Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y...

39
Invariantes y propiedades algebraicas de ideales celos´ ıa y matriciales Rafael H. Villarreal*, trabajo conjunto con Hiram opez, Jorge Neves, Liam O’Carroll, Francesc Planas Vilanova, and Maria Vaz Pinto Departamento de Matem ´ aticas CINVESTAV-IPN, M´ exico III Encuentro Conjunto Real Sociedad Matem ´ atica Espa ˜ nola–Sociedad Matem ´ atica Mexicana, Zacatecas, sept. 1–4, 2014.

Transcript of Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y...

Page 1: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

Invariantes y propiedades algebraicasde ideales celosıa y matriciales

Rafael H. Villarreal*, trabajo conjunto con HiramLopez, Jorge Neves, Liam O’Carroll, Francesc Planas

Vilanova, and Maria Vaz Pinto

Departamento de MatematicasCINVESTAV-IPN, Mexico

III Encuentro Conjunto Real Sociedad MatematicaEspanola–Sociedad Matematica Mexicana, Zacatecas,

sept. 1–4, 2014.

Page 2: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

NotationN = {0,1,2, . . .}, N+ = {1,2, . . .},

S = K [t1, . . . , ts] polynomial ring over a field K ,

I an ideal of S and S/I its quotient ring.

The K -vector space of polynomials in S (resp. I) ofdegree at most i is denoted by S≤i (resp. I≤i).

If d = (d1, . . . ,ds) ∈ Ns+, we grade S by setting

deg(ti) = di , i.e., S = ⊕∞d=0Sd , where Sd is the set ofhomogeneous polynomials of degree d including 0.

A graded ideal of S is an ideal which is graded withrespect to some weight vector d ∈ Ns

+.

Page 3: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

The affine Hilbert function of S/I is:

HaI (i) := dimK (S≤i/I≤i), i = 0,1,2, . . . ,

(Hilbert-Serre Theorem) There is a unique polynomialha

I (t) ∈ Q[t ] of degree k ≥ 0 such that

haI (i) = Ha

I (i) for i � 0.

The positive integer

deg(S/I) := k ! limi→∞

HaI (i)/ik

is called the degree or multiplicity of S/I.

Page 4: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

The dimension of S/I, denoted by dim(S/I), isdefined as the degree of ha

I (t).

The height of I, denoted by ht(I), is defined ass − dim(S/I).

If X = V (I) ⊂ K s is an affine variety, its dimension isdefined as dim(V ) := dim(S/I(X )), where I(X ) is thevanishing ideal of X .

If S = ⊕∞i=0Si has the standard grading and I ⊂ S is agraded ideal, then the Hilbert function of S/I is:

HI(i) := HaI (i)− Ha

I (i − 1) = dimK (Si/Ii), i = 0,1, . . .

Page 5: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

DefinitionIf a = (a1, . . . ,as) ∈ Ns, we set ta = ta1

1 · · · tass .

A binomial ideal is an ideal I ⊂ S generated by“binomials”, i.e., by polynomials of the form ta − tb.

If a ∈ Zs, we can write a = a+−a−, with a+, a− in Ns.

A lattice ideal is an ideal of the form

I(L) := (ta+ − ta− |a ∈ L) ⊂ S,

where L is a lattice (subgroup) of Zs.

If P = I(L) ⊂ S, where L = kerZ(A) for some integermatrix A, then P is called a toric ideal .

Page 6: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

The following properties hold:

dim(S/I(L)) = s − rank(L) and ht(I(L)) = rank(L),

ti is not a zero divisor of S/I(L) for any i .

DefinitionThe torsion subgroup of Zs/L is:

T (Zs/L) := {x ∈ Zs/L| ` x = 0 for some ` ∈ N+}.

L ' Zr , r is the rank of L,

Zs/L ' Zs−r ⊕ T (Zs/L), r = rank(L).

Page 7: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

Theorem (O’Carroll, Planas-Vilanova, -, 2014)

Let L ⊂ Zs be a lattice of rank r . The following hold.

(a) If r < s, there is an integer matrix A of size (s − r)× sand rank s − r such that L ⊂ kerZ(A).

(b) If r < s and v1, . . . , vs are the columns of A, then

deg(S/I(L)) =|T (Zs/L)|(s − r)!vol(conv(0, v1, . . . , vs))

|T (Zs−r/Z{v1, . . . , vs}|.

(c) If r = s, then deg(S/I(L)) = |Zs/L|.

Page 8: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

Corollary (Lopez, -, 2013)If dim(S/I(L)) = 1 and I(L) is graded w. r. t.d = (d1, . . . ,ds) ∈ Ns

+, then

(gcd{di}si=1) deg(S/I(L)) = (max{di}s

i=1)|T (Zs/L)|.

ExampleIf L = kerZ(1,2,3), then

deg(S/I) = 3,

I = I(L) = (t21 − t2, t3 − t1t2),

HaI (i) = 3i + 1 for i = 0,1, . . .

If K = Q, I is the vanishing ideal I(X ) of the affinetwisted cubic X parameterized by y1, y2

1 , y31 .

Page 9: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

Let I ⊂ S be an ideal. A prime ideal of S of the form

(I : h) := {f ∈ S| fh ∈ I},

for some h ∈ S, is called an associated prime of I.

The set of associated primes of I is denoted by Ass(I)

If Ass(I) = {p}, I is called a p-primary ideal.

If I ⊂ S is an ideal, I has a primary decomposition

I = q1 ∩ · · · ∩ qr ,

with qi a pi-primary ideal and Ass(I) = {p1, . . . , pr}.

Page 10: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

An ideal I is called unmixed if all associated primes ofI have the same height.

Lattice ideal are unmixed.

Example

If I = (t31 − t2t3t4, t3

2 − t1t3t4, t33 − t1t2t4, t3

4 − t1t2t3) andV (I, ti) the affine variety defined by (I, ti), then

V (I, ti) = {0} for all i ,

dim(S/I) = 1, deg(S/I) = 16 = |T (Z4/L)| ,

m = (t1, . . . , t4) ∈ Ass(I), I not a lattice ideal.

If I = (t21 − t2t3, t2

2 − t1t3), then (0,0,1) ∈ V (I, t1).

Page 11: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

LemmaLet I be a graded binomial ideal and let V (I, ti) be theaffine variety defined by the ideal (I, ti).If V (I, ti) = {0} for i = 1, . . . , s, then dim(S/I) = 1.

Theorem (O’Carroll, Planas-Vilanova, -, 2014)Let I ⊂ S be a graded binomial ideal. Then I is a latticeideal of dimension 1 if and only if

(a) V (I, ti) = {0} for i = 1, . . . , s, and

(b) I is an unmixed ideal.

Page 12: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

DefinitionA matrix ideal is an ideal of the form

I(L) = (ta+i − ta−

i | i = 1, . . . ,m) ⊂ S,

where the ai ’s are the columns of an integer matrix L.

Example

L =

2 0 0−1 1 −1−1 −1 1

I(L) = (t2

1 − t2t3, t2 − t3, t3 − t2), V (I(L), ti) = {0} ∀ i ,

I(L>) = (t21 − 1, t2 − t1t3, t3 − t1t2), 0 /∈ V (I(L>), t1).

Page 13: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

DefinitionA graded ideal I ⊂ S is a complete intersection if I isgenerated by ht(I) homogeneous polynomials.

Theorem (Lopez, -, 2013)A graded lattice ideal I(L) ⊂ S of dimension 1 is acomplete intersection if and only if there is an integermatrix L of size s × (s − 1) with column vectorsa1, . . . ,as−1 such that

(a) V (I(L), ti) = {0} for all i , and

(b) L = Z{a1, . . . ,as−1}.

Page 14: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

The next corollary follows using a result of Katsabekis,Morales and Thoma [J. Algebra 324 (2010)].

CorollaryIf char(K ) = p > 0 and I ⊂ S is a graded lattice ideal ofdimension 1, then there are binomials g1, . . . ,gr such thatrad(I) = rad(g1, . . . ,gr ), where r = s − 1 is the height of I.

Theorem (Morales, Thoma, 2005)Let I ⊂ S be a graded lattice ideal of height r . Ifchar(K ) = 0 and rad(I) = rad(g1, . . . ,gr ) for somebinomials g1, . . . ,gr , then I = (g1, . . . ,gr ).

Page 15: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

Graded matrix ideals satisfying V (I, ti) = {0}

Proposition (O’Carroll, Planas-Vilanova, -, 2014)Let I be a graded matrix ideal of an s ×m integer matrix Land let L be the lattice spanned by the columns of L.Suppose that V (I, ti) = {0} for all i . Then:

(a) If I is unmixed, then I = I(L) and I has a primarydecomposition I = ∩c

i=1qi , where qi is a pi-primaryideal with ht(pi) = s − 1 for all i .

(b) If I is not unmixed, then I = I(L) ∩ q, where q is anm-primary ideal.

(c) deg(S/I) = maxi{di}|T (Zs/L)| = max{di}∆s−1(L),where d = (d1, . . . ,ds) ∈ Ns

+, dL = 0, gcd(d) = 1.

Page 16: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

DefinitionLet ai,j ∈ N, i , j = 1, . . . , s, and let L be an s × s matrix ofthe following special form:

L =

a1,1 −a1,2 · · · −a1,s

−a2,1 a2,2 · · · −a2,s...

... · · · ...−as,1 −as,2 · · · as,s

.

The matrix L is called a pure binomial matrix (PB matrix)if aj,j > 0 for all j , and for each row and each column of Lat least one off-diagonal entry is non-zero.

The Laplacian matrix of a connected graph is a primeexample of a PB matrix.

Page 17: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

The support of a polynomial f ∈ S, denoted by supp(f ), isthe set of all variables ti that occur in f .

PropositionLet I = I(L) = (f1, . . . , fs) be the matrix ideal of an s× s PBmatrix L. Suppose that |supp(fj)| ≥ 4, for all j . Then:

(a) I is not a lattice ideal.

(b) If I is graded and V (I, ti) = {0} for all i , then I has aprimary decomposition of the form

I = (∩ci=1qi) ∩ q,

where the qi are pi-primary ideals with ht(pi) = s − 1,and q is an m-primary ideal.

Page 18: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,
Page 19: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

PropositionLet I = (f1, . . . , fs) be the matrix ideal of a PB matrix L. If Iis graded, V (I, ti) = {0} for all i , and |supp(fi)| ≥ 3 for all i ,then I is not a complete intersection.

Example

L =

2 −1 −1−1 2 −1−1 −1 2

I(L) = (t2

1 − t2t3, t22 − t1t3, t2

3 − t1t2), V (I(L), ti) = {0} ∀ i .

I(L) is not a complete intersection, is a lattice ideal, is nota prime ideal, has degree 3 and dimension 1.

Page 20: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

A duality theorem

Theorem (O’Carroll, Planas-Vilanova, -, 2014)Let ai,j ∈ N, i , j = 1, . . . , s, and L an s × s matrix of form:

L =

a1,1 −a1,2 · · · −a1,s

−a2,1 a2,2 · · · −a2,s...

... · · · ...−as,1 −as,2 · · · as,s

.

If ai,j > 0 for all i , j and dL = 0 for some d in Ns+, then

rank(L) = s − 1 and Lc> = 0 for some c in Ns+.

Page 21: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

Next, we generalize the previous result using algebraicgraph theory.

DefinitionLet B = (bi,j) be an s × s real matrix. The underlyingdigraph of B, denoted by GB, has vertex set {t1, . . . , ts},with an arc from ti to tj if and only if bi,j 6= 0. If bi,i 6= 0, weput a loop at vertex ti . If B is a PB matrix, loops in GB areomitted.

A digraph is strongly connected if for any two vertices tiand tj there is a directed path form ti to tj and a direct pathfrom tj to ti .

Page 22: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

Examples of underlying digraphs

Page 23: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

Duality Theorem (O’Carroll, Planas-Vilanova, -, 2014)Let L be a PB matrix of size s × s. If there is d ∈ Ns

+ suchthat dL = 0 and GL is strongly connected, thenrank(L) = s − 1 and there is c in Ns

+ such that Lc> = 0.

PropositionLet L be a PB matrix of size s × s such that dL = 0 forsome d ∈ Ns

+. The following conditions are equivalent.(a) GL is strongly connected.(b) V (I(L), ti) = {0} for all i .(c) Li,j > 0 ∀ i , j , where adj(L) = (Li,j) is the adjoint of L.

Page 24: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

ExampleLet L be the following PB matrix and adj(L) its adjoint:

L =

4 −1 −1 −1 −1−1 4 −1 −1 −1

0 −1 2 −1 0−1 −1 −1 4 −1−1 0 0 0 1

,

adj(L) =

20 15 25 15 5020 15 25 15 5020 15 25 15 5020 15 25 15 5020 15 25 15 50

.

By last proposition, we get V (I(L), ti) = {0} for all i and GL

is strongly connected.

Page 25: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

Laplacian matrices and ideals

Let G be a connected simple graph, whereV = {t1, . . . , ts} is the set of vertices, E is the set ofedges, and let w be a weight function

w : E → N+, e 7→ we.

Let E(ti) be the set of edges incident to ti . The Laplacianmatrix L(G) of G is the s × s matrix whose (i , j)-entryL(G)i,j is given by

L(G)i,j :=

e∈E(ti )we if i = j ,

−we if i 6= j and e = {ti , tj} ∈ E ,0 otherwise.

Notice that L(G) is symmetric, 1L(G) = 0 andrank(L(G)) = s − 1.

Page 26: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

Weighted graphs as multigraphs

Page 27: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

DefinitionThe matrix ideal IG of L(G) is called the Laplacianideal of the graph G.

If L is the lattice generated by the columns of L(G),the group

K (G) := T (Zs/Im(L(G))) = T (Zs/L)

is called the critical group or the sandpile group of G.

If G is connected, then rank(L) = ht(IG) = s − 1.The structure, as a finite abelian group, of K (G) isonly known for a few families of graphs.

Page 28: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

Theorem (the Matrix-Tree Theorem)If G is regarded as a multigraph (where each edge eoccurs we times), then the number of spanning trees of Gis equal to the (i , j)-entry of the adjoint matrix of L(G) forany (i , j).

————————–

The order of T (Zs/L) is the gcd of all (s − 1)-minors ofL(G). Hence the order of K (G) = T (Zs/L) is the numberof spanning trees of G.

Page 29: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,
Page 30: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

PropositionLet G be a connected simple graph with a weight functionw : E → N+ and let IG ⊂ S be its Laplacian ideal. Then:

(a) V (IG, ti) = {0} for all i .

(b) deg(S/IG) = deg(S/I(L)) = |K (G)|.

(c) If degG(ti) ≥ 3 for all i , then IG is not a lattice ideal.

(d) If degG(ti) ≥ 2 for all i , then IG is not a completeintersection.

(e) If G = Ks is a complete graph, then deg(S/IG) = ss−2.

Page 31: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

ExampleLet G be the graph:

s t4

st2

st11 2

3

4 1

st3���

@@@���@

@@ L(G) =

3 −1 −2 0−1 8 −3 −4−2 −3 6 −1

0 −4 −1 5

where weights of G are indicated across edges. Then

IG = (t31 − t2t2

3 , t82 − t1t3

3 t44 , t6

3 − t21 t3

2 t4, t54 − t4

2 t3),

deg(S/IG) = 67, IG is not a complete intersection and isnot a lattice ideal.

Page 32: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

Vanishing ideals over finite fields

Let K = Fq be a finite field with q elements and X asubset of a projective space Ps−1 over K .

The following results gives a family of 1-dimensionallattice ideals of interest in algebraic coding theory.

Proposition (Vaz Pinto, Neves, -, 2013)The vanishing ideal I(X ) is a graded lattice ideal of S ofdimension 1 if and only if

X = {[(xv1 , . . . , xvs )]| xi ∈ K ∗ = K \ {0} ∀ i} ⊂ Ps−1,

for some monomials xvi := xvi11 · · · x

vinn , i = 1, . . . , s.

Page 33: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

In what follows we assume that X is a subset of Ps−1

which is parameterized by monomials:

X = {[(xv1 , . . . , xvs )]| xi ∈ K ∗ = K \ {0} ∀ i} ⊂ Ps−1.

Some properties of I(X )

(a) dim S/I(X ) = 1.

(b) I(X ) = ({ti − xvi z}si=1 ∪ {x

q−1i − 1}n

i=1) ∩ S.

(c) I(X ) = I(L) for some lattice L of Zs.

(d) deg(S/I(X ) = |T (Zs/L)|.

(e) If xv1 , . . . , xvs are square-free, then I(X ) is a completeintersection if and only if X is a projective torus.

Page 34: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

The degree and the regularity of S/I(X )

Remark (Geramita, Kreuzer, Robbiano, TAMS, 1993)If I = I(X ), there is an integer r ≥ 0 such that1 = HI(0) < · · · < HI(r − 1) < HI(d) = |X | for d ≥ r .

In particular, |X | is the degree of S/I(X ).

DefinitionThe integer r , denoted by reg(S/I(X )), is called theregularity of S/I(X ).

Page 35: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

Parameterized linear codes arising from X

DefinitionLet X = {[P1], . . . , [Pm]} and let f0(t1 . . . , ts) = td

1 , whered ≥ 1. The linear map of K -vector spaces:

evd : Sd → K |X |, f 7→(

f (P1)

f0(P1), . . . ,

f (Pm)

f0(Pm)

)is called an evaluation map. Notice that ker(evd ) = I(X )d .

The image of evd , denoted by CX (d), is a linear code

CX (d) is called a parameterized code of order d .

Page 36: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

DefinitionThe basic parameters of the linear code CX (d) are:

dimK CX (d) = HI(X)(d), the dimension,

|X | = deg(S/I(X )), the length,

δX (d) := min{‖v‖ : 0 6= v ∈ CX (d)}, the minimumdistance, where ‖v‖ is the number of non-zeroentries of v .

Remark(Singleton bound) δX (d) ≤ |X | − HI(X)(d) + 1.

δX (d) = 1 for d ≥ reg(S/I(X )).

Page 37: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

Main Problem:Find formulas, in terms of n, s,q,d , and the“combinatorics” of the monomials xv1 , . . . , xvs , for thefollowing:

(a) HX (d),

(b) deg(S/I(X )),

(c) δX (d),

(d) reg(S/I(X )).

Formulas for (a)− (d) are known when:(Sarmiento, Vaz Pinto, -, 2011) X is a projective torus.

(Lopez, Renterıa, -, 2014) X is a set parameterizedby xd1

1 , . . . , xdss ,1, where di ∈ N+ for al i

Page 38: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

Example

If X = {[(x901 , x36

2 , x203 ,1)]| xi ∈ F∗181 for i = 1,2,3}, then

reg(K [t1, . . . , t4]/I(X )) = 13.

The basic parameters of the family {CX (d)}d≥1 are:

d 1 2 3 4 5 6 7 8 9 10 11 12 13|X | 90 90 90 90 90 90 90 90 90 90 90 90 90

HX (d) 4 9 16 25 35 45 55 65 74 81 86 89 90δX (d) 45 36 27 18 9 8 7 6 5 4 3 2 1

Page 39: Invariantes y propiedades algebraicas de ideales celosía y … · 2014. 8. 29. · Invariantes y propiedades algebraicas de ideales celos´ıa y matriciales Rafael H. Villarreal*,

THE END