORES

Rmi

n

Rma

x

Multímet

ro

%

error

Band

a

Col

or

Col

or

Col

or

Col

or

Valor

Nomin

al de

R

T(%)

Valor

Real R

1

R

2

R

3

R

4

R

5

4.5.- USO DEL MULTÍMETRO COMO VOLTÍMETRO Y AMPERÍMETRO

Arme un circuito en serie con por lo menos tres resistencias y mida la lectura del

amperímetro colocado en serie.

Mida el voltaje de cada resistencia del circuito y mida el voltaje total del circuito,

anote sus resultados en la tabla 3.

Page 14: libro Física II 2015.pdf

Pág. 14

Asignatura: FISICA II

W.D. Cooper, A.D. Helfrick, Instrumentación electrónica moderna y

técnicas de medición, Printece Hall, México 1991.

C. Kramer, Prácticas de Física, Mc Graw Hill, Mexico 1994.

Lic. C. Quiñones M., Lic. P. Arellano U. Guía de Laboratorio de Física, UNAC

A. Serway, J. W. Jewett, Física para ciencias e ingeniería, Thomson, Sexta

Edición, México, 2005.

MIDIENDO LA CORRIENTE: Arme el

circuito de la Figura, Anote la lectura

en la tabla 3. Cambie la resistencia R por

otra . Repita este paso, hasta completar

la Tabla 3.

MIDIENDO EL VOLTAJE. Anote la

lectura del voltímetro en la tabla 2.

Cambie la resistencia R por otra . Repita

este paso, hasta completar la Tabla 3.

Tabla 3: Resumen de parámetros eléctricos para 3 resistencias

No 1 2 3 4 5 TOT

AL R (Ω)

I (mA)

V (volt.)

V. CUESTIONARIO

1. Dar una opinión De la Tabla 1: el valor de la resistencia obtenida mediante el código de colores

y mediante la medición con el multímetro digital.

2. De la Tabla 2, conociendo los valores de voltaje y resistencia hallar teóricamente el valor de la

corriente y comparar con lo obtenido con el multímetro. Hacer una comparación y explicar sus

observaciones

3. ¿Por qué debe conectarse un voltímetro en paralelo a una porción del circuito cuya diferencia de

potencial se desea medir?

4. ¿Por qué debe conectarse un amperímetro en serie en un circuito?

5. Un voltímetro cuya resistencia es baja, ¿podría medir con precisión la diferencia de

potencial en los extremos de una resistencia alta?. Explicar.

7. Determinar el valor de la resistencia (en ohmios) cuyos colores son. Marrón-negro-rojo plateado,

Marrón-negro-amarillo-plateado, rde -rosado-marrón-plateado, Amarillo- verde- dorado-dorado

8. Según la tabla 3, compruebe teóricamente la solución de problemas con los circuitos que

formaste, y compara con el resultado de la lectura del voltímetro y amperímetro utilizados en el

laboratorio.

CULMINA TODO TU TRABAJO EN GRUPO INCLUIDO EL CUESTIONARIO PLANTEADO, Y PRESENTA EL

INFORME POR ESCRITO, ADJUNTANDO ANEXOS ( COMO FOTOS Y OTROS ) QUE SUSTENTEN LO

REALIZADO EN ESTA EXPERIMENTACIÓN.

REFERENCIAS BIBLIOGRÁFICAS, ENLACES Y DIRECCIONES ELECTRONICAS

Page 15: libro Física II 2015.pdf

Pág. 15

Asignatura: FISICA II

LABORATORIO N° 4

(Tema: Carga y descarga de un condensador)

INSTRUCCIONES: constatar lo teórico con lo práctico y muestre conclusiones

I. INTRODUCCION Los condensadores en términos generales permiten almacenar energía por la atracción electrostática

de cargas de distinto signo, pero también permite almacenar y filtrar información. Las importantes aplicaciones que presenta un condensador se aprecian al estudiar un circuito, la

enorme diversidad de aplicaciones se fundamentan en los mismos principios, una carga y una

descarga del condensador regulada en el tiempo por la acción conjunta con un resistor. En el presente laboratorio trataremos de verificar experimentalmente la forma como se carga y

descarga un condensador en el transcurrir del tiempo luego contrastaremos con los resultados teóricos

obtenidos del análisis del circuito con las leyes de Kirchhoff tanto para la carga como la descarga.

II. OBJETIVOS

III. MATERIALES Y EQUIPOS

Nº DESCRIPCION CANTIDAD

01 Fuente de alimentación regulable 01

02 Multimetro digital 01

03 Protoboard 01

04 Cables con conectores mordaza-cocodrilo 02

05 Cables de extensión 01

06 Resistencia de 1M , 01

07 Condensador Electrolitico de 220F 01

08 Pequeños cables conectores (hilo telefónico) 06

09 Cronometro 01

IV. MODELO TEORICO Uno de los dispositivos o elementos de circuito importantes, que se usan en los circuitos eléctricos es

el condensador o capacitor. En su versión más simple consiste en dos placas metálicas paralelas entre

sí, de área A, separadas una distancia d, por un material aislante entre las placas puede ser cualquier material tal como plástico, mica, papel, aire, etc. siempre y cuando no sea un conductor.

Se define la capacidad de un conductor como el cociente de su carga total entre el potencial.

Matemáticamente viene dado por la expresión: V

QC , la unidad de capacidad se denomina

Faradios(F), 1Faradio=Voltios

Coulomb .

Consideremos en primer lugar la carga de un condensador. En la Figura 1 se observa un

condensador C en serie con una resistencia R, conectada a una fuente de voltaje V.

Sección : …………………………..………………………... Docente : Escribir el nombre del docente Unidad: Indicar Unidad Semana: Indicar Semana

Apellidos : ……………………………..…………………………. Nombres : …………………………………..……………………. Fecha : …../..…/2015

Al término del laboratorio los alumnos deberán estar en condiciones de:

Estudio de la variación del voltaje y la corriente durante el proceso de carga y descarga de un condensador.

Estudio sobre la corriente establecida en un circuito que incluye condensadores.

Determinar la constante de tiempo capacitiva en la carga y en la descarga de un condensador a través de una resistencia.

Page 16: libro Física II 2015.pdf

Pág. 16

Asignatura: FISICA II

Figura 1:Circuito para el proceso de carga y descarga del condensador

Supongamos que inicialmente el circuito se halla abierto, es decir t=0, q=0, cuando se cierra el circuito en el Terminal a, se cumple:

V = VR + VC (1)

Como dt

dqi , la ecuación anterior se puede escribir:

01

R

Vq

RCdt

dq (2)

La solución de esta ecuación diferencial, con las condiciones ya mencionadas es:

)1()1()( 0

t

RC

t

eQecVtq

(3)

Con lo que también puede escribirse para la carga de un condensador:

)1( /t

o eVV (4)

Donde; q(t)= carga instantánea en el condensador.

Q0=CV = carga del condensador en equilibrio (cuando t )

=RC = constante de tiempo para el circuito.

La ecuación (3) nos dice la carga del condensador tiende aumentar hasta alcanzar el valor máximo Q0, la intensidad se anula en ese instante, para hallar la intensidad derivamos la ecuación (3)

RC

t

eR

Vi

(5)

Supongamos ahora que tenemos cerrado el circuito repentinamente abrimos el circuito conectando el

interruptor con el Terminal b y estudiamos el circuito a partir de este instante, que denominaremos instante inicial t=0, para este caso la condición inicial es entonces t=0,q=Q0. Haciendo V=0 en la

ecuación (2), tenemos.

01

q

RCdt

dq (6)

Resolviendo esta ecuación tenemos:

)()()( 0

t

RC

t

eQecVtq

y la corriente es: RC

t

eR

Vi

(7)

Con lo que también puede escribirse para la descarga de un condensador: /t

oeVV (8)

Aunque esta ecuación es similar al hallado en (4) la ecuación (7) representa una corriente de

descarga del condensador por tanto tiene sentido opuesto a la corriente de carga, es decir después de un tiempo muy largo la corriente se anula. La causa de esta anulación radica en la disipación de

energía que se produce a través de la resistencia en forma de calor.

V. PROCEDIMIENTOS

ACTIVIDAD 1: PROCESO DE CARGA DE UN CONDENSADOR 1. Arme el circuito mostrado en la Fig.2. Tenga presente la polaridad del condensador para evitar

destruirlo.

Page 17: libro Física II 2015.pdf

Pág. 17

Asignatura: FISICA II

Serway, Raymond (2006). Física para las Ciencias e Ingeniería. Tomo I, Ed. Thomson

6ta Ed.

Tipler, Paul (1995). Física General. Tomo I, Ed. Reverte

3. Regular el voltaje de salida a 6 volts. Luego apague la fuente.

4. Estando instalado el circuito inicie el proceso de carga desde el tiempo cero, usando un cronómetro

y cada 10 segundos registre lo indicado por el voltímetro a la salida del condensador a través de un tiempo no menor de 7 minutos.

Tabla 2

CARGA

t(seg.) 10 20 30 40 50 60 70 80 90 100 110 120

Vc

ACTIVIDAD 2: PROCESO DE DESCARGA DE UN CONDENSADOR

5. Una vez completado el primer cuadro, Apagar la fuente inmediatamente poner el cable conector de modo que R y C esté en serie pero sin la fuente y simultáneamente activar el cronometro y

registrar en la Tabla 3 la variación del voltaje en el condensador con el tiempo, como en el caso

anterior, también cada 10 segundos, por un tiempo no menor a los 7 minutos.

Tabla 3

DESCARGA

t(seg.) 10 20 30 40 50 60 70 80 90 100 110 120

Vc

ACTIVIDAD 3: GRAFICAR EN PAPELES MILIMETRADO LOS PROCESOS DE CARGA Y

DESCARGA DE UN CONDENSADOR

6. Grafique la curva de carga y descarga en papel milimetrado (uno para cada proceso)

CUESTIONARIO 1. Determine la constante de tiempo para el circuito implementado. ¿Qué nos permite

determinar este parámetro?

2. Con los valores de resistencia y capacitancia de su experimento escriba las ecuaciones teóricas

para los procesos de carga y descarga para su circuito. 3. Grafique mediante ―Excel‖ los datos experimentales que Ud obtuvo y bosquejó en papeles

milimetrados y grafique también las curvas teóricas de la pregunta 2. Haga las

comparaciones. REFERENCIAS BIBLIOGRÁFICAS, ENLACES Y DIRECCIONES ELECTRONICAS

Page 18: libro Física II 2015.pdf

Pág. 18

Asignatura: FISICA II

GUÍA DE PRÁCTICA DE LABORATORIO

SEGUNDA UNIDAD

GUÍA DE PRÁCTICA N° 5 (LEYES DE KIRCHHOFF-SERIE PARALELO)

GUÍA DE PRÁCTICA N° 6 (LINEAS DE CAMPO MAGNETICO)

GUÍA DE PRÁCTICA N° 7 (MOTOR Y GENERADOR ELECTRICO)

GUÍA DE PRÁCTICA N° 8 (MANEJO DE OSCILOSCOPIO)

Page 19: libro Física II 2015.pdf

Pág. 19

Asignatura: FISICA II

LABORATORIO N° 5

(Tema: LEYES DE KICHHOFF)

INSTRUCCIONES: constatar lo teórico con lo práctico y muestre conclusiones I. OBJETIVOS

* Conectar adecuadamente los elementos de un circuito eléctrico complejo, donde se pueda señalar nodos y mallas.

* Distinguir un circuito eléctrico simple de un circuito eléctrico complejo.

* Determinar experimentalmente la Ley de nodos, dada por Kirchoff para un circuito eléctrico.

* Determinar experimentalmente la Ley de mallas dada por Kirchoff para un circuito complejo.

II. FUNDAMENTO TEORICO

Muchas redes de resistores prácticas no se pueden reducir a

combinaciones sencillas en serie y en paralelo. La figura a ilustra una

fuente de potencia de cd con fem ε1 que carga una batería con fem ε2

menor y que alimenta corriente a una bombilla con resistencia R. La

figura b es un circuito “puente”, que se utiliza en muchos tipos

diferentes de medición y sistemas de control. (Una aplicación

importante de un circuito “puente” se describe en el problemas

prácticos de la vida cotidiana).

A continuación se describen los métodos desarrollados por el físico

alemán Gustav Robert Kirchhoff Las reglas de Kirchhoff consisten en

los dos siguientes enunciados:

Regla de Kirchhoff de las uniones: la suma algebraica de las

corrientes en cualquier unión es igual a cero. ΣI = 0.

Así en el nodo P se cumple: I2 = I1 + I3

Regla de Kirchhoff de las espiras: la suma algebraica de las

diferencias de potencial en cualquier espira, incluso las asociadas con

las fem y las de elementos con resistencia, debe ser igual a cero.

ΣV = 0.

Así en la malla M1 se cumple: V1+ V2 = A1.R1 + A2.R2 La regla de las espiras es el enunciado de que la fuerza electrostática

es conservativa. Suponga que recorre una espira y mide las

diferencias de potencial entre los extremos de elementos sucesivos

del circuito. Al regresar al punto de partida, debería de encontrar que

la suma algebraica de esas diferencias es igual a cero; de lo contrario,

no se podría afirmar que el potencial en ese punto tiene un valor

definido.

III. MATERIAL DIDÁCTICO:

Para el desarrollo del tema, los alumnos utilizaran lo siguiente:

Nº DESCRIPCIÓN MODELO CANTIDAD

01 Módulo de electrónica con pilas y elementos resistivos

instalados

MOD-02 01

02 Multímetro digital ( BK precisión ) MUTAP-04 01

04 Cables con conectores mordaza-cocodrilo 12

05 Cables de extensión 01

06 Resistencias ( diversos colores ) 06

07 LEDs ( diversos colores ) 06

08 Pequeños cables o conectores ( cable de teléfono ) 06

Sección : …………………………..………………………... Docente : Escribir el nombre del docente Unidad: Indicar Unidad Semana: Indicar Semana

Apellidos : ……………………………..…………………………. Nombres : …………………………………..……………………. Fecha : …../..…/2015

Page 20: libro Física II 2015.pdf

Pág. 20

Asignatura: FISICA II

IV. TECNICA OPERATORIA / PROCEDIMIENTO / RECOLECCION DE DATOS / RESULTADOS

4.1.- LEY DE NODOS: Con el módulo electrónico ( tablero ), haga las conexiones eléctricas necesarias para establecer

el circuito mostrado.

TABLA 01

Nº I1 I2 I1+I2 I3 I4 I5 I3+I4+I5

1

2

3

4

5

6

4.2.- LEY DE MALLAS: Con el módulo electrónico ( tablero ), haga las conexiones eléctricas necesarias para

establecer el circuito mostrado.

TABLA 02

MALLA CDEF EXPERIMENTAL TEORICO ERROR %

V1

V2

V en R1

V en R2

ΣV malla

CDEF

Page 21: libro Física II 2015.pdf

Pág. 21

Asignatura: FISICA II

TABLA 03

MALLA ABCD EXPERIMENTAL TEORICO ERROR %

V2

V en R2

V en R3

ΣV malla

ABCD

TABLA 04

MALLA ABEF EXPERIMENTAL TEORICO ERROR %

V1

V en R1

V en R3

ΣV malla

ABEF

TABLA 05

MALLA EXPERIMENTAL TEORICO ERROR %

V

V en R

V en R

ΣV malla

V. CUESTIONARIO

1. Se cumple la Ley de Kirchoff en el nodo de la tabla 01. Explique claramente con fundamento científico.

2. De la Tabla 1, los resultados de las columnas sombreadas son iguales? Por qué, explique con fundamento científico

realizando comparaciones de otros tipos.

3. Si cambiamos la polaridad en el circuito de la tabla 01, se cumpliría la Ley de nodos, demuestre con fundamento

científico, discutiendo en su grupo.

4. Se cumple la ley de Kirchoff en las tablas 02, por qué? Explique fundamentando científicamente su respuesta luego de

una discusión entre los miembros de su grupo.

5. Se cumple la ley de Kirchoff en las tablas 023 por qué? Explique fundamentando científicamente su

respuesta luego de una discusión entre los miembros de su grupo.

6. Se cumple la ley de Kirchoff en las tablas 04, por qué? Explique fundamentando científicamente su respuesta

luego de una discusión entre los miembros de su grupo.

7. Compruebe teóricamente la solución de problemas prácticos en los cuales se apliquen las leyes de Kirchoff en

situaciones prácticas.

CULMINA TODO TU TRABAJO EN GRUPO INCLUIDO EL CUESTIONARIO PLANTEADO, Y PRESENTA EL INFORME POR ESCRITO, ADJUNTANDO ANEXOS ( COMO FOTOS Y OTROS ) QUE SUSTENTEN LO REALIZADO EN ESTA EXPERIMENTACIÓN.

VI. BIBLIOGRAFÍA:

W.D. Cooper, A.D. Helfrick, Instrumentación electrónica moderna y técnicas de medición, Printece Hall,

México 1991.

C. Kramer, Prácticas de Física, Mc Graw Hill, Mexico 1994.

Lic. C. Quiñones M., Lic. P. Arellano U. Guía de Laboratorio de Física, UNAC

A. Serway, J. W. Jewett, Física para ciencias e ingeniería, Thomson, Sexta Edición, México, 2005.

Page 22: libro Física II 2015.pdf

Pág. 22

Asignatura: FISICA II

LABORATORIO N° 6

(Tema: LINEAS DE CAMPO)

INSTRUCCIONES: constatar lo teórico con lo práctico y muestre conclusiones I. OBJETIVOS

Obtener el mapa de las líneas de inducción magnética para el caso de la barra magnética y de una bobina. Conocer la relación entre corriente eléctrica y campo magnético.

II. FUNDAMENTO TEORICO

Mientras experimentaba con corrientes eléctricas en alambres, Hans Christian

Oersted descubrió que la aguja de una brújula próxima se desviaba cuando pasaba

corriente en el circuito. Esta fue la primera vez que se vinculaba el movimiento de

cargas eléctricas con la generación de campos magnéticos, esto implicaba que los

campos magnéticos en imanes de barra podrían deberse a movimientos

microscópicos de carga eléctrica, o el campo magnético de la tierra debía generarse

también porque hay corrientes eléctricas en el interior del planeta. Más tarde Biot y

Savart, franceses, analizaron estos campos y obtuvieron una relación experimental

entre una corriente constante y el campo generado, donde descubrieron la relación

directamente proporcional con el producto vectorial del elemento de corriente con el

vector posición unitario e inverso al cuadrado de la distancia, teniéndose una

expresión como sigue:

Sabemos que alrededor de una carga eléctrica se tiene un campo eléctrico invisible

pero que puede ser detectado utilizando un sensor de la misma especie que el

generador del campo, es decir, con una carga de prueba; del mismo modo se crea otro

campo, llamado magnético, cuando esta carga se pone en movimiento, es decir, circula

corriente eléctrica. por tanto, toda corriente eléctrica genera un campo magnético,

pues como observó Oersted, el establecimiento de una corriente eléctrica, desvía a

una brújula colocada en las inmediaciones de un cable con corriente, pero ni bien se

apaga el circuito el efecto desaparece.

La presencia de un campo eléctrico se revela por la acción de las fuerzas sobre los

cuerpos cargados que se introducen en este campo. También el campo magnético se

revela por las fuerzas que actúan sobre otros conductores con corriente introducidos

en las cercanías de otro conductor con corriente eléctrica establecida.

El carácter de la acción del campo magnético sobre un conductor recorrido por una

corriente depende de la forma del conductor, de la posición que ocupe y de la

dirección de la corriente que lo recorre, esta relación fue descubierta por los

franceses Biot y Savart, que se expresa matemáticamente como:

2

ˆ

4 r

rxldIdB o

, siendo I una corriente constante, r , es el vector unitario de

posición y 2r es el cuadrado de la distancia.

Por tanto, lo que Oersted descubrió y las relaciones matemáticas del campo

magnético y la corriente con sus parámetros geométricos de Biot y Savart nos

posibilitan tener un modelo matemático del campo magnético alrededor de cables con

corriente, imanes y electroimanes o bobinas

III. MATERIAL DIDÁCTICO:

Para el desarrollo del tema, los alumnos utilizaran lo siguiente:

DESCRIPCION CANTIDAD Brújula pequeña 01 Imánes de barra 02 Hoja de cartón, de 8.5 x 11 pulgadas 01 Electroimán 01 Limaduras de hierro

IV. TECNICA OPERATORIA / PROCEDIMIENTO / RECOLECCION DE DATOS / RESULTADOS

PARTE 1: Determinación de las líneas de campo magnético alrededor de un imán de barra.

Sección : …………………………..………………………... Docente : Escribir el nombre del docente Unidad: Indicar Unidad Semana: Indicar Semana

Apellidos : ……………………………..…………………………. Nombres : …………………………………..……………………. Fecha : …../..…/2015

Page 23: libro Física II 2015.pdf

Pág. 23

Asignatura: FISICA II

1. Determine el polo norte de las agujas magnéticas, para esto tenga en cuenta que estas deben apuntar al norte geográfico que corresponde al sur magnético.

2. Aleje todo cuerpo magnético o metálico de la mesa y con ayuda de la brújula determine la dirección del campo magnético terrestre.

3. Fije la barra magnética al centro de una hoja de papel milimetrado u hoja blanca usando cinta adhesiva y trace sobre el papel el perfil de la barra.

4. Se construye las líneas empezando por colocar la brújula sobre un punto cualquiera de la línea que biseca la barra

y marcando sobre le papel los puntos indicados por la aguja de la brújula, se desliza esta hasta hacer coincidir el otro extremo de la aguja con uno de los puntos marcados, se marca otro punto; se desliza la brújula y así sucesivamente. Ver figura 5.

5. Encontrar unas 5 líneas por cada lado.

PARTE 2: Determinación de las líneas de campo magnético alrededor de dos imanes de barra.

1. Coloque dos imanes de barra como se observa en el gráfico: 2. Trace las líneas de campo magnético como se hizo la parte 1 del experimento. 3. Coloque ahora las barras de imán de modo que polos opuestos estén frente a frente: 4. Determine las líneas de campo magnético como en la parte 1 del experimento.

PARTE 3: Líneas de Campo magnético alrededor de un electroimán 1. Colocar el electroimán encima de la hoja milimetrada u hoja blanca 2. Conecte el electroimán, 3. Disponga la brújula como se observa en la figura 5 y señale con puntos la alineación de la brújula a las líneas de

campo magnético, 4. Trace las líneas de campo alrededor del electroimán.

PARTE 4: Líneas de Campo magnético alrededor de una barra de imán usando limaduras de hierro. 1. Coloque un pedazo de cartón sobre una barra de imán. 2. Espolvoree las limaduras de hierro en forma uniforme sobre la hoja de cartón. 3. Tome una fotografía de lo observado y compare con los resultados previos.

V. CUESTIONARIO

1. ¿Cómo se aplica la regla de la mano derecha a la corriente que pasa por un alambre largo y recto? 2. ¿Qué efecto en relación al campo tiene aumentar la intensidad de la corriente en un alambre? 3. Cuáles son los tres factores que determinan la intensidad de un electro imán?

CULMINA TODO TU TRABAJO EN GRUPO INCLUIDO EL CUESTIONARIO PLANTEADO, Y PRESENTA EL INFORME POR ESCRITO, ADJUNTANDO ANEXOS ( COMO FOTOS Y OTROS ) QUE SUSTENTEN LO REALIZADO EN ESTA EXPERIMENTACIÓN.

VI. BIBLIOGRAFÍA:

[1] Tipler Paul A. “Fisica General”, Tomo II, 3a Edicion, Editorial Reverte, año 1995. [2] Servay Raymond “Fisica para la Ciencia e Ingenieria”, Tomo II, 6a Edicion, Editorial Thomson, año 2005.

Figura 5 Trazado de las líneas de campo

Fig4.: Coloque la barra de imán en el centro

del papel, dibuje su contorno

Page 24: libro Física II 2015.pdf

Pág. 24

Asignatura: FISICA II

LABORATORIO N° 7 (Tema: Inducción Electromagnética y Corriente Alterna)

INSTRUCCIONES: constatar lo teórico con lo práctico y muestre conclusiones

I. OBJETIVOS

* Identificar la existencia de corriente alterna en un dispositivo: MOTOR ELÉCTRICO.

* Comprobar que el motor eléctrico transforma la corriente eléctrica en fuerza mecánica.

* Montar un dispositivo para inducir una corriente eléctrica a partir de una campo magnético: GENERADOR ELÉCTRICO.

* Comprobar que el generador eléctrico transforma la fuerza mecánica en corriente eléctrica.

II. FUNDAMENTO TEÓRICO

¿ Qué es un motor eléctrico ?. Ya explicamos en otros experimentos

caseros, que una corriente eléctrica genera un campo magnético. Este campo

está representado en el video, por el imán dibujado sobre la bobina de

alambre de cobre. El mismo interactúa con el campo magnético del imán

que está debajo, y gira media vuelta hasta que ambos quedan orientados.

Pero en ese momento, las escobillas y el colector hacen que se invierta la

polaridad, es decir, la corriente comienza a circular de modo inverso. De

modo que todo el conjunto gira nuevamente media vuelta para alinear el

campo magnético como antes, pero otra vez, cuando esto ocurre la

polaridad se invierte. Este ciclo se repite una y otra vez. Ahora lo veremos

como un generador eléctrico. Así como una corriente genera un campo

magnético, un campo magnético puede generar una f.e.m. (fuerza electro motriz) la cual, a su vez, puede generar una corriente. Es decir,

lo inverso a un motor, es un generador. El alambre se mueve sobre el imán, de modo que corta las líneas de campo magnético de éste, y

se genera dicha f.e.m. Nuestro generador produciría una corriente alterna, si no fuera gracias al colector, el cual invierte la polaridad

como vimos antes, y permite que una escobilla siempre sea el positivo, mientras que la otra el negativo.

Al igual que muchos de los experimentos caseros sobre generación eléctrica que ya

publicamos, podemos explicarlo gracias a los aportes de Michael Faraday, y su

famosa Ley de Faraday. Hablando en un lenguaje técnico, podríamos decir que la

fuerza electro motriz generada, está relacionada con la rapidez de variación del flujo

magnético que atraviesa una superficie determinada. Esto nos dice que no

necesariamente necesitamos un circuito, sino que “en el aire”, también podemos

generar una diferencia de potencial. Pero usando un lenguaje cotidiano, también

podemos explicarlo. Cuando un campo magnético varía a través de un conductor, se

genera en los extremos de éste, un “voltaje” capaz de producir una corriente

eléctrica. Del mismo modo, podemos “dejar quieto el imán” y mover el conductor a

través de su campo magnético. Resumiendo, el conductor debe cortar las líneas de campo magnético, para así generar electricidad. El

diodo o leed sólo permite el paso de la corriente en una dirección, es por eso que prenderá uno cuando el imán se mueva en una

dirección, y el otro en caso contrario. Ello ocurre porque la dirección de la corriente eléctrica generada, depende de cómo el conductor

intercepte las líneas de campo magnético.

III. MATERIAL DIDÁCTICO:

Para el desarrollo del motor

eléctrico, los alumnos utilizaran lo

siguiente:

Materiales:

* Alambre de Cobre

* Cinta adhesiva

* Palo de brochette

* 1 Corcho

* Tijeras

* Chapa metálica

* Pegamento

* Trozos de madera o cartón duro

* Martillo y Clavos

* Imán

Para el desarrollo del generador eléctrico, los alumnos

utilizaran lo siguiente:

Materiales:

* Tubo de Cartón

* Alambre de Cobre

* 2 Diodos Leed

* Imán o Imanes

Sección : …………………………..………………………... Docente : Escribir el nombre del docente Unidad: Indicar Unidad Semana: Indicar Semana

Apellidos : ……………………………..…………………………. Nombres : …………………………………..……………………. Fecha : …../..…/2015

Page 25: libro Física II 2015.pdf

Pág. 25

Asignatura: FISICA II

W.D. Cooper, A.D. Helfrick, Instrumentación electrónica moderna y técnicas de

medición, Printece Hall, México 1991.

C. Kramer, Prácticas de Física, Mc Graw Hill, Mexico 1994.

Lic. C. Quiñones M., Lic. P. Arellano U. Guía de Laboratorio de Física, UNAC

A. Serway, J. W. Jewett, Física para ciencias e ingeniería, Thomson, Sexta Edición, México,

2005.

* 2 Trozos de conductor eléctrico

* Baterías

IV. TECNICA OPERATORIA / PROCEDIMIENTO / RECOLECCION DE DATOS / RESULTADOS 4.1.- CONSTRUCCIÓN DEL MOTOR ELÉCTRICO.- Toma el alambre y enróllalo en tu mano, o sobre un objeto con forma ovalada.

Con unas 30 o 40 vueltas estará bien. Haz que los dos extremos de la bobina queden

para el mismo lado, y pon cinta adhesiva para evitar que ella se desarme. Clava el

palo de brochette a través de ella, como se aprecia en el video. Asegúrate que ha

quedado equilibrado el sistema. Ahora corta un trozo de corcho, de

aproximadamente 1.5 centímetros. Corta también dos trozos de chapa del mismo

ancho, pero no debe ser totalmente rectangular, sino que en un extremo debe tener

una saliente (ver video). Pégalas sobre el corcho, pero no pegues las solapas. Con la

ayuda de las tijeras haz un pequeño orificio en el centro del corcho, para poder

atravesar el palo de brochette. En el video unen los extremos de la bobina a la

chapa mediante soldadura de estaño. Pero para eso no sólo necesitas un soldador y

estaño, sino que además no puedes utilizar una chapa de aluminio (que es más fácil

de conseguir), así que nosotros lo realizaremos distinto. Lo que haremos, será

doblar la solapa de la chapa (la que no pegamos) y apretar con ella los extremos de la bobina. La base es algo muy sencillo. Puedes

fabricarla con unos trozos de madera clavados o incluso con cartón duro. Faltan las escobillas. Para hacerlas, pela los extremos de los

conductores y los pegas opuestos de tal forma que toquen el colector (chapas pegadas sobre el corcho). Por último, coloca el imán debajo

de la bobina. Para hacerlo funcionar como un motor eléctrico debes conectar los extremos de los conductores que funcionan como

escobillas, a los bornes de la batería.

4.2.- Construcción del GENERADOR ELÉCTRICO.- Como dije antes, este generador eléctrico es muy fácil de construir. Para

hacerlo, debes enrollar alambre de cobre, en el centro del tubo de

cartón. Con unas 150 vueltas aproximadamente, estará bien. Si tienes

un imán potente, como los de neodimio por ejemplo, puedes utilizar

menos cantidad de vueltas. Te darás cuenta si no son suficientes,

porque los diodos no emitirán una luz de intensidad. En los extremos

de la bobina, debes colocar los diodos led. Puedes colocar sólo uno si

así lo deseas. En ese caso, sólo se encenderá cuando el imán se

desplace en una dirección, y no en la otra. Si utilizas dos, debes

conectarlos en “anti paralelo”, es decir, el terminal mas corto de un

diodo, se conecta al mas largo del otro (no confundas con conexión en

serie). Para hacer funcionar tu generador casero, sólo tienes que mover el tubo hacia un lado y otro, o también puedes voltearlo una y

otra vez.

V. CUESTIONARIO

1. Fundamenta científicamente cómo funciona el MOTOR ELÉCTRICO que has construido.

2. Fundamenta científicamente, bajo tu investigación realizada en el laboratorio, que Leyes permiten que el motor

eléctrico transforme la corriente eléctrica en fuerza mecánica.

3. Fundamenta científicamente cómo funciona el GENERADOR ELÉCTRICO que has construido.

4. Fundamenta científicamente, bajo tu investigación realizada en el laboratorio, que Leyes permiten que el generador

eléctrico transforme la fuerza mecánica en corriente eléctrica.

5.- Plantea por lo menos 5 problemas sobre corriente alterna y los desarrollas en tu informe.

REFERENCIAS BIBLIOGRÁFICAS, ENLACES Y DIRECCIONES ELECTRONICAS

Page 26: libro Física II 2015.pdf

Pág. 26

Asignatura: FISICA II

LABORATORIO N° 8

(Tema: Manejo del Osciloscopio)

INSTRUCCIONES: constatar lo teórico con lo práctico y muestre conclusiones

I. INTRODUCCIÓN El osciloscopio es posiblemente el instrumento más versátil en electrónica ya que en él se visualiza la señal, tal y como es. Es decir nos permite representar en una pantalla una o varias señales en función del tiempo. En nuestro caso particular podemos ver de forma de una onda cuadrada así mismo la onda que genera al cargar y descargar un condensador. II. OBJETIVO Familiarizarse con el uso del osciloscopio. Analizar la forma de onda cuadrada, Verificar la carga y descarga de un condensador. Calcular la incertidumbre en las medidas. III. TEMAS PARA CONSULTA El Osciloscopio Generador de funciones Curva de la carga y descarga de un condensador. Incertidumbre en las medidas IV. MATERIALES Un osciloscopio con sus puntas de prueba. Un generador de funciones. Un Protoboard. Un capacitor con polaridad Un resistor Conectores V. PROCEDIMIENTO Para analizar el proceso de carga o descarga de un condensador introduciremos una señal cuadrada. De esta forma podemos introducir procesos de carga y descarga sucesivos. Si la frecuencia de la señal es lo suficientemente baja, podremos obtener la carga y/o la descarga completas del condensador y medir en el osciloscopio la constante de tiempo del circuito, tanto en la carga como en la descarga. Para ello montaremos el circuito de la figura, una resistencia en serie con un condensador y conectados al generador de funciones activado en la modalidad de señal cuadrada. El canal 1 del osciloscopio medirá la tensión del generador y el canal 2 lo colocaremos midiendo la tensión en el condensador. Observa que las bananas negras del generador y los 2 canales del osciloscopio deben de coincidir en el mismo punto. ACTIVIDAD 1: Monta el circuito de la figura, seleccionando la opción de “señal cuadrada”. La tensión máxima de entrada será de 2 V, la resistencia de 100 kΩ y el condensador de 33 µF. Visualiza ambas señales (tensión de entrada y tensión en bornes del condensador) en el osciloscopio y elige una frecuencia de la señal de entrada en la que puedas observar que tanto en la carga como en la descarga la diferencia de potencial en bornes del condensador (canal 2) alcanza su valor límite. Para poder hacer las mediciones correctas, deberían verse unas señales parecidas a estas en el canal 2:

Sección : …………………………..………………………... Docente : Escribir el nombre del docente Unidad: Indicar Unidad Semana: Indicar Semana

Apellidos : ……………………………..…………………………. Nombres : …………………………………..……………………. Fecha : …../..…/2015

Page 27: libro Física II 2015.pdf

Pág. 27

Asignatura: FISICA II

Dibuja ambas señales en la gráfica siguiente:

Indica claramente en el gráfico las escalas utilizadas para cada uno de los ejes. ACTIVIDAD 2: Mide el valor de la resistencia con el óhmetro y calcula su incertidumbre, tal como aprendiste en la práctica 2. El valor de la constante de tiempo del circuito es el medido en el Laboratorio N° 02 Instrumentación básica. Haz una estimación de la incertidumbre de τ. Para ello podemos tener en cuenta que en el osciloscopio el error de lectura es bastante mayor que el debido a la precisión del aparato. Entonces puedes hacer una estimación del error de lectura cometido en el momento de leer el valor de τ y adoptar este valor como la incertidumbre en su medida. (Este valor podría ser del orden de una subdivisión en el eje de abscisas, pero esta consideración depende de cada medida y de quién realice la lectura) Completa la siguiente tabla:

El que esta medida sea más o menos buena, está sujeta a diversos factores, entre ellos el que la señal de entrada al circuito sea un escalón lo más perfecto posible: es decir, los incrementos, tanto positivos como negativos, de la tensión deben ser instantáneos. De no serlo, es de espera el encontrar un valor de τ algo mayor de lo esperado. VI. CUESTIONARIO Compara el valor obtenido de la capacidad medida con el señalado en la caja del condensador. ¿Se corresponde con el valor medido? De no corresponderse, ¿a qué puede ser debida la diferencia observada?

Page 28: libro Física II 2015.pdf

Pág. 28

Asignatura: FISICA II

PRE-INFORME N° 08 – MANEJO DEL OSCILOSCOPIO

GRUPO N°________

Dibuja la curva que obtienes en el osciloscopio en el gráfico.

Page 29: libro Física II 2015.pdf

Pág. 29

Asignatura: FISICA II

Calidad que se acredita internacionalmente

MATERIAL DE TRABAJO

(FISICA II)

Page 30: libro Física II 2015.pdf

Pág. 30

Asignatura: FISICA II

Semana 01 Tema 01

En diferentes documentos se relata

como Galileo descubrió el

funcionamiento del péndulo. Corría el año 1583; en la catedral de Pisa le llamó

la atención el ir y venir oscilante de una

lámpara de aceite que pendía del techo.

Observó que el tiempo que tardaba en

completar una oscilación era aproximadamente el mismo, aunque la

amplitud del desplazamiento iba

disminuyendo con el tiempo. Por

supuesto, Galileo no disponía de cronometro alguno para medir con un

mínimo de precisión ese tiempo

empleado por cada oscilación de la

lámpara. No se le ocurrió otra cosa que usar como patrón de medida su propio

pulso; de esta manera Galileo pudo

constatar que el tiempo empleado era

prácticamente el mismo en cada oscilación independientemente de la

amplitud recorrida. Este descubrimiento

fue un aporte para la medición del

tiempo.

Oscilación mecánica

)/(2

2 ; (s)f

1T ; (hz)

1srad

Tf

Tf

Cinemática del MAS posición, velocidad y aceleración

)( tAsenxt

2222221)cos( xAtsenAAtsenAvtambientAdt

dxv tt

xa t Asen xcomo ; tsenAdt

dva 2

t

2

t

Elongación máxima es x=A

Velocidad máxima Vmax= A ocurre en el punto de equilibrio y V=0 es nula en los extremos

Aceleración máxima amax=-A2 ocurre en los extremos y a=0 es nula en el punto de equilibrio Dinámica del MAS

2

2mk

)x(mmaF

kxF

,

m

k

2

1 f

1

k

m2T

42

2

Tfcomo

Tmk

Movimiento Periódico

FÓRMULAS BÁSICAS

Page 31: libro Física II 2015.pdf

Pág. 31

Asignatura: FISICA II

Fuerza recuperadora máxima Fmax=- KA

Energía del MAS

Em = Ec + Ep = 2222 Ak 2

1 xk

2

1 )xA( k

2

1

Movimiento Armónico Simple Angular

W-frecuencia angular f- frecuencia cíclica K-constante de torsión I- momento de inercia

I

K

2

1 f

I

K

w

Péndulo simple

kxl

mgx mgF

g

l2 T

T

4

l

g

l

mgk

mk

2

22

2

Péndulo físico

Page 32: libro Física II 2015.pdf

Pág. 32

Asignatura: FISICA II

PRÁCTICA DE FISICA II N° 1

(Tema: Movimiento Periódico)

INSTRUCCIONES: resuelve y practique los problemas

1. La punta de un diapasón efectúa 440 vibraciones completas en 0.500 s. Calcule la

frecuencia angular y el periodo del movimiento.

2. En la figura se muestra el desplazamiento de un objeto oscilante en función del tiempo.

Calcule a) la frecuencia, b) la amplitud, c) el

periodo y d) la frecuencia angular de este

movimiento.

3. ¿Qué amplitud y qué período debe tener un M.A.S. para que la velocidad máxima sea de

30 cm/s y la aceleración máxima de 12 m/s2? Expresar la elongación de ese movimiento

en función del tiempo, sabiendo que inicia su movimiento en el extremo positivo.

4. En un M.A.S., cuando la elongación es nula, la velocidad es de 1 m/s y, en el instante en que

la elongación es de 5 cm, la velocidad es nula. ¿Cuál es el período del movimiento?

5. La velocidad en m/s de un M.A.S. es v(t) = —0,36 sen (24t + 1), donde t es el

tiempo en s. ¿Cuáles son la frecuencia y la amplitud de ese movimiento? Escribir la

expresión de su elongación en función del tiempo.

6. La aceleración (en m/s2) de un M.A.S. en función de la elongación (en m) a = 256x.

Expresar esta aceleración en función del tiempo sabiendo que la amplitud de la

vibración es de 2,5 cm. Si inicia su movimiento cuando x=0.

7. Un cuerpo de masa 2 g, que se mueve sobre el eje OX, pasa por el origen de

coordenadas con una velocidad de 10 m/s. Sobre él actúa una fuerza F = – 5x N,

siendo x la abscisa del cuerpo en m. Calcular hasta qué distancia del origen llegará.

8. Una partícula de 1 g de masa inicia un movimiento armónico simple en el punto de

máxima elongación, que se encuentra a 1 m del punto de equilibrio. El tiempo que

tarda la partícula desde el instante inicial hasta que alcanza el punto de equilibrio es

de 0,25 s. Calcular. La frecuencia angular de este movimiento, La fuerza que actúa sobre la partícula, transcurridos 0,1 s desde el instante inicial, La aceleración

máxima, La velocidad cuando t=1/3 s, La aceleración cuando x=12 cm

9. Un punto material de masa 25 g describe un M.A.S. de 10 cm de amplitud y período igual a 1 s. En el instante inicial, la elongación es máxima. Calcular La velocidad

máxima que puede alcanzar la citada masa y El valor de la fuerza recuperadora y su

energía potencial al cabo de un tiempo igual a 0,125 s.

10. La energía total de un cuerpo que realiza un M.A.S. es de 3.10-4 J y la fuerza máxima que actúa sobre él es 1,5.10-2 N. Si el período de las vibraciones es 2 s y la fase

inicial 60º, determinar: la ecuación del movimiento de este cuerpo; su velocidad y

aceleración para t=0s.

11. Una partícula de 0,5kg en el extremo de un resorte tiene un periodo de 0,3s. La

amplitud del movimiento es 0,1m. a) ¿Cuál es la constante del resorte? b) ¿Cuál es

Sección : …………………………..………………………... Docente : Escribir el nombre del docente Unidad: Indicar Unidad Semana: Indicar Semana

Apellidos : ……………………………..…………………………. Nombres : …………………………………..……………………. Fecha : …../..…/2015

Page 33: libro Física II 2015.pdf

Pág. 33

Asignatura: FISICA II

1. Francis W. Sears, Mark W. Zemansky, Hugh D. Young y Roger A. Freedman. Física

Universitaria. Vol 2. XI Edición Pearson Education; México; 2006.

2. Raymond A. Serway y John W. Jevett. Física para Ciencias e Ingenierías. Vol 2. VI

Edición. Editorial Thomson; 2002.

la energía potencial almacenada en el resorte en su desplazamiento máximo? c)

¿Cuál es la velocidad máxima de la partícula?

12. Un cuerpo de 200 gramos unido a un resorte horizontal oscila, sin rozamiento, sobre una mesa, a lo largo del eje x, con una frecuencia angular w = 8 rad/s. En el instante t =

0 el alargamiento del resorte es de 4 cm respecto de la posición de equilibrio y el

cuerpo lleva una velocidad de - 20 cm/s. Determinar: a) La amplitud y la fase inicial

del M.A.S. b) la constante elástica del resorte y la energía mecánica del sistema.

13. Determine el incremento del periodo de un péndulo simple en la luna con respecto al de la tierra, si su longitud es 1 m y considerando que la gravedad lunar es el 16.5% de la gravedad terrestre.

14. Un péndulo que bate segundos en París g=981 cm/s

2 es trasladado al ecuador donde realiza

125 oscilaciones menos ¿Cuánto vale la aceleración de la velocidad en el Ecuador?

15. Una masa m oscila en el extremo de un resorte vertical con una frecuencia de 1 Hz y

una amplitud de 5 cm. Cuando se añade otra masa de 300 g, la frecuencia de oscilación es de 0,5 Hz. Determine: a) El valor de la masa m y de la constante

recuperadora del resorte. b) El valor de la amplitud de oscilación en el segundo

caso si la energía mecánica del sistema es la misma en ambos casos.

16. Un oscilador armónico constituido por un muelle de masa despreciable, y una masa

en el extremo de valor 40 g, tiene un periodo de oscilación de 2 s. a ) ¿Cuál debe ser

la masa de un segundo oscilador, construido con un muelle idéntico al primero, para

que la frecuencia de oscilación se duplique? b) Si la amplitud de las oscilaciones en

ambos osciladores es 10 cm, ¿cuánto vale, en cada caso, la máxima energía potencial del oscilador y la máxima velocidad alcanzada por su masa?

17. La bolita de un péndulo simple realiza una oscilación aproximadamente horizontal y

armónica, en presencia del campo gravitatorio terrestre, con período de 2 segundos y una amplitud de 2 cm. a) Determina la velocidad de la bolita en función del tiempo

y represéntala en función del tiempo, tomando como origen de tiempos el centro de

oscilación. b) ¿Cuál sería el período de oscilación de este péndulo en la superficie de

la luna si allí el campo gravitatorio lunar es la sexta parte del terrestre?

18. Un objeto de 2 kg oscila sobre un muelle de constante k=400 N/m con una

constante de amortiguamiento b=2 kg/s. Está impulsado por una fuerza sinusoidal

de valor máximo 10 N y frecuencia angular w=10 rad/s. Calcular la amplitud de las

oscilaciones, la frecuencia y amplitud de resonancia.

19. Un péndulo físico en forma de cuerpo plano tiene un movimiento armónico simple

con una frecuencia de 1.5 Hz. Si tiene una masa de 2.2 kg y el pivote se encuentra a

0.35 m del centro de masa, calcular el momento de inercia del péndulo.

20. Una varilla delgada tiene una masa M y una longitud de 1.6 m. Uno de los extremos

de la varilla se sujeta en un pivote fijo, en torno al cual oscila la varilla. a) Calcular la

frecuencia de estas oscilaciones. Si se agrega una partícula de masa M al extremo final de la varilla, b) calcular el factor en el que cambiará el periodo.

REFERENCIAS BIBLIOGRÁFICAS, ENLACES Y DIRECCIONES ELECTRONICAS

Page 34: libro Física II 2015.pdf

Pág. 34

Asignatura: FISICA II

Semana 02 Tema 02

¿Cómo puede un submarino sumergirse y flotar? Los principios de Arquímedes y la Pascal contribuyen

en diferentes aplicaciones en mecánica de fluidos

EXPERIMENTO

Primero vamos a fabricar un submarino. Para ello tomamos una botella de plástico y le hacemos unos

agujeros en un solo lateral. En el mismo lado se

pegan unos tornillos (con cinta adhesiva), para que

mantengan los agujeros hacia abajo al poner la botella en el agua.

En el tapón de la botella hacemos un orificio por el

que pasamos un tubo de plástico flexible, que quede

bien ajustado. Llenamos un recipiente de agua y colocamos el

submarino. Como los agujeros quedan abajo, por

ellos empezará a entrar agua. A medida que entra el

agua en la botella, ésta se sumerge hasta llegar al

fondo.

Ahora soplamos por el tubo con fuerza. El aire llena la botella expulsando el agua a través de los agujeros.

La botella comienza a subir hasta quedar flotando en

la superficie.

Este mismo principio tiene los peces Los peces flotan por la vejiga natatoria, al llenarla con aire se hacen

más livianos y salen a flote , y al llenarla con agua

(depende de la cantidad ), se sumergen a voluntad

Cuando se abre en un pez, en la guata se nota una membrana blanca pegada al hueso en la parte más

ancha.

A) ESTATICA DE LOS FLUIDOS

densidad )(kg/m 3

V

mD a condiciones ambientales (presión 1 atm= 101 325 pa y

temperatura 20°C) 3kg/m1030mardeaguaD

3333 kg/m800kg/m2,1kg/m57013kg/m1000 promaceiteaireHgagua DDDD

Presión

)(N/m 2 PadA

dFP

Presión en los líquidos

DghPdA

DdAhg

dA

DdVgPdVDdmcomo

dAdA

dFP cahidrostati .

dm.g

MECÁNICA DE FLUIDOS

FÓRMULAS BÁSICAS

Page 35: libro Física II 2015.pdf

Pág. 35

Asignatura: FISICA II

2

222

2

1112

1

2

1vgzPvgzP

)( 1212

2

1

2

1

yygPPgdydPgdy

dPP

P

y

y

PaatmPghPP 1013251010

ghPP 01 P1 presión total o absoluta

PRINCIPIO DE PASCAL La presión ejercida por

un fluido incompresible y en equilibrio dentro de un recipiente de paredes indeformables se transmite

con igual intensidad en todas las direcciones y en

todos los puntos del fluido.

Aplicación 1 vasos comunicantes

Buscar líneas isobaras para resolver problemas ya que ese

nivel las presiones son iguales. Para ser línea isobara debe

tener: Misma altura

Mismo liquido por la parte inferior o superior

Líquidos unidos

Aplicación 1 prensa hidráulica

2

1

1

2

2

1

2

1

v

v

e

e

A

A

F

F

PRINCIPIO DE ARQUÍMIDEZ Cuando un cuerpo está parcialmente o totalmente sumergido en el fluido que le rodea, una fuerza de empuje actúa sobre el cuerpo. Dicha fuerza tiene dirección hacia arriba y su magnitud es igual al peso del fluido que ha sido desalojado por el cuerpo.

liqunensumpesadoaireelenpesado

sumergido

aparentePesorealPesoE

gVE

B) DINAMICA DE LOS FLUIDOS

Principio de la continuidad Ecuación de Bernoulli

caudalQvAvA ...·· 2211

Aplicaciones torrecelli

02 ( )v g h h

Page 36: libro Física II 2015.pdf

Pág. 36

Asignatura: FISICA II

PRÁCTICA DE FISICA II N° 2

(Tema: Mecánica de Fluidos)

INSTRUCCIONES: resuelve y practique los problemas

1. Calcule la diferencia en la presión sanguínea entre los pies y la parte

superior de la cabeza o coronilla de una persona que mide 1.65 m

de estatura. b) Considere un segmento cilíndrico de un vaso sanguíneo de 2.00 cm de longitud y 1.50 mm de diámetro. ¿Qué

fuerza externa adicional tendría que resistir tal vaso sanguíneo en

los pies de la persona, en comparación con un vaso similar en su

cabeza? 2. Un tubo en U que está abierto en ambos extremos se llena

parcialmente con mercurio. Después se vierte agua en ambos lados

obteniendo una situación de equilibrio ilustrada en la figura, donde

h2 =1cm. Determine la diferencia de altura h1 entre las superficies

de los dos niveles de agua.

3. Se vierte agua y aceite en un tubo en forma de U y se observa que las alturas que

alcanzan los líquidos son respectivamente 10,0 cm y 11,8 cm. Calcula la densidad del

aceite sabiendo que la densidad del agua es 1000 kg/m3.

4. Determinar la nueva lectura diferencial a lo

largo de la rama inclinada del manómetro

de mercurio si la presión en el tubo A disminuye 12kPa y la presión en el tubo B

permanece sin cambio. La densidad del

fluido en el tubo A es de 0,9 y el fluido en

el tubo B es agua.

5. Un tubo en U de sección transversal uniforme igual a 1,5 cm2, contiene inicialmente

50 cm3 de mercurio (densidad de 13,6 g/cm3). A un brazo del tubo se le agrega un volumen igual de líquido desconocido y se observa que el desnivel del mercurio en los

brazos es ahora de 2,75 cm. Determine la densidad del líquido desconocido.

6. Si en manómetro mostrado en la figura la presión en el punto

A esta dado por PA = -

0,11Kg/cm2. Determine Dr

densidad relativa del líquido ―B‖

Sección : …………………………..………………………... Docente : Escribir el nombre del docente Unidad: Indicar Unidad Semana: Indicar Semana

Apellidos : ……………………………..…………………………. Nombres : …………………………………..……………………. Fecha : …../..…/2015

Dr=1,6

A

45 cm

68 cm

38 cm

Aire

Liquido B

Page 37: libro Física II 2015.pdf

Pág. 37

Asignatura: FISICA II

7. un manómetro (tubo en U) que contiene mercurio, tiene su brazo derecho abierto a la

presión atmosférica y su brazo izquierdo conectada a una tubería que transporta agua

a presión. La diferencia de niveles de mercurio en los dos brazos es 200 mm . Si el

nivel de mercurio en el brazo izquierdo está a 400 mm por debajo de la línea central de la tubería ,determine :

a) la presión absoluta en la tubería

b) la nueva diferencia de niveles de mercurio en el manómetro, si la presión en l

tubería cae en 2.103 Pa

8. Los émbolos de la prensa hidráulica de la figura tienen

una superficie de 0,02 m2 y 1,2 m2. Si el embolo pequeño se mueve hacia abajo a una velocidad de 4 m/s.

Calcular:

a. La velocidad a la que se eleva el grande.

b. calcula la fuerza que podemos elevar si aplicamos

sobre el embolo menor una fuerza, hacia abajo, de 800 kgf.

9. En el siguiente grafico calcular la suma de las fuerzas F2 y F3, Si las secciones de cada uno de los vasos es A1= 5 cm2, A2= 60 cm2 y A3= 70 cm2.

10. Una piedra pesa 300 N en el aire y 280 N sumergida

en el agua. ¿Cuál es el volumen de la piedra?

11. Un objeto de masa 180 gramos y densidad desconocida ( ), se pesa sumergido en agua

obteniéndose una medida de 150 gf. Al pesarlo de nuevo, sumergido en un líquido de densidad

desconocida ( ), se obtiene 144 gf. Determinar la densidad del objeto y del segundo líquido.

12. Un cuerpo homogéneo prismático de 20 cm de espesor 20 cm de ancho y 40 cm de

longitud se mantiene en reposo sumergido en agua a 50 cm de profundidad al aplicar

sobre él una tensión de 50N. ¿Cuánto pesa en aire y cuál es su densidad relativa?

13. ¿Cuál es el peso específico de un cuerpo si flota en el agua de modo que emerge el

35 % de su volumen?

14. Un bloque con una sección transversal de área

A, altura H y densidad ρ , está en equilibrio entre

dos fluido de densidades ρ1 y ρ2 ,con ρ1 <ρ<ρ2 . Suponga que los fluidos no se mezclan.

Determine la fuerza de empuje sobre el bloque y

encuentre la densidad del bloque en función de

ρ1, ρ2, H y h.

Page 38: libro Física II 2015.pdf

Pág. 38

Asignatura: FISICA II

3. Francis W. Sears, Mark W. Zemansky, Hugh D. Young y Roger A. Freedman. Física

Universitaria. Vol 2. XI Edición Pearson Education; México; 2006.

4. Raymond A. Serway y John W. Jevett. Física para Ciencias e Ingenierías. Vol 2. VI

Edición. Editorial Thomson; 2002.

15. Una esfera de plomo llena de aire, con radio R = 0,1 m, se

encuentra totalmente sumergida en un tanque de agua como

se ve en la figura. ¿Cuál es el espesor e de la capa de plomo, si la esfera ni flota ni se hunde? La densidad del plomo es

3/kg m

16. Una pieza de aluminio con masa de 2.0 kg y densidad 2700 kg/ms

se

cuelga de una cuerda y luego se sumerge por completo en un

recipiente de agua. Calcule la tensión de la cuerda después de

sumergir el metal.

17. Por una tubería de 20 cm de diámetro se bombea

el agua a razón de 20 litros por segundo. Si el

diámetro del tubo se reduce a 8 cm, ¿Cuál es la rapidez del agua al, pasar por esta nueva tubería?

18. Entra agua en un edificio por un tubo de pvc, con una rapidez de

flujo de 1,8 m/s, con un diámetro interior de 2,6 cm; y a una

presión absoluta de 5 atm. En el cuarto piso se encuentra un cuarto

de baño (altura 7,5 m) con una instalación de tubo de 1,3 cm de

diámetro. Calcule la presión de salida en dicho baño.

19. Un surtidor está alimentado por una tubería de 10 m de longitud y

diámetro D = 12 cm por la que pasa agua a 20 C y una presión P

= 3,5 bar. En el extremo de la tubería se ha instalado una boquilla en forma de codo con un

agujero de salida cuyo diámetro es D = 4 cm situado a una altura de 2 m respecto a la tubería, (ver figura).

Determine:

a) Suponiendo que el flujo del agua

se puede

considerar ideal,

determinar las velocidades v1

del agua en la

tubería y v2 en la salida de la

boquilla.

b) El caudal del agua del

surtidor.

c) Altura a la pueda subir e chorro de agua

REFERENCIAS BIBLIOGRÁFICAS, ENLACES Y DIRECCIONES ELECTRONICAS

Page 39: libro Física II 2015.pdf

Pág. 39

Asignatura: FISICA II

Semana 03 Tema 03

EL OÍDO HUMADO Las ondas sonoras capaces de ser detectadas por el oído

humano van desde 20 Hz (umbral inferior) a 20000 Hz

(umbral superior).

Por debajo de 20 hz están los infrasonidos sonidos muy

elevados (mareas, ondas sísmicas) Sonido producido por los volcanes, los truenos en el mismo lugar, caída de meteorito en el

bosque de Siberia 1908.

Entre ls animales capaces de oir los infrasonidos para su

comunicación son los elefantes por encima de 20000Hz, los ultrasonidos sonidos muy bajos

(como el sonar, de baja energía, y las vibraciones de las redes

cristalinas (cuarzo), de alta energía.

Sonido producido por la caída de un alfiler Impacto del rayo laser

entre los animales capaces de oir sonidos ultrasónicos son los radares de los animales como

la del murciélago que tiene oídos muy desarrollados

Onda trasversal velocidad de propagacion

fT

v

Velocidad de propagación de una cuerda T = fuerza de tensión en el cable V=rapidez

)(

)()/(

mcuerdadelongitudL

kgcuerdalademasammkgmasadelinealdensidaddonde

Tv

ONDAS MECÁNICAS

FÓRMULAS BÁSICAS

Page 40: libro Física II 2015.pdf

Pág. 40

Asignatura: FISICA II

O

+A

-A

x

P

Velocidad v

Propagación de la onda

y

Y

Ecuación de la partícula de onda

posicion

x

T

tAxty 2cos),(

velocidad

)(cos

kxwtAwsendt

kxwtAdv

aceleración

)cos(2 kxwtAwdt

kxwtAwsenda

Ondas estacionaria

Energía de una onda armónica El valor de la energía mecánica total será: E = ½ m (vmax)

2.

Para obtener el valor de la velocidad, derivamos la elongación, y, respecto al tiempo

)(

coskxwtAwsen

dt

kxwtAdv

Si hacemos el coseno igual a 1, tenemos: vmax = Aw

2222 fmAE

Page 41: libro Física II 2015.pdf

Pág. 41

Asignatura: FISICA II

PRÁCTICA DE FISICA II N° 3

(Tema: Ondas Mecánicas)

INSTRUCCIONES: resuelve y practique los problemas

1. La ecuación de una onda transversal que se propaga en una cuerda viene dada por

, 10 20,10

xx t Sen t

, escrita en el SI. Hallar:

a. La velocidad de propagación de la onda.

b. La velocidad y aceleración máxima de las partículas de la cuerda.

2. Una onda sinusoidal transversal que se propaga de derecha a izquierda tiene una

longitud de onda de 20 m, una amplitud de 4 m y una velocidad de propagación de

200 /m s . Hallar:

a. La ecuación de la onda.

b. La velocidad transversal máxima de un punto alcanzado por la vibración.

c. Aceleración transversal máxima de un punto del medio.

3. Dos movimientos ondulatorios coherentes de frecuencia 640 Hertz, se propagan por

un medio con la velocidad de 30 /m s . Hallar la diferencia de fase con que interfieren

en un punto que dista de los orígenes de aquellos respectivamente 25,2 y 27,3 m.

4. La ecuación de una onda transversal en una cuerda es 1,75 250 0,400y Sen t x

estando las distancias medidas en cm y el tiempo en segundos. Encontrar

a. la amplitud, longitud de onda, la frecuencia, período y velocidad de propagación

b. la elongación de la cuerda para 0,002 0,004t s y s .

c. está la onda viajando en la dirección positiva o negativa del eje x.

5. Una cuerda vibra de acuerdo con la ecuación 5 403

xy Sen Sen t

(x en m y t en

s).

a. Hallar la amplitud y velocidad de fase de las ondas cuya superposición puede dar

lugar a dicha vibración. b. Distancia entre nodos.

c. Velocidad de una partícula de la cuerda situada en 1,5x m cuando 98

t s .

6. Dos movimientos ondulatorios coherentes de frecuencia 640 Hertz, se propagan por

un medio con la velocidad de 30 ms . Hallar la diferencia de fase con que interfieren

en un punto que dista de los orígenes de aquéllos respectivamente 25,2 y 27,3 m.

7. Dos ondas que se propagan en una cuerda en la misma dirección tienen una frecuencia de 100 Hertz, longitud de onda de 0,01 m y amplitud de 2 cm. ¿Cuál es la

amplitud de la onda resultante si las ondas originales están desfasadas en 3

?

8. Una cuerda con ambos extremos fijos vibra con su modo fundamental. Las ondas tienen una velocidad de 32 m/s y una frecuencia de 20 Hz. la amplitud de la onda

Sección : …………………………..………………………... Docente : Escribir el nombre del docente Unidad: Indicar Unidad Semana: Indicar Semana

Apellidos : ……………………………..…………………………. Nombres : …………………………………..……………………. Fecha : …../..…/2015

Page 42: libro Física II 2015.pdf

Pág. 42

Asignatura: FISICA II

estacionaria en su antinodo es 1,20 cm. Calcular la amplitud del movimiento de los

puntos de la cuerda a distancias de:

a. 80 cm

b. 40 cm y c. 20 cm del extremo izquierdo de la cuerda.

9. La ecuación de una onda transversal que se propaga en una cuerda es:

25 0,8 1,25y Sen t x donde x se expresa en cm y t en segundos. Determinar la

amplitud, la longitud de onda, frecuencia y velocidad de propagación de la onda.

Determinar la velocidad transversal de un punto sobre dicha cuerda. 10. Una onda transversal viajera en una cuerda es descrita por la ecuación

316 ( )

2

ty sen x

, donde x, y están dados en cm, y el tiempo en segundos.

Calcular ―y‖ cuando X=0,5cm; t= (1/6) s.

11. Se suspende un peso ―W‖ de una cuerda uniforme de longitud ―L‖ y masa ―M‖, tal como se muestra en la figura. Agitando transversalmente el extremo inferior se

origina una onda, la cual se propaga a lo largo de dicha cuerda. En consecuencia,

¿cuál es la máxima velocidad de propagación?

12. La onda que se muestra es emitida por un vibrador de 60 Hz. Calcular la velocidad de dicha onda.

13. Una cuerda de 3 m tiene una masa de 120 g. ¿A qué velocidad se propagan las

ondas transversales en la cuerda si se pone bajo una tensión de 4 N?

14. Una cuerda de 1,5 m y de 0,3 kg, contiene una onda estacionaria como muestra la figura, cuando la tensión es 180 N, calcular la frecuencia de oscilación.

15. Un estudiante golpea el agua de una cubeta 4 veces por segundo y nota que la onda

producida recorre 60 cm en 5 s. ¿Cuál es la longitud de onda del fenómeno?

16. La ecuación de una onda transversal que se propaga en una cuerda es:

4 2 ( )0,1 20

t xy sen , donde las distancias están en cm y los tiempos en s.

¿Determinar el período, la frecuencia, la longitud de onda y la velocidad de propagación?

17. Dos pulsos de onda generados en una cuerda tensa se mueven como se observa en

la figura. ¿Cuánto tiempo tardarán en pasar la una, sobre la otra?

Page 43: libro Física II 2015.pdf

Pág. 43

Asignatura: FISICA II

5. Francis W. Sears, Mark W. Zemansky, Hugh D. Young y Roger A. Freedman. Física

Universitaria. Vol 2. XI Edición Pearson Education; México; 2006.

6. Raymond A. Serway y John W. Jevett. Física para Ciencias e Ingenierías. Vol 2. VI

Edición. Editorial Thomson; 2002.

18. En el diagrama se muestra un cable AB de acero de 300g de masa y

2m de longitud. Si en su extremo suspende una carga de 23,7kg de masa, halle el tiempo que tarda un golpe dado en A para llegar

hasta B (210 /g m s )

19. El diagrama muestra dos cuerdas amarradas entre si y sujetadas a dos postes, la tensión en estas cuerdas es

de 40N. si en un extremo se produce un pulso, cuánto

tiempo tardará en llegar hasta el otro extremo.

20. El oído de un ser humano puede percibir ondas sonoras, con frecuencia entre 20Hz y

20kHz. Sabiendo que el sonido en el aire se propaga con una rapidez de 340m/s, determine la máxima y mínima longitud de onda para el sonido que puede percibir

apara oído humano.

21. Se muestra el perfil de una onda mecánica transversal plana y armónica para el

instante t=0. Determine la función de onda.

22. Una persona situada a la orilla del mar observa una boya anclada a 12m de

distancia, que oscila 5 veces en 10s, y ve que una ola tarda 5s en llegar desde la

boya hasta la orilla. Determine la rapidez de propagación de la onda y su longitud de

onda.

23. Una cuerda de 5m de largo tiene una masa de 0.25kg y se estira con una tensión de

80N. determine la frecuencia de la segunda armónica.

24. Los extremos de una cuerda, de 4m de longitud y 0,2kg de masa, se fijan de modo que se mantiene estirada con una tensión de 125N. ¿Qué frecuencia tendrá una onda

estacionaria con cuatro antinodos?

REFERENCIAS BIBLIOGRÁFICAS, ENLACES Y DIRECCIONES ELECTRONICAS

Page 44: libro Física II 2015.pdf

Pág. 44

Asignatura: FISICA II

Semana 04 Tema 04

EXISTENCIA DE DIOS PARA ALBERT EINSTEIN

Un profesor universitario retó a sus alumnos con esta pregunta. -¿Dios creó todo lo que existe?

Un estudiante contestó valiente:-Sí, lo hizo. -¿Dios

creó todo? -Sí señor, -respondió el joven. El profesor contestó,-Si Dios creó todo, entonces

Dios hizo el mal, pues el mal existe y bajo el precepto de que nuestras obras son un reflejo de

nosotros mismos, entonces Dios es malo. El

estudiante se quedó callado ante tal respuesta y el profesor, feliz, se jactaba de haber probado una

vez más que la fe cristiana era un mito. Otro

estudiante levantó su mano y dijo: -¿Puedo hacer una pregunta, profesor?. -Por supuesto, -

respondió el profesor. El joven se puso de pie y preguntó: -¿Profesor, existe el frío?,

-¿Qué pregunta es esa? Por supuesto que existe,

¿acaso usted no ha tenido frío?. El muchacho respondió:-De hecho, señor, el frío no existe.

Según las leyes de la Física, lo que consideramos frío, en realidad es ausencia de calor. ―Todo

cuerpo u objeto es susceptible de estudio cuando tiene o transmite energía, el calor es lo que hace que dicho

cuerpo tenga o transmita energía. El cero absoluto es la ausencia total y absoluta de calor, todos los cuerpos se vuelven inertes, incapaces de reaccionar, pero el frío no existe. Hemos creado ese término para describir cómo nos

sentimos si no tenemos calor‖. Y, ¿existe la oscuridad? -continuó el estudiante.El profesor respondió:-Por supuesto. El estudiante contestó:-Nuevamente se equivoca, señor, la oscuridad tampoco existe. La oscuridad es en realidad

ausencia de luz. La luz se puede estudiar, la oscuridad no, incluso existe el prisma de Nichols para descomponer la

luz blanca en los varios colores en que está compuesta, con sus diferentes longitudes de onda. La oscuridad no. Un simple rayo de luz rasga las tinieblas e ilumina la superficie donde termina el haz de luz. ¿Cómo puede saber cuan

oscuro está un espacio determinado? Con base en la cantidad de luz presente en ese espacio, ¿no es así?

Oscuridad es un término que el hombre ha desarrollado para describir lo que sucede cuando no hay luz presente.Finalmente, el joven preguntó al profesor:-Señor, ¿existe el mal?.El profesor respondió:-Por supuesto que

existe, como lo mencioné al principio, vemos violaciones, crímenes y violencia en todo el mundo, esas cosas son del mal. A lo que el estudiante respondió: -El mal no existe, señor, o al menos no existe por si mismo. El mal es

simplemente la ausencia de Dios, es, al igual que los casos anteriores un término que el hombre ha creado para

describir esa ausencia de Dios. Dios no creó el mal. No es como la fe o el amor, que existen como existen el calor y la luz. El mal es el resultado de que la humanidad no tenga a Dios presente en sus corazones. Es como resulta el

frío cuando no hay calor, o la oscuridad cuando no hay luz. Entonces el profesor, después de asentar con la cabeza, se quedó callado.

CALOR Y TERMODINÁMICA

FÓRMULAS BÁSICAS

Page 45: libro Física II 2015.pdf

Pág. 45

Asignatura: FISICA II

Page 46: libro Física II 2015.pdf

Pág. 46

Asignatura: FISICA II

Page 47: libro Física II 2015.pdf

Pág. 47

Asignatura: FISICA II

PRÁCTICA DE FISICA II N° 4

(Tema: Calor y Termodinámica)

INSTRUCCIONES: resuelve y practique los problemas

TEMPERATURA

01. Una persona, viajando por Inglaterra, se siente indispuesta y va al médico. Este tras

revisarla, le informa que su temperatura axilar es de 100°F. ¿Cuál es su temperatura

en grados Celsius? ¿Y en Kelvin?

02. A cuantos grados °C cumple que la suma de las lecturas en escalas relativas es igual

a la diferencia de las lecturas en escalas absolutas.

03. La temperatura de un cuerpo ―J‖es el doble de ―M‖ cuando están medidos en °C, pero si se miden en °F la diferencia es 18. ¿Cuál es la temperatura del cuerpo ―M‖ en °C?

04. Un termómetro malogrado registra 200°F para el agua hirviendo y 2°F para la

temperatura de fusión del hielo. ¿Cuándo este termómetro registra 100°F, cual será la temperatura verdadera?

PRIMER EFECTO DEL CALOR (CALORIMETRIA)

05. Una persona de 80 kg que intenta de bajar de peso desea subir una montaña para quemar el equivalente a una gran rebanada de pastel de chocolate tasada en 700

calorías (alimenticias). ¿Cuánto debe ascender la persona?

06. El agua en la parte superior de las cataratas del Niágara tiene una temperatura de 10°C. Si ésta cae una distancia total de 50 m y toda su energía potencial se emplea

para calentar el agua, calcule la temperatura del agua en el fondo de la catarata.

07. ¿Cuántas calorías de calor son necesarias para aumentar la temperatura de 3.0 kg

de aluminio de 20°C a 50°C.

08. Para calentar 2.000 g de una sustancia desde 10 °C hasta 80° °C fueron necesarias

12.000 cal. Determine el calor específico y la capacidad térmica de la sustancia.

09. Si 100 g de agua a 100°C se vierten dentro de una taza de aluminio de 20 g que

contiene 50 g de agua a 20°C, ¿cuál es temperatura de equilibrio del sistema?

10. ¿Cuál es la temperatura de equilibrio final cuando l0 g de leche a 10°C se agregan a 160 g de café a 90°C? (Suponga que las capacidades caloríficas de los dos líquidos

son las mismas que las del agua, e ignore la capacidad calorífica del recipiente).

11. Un calorímetro de cobre de 80 g contiene 62 g de un líquido a 20 °C. En el

calorímetro es colocado un bloque de aluminio de masa 180 g a 40 °C. Sabiendo que la temperatura de equilibrio térmico es de 28 °C, determine el calor específico del

líquido. Considere: c Cu = 0,092 cal /g °C y c Al = 0,217 cal /g °C.

12. Un calorímetro de equivalente en agua igual a 9 g contiene 80 g de agua a 20 °C. Un

cuerpo de masa 50 g a 100 °C es colocado en el interior del calorímetro. La temperatura de equilibrio térmico es de 30 °C. Determine el calor específico del

cuerpo.

Sección : …………………………..………………………... Docente : Escribir el nombre del docente Unidad: Indicar Unidad Semana: Indicar Semana

Apellidos : ……………………………..…………………………. Nombres : …………………………………..……………………. Fecha : …../..…/2015

Page 48: libro Física II 2015.pdf

Pág. 48

Asignatura: FISICA II

13. En un recipiente de capacidad calorífica de 200Cal/°C se tiene 100g agua a 15°C. Se

vierte ―m‖ gramos de agua a 90°C y se determina que la temperatura de equilibrio

es 45°C. Determine m.

14. La cantidad de calor que se entrega a 500g de agua inicialmente a 10°C depende

del tiempo según 200Q t , donde t está en segundo y Q en calorías. Determine ―t‖ en

el instante que la temperatura del agua se hace 60°C

15. Un bloque metálico de 500g, y de 0,11cal

Ceg C

y a una temperatura de 100°C se

introduce en un recipiente que contiene 500g de agua a una temperatura de 20°C. Considere que el recipiente que contiene el agua es aislante térmico, determine la

temperatura de equilibrio.

SEGUNDO EFECTO DEL CALOR (DILATACIÓN Y CONTRACCIÓN TÉRMICA)

16. Una barra de hierro de 10 cm de longitud está a 0 °C; sabiendo que el valor de α = 12.10-6 1/°C. Calcular: a) La Lf de la barra y la ΔL a 20 °C; y b) La Lf de la barra a -30 °C.

17. A través de una barra metálica se quiere medir la temperatura de un horno para eso

se coloca a una temperatura de 22 °C en el horno. Después de un cierto tiempo se retira la barra del horno y se verifica que la dilatación sufrida equivale a 1,2 % de su

longitud inicial, sabiendo que α = 11.10-6 1/°C. Determine: La temperatura del horno

en el instante en que la barra fue retirada.

18. Un hilo de latón tiene 20 m de longitud a 0 °C. Determine su longitud si fuera

calentado hasta una temperatura de 80 °R. Se sabe que: α latón =0,000018 1/°C.

19. Un caño de hierro por el cual circula vapor de agua tiene 100 m de longitud. ¿Cuál es el espacio libre que debe ser previsto para su dilatación lineal, cuando la

temperatura varíe de -10 °C a 120 °C?. Sabiendo que: α hierro = 12.10-6 1/°C.

20. Determine en cuanto debe incrementarse la temperatura del sistema para que las

varillas se junten ( = 6x10-5C -1 ) y ( =5x10-5C -1

21. Un pino cilíndrico de acero debe ser colocado en una placa, de orificio 200 cm² del

mismo material. A una temperatura de 0°C; el área de la sección transversal del pino es de 204 cm². ¿A qué temperatura debemos calentar la placa con orificio,

sabiendo que el coeficiente de dilatación lineal del acero es 12.10-6 1/°C y que la

placa está inicialmente a 0 °C?.

22. Un anillo de cobre tiene un diámetro interno de 3,98 cm a 20 °C. ¿A qué temperatura debe ser calentado para que encaje perfectamente en un eje de 4 cm

de diámetro?. Sabiendo que: α cobre = 17.10-6 1/°C.

23. Un disco de plomo tiene a la temperatura de 20 °C; 15 cm de radio. ¿Cuáles serán su radio y su área a la temperatura de 60 °C?. Sabiendo que: α plomo =0,000029 1/°C.

24. Una chapa a 0 °C tiene 2 m² de área. Al ser calentada a una temperatura de 50 °C,

su área aumenta 10 cm². Determine el coeficiente de dilatación superficial y lineal del material del cual está formada la chapa.

Page 49: libro Física II 2015.pdf

Pág. 49

Asignatura: FISICA II

25. Se tiene un disco de cobre de 10 cm de radio a la temperatura de 100 °C. ¿Cuál será

el área del disco a la temperatura de 0 °C?. Se sabe que: α cobre = 17.10-6 1/°C.

26. Un vendedor de nafta recibe en su tanque 2.000 l de nafta a la temperatura de 30

°C. Sabiéndose que posteriormente vende toda la nafta cuando la temperatura es de

20 °C y que el coeficiente de dilatación volumétrica de la nafta es de 1,1.10-³ 1/°C.

¿Cuál es el perjuicio (en litros de nafta) que sufrió el vendedor?

27. Una matraz de vidrio de 250 cm3 de capacidad se llena completamente de mercurio

hasta el ras y inicialmente está a 20°C si al conjunto se pone a un horno alcanza

una temperatura de 100°C ¿Cuánto mercurio se derrama? ( y

(

28. Se tiene un cuerpo cuya dilatación cubica es 1.4x10-3

°C-l , sumergido

dentro de un liquido cuyo coeficiente de dilatación superficial 8x10-3

°C-l

si se sabe que a la temperatura de 20°C el empuje hidrostático de

dicho liquido sobre el cubo es es de 48 N y la tensión que registra el

dinamómetro es de 12 N. determine la nueva lectura del

dinamómetro cuando todo el conjunto alcance la temperatura de

10°C. Rpta . 9,8 N

TERCER EFECTO DEL CALOR (CAMBIO DE FASE)

29. ¿Cuánto calor se necesita para evaporar un cubo de hielo de 1.0 g inicialmente a 0°C? El calor latente de fusión del hielo es 80 cal/g y el calor latente de vaporización

del agua es 540 cal/g.

30. El calor de combustión de la nafta es 11.10³ cal /g. ¿Cuál es la masa de nafta que debemos quemar para obtener 40.107 cal?.

31. Cuando juntamos 190g de hielo a 0°C con ―m‖ gramos de vapor de agua a 100°C la

temperatura de equilibrio resulta 70°C. Determine ―m‖. Desprecie las pérdidas de

energía.

32. Un vaso de vidrio de 25g contiene 200mL de agua a 24°C, si echamos en el vaso dos

cubos de hielo de 15g cada uno a la temperatura de -3°C, cual es la temperatura

final de la mezcla (despreciar la conducción térmica entre el vaso y el medio exterior)

TERMODINAMICA (primera ley)

33. A un gas ideal se le transfiere 100J en forma de calor, al expandirse realiza un trabajo de 65J y su energía interna varia en 20J, determine la cantidad de calor

liberado en este proceso.

34. Se transfiere calor a un sistema cuya variación de la energía interna es 14,88J y la

presión varía de acuerdo a 264P V ; P en Pascal y V en 3m . Determine

aproximadamente la cantidad de hielo a 0°C que se podrá derretir con dicho calor. (1J=0,24cal).

35. Un tanque con un volumen de 0.1 m3 contiene gas de helio a una presión de 150

atm. ¿Cuántos globos se pueden inflar si cada globo lleno es una esfera de 30 cm de diámetro y a una presión absoluta de 1.2 atm?

Page 50: libro Física II 2015.pdf

Pág. 50

Asignatura: FISICA II

7. Francis W. Sears, Mark W. Zemansky, Hugh D. Young y Roger A. Freedman. Física

Universitaria. Vol 2. XI Edición Pearson Education; México; 2006.

8. Raymond A. Serway y John W. Jevett. Física para Ciencias e Ingenierías. Vol 2. VI

Edición. Editorial Thomson; 2002.

36. Un gas se lleva a través del proceso cíclico descrito en la siguiente figura.

a) Encuentre el calor neto transferido al sistema durante un ciclo completo.

b) Si el ciclo se invierte, esto es, el proceso va por el camino ACBA, ¿cuál es el calor

neto transferido por ciclo?

37. La presión de cierto gas contenido en un recipiente varía según la ecuación 2 2 3P V V , donde P está en Pascal y V en 3m . Determine el trabajo necesario para

expandir el gas de 2 3m a 6 3m

38. Un gas ideal sufre las siguientes transformaciones se expande isobáricamente, luego

se comprime isotérmicamente para luego comprimirlo isobáricamente hasta alcanzar

el volumen inicial y luego enfriarlo a volumen constante hasta alcanzar el estado

inicial. A partir de ello determine los gráficos presión vs volumen, presión vs

temperatura y temperatura vs volumen.

TERMODINAMICA (SEGUNDA LEY)

39. Una maquina térmica de Carnot opera normalmente con un foco caliente de 127°. ¿En cuántos grados °C hay que disminuir la temperatura de su foco frio para que su

eficiencia aumente en 2%.

40. Una maquina refrigerado funciona entre -30°C y 25°C. La potencia requerida por la

refrigeradora la suministra una maquina térmica que opera entre 500°C y 25°C determine:

a) Eficiencia de la maquina térmica.

b) Coeficiente de perfomance dela refrigeradora

c) Laa potencia suministrada por la maquina térmica d) El calor rechazado por la refrigeradora

REFERENCIAS BIBLIOGRÁFICAS, ENLACES Y DIRECCIONES ELECTRONICAS

25°C

- 500

MR

200

Kw MT

Page 51: libro Física II 2015.pdf

Pág. 51

Asignatura: FISICA II

Semana 05 Tema 05

Las señales de radiodifusión como la TV o la radio

son campos eléctricos radiados que viajan por el espacio ( por el aire). Estos campos eléctricos que

son ondas se emplean para transmitir señales de

información a distancia sin necesidad de cables. Cualquier señal eléctrica que viaja por un cable

también es un campo eléctrico ya que contiene

electrones en movimiento(siempre que se aplique electricidad).

Las TV que hemos tenido hasta hace nada (las que

no son planas) emplean un tubo de rayos catódicos

que lo que hace es emitir electrones que impactan con mucha velocidad en una pantalla que está hecha

de un material fosforescente. Este material está

dividido en muchos puntos que se van recorriendo por el haz de electrones haciendo que "brillen" con

un color determinado. Para hacer que el haz recorra

toda la pantalla y podamos ver una imagen completa utiliza un campo eléctrico que varía la posición del

haz de electrones haciendo que vaya a un punto

determinado. Puedes comprobar esto un iman y acercándolo por detrás del TV (estando cerrado) y

verás como la imagen se deforma. Esto es porque

estás modificando el apuntamiento del haz de electrones del tubo de rayos catódicos. EL RADAR también es un ejemplo de aplicación de campo eléctrico. Él manda una señal (una onda

con campo eléctrico) y la campa un target (un avión). La señal rebota y vuelve al radar. Por el tiempo

que ha tardado el radar localiza la distancia y la posición del objetivo.

CARGA Y CAMPO ELÉCTRICO

FÓRMULAS BÁSICAS

Page 52: libro Física II 2015.pdf

Pág. 52

Asignatura: FISICA II

Distribución lineal Distribución superficial

0

( ) limqL

q dqr

L dL

0

( ) limqA

q dqr

A dA

Distribución volumétrica

0

( ) limqV

q dqr

V dV

Page 53: libro Física II 2015.pdf

Pág. 53

Asignatura: FISICA II

Y

XQ Q3

PRÁCTICA DE FISICA II N° 5

(Tema: Carga Eléctrica y Campo Eléctrico)

INSTRUCCIONES: resuelve y practique los problemas

1. ¿Qué exceso de electrones debe tener cada una de dos pequeñas cargas puntuales,

separadas 6 cm; si la fuerza de repulsión entre ellos debe ser ?

2. La fuerza electrostática entre dos cargas eléctricas

positivas idénticas ubicadas en las posiciones que se

muestran es de N310.12 . Determine la fuerza

resultante sobre esta carga ―Q‖ colocada en el punto

mP

2

3,

2

3.

3. En la figura se muestran tres cargas 1q , 2q y 3q .

¿Qué fuerza obra sobre 1q ?.

4. Tres cargas puntuales iguales a Q se encuentran ubicadas en los

vértices de un triángulo equilátero de lado a. Determine la magnitud de la fuerza eléctrica que experimenta cada una de

ellas.

5. Cuál es la fuerza resultante sobre la carga colocada en el

vértice inferior izquierdo del cuadrado?. Tome como valores 6100.10q C y 2a cm .

6. Tres cargas puntuales positivas ( q ) y tres cargas negativas ( q ) se ubican en los

vértices de un hexágono regular de lado ―a‖ como se indica en la figura. ¿Cuál será la

magnitud de la fuerza resultante que ejercen las cargas anteriores sobre una carga

puntual 2q ubicada en el centro del hexágono?

7. Dos esferas idénticas de corcho de masa m y carga q mostradas en la figura, están

suspendidas del mismo punto por medio de dos cuerdas de longitud L. Encontrar el ángulo θ que las cuerdas forman con la vertical, una vez logrado el equilibrio.

Sección : …………………………..………………………... Docente : Escribir el nombre del docente Unidad: Indicar Unidad Semana: Indicar Semana

Apellidos : ……………………………..…………………………. Nombres : …………………………………..……………………. Fecha : …../..…/2015

1

2

3

12

13

4

5

3

15

10

q C

q C

q C

r cm

r cm

Page 54: libro Física II 2015.pdf

Pág. 54

Asignatura: FISICA II

8. Dos globos iguales llenos de Helio, están cargados con

carga igual Q. Mediante dos hilos de longitud 1m

amarrados a los globos se suspende una masa de 0,

005 kg quedando el sistema flotando en equilibrio con los hilos formando un ángulo de 60o entre sí.

Determine el valor de la carga Q.

9. Dos cargas 1 10q C y 2 8q C se encuentran respectivamente en los puntos

( 1,4, 5)A y (1, 1, 3)B cm. Determinar la fuerza eléctrica vectorial entre ellos.

10. Dos cargas iguales a Q y 5Q están en línea recta sepa radas una distancia a.

Determine los puntos en la línea que une las cargas donde el campo eléctrico es

cero.

11. Se tienen tres cargas como se indica en la figura.

a. Calcular el campo eléctrico en el origen del sistema coordenado.

b. Determinar la fuerza que se ejerce sobre la carga en el eje X.

12. Una barra con carga de longitud L se encuentra a lo largo del eje x con uno de sus

extremos en el origen. Su carga por unidad de longitud es 4 /xC m . Hallar el

campo eléctrico en el punto P sobre el eje x.

13. Las barra L1 en el eje x y la barra L2 en el eje y llevan densidades de carga uniformes λ1 y λ2.

Determine la fuerza eléctrica sobre una carga

puntual +q ubicada en el punto P y a las distancias

perpendiculares a las barras indicadas.

Page 55: libro Física II 2015.pdf

Pág. 55

Asignatura: FISICA II

9. Francis W. Sears, Mark W. Zemansky, Hugh D. Young y Roger A. Freedman. Física

Universitaria. Vol 2. XI Edición Pearson Education; México; 2006.

10. Raymond A. Serway y John W. Jevett. Física para Ciencias e Ingenierías. Vol 2. VI

Edición. Editorial Thomson; 2002.

14. Deduzca una expresión para el campo eléctrico producido

por un trozo recto de hilo de longitud L con carga Q

distribuida uniformemente en su longitud, en un punto de coordenadas (x; y), estando el origen en el extremo

izquierdo del hilo y el eje Y perpendicular al hilo.

15. Una barra fina infinita, con densidad lineal de carga λ, se dobla en forma de horquilla como se muestra en la

figura. Determine el campo eléctrico en el punto O.

16. Determine el valor de E en el punto P, debido a una

varilla finita de longitud L y densidad de carga

lineal uniforme, tal como se muestra en la figura.

17. Dos barras aisladoras delgadas se disponen como se indica en la figura, una con densidad de

carga ρo y la otra con ρ =2ρo.

a. Calcular el campo eléctrico en el

origen.

b. Determinar la fuerza que se ejercen las barras sobre una carga

q dispuesta sobre el eje x.

c. Encuentre el o los puntos en los cuales la fuerza sobre q es nula.

18. En la figura la semicircunferencia yace en el plano yz mientras la

carga Q es una carga puntual contenida en el eje z a la distancia

―a‖ del origen. Tanto Q como λ son positivos.

a. Encontrar una expresión para el campo eléctrico sobre el eje

x debido a ambas cargas.

b. ¿Qué relación debe existir entre Q y la carga total de la semicircunferencia para que el campo eléctrico en el origen

sea nulo.

19. Un disco circular de radio R tiene una carga total Q uniformemente distribuida en su superficie. Calcule el campo

eléctrico en un punto sobre el eje del disco a una distancia z

del plano de dicho disco.

20. Se tiene dos varillas de forma semicircular de radios R1 y R2

cargados uniformemente con Q1 y Q2 respectivamente. (a)

Calcular la fuerza eléctrica F sobre la carga puntual q ubicada en el centro de curvatura común. (b) Si R1 =R2/2, calcular la

relación entre cargas para que la fuerza neta sobre q se

anule. REFERENCIAS BIBLIOGRÁFICAS, ENLACES Y DIRECCIONES ELECTRONICAS

Page 56: libro Física II 2015.pdf

Pág. 56

Asignatura: FISICA II

Semana 06 Tema 06

INTERPRETACIÓN La ley de Gauss puede ser utilizada para demostrar que no existe campo eléctrico dentro de

una jaula de Faraday. La ley de Gauss es la

equivalente electrostática a la ley de Ampère, que es

una ley de magnetismo. Ambas ecuaciones fueron posteriormente integradas en las ecuaciones de

Maxwell.

Esta ley puede interpretarse, en electrostática,

entendiendo el flujo como una medida del número de

líneas de campo que atraviesan la superficie en cuestión. Para una carga puntual este número es

constante si la carga está contenida por la superficie

y es nulo si está fuera (ya que hay el mismo número

de líneas que entran como que salen). Además, al ser la densidad de líneas proporcionales a la magnitud de

la carga, resulta que este flujo es proporcional a la

carga, si está encerrada, o nulo, si no lo está.

Cuando tenemos una distribución de cargas, por el principio de superposición, sólo tendremos que considerar las cargas interiores, resultando la ley de Gauss.

Sin embargo, aunque esta ley se deduce de la ley de Coulomb, es más general que ella, ya

que se trata de una ley universal, válida en situaciones no electrostáticas en las que la ley

de Coulomb no es aplicable

LEY DE GAUSS

FÓRMULAS BÁSICAS

Page 57: libro Física II 2015.pdf

Pág. 57

Asignatura: FISICA II

Page 58: libro Física II 2015.pdf

Pág. 58

Asignatura: FISICA II

PRÁCTICA DE FISICA II N° 6

(Tema: Ley De Gauss)

INSTRUCCIONES: resuelve y practique los problemas

1. Un campo eléctrico de magnitud 3 kN/C, se aplica a lo largo del eje X. Determine el flujo eléctrico a través de un plano recto de 35 cm de ancho y 70 cm de largo cuando es

paralelo al plano YZ.

2. Una pirámide de base cuadrada de 6m y de 4m de altura se coloca dentro un campo

eléctrico vertical hacia debajo de 5000 mN/C . Determine el flujo eléctrico total a través

de las cuatro superficies inclinadas de la pirámide.

3. Una carga puntual q está situada en el centro de una superficie esférica de radio R.

calcule el flujo neto del campo eléctrico a través de dicha superficie.

4. Una carga puntual q está situada en el centro de un cubo cuya arista tiene una longitud d.

a) ¿Cuál es el valor del flujo de • E ( .E dS ) en una cara del cubo?

b) La carga se traslada a un vértice del cubo. ¿Cuál es el valor del flujo de a través de

cada una de las caras del cubo?

5. Considere una caja triangular cerrada que descansa dentro de un campo eléctrico

horizontal de magnitud E=80 kN/C, como se muestra en la figura, determine el flujo

electrico sobre:

a) La cara vertical b) La cara inclinada

c) la caja triangular cerrada

6. Calcular el flujo el flujo eléctrico que atraviesa un hemisferio

de radio ―R‖ sabiendo que el campo eléctrico ―E‖ es uniforme

y esta inclinada un ángulo respecto al eje del hemisferio

7. La figura muestra una sección de una línea infinita de carga de densidad constante.

Deseamos calcular el campo eléctrico a una distancia R de la línea

Sección : …………………………..………………………... Docente : Escribir el nombre del docente Unidad: Indicar Unidad Semana: Indicar Semana

Apellidos : ……………………………..…………………………. Nombres : …………………………………..……………………. Fecha : …../..…/2015

Page 59: libro Física II 2015.pdf

Pág. 59

Asignatura: FISICA II

8. Determine el campo eléctrico en el punto P debido a los

alambres infinitos mostrados con sus densidades de limea

9. Dos planos infinitos de densidades superficiales y - están separados una distancia

―d‖ . Determine a que distancia del plano infinito de es campo es nulo

10. Un cilindro no conductor y muy largo, de radio ―a‖ contiene una carga uniforme por

unidad de volumen, o. Calcular el campo eléctrico en un punto situado:

a. Dentro del cilindro ( r a ).

b. Fuera del cilindro ( r a ).

11. Una esfera no metálica tiene una densidad volumétrica de carga variable 2kr .

Hallar el campo eléctrico debido a la carga.

a. Fuera b. Dentro

12. Un cascaron esférico delgado de radio a tiene una carga total Q distribuida

uniformemente sobre su superficie encuentre el campo eléctrico en puntos dentro y fuera del cascarón.

13. Una corteza esférica delgada de radio R tiene una carga total

Q distribuida uniformemente sobre su superficie como se muestra en la figura. Determine el campo eléctrico para

puntos

a. r R , es decir, fuera del cascarón

b. r R , es decir, dentro del cascarón

14. Una carga Q se encuentra uniformemente

distribuida en todo el volumen de una esfera no

conductora de radio R. Determinar el campo

eléctrico en puntos:

a. Fuera de la esfera, r R

b. Dentro de la esfera, r R

Page 60: libro Física II 2015.pdf

Pág. 60

Asignatura: FISICA II

11. Francis W. Sears, Mark W. Zemansky, Hugh D. Young y Roger A. Freedman. Física

Universitaria. Vol 2. XI Edición Pearson Education; México; 2006.

12. Raymond A. Serway y John W. Jevett. Física para Ciencias e Ingenierías. Vol 2. VI

Edición. Editorial Thomson; 2002.

15. Determine el campo eléctrico en el eje z debido a un disco de radio a que está en el

plano x-y con centro en el origen, y cuya densidad de carga es

2

o

r

a

.

16. Una placa de vidrio cargada uniformemente tiene una densidad de carga superficial 24,3 /nC m . Si de esa placa se corta un disco circular de radio 5R cm . ¿Qué

carga tendrá el disco? ¿Cuál es el campo eléctrico a 0,25cm arriba de la superficie de

la placa de vidrio mencionado?

17. Determine el flujo eléctrico que atraviesa una esfera

de radio R situada a una distancia d de una línea

infinita con densidad de carga lineal , considera los

casos para R d y R d

18. El campo eléctrico justo encima de la superficie terrestre es

constante en módulo, E= 150 N/C, y está dirigido hacia el

centro de la Tierra en cada punto. a) Determinar cuál es la

carga de la Tierra. b) Si la carga está uniformemente distribuida en la esfera terrestre y consideramos una esfera

concéntrica en su interior, con radio RT/2, ¿cuál será la

carga encerrada por esta esfera? c) ¿Cuál es el valor del

campo eléctrico en la superficie de la esfera de radio RT/2? (RT=6370km)

19. Un conductor con una carga neta de 12uC presenta una

cavidad como se ilustra en la figura. Dentro de la cavidad se encuentra una carga

puntual de -3uC. Calcule la carga 1q en la superficie interior del conductor; y la carga

2q en la superficie exterior.

20. Un cilindro hueco largo tiene radio interior a y

radio exterior b, como se muestra en la figura. Este cilindro tiene una densidad de carga por

unidad de volumen dada por /k r , dónde k es

una constante y r la distancia al eje- halle el

campo eléctrico en las tres regiones a) r<a,

b)a<r<b y c) r>b

REFERENCIAS BIBLIOGRÁFICAS, ENLACES Y DIRECCIONES ELECTRÓNICAS

Page 61: libro Física II 2015.pdf

Pág. 61

Asignatura: FISICA II

Semana 07 Tema 07

Alguna vez se preguntó a cuantos voltios puede soportar el cuerpo humano, lo que mata a un ser humano o lo que puede matarlo no es el voltaje sino la corriente "amperaje" , ahora bien el rango de peligrosidad empieza desde 1mA ( con esta corriente no te mata pero si es constante , puede causar daño) y a partir de los 30 ma en adelante el cuerpo humano sufre daño considerable cabe mencionar que la corriente debe pasar directamente por el corazón, es por ello que trabajadores en electricidad solo trabajan solo con una mano. Por ello el ser humano puede soportar muchos voltios siempre y cuando la corriente sea menor que 1mA. Es cuestiones prácticas se debe tener mucha precaución.

POTENCIAL ELÉCTRICO

FÓRMULAS BÁSICAS

Page 62: libro Física II 2015.pdf

Pág. 62

Asignatura: FISICA II

Superficies equipotenciales

Son superficies donde el potencial es el mismo valor en todos los puntos

TRABAJO REALIZADO POR EL CAMPO ELECTRICO SOBRE UNA CAGA MOVIL

Trabajo por el agente externo

Relación entre campo eléctrico y potencial eléctrico

Coordenadas rectangulares

también

Coordenadas polares

también

Page 63: libro Física II 2015.pdf

Pág. 63

Asignatura: FISICA II

PRÁCTICA DE FISICA II N° 7

(Tema: Potencial Eléctrico)

INSTRUCCIONES: resuelve y practique los problemas

1. ¿Cuál es la energía potencial eléctrica del sistema formado por 3 partículas cuyas cargas son

iguales y de magnitud 2µC, ubicadas en los vértices de un triángulo equilátero de lado 3cm?

2. Cuatro cargas puntuales iguales a ― ‖ se ubican en los vértices de un cuadrado de lado ―a‖.

Determine la energía potencial total acomulada.

3. Una partícula cuya carga eléctrica es de 2µC es ubicada en el origen de un sistema de

coordenadas cuyas dimensiones son centímetros. Un segundo cuerpo puntual es ubicado en el punto (100,0,0). Si su carga eléctrica es de -3µC, ¿en qué punto del eje x el potencial eléctrico

es nulo.

4. Dos cargas puntuales, q1 = 12 nC y q2 = -12 nC. Calcúlese el

potencial en los puntos.a,b,c

5. Un campo eléctrico uniforme de valor 200N/C tiene la dirección

x positiva. Se deja en libertad una carga puntual q=3mC inicialmente en reposo y ubicada en el origen de coordenadas.

a) ¿Cuál es la energía cinética de la carga cuando está en la posición x=4m?

b) ¿Cuál es la variación de energía potencial eléctrica de la carga desde x=0m hasta x=4m? c) ¿Cuál es la diferencia de potencial V(4m) - V(0m)?

6. Se tiene dos cargas eléctricas +Q y -3Q separadas una distancia ―d‖. Calcule, en que puntos el

potencial eléctrico y el campo eléctrico son nulos.

7. La esfera no conductora de la figura, tiene una carga volumétrica

uniforme 3/C m . Halle: a) la diferencia de potencial entre los

puntos A y B, b) la diferencia de potencial entre los puntos B y C.

8. Un dipolo está ubicado; como se indica en la figura, debido a una carga puntual q0 ¿Qué trabajo se realiza en colocar al dipolo en

posición vertical?

9. Tres cargas positivas de 7

1 2.10q C ; 7

2 10q C y 7

3 3.10q C ; están situados en

línea recta, con la segunda carga en el centro; si la separación entre las cargas

adyacentes es 0,1m. Calcular.a)La energía potencial de cada carga debido a las otras.

Sección : …………………………..………………………... Docente : Escribir el nombre del docente Unidad: Indicar Unidad Semana: Indicar Semana

Apellidos : ……………………………..…………………………. Nombres : …………………………………..……………………. Fecha : …../..…/2015

Page 64: libro Física II 2015.pdf

Pág. 64

Asignatura: FISICA II

1. Francis W. Sears, Mark W. Zemansky, Hugh D. Young y Roger A. Freedman. Física

Universitaria. Vol 2. XI Edición Pearson Education; México; 2006.

2. Raymond A. Serway y John W. Jevett. Física para Ciencias e Ingenierías. Vol 2. VI Edición.

Editorial Thomson; 2002.

b)La energía potencial del sistema. Comparar este resultado con la suma de los

resultados obtenidos en (a)

10. Se tiene un cuadrado de ―a‖ cm de lado y con cuatro cargas puntuales de ―q‖ Coulomb; cada uno ubicado en los vértices del mismo. Calcular a)La energía potencial

del sistema formado, b)El trabajo necesario para colocar una carga puntual ―q1‖ Coulomb, en

el centro del cuadrado. C)La energía potencial del sistema final.

11. A lo largo de una línea recta hay un número infinito de cargas alternados (+q) y (-q)

puntuales. Todas las cargas están adyacentes y separadas una distancia ―r‖.

Demostrar que la energía potencia de una carga es:

2

0

22

qU Ln

12. Un anillo del radio ―b‖ tiene una densidad de carga ― ‖¿En qué punto de su eje polar el

potencial eléctrico es máximo?Encontrar el campo eléctrico del anillo en un punto p del eje polar

a una distancia ―x‖ del anillo; a partir del potencial.

13. Hallar el potencial eléctrico en el punto ―p‖, debido a la barra de longitud ―L‖ que lleva una

densidad lineal ― ‖

14. En una región del espacio , el potencial eléctrico esta expresado por la siguiente

función de x, y de y, pero no de z: V=X2 +2xy. Cuando el potencial esta expresado en

voltio y las distancias en metro determine el campo el campo eléctrico en el punto

X=2, Y=2.

15. El potencial en los puntos del plano esta dado por

, donde r y son

coordenadas polares de u punto del plano y a una constante. Determine las componentes del campo en y , para a=2, =45° y r=2 m

16. Si 16 8,5E i j V/m, y el potencial es cero en el origen, calcule el potencial en el

punto P cuyas coordenadas son x = 1,5 m, y y = 3,5 m.

17. Calcule la diferencia de potencial entre los puntos 0,0O y 3,2P cm si el campo

eléctrico en la región es 2,5 0,3 0,5E i j kV/m.

18. Una lámina plana infinita de carga tiene una densidad superficial uniforme 21 /nC m . ¿Cuál es la separación entre superficies equipotenciales de 10 V de

diferencia?.

19. Un plano infinito tiene una densidad superficial de carga σ = 8.8 × 10-7 C/m2. Sabiendo que el potencial electrostático de

cualquier punto del plano es Vplano = 2 × 103 V, calcule el

potencial a 10cm del plano y en qué punto el potencial

eléctrico es cero

20. En los vértices de un triángulo rectángulo isósceles se localizan

tres cargas +q, +2q y –q, como se muestra. Una cuarta carga +3q

es movida lentamente desde el infinito hasta el punto P ¿cuál es el trabajo realizado en este proceso?.

REFERENCIAS BIBLIOGRÁFICAS, ENLACES Y DIRECCIONES ELECTRÓNICAS

Page 65: libro Física II 2015.pdf

Pág. 65

Asignatura: FISICA II

Semana 08 Tema 08

Los condensadores tienen

muchas aplicaciones. Como su

capacidad depende de la sección entre las placas, se pueden

construir condensadores de

capacidad variable, como los

utilizados en los mandos de sintonización de un aparato de

radio tradicional. En estos

aparatos, al girar el mando, se

varía la superficie efectiva entre

placas, con lo que se ajusta su capacidad y, en consecuencia, se

sintoniza una frecuencia de una

emisora. Del mismo modo, el

teclado de un ordenador actúa sobre un condensador variable, lo que nos permite actuar sobre la pantalla del mismo.

DESCARGA DE UN CONDESADOR Y SU APLICACIÓN Nos referimos ahora a dos, entre las muchas aplicaciones tecnológicas del proceso de

descarga del condensador. Una de ellas es el desfibrilador, un aparado que se usa para reanimar enfermos en situaciones de emergencia. El desfibrilador usa un condensador que

puede almacenar 360J y entregar esta energía al paciente en 2ms. Otro ejemplo de utilidad

de la descarga del condensador es el flash de las cámaras fotográficas, que posee un

condensador que almacena la energía necesaria para proporcionar un destello súbito de luz.

CONDENSADORES Y DIELÉCTRICOS

FÓRMULAS BÁSICAS

Page 66: libro Física II 2015.pdf

Pág. 66

Asignatura: FISICA II

Condensadores plano, esféricos y cilíndricos

Page 67: libro Física II 2015.pdf

Pág. 67

Asignatura: FISICA II

PRÁCTICA DE FISICA II N° 8

(Tema: Condensadores y Dieléctricos)

INSTRUCCIONES: resuelve y practique los problemas

condensadores 1. Un Capacitor de 1μF se carga primero conectándolo a una batería de 10 V. Después, se

desconecta de la Batería y se conecta a un Capacitor de 2μF sin carga. Determine la Carga

resultante de cada Capacitor.

2. Si las capacidades están escritas en F .

Calcule la carga que almacena la red cuando

se aplica una tensión de 18 V a los puntos A

y B.

3. En el sistema de condensadores de la figura calcular la capacidad equivalente entre los

puntos A y B y la carga que almacena cada condensador cuando VAB= 24V.

4. La energía que almacena la red conectada a un acumulador

de 40 V es:

5. Sabiendo que la diferencia de potencial entre los puntos A y B del sistema de la figura es de 200V.

calcule la capacidad equivalente del sistema y la

energía almacenada en cada condensador.

6. En la figura cada capacitancia C1=9.3 F y cada capacitancia

C2=6,2 F. a)determine la capacidad equivalente entre a y b.

b)calcule la carga encada uno de los capacitores más

cercanos a los puntos a y b cuando Vab=840 V. c)determine el Vcd.

7. Suponiendo que todos los condensadores que aparecen en el circuito de la figura son

iguales a 2uF. Calcule la capacidad equivalente y la carga almacenada en C1 y C3

Sección : …………………………..………………………... Docente : Escribir el nombre del docente Unidad: Indicar Unidad Semana: Indicar Semana

Apellidos : ……………………………..…………………………. Nombres : …………………………………..……………………. Fecha : …../..…/2015

Page 68: libro Física II 2015.pdf

Pág. 68

Asignatura: FISICA II

a

2µF 2µF

2µF

b 3µF

8. En el sistema de condensadores de la figura, calcular: a) La capacidad equivalente. b)

La carga que se almacena en el condensador C1 y la diferencia de potencial que

aparece en el mismo.

9. Dos condensadores C1=4µF y C2=2µF se cargan conectándolos en serie a una batería de

90V. A continuación, se desconectan de la batería y se conectan entre sí. (Placa

positiva con placa positiva y placa negativa con placa negativa). Calcular la carga de cada condensador.

10. En la figura se muestra un sistema de capacitores. Si la diferencia de potencial Va b

es 12 V, halle la energía acumulada en el capacitor de 3 µF.

11. Encuentre la capacidad equivalente de la combinación que

se muestra en la figura. Halle también la carga en el

capacitor de 4 F.

12. En el circuito determine: a)la capacidad equivalente, b)la energía total almacenada, c)

la diferencia de potencal en todos los capacitores.

13. Si se cortocircuita los puntos Q y N. Determina

la diferencia de potencial entre los puntos A y B

Page 69: libro Física II 2015.pdf

Pág. 69

Asignatura: FISICA II

Dieléctricos

14. Los cuatro condensadores de la figura tienen formas y tamaños iguales, estando el

espacio entre sus placas relleno respectivamente de los siguientes dieléctricos: k1=1 (aire), k2=2,3 (parafina), k3=3 (azufre) y k4=5 (mica). Calcular las diferencia de

potencial entre las placas de cada uno de los

condensadores y la carga que almacena cada uno de

ellos. (Datos: V=100 v. y C2=10-9 F.)

15. El sistema de cuatro condensadores, cuyas

capacidades son: C1 = 90 µF, C2 = 40 µF, C3 =

20 µF, C4 = 60 µF, se conectan a una fuente de

90 (V). En el condensador 2 se introduce un

dieléctrico de constante K = 1.5. encuentre la carga en el condensador 4.

Condensadores planos esféricos y cilíndricos

16. Un tramo de 50cm de cable coaxial tiene un conductor interior de 2.38 mm de diámetro y lleva

una carga de 8.10 C. El conductor que lo rodea tiene

un diámetro interno 7.27 mm y lleva una carga de -

8,10 C. a)¿Cuál es la capacidad en el cable?.

b)¿Cuál es la diferencia de potencial entre los conductores?.

17. Considere un condensador esférico formado por dos

conductores de radio a y c. Entre las superficies conductoras se llena de dos materiales dieléctricos tal

que el dieléctrico de constante k1 está entre a y b, y el

dieléctrico de constante k2 entre b y c como se muestra

en la figura. Determine la capacidad equivalente del

sistema.

18. Un condensador esférico, con sus placas de radios R y 4R, tiene en su interior un

casquete esférico dieléctrico, de constante K = 4 y que se extiende desde R hasta

3R. El condensador se carga adquiriendo una energía 2

0

4

8

QU

R

. Calcule la carga que

adquiere el condensador

Page 70: libro Física II 2015.pdf

Pág. 70

Asignatura: FISICA II

3. Francis W. Sears, Mark W. Zemansky, Hugh D. Young y Roger A. Freedman. Física

Universitaria. Vol 2. XI Edición Pearson Education; México; 2006.

4. Raymond A. Serway y John W. Jevett. Física para Ciencias e Ingenierías. Vol 2. VI

Edición. Editorial Thomson; 2002.

19. Calcule la capacidad por unidad de longitud de un condensador

cilíndrico formado por dos cortezas metálicas conductoras de

radios a y b respectivamente, cargadas con carga de igual valor Q

y –Q , con una sustancia dieléctrica de constante dieléctrica

relativa r

20. Demostrar que la capacidad de un condensador de

placas plano-paralelas de superficie S, cargadas con cargas

de igual valor Q y -Q, separadas una distancia d y con una

sustancia de permitividad relativa κ es 0kS

Cd

Aplicar esta

expresión.

21. Un condensador de placas planas paralelas, tiene un área A y

una separación entre placas d. En su interior existe un

dieléctrico de constante 1 2k , área A/4 y grosor d. El

condensador se carga a un voltaje V0. Calcule La energía final del condensador, si al desconectar la batería y aislar el

condensador, se llena todo el volumen vacío con un dieléctrico

de constante K2 = 4

22. Un condensador de 8.10-3 Faradios está en serie con

un resistor de 150 ohmios y una fuerza de 100

voltios. Se cierra el interruptor cuando t = 0.

Suponiendo que para t = 0 la carga del condensador y la intensidad de corriente son nulas, Calcular:

a. La carga y la intensidad en cualquier instante.

b. La carga máxima que puede alcanzar el

condensador.

REFERENCIAS BIBLIOGRÁFICAS, ENLACES Y DIRECCIONES ELECTRÓNICAS

+

-V

a

b

I(t) +

-C

1V

C

VR

+

-

R

Page 71: libro Física II 2015.pdf

Pág. 71

Asignatura: FISICA II

Semana 10 Tema 09

Aplicaciones típicas: La resistencia más versátil y ampliamente utilizada en aplicaciones

industriales, comerciales, científicas y militares,

tales como calefactores combinados de

radiación y convección, introducción en agujeros taladrados o en ranuras fresadas en placas o

moldes, fundidos en metales y sujetados a

oleoductos. Igualmente para la calefacción de

líquidos por inmersión directa. Características: El diseño de las resistencias

tubulares produce un calefactor robusto y

durable inigualable en su resistencia contra

choque, vibraciones, corrosión y altas

temperaturas. Pueden ser formadas en una variedad ilimitada de figuras a piezas soldadas

con plata y acero, latón, acero inoxidable o

cualquier pieza de metal exótico, así como

fundidas en metales. Los materiales estándar del tubo son el cobre, acero inoxidable e

incoloro y con varios diámetros y arreglos de tornillo o cables flexibles con sellos,

conexiones y bridas.

Tamaños – Capacidades: Diámetro: pulgadas.- 0.260, 0.315, 0.375‖, 0.430, 0.500, 0.625

Diámetro: milímetros.- 6.60, 8.00, 9.52, 10.92m, 12.06, 12.70, 15.87.

Ancho: pulgadas.- de 11‖ a 255‖,

Ancho: milímetros.- de 279..40 a 6477

Potenciales Nominales.- Hasta 45W/pulg2, 7W/cm2, dependiendo del tamaño Tensiones.- 120, 240V.

La corriente es la cantidad de carga circulando a traves de un area especifica por unidad de

tiempo. Unidad en el SI es el ampere 1 A=1 C/s

| |

La densidad de corriente es la corriente por unidad de área de sección transversal

| |

n concentración q carga de portadores Vd velocidad de derivada

Corriente, Resistencia y F.E.M

FÓRMULAS BÁSICAS

Page 72: libro Física II 2015.pdf

Pág. 72

Asignatura: FISICA II

Asociación de resistencias

Page 73: libro Física II 2015.pdf

Pág. 73

Asignatura: FISICA II

PRÁCTICA DE FISICA II N° 9 (Tema: Corriente, Resistencia y F.E.M )

INSTRUCCIONES: resuelve y practique los problemas

Corriente y densidad de corriente

1. La intensidad de corriente I de un conductor varía con el tiempo t según la ecuación

, donde I se expresa en amperios y t en segundos. ¿Qué cantidad de

electricidad pasa por la sección transversal del conductor durante el período de

tiempo comprendido entre t1 = 2 s y t2 = 6 s.

2. La cantidad de carga q en C que ha pasado a través de una superficie de área igual a

2.00 cm2 varía en función del tiempo según la ecuación q = 4t3 + 5t + 6, donde t es

el tiempo en segundos. ¿Cuál es la corriente instantánea que pasa a través de la

superficie en t = 1s? (b) ¿Cuál es el valor de la densidad de corriente?

3. Cuando un condensador de capacidad C se carga a voltaje, constante V0 a través de una resistencia R, la carga q sobre el condensador, en cualquier tiempo t está dada

por la expresión /

0 (1 )t RCq V C e , determine una expresión general para la corriente

de carga i en el condensador, en cualquier tiempo t.

4. En un conductor cilíndrico de radio 2,25 mm, la densidad de corriente varía con la

distancia desde el eje de acuerdo a

z

r aeJ 500210 A/m2. Halle la corriente total I

5. Halle la corriente que cruza la porción del plano y = 0 definido por 2,02,0 x m

y 001,0001,0 z m, si

yaxJ 1000 A/m2.

Resistencia

6. Cierto alambre metálico de longitud L tiene una resistencia eléctrica de 180 . Si se formará un alambre más grueso del mismo material con la misma cantidad de metal

de longitud L/3. ¿Cuál será la resistencia eléctrica R2 de este nuevo alambre?

7. Dos alambres de Nicromo de exactamente la misma composición tiene el mismo

peso, pero uno de ellos es cinco veces más largo que el otro. Si la resistencia

eléctrica del más corto es R1 = 5 . ¿Cuál es la resistencia eléctrica del otro?

8. Halla la resistencia de una barra cilíndrica de hierro de 1 cm de diámetro, si el peso

de la barra es de 9,8 N. Datos del hierro: ρ = 8,7.10-5 Ω.m; D = 8700 Kg/m3

9. Un alambre a 25°C tiene una resistencia de 25 ohmios. Calcular que resistencia

tendrá a 50°C, sabiendo que el coeficiente de temperatura es igual a 39x10 – 4 °C-1

10. La resistencia de un alambre de cierto material es 15 veces la resistencia de un alambre de cobre de las mismas dimensiones. ¿Cuál es la longitud de un alambre de

este material para que tenga la misma resistencia que un alambre de cobre de

longitud 2 m si ambos alambres tienen el mismo diámetro?

Sección : …………………………..………………………... Docente : Escribir el nombre del docente Unidad: Indicar Unidad Semana: Indicar Semana

Apellidos : ……………………………..…………………………. Nombres : …………………………………..……………………. Fecha : …../..…/2015

Page 74: libro Física II 2015.pdf

Pág. 74

Asignatura: FISICA II

R1

R6R4R2

R5R3

a

b

11. Dos resistencias A y B están hechos del mismo material y de la misma longitud, pero

el diámetro de A es el doble que de B, puestas en serie la resistencia equivalente es

75 . Halle la resistencia de B.

Ley de ohm 12. Una batería de 60V de f.e.m y resistencia interna 0,2ohm, alimenta un conjunto de

bombillas cuya resistencia total es 15ohm, la resistencia total de los conductores

empleados es 0.5 ohm. Con estos datos calcule la intensidad de corriente que

suministra la batería y la diferencia de potencial en los bornes de la batería. 13. Por un hilo de ferroniquel de 1 m de longitud, 2 mm2 de sección y 8 μΩ/m de

resistividad, sumergido en 1 litro de agua, se hace pasar durante 16 minutos y 40

segundos una corriente de 5 amperios. Calcule:

a) La resistencia del hilo b) El calor producido.

c) El aumento de temperatura, ΔT, que experimentará el agua, suponiendo que: no

hay pérdidas de calor; y cuando se pierde un 30% del calor.

Potencia elctrica 14. Tres lámparas consumen respectivamente P1=60 W, P2=100 W y P3=150 W, al ser

conectadas por separado a una diferencia de potencial de 220V. Si conectamos ahora

las tres lámparas en serie y se las somete a una diferencia de potencial de 380 V,

determinar la potencia que consumirá cada una. 15. Calcular el coste por hora que supone la utilización de un radiador eléctrico para el

calentamiento continuo de una habitación, suponiendo que se necesitan 40 kcal por

hora y por m3. La habitación tiene una planta de 5 m x 4 m y una altura de 3 m.

Considerar que la energía eléctrica cuesta 0,24 soles por kWh. Si la resistencia del radiador tiene un valor de 5 ohmios ¿cuál será la intensidad consumida por el

mismo?

Asociación de resistencias

16. Se conectan en serie una resistencia de 5 Ω, una resistencia de 3 Ω y una asociación

de tres resistencias iguales de 12 Ω conectadas en paralelo entre sí. Calcula la resistencia equivalente del conjunto.

17. Calcule la resistencia equivalente entre A y B

18. En la figura mostrada calcule la resistencia equivalente entre los puntos A y B

19. En el circuito mostrado, determine la resistencia equivalente entre los bornes A y B.

Page 75: libro Física II 2015.pdf

Pág. 75

Asignatura: FISICA II

a

b

20. En la figura mostrada, calcule la resistencia equivalente entre los bornes A y B

a) b)

21. En la figura mostrada, calcule la resistencia equivalente entre los bornes A y B

a) b)

22. Encuentre las resistencias equivalentes [Rab] de los circuitos mostrados y cada uno de sus

valores están en ohmios [] a) b)

23. Determine la resistencia equivalente entre A y B

24. Determine la resistencia equivalente entre x e y, si la

resistencia Rad=300 y se divide en 3 partes iguales,

Rab=Rbc=Rcd. (Todas las resistencias están en

ohmios)

Page 76: libro Física II 2015.pdf

Pág. 76

Asignatura: FISICA II

Semana 11 Tema 10

Los instrumentos de medicion en los circuitos de

correinte contunua tenemos los mas importantes

son:Ohmimetro_ instrumento que sirve para medir los ohmios en una resistencia se conecta en

paralelo. Amperimetro- intrumento que sirve

para medir la intensidad de corriente electrica se

conecta en serie.Voltimetro- intrumento que

mide la diferencia de potencial entre dos puntos del circuito, jse instala en paralelo.Capacimetro-

instrumento que mide la capacitancia de un condensador. Vatimetro- intrumento que sirve

para medir la potencia activa. Multimetro- instrumento que contine en un mismo aparato

voltimetro amperimetro ohmimetro

Circuito De Corriente Continua

FÓRMULAS BÁSICAS

Page 77: libro Física II 2015.pdf

Pág. 77

Asignatura: FISICA II

PRÁCTICA DE FISICA II N° 10

(Tema: Circuito De Corriente Continua)

INSTRUCCIONES: resuelve y practique los problemas

Ley de nodos

1. Usando la ley de nodos, determine las corrientes I1, I2, y I3

2. ¿Qué valor ha de tener la resistencia R4 ( todas las

resistencias en ohmios) de la asociación de la figura para que todo el conjunto disipe una potencia de 4000 w

3. Calcula los valores de Ia, Q1 y Rt del circuito de la figura.

6. En la figura ¿cuál es la resistencia equivalente y cuáles son las corrientes en cada

resistencia?. Póngase R1= 100 , R2 = R3 = 50 , R4 = 75 y V = 6 V.

7. Si tenemos que es una batería de f.e.m. igual a 100 V conectado R1 = R3 = 40

y R2 = 80 en paralelo y R4 = 34 en serie. Hallar: a. La intensidad de la corriente que fluye por la resistencia R2.

b. La caída de potencial en esta resistencia. Se desprecia la resistencia de la batería.

Sección : …………………………..………………………... Docente : Escribir el nombre del docente Unidad: Indicar Unidad Semana: Indicar Semana

Apellidos : ……………………………..…………………………. Nombres : …………………………………..……………………. Fecha : …../..…/2015

Page 78: libro Física II 2015.pdf

Pág. 78

Asignatura: FISICA II

Ley de mallas

8. Utilizando el método de las corrientes de mallas

encuentre la intensidad de las corrientes del siguiente circuito.

9. En el circuito de la figura calcule las intensidades en

las diversas ramas del circuito

10. Hallar las corrientes indicadas si las

resistencias tienen los siguientes valores

R1 = 5 , R2 = 8 , R3 = 6 , R4 = 10

, R5 = 12 , R6 = 20 , respectivamente y V1 = 12 V, V2 = 24 V.

Instrumentos de medición

11. En la figura, la lectura del amperímetro es 3 A.

Calcule i1 i2 e i3 y la lectura del voltímetro.

12. En el circuito que se muestra en la figura,

determinar la lectura del voltímetro ideal.

Page 79: libro Física II 2015.pdf

Pág. 79

Asignatura: FISICA II

Semana 12 Tema 11

El tren magnético

Gracias a varios principios físicos así como la ley de Ampere y de

Biot-Savart logramos entender fenómenos físicos como el

magnetismo y permite que el ser humano lo use a su ventaja. El

tren magnético es un claro ejemplo. Derivado de principios

físicos, el tren magnético ya es una realidad en Japón y se

logran velocidades de hasta 550 km/h. Estos trenes son el

vehículo terrestre más rápido a nivel comercial y su principal

enfoque es de disminuir la fricción al máximo. Obedece la ley de

Newton que especifica que un cuerpo permanecerá en

movimiento al menos de que una fuerza se oponga. Reduciendo

la fricción del aire y del suelo (levitación), hace menor la fuerza opositora y es más fácil para un

objeto alcanzar dichas velocidades. La elevación del suelo es enteramente causa del campo magnético

y la forma en la que está planteada la pista con respecto al tren.

Campo Magnético y Fuerza Magnética

FÓRMULAS BÁSICAS

Page 80: libro Física II 2015.pdf

Pág. 80

Asignatura: FISICA II

Fuerza magnética

torque

Page 81: libro Física II 2015.pdf

Pág. 81

Asignatura: FISICA II

PRÁCTICA DE FISICA II N° 11

(Tema: Campo Magnético y Fuerza Magnética )

INSTRUCCIONES: resuelve y practique los problemas

1. Si por el punto P la inducción magnética es nula, determina la distancia ―x‖.

2. Se construye un lazo muy largo con una

sección circular de radio R y dos

secciones largas como se muestra en la

figura, la corriente es de 7A. Determine

el campo magnético B en el centro del

lazo circular para un R=1m

3. Determine el campo magnético, en unidades S.I.,

en el punto P en el diagrama adjunto, si la corriente es de 100 A

4. Calcular el vector inducción magnética B, en el centro de una espira cuadrada, plana, formada por cuatro alambres

conductores rectos de longitud L = 0,4 m, por los que circula

una corriente eléctrica de intensidad I = 10 A.

5. Determine el campo magnético en el punto P

localizado a una distancia x de la esquina de un alambre infinitamente largo doblado en un ángulo

recto. Como se muestra en la figura si por el circula

una corriente I

6. Para mejorar la capacidad de transporte

de la línea del problema anterior, se propone duplicar el número de

conductores, de forma que la corriente

eléctrica circule ahora por dos

conductores de ida, el R y el R’, y por dos de vuelta, el S y el S’, situados en los

vértices de un cuadrado de lado h. Si por

Sección : …………………………..………………………... Docente : Escribir el nombre del docente Unidad: Indicar Unidad Semana: Indicar Semana

Apellidos : ……………………………..…………………………. Nombres : …………………………………..……………………. Fecha : …../..…/2015

Page 82: libro Física II 2015.pdf

Pág. 82

Asignatura: FISICA II

la línea circula la misma corriente eléctrica del apartado anterior, calcular el vector

inducción magnética B, en los puntos de la recta cc’,

recta paralela y equidistante a los cuatro conductores.

7. En el diagrama espacial se presenta a un alambre

conductor muy largo por el cual circula una corriente

10I a A . Hallar la inducción magnética en el centro

de coordenadas ―O‖ del sistema.

8. La espira de la figura conduce una corriente I. Determine el campo magnético en el

punto A en función de I, B y L

9. La figura muestra una espira que transporta una

corriente I formada por un tramo recto y un tramo

semicircular de radio R. El plano de la espira es

perpendicular al plano xy y forma un ángulo con el

plano xz. En la región existe un campo magnético

uniforme y estacionario dado por B Bj con estos

datos. Halle el torque magnético sobre la espira y la

fuerza magnética sobre el tramo semicircular.

10. Un alambre muy largo ha sido doblado y ubicado según

un sistema de ejes x, y, z, halle el campo magnético en el punto ―c‖ sabiendo que es punto medio del lado del

cuadrado que se ubica en el plano xz.

FUERZA SOBRE UN CONDUCTOR

11. Una corriente eléctrica de intensidad 15A

circula a lo largo de un trozo de alambre

conductor, plano, con la forma indicada en la

figura. El alambre se encuentra en el interior de un campo magnético uniforme de 0,25T,

perpendicular al plano del alambre e

Page 83: libro Física II 2015.pdf

Pág. 83

Asignatura: FISICA II

5. Francis W. Sears, Mark W. Zemansky, Hugh D. Young y Roger A. Freedman. Física

Universitaria. Vol 2. XI Edición Pearson Education; México; 2006.

6. Raymond A. Serway y John W. Jevett. Física para Ciencias e Ingenierías. Vol 2. VI

Edición. Editorial Thomson; 2002.

independiente de I. Calcule la fuerza magnética total que actúa sobre el alambre.

(L=50cm y R=25cm)

12. En el alambre conductor doblado como se muestra circula una corriente de I = 10 A y

está sometido a un campo magnético cuya inducción es B = 2T. Hallar la fuerza.

13. Hallar la fuerza magnética resultante en el conductor mostrado, por el cual circula una

corriente 20I A y existe un campo cuya inducción magnética es 0,2B T

FUERZA SOBRE CARGA MOVIL

14. En una región donde el campo magnético B=(2.5i +3.6j+1.5k)T, y un electrón que se mueve con una velocidad v=(-3.0i+4.0j-3.5k) m/s. ¿Cuál es la fuerza magnética sobre

el electrón?.

15. Una carga positiva q= 3,2x10-19

C se mueve a una velocidad de v 2i 3 j k , (m/s); a través de una

región donde existen tanto un campo magnético uniforme como un campo eléctrico uniforme. ¿Cuál es la

fuerza total sobre la carga móvil, si la inducción magnética es B 2i 4 j k , (T); y el campo eléctrico

E 2i 4 j k , (V/m).

16. Una partícula se mueve con una velocidad v en el eje +X, penetre en una región

donde coexiste un campo eléctrico de 300N/C en la dirección +Y y un campo magnético de 0.6T en la dirección +Z. Determine v.

17. Una partícula a 272 , 6,7.10eq q m kg se mueve en un plano perpendicular a un

campo magnético de 0,55T .a)Calcular el módulo de la cantidad de movimiento de la

partícula a cuando el radio de su trayectoria es 0,27m . b)Calcular su velocidad

angular. c)Calcular la energía cinética de esta partícula en eV .

REFERENCIAS BIBLIOGRÁFICAS, ENLACES Y DIRECCIONES ELECTRÓNICAS

Page 84: libro Física II 2015.pdf

Pág. 84

Asignatura: FISICA II

Semana 13 Tema 12

LEY DE FARADAY

(TRANSFORMADOR) No es imprescindible que

haya movimiento. Faraday

mostró que si arrollan dos

bobinas alrededor de un

núcleo de hierro, si por una de ellas (el ―primario‖)

circula una corriente

continua, en la otra (el

―secundario‖) no hay corriente alguna. Sin embargo, justo tras el cierre del interruptor, cuando la corriente del primario cambia en el tiempo, se induce una corriente en el

secundario. Asimismo, tras la apertura del interruptor también aparece una corriente en el

secundario, pero de sentido contrario a la anterior.

FUERZA DE UN CONDUCTOR SOBRE UNA CARGA MOVIL

si la velocidad es paralela en el mismo sentido a la corriente el conductor lo atrae y viceversa

si la velocidad es entrante perpendicular al conductor la fuerza

es paralela y opuesta al sentido de la corriente y viceversa

dos conductores que conducen en el mismo sentido la

corriente se atraen.

Dos conductores que conducen en sentido contrario las

corriente se repelan.

Inducción magnética de un solenoide y un toroide

Fuentes de Campo e Inducción Magnética

FÓRMULAS BÁSICAS

Page 85: libro Física II 2015.pdf

Pág. 85

Asignatura: FISICA II

Page 86: libro Física II 2015.pdf

Pág. 86

Asignatura: FISICA II

PRÁCTICA DE FISICA II N° 12

(Tema: Fuentes de Campo e Inducción Magnética)

INSTRUCCIONES: resuelve y practique los problemas

1. Determinar la fuerza resultante sobre el conductor B:

2. Determine la fuerza resultante por unidad de longitud sobre el el conductor B.

3. Calcula el valor de la inducción magnética en el interior de un solenoide de 36 centímetros de

longitud, formado por 750 espiras, cuando circula por ellas una corriente eléctrica de 3,2 A de

intensidad.

4. Por un solenoide circula una corriente 6I A ; en su interior el campo magnético es

32.10B T . Si la longitud del solenoide es 20L cm ; determine aproximadamente el número

total, N, de espiras del solenoide.

5. Un anillo toroidal, formado por 2700 espiras, tiene una longitud de 90 centímetros y consta de un

núcleo de hierro. Hallar el valor del campo magnético en su interior cuando circula una corriente eléctrica de 5 amperios de intensidad por sus espiras.

6. El flujo magnético que atraviesa una espira varía con el tiempo según la ley: . Hallar:a)La fuerza electromotriz inducida , en función del tiempo.b)Los valores de

F y en los instantes 0,2,4 6t y .c)Representar esquemáticamente las funciones

F t y t .b)Determinar el instante en el que F es mínimo y el valor de en ese momento.

7. Una bobina rectangular de 50 vueltas y dimensiones 5cmx10cm se deja caer desde una posición

donde B=0 hasta una posición donde B=0,25T y se dirige perpendicularmente al plano de la

bobina. Calcule la f.e.m promedio resultante inducida en la bobina si el desplazamiento ocurre en 0,25s.

8. Una bobina circular de 30 vueltas y radio 4 cm se coloca en un campo magnético dirigido perpendicularmente al plano de la bobina. El módulo del campo magnético varía con el tiempo

de acuerdo con la expresión: 20,01 0,04B t t , donde t está expresado en segundos y B en

teslas. Calcule: a) el flujo magnético que atraviesa la bobina en función del tiempo; b) la fuerza

electromotriz inducida en la bobina para t = 5 s.

9. Un lazo rectangular de área A se pone en una región donde el campo magnético es perpendicular al plano del lazo. Se deja que la magnitud del campo varié de acuerdo a

/

0

tB B e , donde 0B y son constantes. Determine la f.e.m inducida en el lazo.

Sección : …………………………..………………………... Docente : Escribir el nombre del docente Unidad: Indicar Unidad Semana: Indicar Semana

Apellidos : ……………………………..…………………………. Nombres : …………………………………..……………………. Fecha : …../..…/2015

Page 87: libro Física II 2015.pdf

Pág. 87

Asignatura: FISICA II

10. Una bobina que se enrolla con 50 vueltas de alambre en la forma de un cuadrado se

coloca en el campo magnético de modo que la normal al plano de la bobina forma un ángulo de 30° con la dirección del campo. Cuando la magnitud del campo se

incrementa de 200uT a 400uT en 0,4s, una f.e.m de 80mV se induce en la bobina.

Cuál es la longitud total del alambre.

11. Un alambre se enrolla completando 1000 vueltas circulares de 10.0 cm de radio. Perpendicular al plano del rectángulo se aplica un campo magnético que oscila de

acuerdo a la expresión 250cos(300 )B t mT , donde t esta expresado en segundos.

Determine:a) Una expresión para la fuerza electromotriz inducida en el embobinado.

b) El valor máximo de la fuerza electromotriz.

12. En el circuito de la figura la varilla MN se mueve con una

velocidad constante de valor: v = 2 m/s en dirección perpendicular a un campo magnético uniforme de valor 0,4

T. Sabiendo que el valor de la resistencia R es de 60ohm y

que la longitud de la varilla es 1,2 m: a) Determine la

fuerza electromotriz inducida y la intensidad de la corriente que circula en el circuito. b) Si a partir de un cierto

instante (t = 0) la varilla se frena con aceleración

constante hasta pararse en 2 s, determine la expresión

matemática de la fuerza electromotriz inducida en función del tiempo, en el intervalo de 0 a 2 segundos.

13. Una espira circular de alambre se coloca, en un campo magnético de 0.3 T mientras que lo extremos

libres del alambre se coloca se conecta a una resistor

de 15 Ω. Cuando se tuerce la espira su área se

reduce de 200 hasta 100 cm2 en 0.02 s ¿Cuál es la

magnitud y la dirección de la corriente en el resistor?

14. La figura muestra una bobina larga conductora rectangular de 25

cm de ancho y 12 g de masa se encuentra parcialmente en una región de campo magnético de 64 T perpendicular a la bobina, si

la bobina tiene una resistencia de 0.2 Ω. ¿Qué velocidad terminal

presenta?

15. La figura muestra una barra de cobre que se mueve

sobre unas vías conductoras con una velocidad v

paralela a un alambre recto, largo que transporta

una corriente I. determine la f.e.m. inducida en la

barra.

16. Una bobina de 100 vueltas, con una resistencia de 100 , esta enrollada alrededor de un

solenoide muy largo, que tiene 100000 vueltas por metro y una sección de 0.002m2. La

corriente que circula a través del solenoide es 10 ( / 6)I sen t A (considere una frecuencia

de oscilación de 60Hz). a) Determine la f.e.m inducida en la bobina y cuál es la corriente que

circula? b) Si se llena el solenoide con hierro ¿cuál es la f.e.m inducida en la bobina? (

10000feu )

Page 88: libro Física II 2015.pdf

Pág. 88

Asignatura: FISICA II

Semana 14 Tema 13

POR QUE USAR CORRIENTE ALTERNA C.A. Y NO

CORRIENTE C.C. ¿Cuáles son las razones de este cambio? ¿Por qué es 9 veces

mayor el consumo de c-a que de c-c? Básicamente, hay dos

razones para esto. Una de ellas es que, por lo general, la c-a sirve para las mismas aplicaciones que c-c y, además es

más fácil y barato transmitir c-a desde el punto donde se

transforma hasta el punto en que se consumirá. La segunda razón para el amplio uso de la c-a es que con ellas se

pueden hacer ciertas operaciones y sirve para ciertas

aplicaciones en las cuales la c-c no es adecuada.

Autoinducción y Corriente Alterna

FÓRMULAS BÁSICAS

Page 89: libro Física II 2015.pdf

Pág. 89

Asignatura: FISICA II

Page 90: libro Física II 2015.pdf

Pág. 90

Asignatura: FISICA II

PRÁCTICA DE FISICA II N° 13

(Tema: Autoinducción y Corriente Alterna )

INSTRUCCIONES: resuelve y practique los problemas

1. Un solenoide toroidal lleno de aire tiene un radio medio de 15cm y un área de sección

transversal de 5cm2. Cuando la corriente es de 12A, la energía almacenada es de 0,39J. cuantas espiras tiene el devanado.

2. Dos bobinas tienen una inductancia mutua 43,25 10M x H . La corriente i1 de la primera

bobina a aumenta uniformemente a razón de 830A/s. Cuál es la magnitud de la f.e.m

en la segunda bobina

3. Un solenoide toroidal tiene un radio medio r, un área de sección transversal A y un

devanado uniforme de N1 espiras. Un segundo solenoide toroidal con N2 espiras esta

devanado uniformemente en torno al primero. Las bobinas están devanadas en el

mismo sentido. Determine su inductancia mutua (no tenga en cuenta la variación del campo magnético a lo ancho de la sección transversal del toroide)

4. Se ha propuesto el uso de grandes inductores como dispositivos para almacenar energía a)

¿cuánta energía eléctrica transforma en luz y energía térmica un foco de 200W en un día? Si la cantidad de energía calculada en el inciso (a) esta almacenada en un inductor en el que la

corriente es 80A , ¿Cuál es la inductancia?.

5. Un inductor con una inductancia de 2,5H y una resistencia de 8 están conectados a los bornes

de una batería con una f.e.m de 6V y resistencia interna insignificante. Halle la rapidez de aumento de corriente en el instante en que la corriente es de 0,5A.

6. circuito RL en serie, constituido por una bobina de 100mH de autoinducción y una resistencia de

25Ω, se conecta a una tensión de 220V, 50 Hz. Calcule: a) Impedancia equivalente del circuito. b) Caída de tensión en la bobina y en la resistencia. c) Ángulo de desfase entre la tensión y la

intensidad.

7. Un condensador de 10uF se carga a 24V y luego se conecta a una resistencia de 100 Ω. a)

Determine la carga inicial del condensador, b) la corriente inicial a través de la resistencia de

100 Ω, c) la constante de tiempo y d) la carga que posee el condensador después de 4ms.

8. La placa de la parte posterior de una computadora indica que esta consume 1,8A de una línea

de 220V y 60Hz. En el caso de esta computadora ¿Cuáles son a) la corriente promedio, b) el promedio del cuadrado de la corriente y c) la amplitud de la corriente?

9. Se conectan en serie un resistor de 30 Ω y un inductor de 0,1 H a una fuente de voltaje alterna

que suministra 100cos(400 )V t V. Si inicialmente no circula corriente por el circuito, determine

una expresión para la corriente en el tiempo t.

10. Se conecta un resistor de 2 Ω y un inductor de 0,25 H a una fuente de voltaje alterna que

suministra 510 cos(12 )tV e t V , formando un circuito RL.

Suponga que la fuente se conecta cuando circula por el circuito una corriente de 5 A. Determine la corriente que circula en el

tiempo t.

11. En un circuito L-R-C en serie, los componentes tienen los valores

siguientes: L=20mH, C=140nF y R=250 Ω. El generador tiene un

voltaje rms de 120V y una frecuencia de 1,25kHz. Halle a) la

Sección : …………………………..………………………... Docente : Escribir el nombre del docente Unidad: Indicar Unidad Semana: Indicar Semana

Apellidos : ……………………………..…………………………. Nombres : …………………………………..……………………. Fecha : …../..…/2015

Page 91: libro Física II 2015.pdf

Pág. 91

Asignatura: FISICA II

7. Francis W. Sears, Mark W. Zemansky, Hugh D. Young y Roger A. Freedman. Física

Universitaria. Vol 2. XI Edición Pearson Education; México; 2006.

8. Raymond A. Serway y John W. Jevett. Física para Ciencias e Ingenierías. Vol 2. VI

Edición. Editorial Thomson; 2002.

potencia suministrada por el generador; b) la energía disipada en el resistor.

12. En el circuito RLC de la figura con 100R , 0,8L H y 100C F conectado a una

fuente de 120V y una frecuencia de 60 Hz . Calcular la corriente del circuito:

13. la Sobre los extremos A y D del circuito serie R-L-C indicado en la figura se aplica un

voltaje de 220 V a 50 Hz. La resistencia es de R = 10 Ω y la autoinducción de 0,1 H.

Sabiendo que VAC = VBD, calcular: a) capacidad del condensador

b)la intensidad que atraviesa el circuito

14. Un transformador monofásico ideal convierte de 400V a 25V de corriente alterna.

¿Qué relación de transformación tiene el transformador? ¿Qué corriente habrá en el

secundario si por el primario pasan 1,25A?

15. En un transformador, el primario de 1000 espiras, se

conecta a una diferencia de potencial de 120 V.

Determina la potencia que alcanza un foco de 4 Ω de

resistencia conectado al secundario que tiene 40 espiras.

E indique si es elevador o reductor.

16. Si en el devanado secundario de un transformador circula una corriente de 30 mA y se

tiene una potencia en el devanado primario de 360 mW a 120 VCA. ¿Cuál será la

corriente del devanado primario, así como la potencia y voltaje del devanado

secundario?

17. Calcule la lectura de los dos amperímetros siendo a relación de transformación

18. Se usa un transformador para accionar una

terma de 2 kW y una cocina de 4 kW según

el circuito de la figura. Determine la corriente

en el bobinado secundario, si

(t) 11 2Sen( t), (kV)

REFERENCIAS BIBLIOGRÁFICAS, ENLACES Y DIRECCIONES ELECTRÓNICAS

Page 92: libro Física II 2015.pdf

Pág. 92

Asignatura: FISICA II

Semana 15 Tema 14

Las ondas electromagnéticas tiene muchas aplicaciones en LA INDUSTRIA, los rayos x

los blandos por ejemplo son usados en

detección de autenticidad de las obras de

arte detección de mercancías de

contrabando en las aduanas. en LA MEDICINA tenemos el pulsa oximetro

(mide la tasa de latidos del corazón y la

oxigenación de la sangre), los rayos x actualmente muy utilizado en cirugías, entre otras

mucho mas y en la COMUNICACIÓN usamos para la radio, celular, televisión y el internet

ONDAS ELECTROMAGNÉTICAS O.E.M.

FÓRMULAS BÁSICAS

Page 93: libro Física II 2015.pdf

Pág. 93

Asignatura: FISICA II

PRÁCTICA DE FÍSICA II N° 14

(Tema: ONDAS ELECTROMAGNÉTICAS O.E.M.)

INSTRUCCIONES: resuelve y practique los problemas

1. Una OEM sinusoidal plano de 20 MHz se propaga en el vacío en la dirección X, en algún instante

el campo E toma su valor máximo de 1500 N/C y está a lo largo del eje Y, Determine. a) la

dirección del campo magnético b) la longitud de onda de esta OEM. 2. El campo eléctrico máximo a una distancia de 11,2 m de una fuente de luz puntual es de 1,96

V/m en el eje -Y . Calcular el valor máximo del campo magnético y su dirección.

3. El campo EM de una onda plana que se propaga en el aire es de la forma

(

) , Determine la longitud de onda.

4. Una O.E.M sinusoidal, plano de 20 MHz se propaga en el espacio ―vacío‖ en la dirección ―x‖, en

algún instante el campo eléctrico toma su valor máximo de 1500 N/C y está a lo largo del eje y. a. Determine la longitud de onda y la magnitud del campo magnético en ese instante

b. Escriba las ecuaciones que definen a E y B

5. Una onda electromagnética se propaga en el vacío con una frecuencia de 1,5MHz. Determine en

cuanto varia su longitud de onda cuando pasa a un medio magnético donde r8 y =2r

6. El vector intensidad de campo eléctrico correspondiente a una onda electromagnética, en función de la posición respecto a la fuente de emisión y al tiempo, está definida por:

8

7

2180 (3 10 ) ( / )

6 10E sen x t y k N C

x

, donde ―y‖ está dado en metros y ―t‖ en segundos. Determine

la inducción magnética máxima.

7. El vector campo eléctrico de una onda electromagnética viene dado por

0 0( , ) ( ) cos( )E x t E sen kx wt j E kx wt k . a) Determine el campo magnético correspondiente

b) Calcule . y E B ExB

8. Una bombilla eléctrica de 100W emite ondas electromagnéticas uniformemente en todas

direcciones. Calcule la intensidad, la presión de radiación y el campo eléctrico y magnético a

una distancia de 3 m de la bombilla, suponiendo que se convierte 80W en radiación electromagnética.

9. Para detectar ondas electromagnéticas en las que 0,15 /efE V m , se utiliza una antena

constituida por una sola espira de alambre conductor de 10cm de radio. Halle la fem eficaz inducida en la espira si la frecuencia de la onda es a) 600kHz y b) 600MHz

10. Una onda posee una intensidad igual a 100W/m2. Calcule a) la presión de radiación b) Eef y Bef

11. La amplitud de una onda electromagnética es 0 400 /E V m . Calcule la intensidad I y la presión

de radiación.

12. Una onda electromagnética de 200W/m2 incide normalmente sobre una cartulina negra de 20x30cm de lado que absorbe toda la radiación. Calcule la fuerza ejercida sobre la cartulina por

la radiación

13. Un satélite en órbita alrededor de la tierra tiene paneles recolectores de energía solar con un área total de 4m2 (ver

figura). Si la radiación del sol es perpendicular a los

paneles y se absorbe totalmente, halle la potencia solar promedio absorbida y la fuerza promedio asociada con la

presión de radiación.

14. Una onda sinusoidal emitida por una estación de radio pasa perpendicularmente a través de una

ventana abierta con un área de 0,5m2. En la ventana, el campo eléctrico de la onda tiene un

valor eficaz de 0,02V/m ¿Cuánta energía transporta esta onda a través de la ventana durante un comercial de 30s?

Sección : …………………………..………………………... Docente : Escribir el nombre del docente Unidad: Indicar Unidad Semana: Indicar Semana

Apellidos : ……………………………..…………………………. Nombres : …………………………………..……………………. Fecha : …../..…/2015

Page 94: libro Física II 2015.pdf

Pág. 94

Asignatura: FISICA II

Semana 16 Tema 15

Nueva generación fibra óptica

los circuitos de fibra óptica son filamentos de vidrio

flexibles, del espesor de un pelo del cabello humano.

llevan mensajes en forma de haces de luz que realmente pasan a través de ellos de un extremo a otro, donde

quiera que el filamento vaya (incluyendo curvas y

esquinas) sin interrupción.

las fibras ópticas pueden ahora usarse como los alambres

de cobre convencionales, tanto en pequeños ambientes

autónomos (tales como sistemas de procesamiento de datos de aviones), como en

grandes redes geográficas (como los sistemas de largas líneas urbanas mantenidos por compañías telefónicas).

la mayoría de las fibras ópticas se hacen de arena o sílice, materia prima

abundante en comparación con el cobre. con unos kilogramos de vidrio pueden

fabricarse aproximadamente 43 kilómetros de fibra óptica.

Óptica

FÓRMULAS BÁSICAS

Page 95: libro Física II 2015.pdf

Pág. 95

Asignatura: FISICA II

Page 96: libro Física II 2015.pdf

Pág. 96

Asignatura: FISICA II

PRÁCTICA DE FISICA II N° 15

(Tema: Óptica )

INSTRUCCIONES: resuelve y practique los problemas

Reflexión y Refracción

1. Realice un esquema de la trayectoria de un rayo luminoso que incide del aire hacia

una cara lateral de un prisma triangular de vidrio. El rayo que incide es paralelo a la base.

2. La longitud de onda de la luz roja de un láser de helio-neón es de 633nm en el aire,

y 474nm en el humor acuoso del interior del ojo humano. Calcule el índice de

refracción del humor acuoso y la rapidez y frecuencia de la luz en esta sustancia. 3. Un haz paralelo de luz forma un ángulo de 47,5° con la superficie de vidrio que tiene

un índice de refracción de 1,66 a) ¿cuál es el ángulo entre la parte reflejada del haz

y la superficie del vidrio? b) cual es el ángulo entre el haz refractado y la superficie

del vidrio.

4. La luz que se propaga en el aire incide en la superficie de un bloque de plástico a un ángulo de 62,7° respecto a la normal, y se dobla de tal modo que forma un ángulo

de 48,1° con la normal en el plástico. Halle la rapidez de la luz en el plástico

5. Bajo que ángulo incide un rayo luminoso sobre la superficie plana de un vidrio, si los

rayos reflejados y refractados forman entre si un ángulo recto. la rapidez de la luz en

el vidrio es de 82 10 /x m s .

6. El ángulo crítico para que haya reflexión total interna en cierta interfaz liquido/aire

es de 42,5° a) si un rayo de luz que se propaga en el líquido tiene un ángulo de

incidencia en la interfaz de 35°, ¿Qué ángulo forma con la normal el rayo refractado

en el aire? 7. Un rayo de luz en un diamante (índice de refracción 2,42) incide sobre una interfaz

con aire. ¿Cuál es el ángulo máximo que el rayo puede formar con la normal sin que

se refleje totalmente de regreso hacia el diamante?

8. En un laboratorio de física, un haz de luz con una longitud de onda de 490nm se propaga en aire de una laser a una fotocelda en 17ns. Cuando se coloca un bloque

de vidrio de 0,84m de espesor ante el haz de luz, de modo que el haz incida a lo

largo de la normal a las caras paralelas del bloque, la luz tarda 21,2ns en viajar del

láser a la fotocelda. Cuál es la longitud de onda de la luz en el vidrio

9. Un haz delgado de luz que se propaga en aire incide en la superficie de una placa de cristal de lantano con un índice de refracción de 1,8 ¿cuál es el ángulo de incidencia

respecto a esta placa con el cual el ángulo de refracción es ? Ambos ángulos

se miden con respecto a la normal.

Espejos planos

10. Un muchacho de 1.60m de altura ve su imagen en un espejo plano vertical situado a

una distancia de él igual a 3m. Los ojos del muchacho se encuentran a 1.5m del suelo. Calcular el tamaño del espejo y la altura a la cual debe colgarlo para ver su

imagen completa.

11. Dos personas A y B se encuentran frente a un espejo. ―A‖ observa su imagen a 1.5m

de distancia. En tanto que observa la imagen de ―B‖ en una dirección que forma un ángulo de 30˚ con el espejo y a 4.5m. Hallar la distancia de ―B‖ al espejo.

12. Dos espejos planos forman un cierto ángulo α. Demostrar que cualquier rayo

luminoso, que incide sobre uno de los espejos y luego se refleja en el otro, emerge

con una desviación constante β = 2α.

Espejos esféricos 13. En qué circunstancia un espejo cóncavo producirá: a)una imagen derecha

b)una imagen virtual c)una imagen menor que el objeto d) una imagen mayor que el

objeto

Sección : …………………………..………………………... Docente : Escribir el nombre del docente Unidad: Indicar Unidad Semana: Indicar Semana

Apellidos : ……………………………..…………………………. Nombres : …………………………………..……………………. Fecha : …../..…/2014

Page 97: libro Física II 2015.pdf

Pág. 97

Asignatura: FISICA II

9. Francis W. Sears, Mark W. Zemansky, Hugh D. Young y Roger A. Freedman. Física

Universitaria. Vol 2. XI Edición Pearson Education; México; 2006.

10. Raymond A. Serway y John W. Jevett. Física para Ciencias e Ingenierías. Vol 2. VI

Edición. Editorial Thomson; 2002.

1. Según el espejo cóncavo que se muestra en la figura marque la alternativa correcta.

14. El radio de curvatura de un espejo esférico convexo es de 50cm. Se coloca un objeto

a 30cm del espejo. Calcular la distancia imagen-espejo. 15. La imagen obtenida mediante un espejo cóncavos esférico es real y se encuentra a

18cm del espejo. Si el aumento es de 0.75 ¿Cuál es el radio de curvatura del espejo?

16. Hallar la distancia focal de un espejo esférico convexo sabiendo que la imagen

obtenida de un objeto situado a 30 cm del espejo es 6 veces menor que él.

17. se requiere proyectar la imagen de una lámpara, amplificada 5 veces, sobre una pared situada a 4 m de la lámpara. Determinar el tipo de espejo esférico que precisa

y a qué distancia se debe colocar la lámpara.

18. Un objeto puntual se ubica sobre el eje de un espejo cóncavo de 30cm de radio, a

20cm de su vértice. Un espejo plano está inclinado 45˚ respecto al eje del espejo cóncavo y pasa por su centro de curvatura. Encontrar gráfica y analíticamente la

posición de la imagen formada por los rayos reflejados en el espejo cóncavo y luego

en el espejo plano.

19. Dos espejos cóncavos de distancias focales f1 = 12cm y f2 igual 14cm se colocan sobre un eje común con sus superficies reflectoras enfrentadas. Se ubica un punto

luminoso a 15cm del primer espejo y se ajusta la posición del segundo hasta obtener

una única imagen real y de modo tal que ésta forme en coincidencia con el objeto.

Cuando esto ocurre, ¿Cuál es la distancia entre los dos espejos?

20. Un objeto luminoso se halla a una distancia de 12.5 m de una pantalla. Calcular la posición y la distancia focal de una lente para obtener una imagen sobre la pantalla

con un aumento lineal de 24.

21. Los radios de curvatura de una lente convexo- cóncava son de 3 y 4 cm,

respectivamente. El índice de refracción de la lente es igual a 1.6. Determinar: a) la distancia focal y b) el aumento lineal de la imagen cuando el objeto está situado a 28

cm delante de la lente.

22. El radio de cada una de las caras de una lente biconvexa es de 8 cm. Hallar su

distancia focal en el aire y cuando se la introduce en agua. Índice de refracción del vidrio = 1.5, del agua = 1.33.

23. Una cierta persona, miope, no puede ver con nitidez objetos situados a una distancia

superior a 50 cm. Calcular la distancia focal y las dioptrías que deben tener sus gafas

para que pueda ver con claridad los objetos lejanos. 24. Calcular el diafragma máximo de una cámara fotográfica cuya lente tiene una

distancia focal de 25 cm y 5 cm de diámetro. Si con ƒ / 6 la exposición correcta es

de 1 / 90 segundos, hallar la exposición que se debe dar cuando esté a ƒ / 9.

REFERENCIAS BIBLIOGRÁFICAS, ENLACES Y DIRECCIONES ELECTRÓNICAS

Page 98: libro Física II 2015.pdf

Pág. 98

Asignatura: FISICA II

Semana 17 Tema 16

Los campos magnéticos se utilizan en física para controlar el movimiento de las partículas

subatómicas.

Tanto para acelerar, para encerrar,

para analizar la masa, la carga o la

velocidad de estas partículas que

forman los átomos se utilizan los

campos magnéticos. Tienen la

ventaja que las fuerzas que

aparecen son tangenciales y por

tanto se pueden controlar mejor que

con campos eléctricos. En realidad se

suelen utilizar ambos campos

combinados. Con los campos

eléctricos podemos acelerar o frenar

las partículas y con los magnéticos podemos mantenerlas (a pesar de tener velocidades

cercanas a la de la luz) dentro del laboratorio. La cumbre de todos estos estudios lo forman

los grandes aceleradores, las catedrales de la física de hoy en día. En ellos se mantienen los

protones o electrones dando vueltas en túneles de kilómetros de radio acelerándoles a

velocidades próximas a la de la luz Podemos ver el funcionamiento del LHC la mayor

máquina científica construida por el hombre en estevídeo.

Física moderna

FÓRMULAS BÁSICAS

Page 99: libro Física II 2015.pdf

Pág. 99

Asignatura: FISICA II

Page 100: libro Física II 2015.pdf

Pág. 100

Asignatura: FISICA II

11. Francis W. Sears, Mark W. Zemansky, Hugh D. Young y Roger A. Freedman. Física

Universitaria. Vol 2. XI Edición Pearson Education; México; 2006.

12. Raymond A. Serway y John W. Jevett. Física para Ciencias e Ingenierías. Vol 2. VI

Edición. Editorial Thomson; 2002.

PRÁCTICA DE FISICA II N° 16

(Tema: FÍSICA MODERNA )

INSTRUCCIONES: resuelve y practique los problemas

1. Dos cohetes, A y B, se mueven en direcciones opuestas. Un observador en tierra dice que la velocidad de A es 0,75c y la de B es 0,85c. Encuentre la velocidad de B

respecto de A.

2. Un motociclista veloz se mueve con una velocidad de 0,6C y pasa al lado de un

observador estacionario en la pista. El motociclista lanza una pelota hacia adelante con una rapidez de 0,5C relativa a si mismo. ¿Con que velocidad se mueve la pelota

respecto al observador estacionario?

3. Una nave se aleja de la Tierra a una velocidad de 0,9 veces la de la luz. Desde la

nave se envía una señal luminosa hacia la Tierra. ¿Qué velocidad tiene esta señal luminosa respecto a la nave? ¿Y respecto a la Tierra? Razona tus respuestas.

4. Una nave espacial se aleja de la tierra a una rapidez de 0,75C, respecto a un

observador (estacionario en tierra). El tripulante de la nave y el observador terrestre

están provistos de relojes idénticos. En cierto instante el tripulante de la nave mira

su reloj y se percata que este marca un intervalo de tiempo de 6h, ¿Cuál es el intervalo de tiempo que marca el reloj del observador en tierra?

5. Una nave parte hacia un planeta situado a 8 años luz de la Tierra, viajando a una

velocidad de 0,8c. Suponiendo despreciables los tiempos empleados en aceleraciones

y cambio de sentido, calcula el tiempo invertido en el viaje de ida y vuelta para un observador en la Tierra y para el astronauta que viaja en la nave.

6. Una nave espacial tiene una longitud de 50 m cuando se mide en reposo. Calcula la

longitud que apreciará un observador desde la Tierra cuando la nave pasa a una

velocidad de 3,6·108 km/h. 7. ¿Qué velocidad debe tener un rectángulo de lados x e y, que se mueve en la

dirección del lado y, para que su superficie sea ¾ partes de su superficie en reposo?

8. Una barra rígida forma un ángulo de 37° con el eje x cuando está en reposo respecto

a un observador. ¿A qué rapidez debe moverse la barra paralelamente al eje x para que parezca formar con este un ángulo de 45°?

9. El volumen de un cubo en reposo es V0. ¿Cuál es su volumen cuando alcanza una

rapidez de 8

9C respecto a un observador terrestre estacionario. El cubo se mueve

paralelo a una de las aristas.

10. ¿Con qué rapidez debe moverse un automovilista hacia una luz roja ( 650nm ) para

verla verde ( 525nm )?

REFERENCIAS BIBLIOGRÁFICAS, ENLACES Y DIRECCIONES ELECTRÓNICAS

Sección : …………………………..………………………... Docente : Escribir el nombre del docente Unidad: Indicar Unidad Semana: Indicar Semana

Apellidos : ……………………………..…………………………. Nombres : …………………………………..……………………. Fecha : …../..…/2015