J. Lapazaran A. Martín-Español J. Otero F. Navarro

31
J. Lapazaran A. Martín-Español J. Otero F. Navarro International Symposium on Radioglaciology 9-13 September 2013, Lawrence, Kansas, USA On the errors involved in the estimate of glacier ice volume from ice thickness data Photo: J. Lapazaran 1

description

Photo : J. Lapazaran. On the errors involved in the estimate of glacier ice volume from ice thickness data. J. Lapazaran A. Martín-Español J. Otero F. Navarro. International Symposium on Radioglaciology 9-13 September 2013, Lawrence, Kansas, USA. Objectives - PowerPoint PPT Presentation

Transcript of J. Lapazaran A. Martín-Español J. Otero F. Navarro

Page 1: J. Lapazaran A. Martín-Español J. Otero F. Navarro

J. LapazaranA. Martín-EspañolJ. OteroF. Navarro

International Symposium on Radioglaciology9-13 September 2013, Lawrence, Kansas, USA

On the errors involved in the estimate of glacier ice volume from ice thickness

data

Photo: J. Lapazaran

1

Page 2: J. Lapazaran A. Martín-Español J. Otero F. Navarro

Objectives

Analyze the error sources & transmit them to the volume estimate.

• Which are the sources?• Evaluate each error value.• Combining errors.

DATA: georadar ice thickness

DEM of glacier ice thickness

Glacier ice volume estimate

Involved processes Steps on error estimation• Step1

Thickness error in georadar data.• Step2

Thickness error in DEM.• Step3

Error in volume.

2

Page 3: J. Lapazaran A. Martín-Español J. Otero F. Navarro

Step1: Thickness error in georadar dataData error ԐHdata can be split in 2 independent errors

being GPR or other georadar type

Error in thickness measurement, ԐHGPR

Error in thickness positioning, ԐHGPS

being positioned by GPS or other positioning system

2 2i i iHdata HGPR HGPS

3

Page 4: J. Lapazaran A. Martín-Español J. Otero F. Navarro

Step1: Thickness error in georadar dataԐHGPR : Error in thickness measurement

Hypothesis:• Zero offset profiling: (Dyn. corr.

).• Migrated radargram.• Only picking where bed is clearly identified.

ԐHGPR can be split in 2 independent errorsError in RWV, Ԑc Error in TWTT, ԐƬ

/ 2H c 22 /ad c

2 2 2 212i i iHGPR c c

4

Page 5: J. Lapazaran A. Martín-Español J. Otero F. Navarro

Step1: Thickness error in georadar dataԐHGPR : Error in thickness measurementԐc : Error in RWV

RWV is measured (CMP) or estimated by experience.

We look for the mean RWV of the profile.• Bias: Error in the mean value of RWV chosen for the profile.• Rnd. error (Ԑc ): Variability around the mean RWV along the

profile.

Bias:• Unknown sign.• 2% in CMP (Barret et al, 2007) 2% of 168 = 3.36 m/µs• , so ±2% of c means ± 2% of H.• It must be considered separately.

Rnd. Error (Ԑc ):• About another 2%

164.6 m/µs171.4 m/µs/2H c

2 2 20.022i iHGPRc

5

Page 6: J. Lapazaran A. Martín-Español J. Otero F. Navarro

Step1: Thickness error in georadar dataԐHGPR : Error in thickness measurementԐƬ: Error in TWTT• Frequency of the radar

• Threshold for vertical resolution• Widess (1973) ʎ / 8 → 1 / 4f in TWTT (in absence of noise).• Yilmaz (2001) ʎ / 4 → 1 / 2f in TWTT.• Reynolds (1997) ʎ / 4 (theoretical) not realistic in real media.• Barret et al (2007) an error of ʎ is not impossible → 2 / f in TWTT.

• We conservatively take ʎ / 2 → ԐƬ = 1 / f in TWTT.• Resolution of the recording

• Sampling resolution. Much smaller than 1 / f. NEGLIGIBLE• Migration

• Profile must be migrated.• CAUTION with profiles close to lateral walls (or 3D migration).

• Moran et al (2000) found 15% of error in a small sample of 100x340 m.

• Picking error• DO NOT PICK if not sure where the bed is (scattering,

clutter).

6

Page 7: J. Lapazaran A. Martín-Español J. Otero F. Navarro

Step1: Thickness error in georadar dataԐHGPS : Error in thickness due to bad positioning

• Grows with the steepness of the thickness field.• Negligible in DGPS.• GPS in autonomous → ԐXY = 5 m.

We build the thickness DEM and evaluate its steepness in n directions around each measuring point:

• Odometer7

2

1

11i i

n

HGPS k ik

d dn

( )

𝑑𝑖 → mean value of the n differences of thickness between the n surrounding points (k) and the evaluated point (i)

Using the same method but we must estimate D.

• Is there any GPS track?• Who have done the profile?• 5-20% of the length, at the centre of the

profile.

D

Page 8: J. Lapazaran A. Martín-Español J. Otero F. Navarro

2 2H k k Hinterp k HGPRx x x ( ) ( ) ( )

Data errorstransmitted to grid points (xk)

Thickness in DEM grid points (xk)

Interpolation errors in grid points (xk)

Step2: Thickness error in DEMErrors in DEM construction

ԐHdata i

can be considered

independent 8

Transmission toDEM grid points.

I N T E R P O L A T I O N

Georadar thicknessdata (xi)

k Hinterpx( ) k HGPRx( )

Page 9: J. Lapazaran A. Martín-Español J. Otero F. Navarro

Step2: Thickness error in DEMԐ(xk)HGPR : Data errors transmitted to grid points

We have interpolated the measured data H(xi) in the grid points xk:

Now, data error are propagated into the grid using the same interpolation weighting:

9

1

n

k i ii

H x H x

( ) ( )

1

n

k HGPR i i HGPRi

x x

( ) ( )

points with georadar measurement

grid points

Page 10: J. Lapazaran A. Martín-Español J. Otero F. Navarro

Step2: Thickness error in DEMԐ(xk)Hinterp : Thickness interpolation error

Georadar data:• High concentration of data in several lines.• Huge spaces without data.

Evaluation of the interpolation error:• Cross-validation evaluates the error in data-

concentrated zones but not in data-free zones.Useless for georadar data interpolating.

• Kriging variance (if interp. with kriging) has been criticized (Rotschky et al, 2007; Journel, 1986; Chainey and Stuart, 1998) as "been ineffective and poor substitute for a true error", "the kriging variance, depending only on the geometrical arrangement of the sample data points, simply states that accuracy decreases with growing distance from input data". 10

Page 11: J. Lapazaran A. Martín-Español J. Otero F. Navarro

11

Step2: Thickness error in DEMԐ(xk)Hinterp : Thickness interpolation errorDistance-Error & Distance-Bias Functions (DEF & DBF)

• Take (e.g.) 10 values of distance, between 0 and the maximum distance between grid point and measured point.

• For each distance value, center a blanking circumference of this radio on each data point and interpolate with remaining data -one at a time-.

• Mean discrepancies (biases) and their standard deviations (errors) are calculated for each distance.

R1R2

R3R4

-300

-200

-100

0

100

200

0 200 400 600 800 1000 1200 1400

Discrepancy (m) vs Distance (m)

Page 12: J. Lapazaran A. Martín-Español J. Otero F. Navarro

12

Step2: Thickness error in DEMԐ(xk)Hinterp : Thickness interpolation errorDistance-Error & Distance-Bias Functions (DEF & DBF)

DBF & DEF are the mean squared adjusted curves.

DBF shows how the bias has negative values that grows with increasing the distance to the nearest measurement.

DEF shows how the error grows with increasing the distance to the nearest measurement.

y = 3E-08x3 - 7E-05x2 + 0,0027x - 5,4091R² = 0,9998

-70-60-50-40-30-20-10

00 500 1000

DBF

y = -6E-09x3 - 1E-05x2 + 0,0586x + 17,584R² = 0,9998

010203040506070

0 500 1000

DEF

Page 13: J. Lapazaran A. Martín-Español J. Otero F. Navarro

13

Distance (m)

Bia

s (m

)Fr

eque

ncy

- A bias value is applied to every cell in the grid, modifying the kriging prediction.

- Every cell in the grid receives an error value from the DEF.

Step2: Thickness error in DEMԐ(xk)Hinterp : Thickness interpolation errorDistance-Error & Distance-Bias Functions (DEF & DBF)

A bias value and an error value are extracted from DBF and DEF and assigned to each node in the DEM grid, depending on its distance to the nearest measurement.

Page 14: J. Lapazaran A. Martín-Español J. Otero F. Navarro

Step3: Error in volume

Volume error ԐV can be split in 2 independent errors

Error in volume due to error in thickness, ԐVH

Error in volume due to boundary error, ԐVB

2 2V VH VB

14

1

N

k kk

V A H

Page 15: J. Lapazaran A. Martín-Español J. Otero F. Navarro

15

Step3: Error in volumeԐVH : Error in volume due to error in thickness

• Can thickness errors be considered independent?• Are they linearly dependent?

There is a spatial dependency among ice thickness

measurements due to the surface continuity and thus

their errors are correlated too

Page 16: J. Lapazaran A. Martín-Español J. Otero F. Navarro

16

Step3: Error in volumeԐVH : Error in volume due to error in thickness

Error correlation

The Range is the greatest distance to consider correlation.

Semivariogram relates the spatial correlation between pairs of points and the distance separating them.

Page 17: J. Lapazaran A. Martín-Español J. Otero F. Navarro

17

NR: Number of independent values =Number of points separated the independence distance (Range)

2Area

RangeRN

Step3: Error in volumeԐVH : Error in volume due to error in thicknessWe consider the glacier to have an independency degree derived from the number of range-size subsets.

2 2

1i

N

VH c HiR

N AN

Page 18: J. Lapazaran A. Martín-Español J. Otero F. Navarro

18

Step3: Error in volumeԐVB : Error in volume due to boundary error

Page 19: J. Lapazaran A. Martín-Español J. Otero F. Navarro

HA12 = 24 m !!

19

Step3: Error in volumeԐVB : Error in volume due to boundary error

• Glacier covered by moraines.• Rocks covered by snow. fA (%)

Page 20: J. Lapazaran A. Martín-Español J. Otero F. Navarro

glacier

bedrock20

Step3: Error in volumeԐVB : Error in volume due to boundary error

Page 21: J. Lapazaran A. Martín-Español J. Otero F. Navarro

glacier

bedrock

debris

21

Step3: Error in volumeԐVB : Error in volume due to boundary error

Page 22: J. Lapazaran A. Martín-Español J. Otero F. Navarro

glacier

bedrockHGPR

debris

22

Step3: Error in volumeԐVB : Error in volume due to boundary error

Page 23: J. Lapazaran A. Martín-Español J. Otero F. Navarro

glacier

bedrockHGPR

debris

error

23

Step3: Error in volumeԐVB : Error in volume due to boundary error

Page 24: J. Lapazaran A. Martín-Español J. Otero F. Navarro

H m

de

vol er r or L e H = / 2m

H m = V / A

H m

L

earea error, f A

L e = f Avol er r or f V = / 2

24

Step3: Error in volumeԐVB : Error in volume due to boundary error

Page 25: J. Lapazaran A. Martín-Español J. Otero F. Navarro

What about the pixelation errors?Related to the software used to mask the ice thickness map.ArcGis 9.3:

- Inner cells are error free.- Frontier cells:

2 2

12bc

A c

N

Vpix bc A

A

H

NEGLIGIBLECan be considered included in the boundary uncertainty error.

At each boundary cell, it can be approximated by the standard deviation of an uniform random variable between plus and minus half the cell area times the mean boundary-cell thickness (being zero the boundary thickness).

25

Step3: Error in volumeԐVB : Error in volume due to boundary error

Page 26: J. Lapazaran A. Martín-Español J. Otero F. Navarro

Uncertainty inDEM boundary

Error involume

Step3

NR

26

Summary

DEM construction: Transmission to grid

Thickness data

Interpolation

• Thickness DEM (grid)• Data error Interpolation error = = (grid)Thickness error in DEM

Step2

HGPR

Hdata

HGPS

c RWV ( )

TWTT ( )

Step1

Page 27: J. Lapazaran A. Martín-Español J. Otero F. Navarro

27

Results

Weren. 1 Weren. 2

Werenskioldbreen

Page 28: J. Lapazaran A. Martín-Español J. Otero F. Navarro

G la c ie r Vol. in te rp . E rro r Error as in d e p en d . Kriging Varian c e Real Vo l. (km 3 ) (km 3 ) (km 3 ) (km 3 ) (km 3 )

Weren. 1 2.80 0.10 0.001 0.21 2.88

Weren. 2 2.76 0.13 0.001 0.27 2.88

Aldg. 1 0.46 0.02 0.0001 0.06 0.45

Aldg. 2 0.44 0.02 0.0001 0.05 0.45

Aldg. 3 0.43 0.03 0.0001 0.08 0.45

Paiel. 1 1.24 0.09 0.0001 0.12 1.28

Paiel. 2 1.30 0.04 0.001 0.13 1.27

Hans. 1 0.991 0.05 0.001 0.10 1.04

Hans. 2 0.993 0.05 0.001 0.16 1.04

Hans. 3 1.02 0.05 0.0001 0.08 1.04

28

Results

Page 29: J. Lapazaran A. Martín-Español J. Otero F. Navarro

On the errors involved in the estimate of glacier ice volume from ice thickness

data

Thank you !

29Photo: J. Lapazaran

Page 30: J. Lapazaran A. Martín-Español J. Otero F. Navarro

30

for your attention...Photo: J. Lapazaran

Thank you !

On the errors involved in the estimate of glacier ice volume from ice thickness

data

Page 31: J. Lapazaran A. Martín-Español J. Otero F. Navarro

31

Javier [email protected]

s