Intro a La Topologia de Espacios Metricos - Diaz Moreno

92
I I TRODUCC ION - I a la TO'POLOG IR d·e los E [1 S I METRIIJ S José Manuel az Moreno Seruicio de Publicaciones Uniuersidad de Cádiz

Transcript of Intro a La Topologia de Espacios Metricos - Diaz Moreno

Page 1: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 1/92

 

I

I TRODUCC ION- I

a la TO'POLOG IRd·e los E [1 S

I

METRIIJ S

José Manuel Dí az Moreno

Seruicio de Publicaciones

Uniuersidad de Cádiz

Page 2: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 2/92

 

Díaz Moreno, José Manuel

Introducción a la topología de los espacios métricos / José

Manuel Díaz Moreno. -- Cádiz : Universidad, Servicio de

Publicaciones, 1998. -- 200 p.

ISBN 84-7786-514-0

l. Espacios métricos. 1. Universidad de Cádiz. Servicio de

Publicaciones, ed. 11. Título.

515.124

Edita: Servicio de Publicaciones de la Universidad de Cádiz

I.S.B.N.: 84-7786-514-0

Depósito Legal: CA-741/1998

Diseño Cubierta: CREASUR

Imprime: Jiménez-Mena, s.1.

Polígono Industrial Zona Franca. CádizPrinted in Spain

Page 3: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 3/92

 

PRÓLOGO

Como estructura matemática abstracta, el concepto de espacio métrico

fue introducido inicialmente por el matemático francés M. Fréchet en

1906, y más tarde desarrollado por F. Hausdorff en su Mengenlehre. En

parte, su importancia radica en que constituye una interesante generali

zación de los espacios normados, cuya teoría fue básicamente desarrollada

por Stephan Banach como cimiento del Análisis Funcional. El desarrollo posterior de las investigaciones sobre topología métrica ha puesto de

manifiesto su extraordinario poder para unificar una amplia variedad de

teorías hasta entonces dispersas y aparentemente independientes.

Actualmente, todas las obras de topología general dedican algún espacio

al tratamiento de los espacios métricos, bien como caso particular de los

espacios topológicos, bien como una manera natural de introducirlos. Sin

embargo, la teoría de los espacios métricos es el fundamento indispensable para un estudio serio y riguroso del Análisis Matemático y puede

presentarse en forma de una hermosa teoría acabada, muy asequible a la

intuición geométrica y poco propensa a presentar fenómenos patológicos,

muy al contrario de lo que ocurre con los espacios topológicos, raras vecesal alcance de la intuición, llenos de sutilezas axiomáticas y de extraños

fenómenos. Todo ello inclina a pensar que la teoría de espacios métricos

merecería un estudio independiente; sin embargo, existe un sorprenden

te vacío de obras dedicadas al desarrollo independiente de la topología

métrica.

Este libro, que tiene su origen en los cursos que sobre la materia el autor

explica en la Facultad de Ciencias de la Universidad de Cádiz, recoge los

principales conocimientos que es necesario poseer para estar en condicio

nes de seguir posteriormente un curso de Análisis Funcional elemental.

El autor espera además que el lector perciba y disfrute de la belleza ma

temática que los espacios métricos por sí mismos representan.

Los prerrequisitos para asimilar el contenido de este libro son pocos; des

de un punto de vista formal, los únicos conocimientos previos que sepresuponen son: familiaridad y destreza con las nociones elementales de

la teoría de conjuntos, incluyendo lo relativo al principio de inducción ylas nociones básicas sobre numerabilidadj y, muy especialmente, el cono

cimiento del cuerpo de los números reales, particularmente en lo que se

refiere al axioma del supremo y a los resultados básicos sobre valor absoluto y desigualdades. El capítulo Oestá dedicado a recordar las nociones

que deberían conocerse antes de abordar el texto en sí. Finalmente, el

último capítulo, requiere conocimientos elementales de álgebra lineal.

Con tales requisitos, la experiencia demuestra que el material del presentelibro puede adoptarse como texto para un curso semestral de topología

métrica destinado a estudiantes de Matemáticas o disciplinas afines.

Aunque sería deseable que el lector poseyera cierta madurez matemáti-

ca lograda después de haber perdido la inocencia matemática, predo

mina en la obra la idea de introducir la estructura definición-teorema

demostración, característica de la matemática contemporánea, ta n sua

vemente como sea posiblej además cada concepto nuevo se acompaña de

motivaciones intuitivas, en un lenguaje llano y ordinario (en ocasiones

con el riesgo que ello conlleva) y se ha procurado siempre destacar la

significación y grado de trascendencia de los resultados.

Page 4: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 4/92

 

i i

Al final de cada capítulo se ofrece una numerosa colección de proble-

mas, pero se ha intentando no hacer uso de ellos como parte integral del

desarrollo teórico; a 10 más se cita alguno en calidad de contraejemplo.

Sin embargo, no se debe interpretar que puede prescindirse de ellos; por

el contrario, los problemas evidencian las posibilidades de la teoría, le

confieren una mayor significación y apuntan hacia ramificaciones intere-

santes.

Algunos capítulos finalizan con un apéndice dedicado a los espacios de su-cesiones y de funciones. Tales espacios métricos son complejos de analizar

en un primer curso sobre topología métrica pero ofrecen contraejemplos

no triviales sobre algunas cuestiones poco intuitivas. Es en este sentido,

y sólo en este, por lo que se han añadido al texto.

El capítulo 1 introduce casi todos los conceptos básicos de la topología

métrica en la recta real. Esto ayudará al lector a situar el contenido del

libro y le familiarizará con las nociones más habi tuales en un contexto

más asequible que la teoría general.

Todo el capítulo 2 sirve para que el lector comprenda que los axiomas que

definen los espacios métricos (que desde el punto de vista estructuralista

constituyen el inicio abstracto de la teoría) son el resul tado de un largoproceso de abstracción y de trabajo científico sobre las nociones intuitivas

de distancia.

Junto a la base axiomática de los espacios métricos, los capítulos 3 y 4

tienen la tarea de introducir los elementos topológicos primigenios.

En los capítulos, 5,6,7 se tratan clases especiales de espacios métricos que

son de importancia particular en las aplicaciones del Análisis Matemático;

se habla respectivamente de las propiedades de conexión, compacidad ycompletitud, tres conceptos fundamentales y que constituyen junto al

estudio de las aplicaciones continuas entre espacios métricos (capítulo 8),

el núcleo central . Exigen, pues, un estudio cuidadoso porque deriva en

una serie de teoremas fundamentales que constituyen los resultados másnotables de la teoría.

Se finaliza, en el capítulo 9 con una introducción a los espacios normados

en el que se ha tratado, fundamentalmente, de resaltar las especiales,

y a veces sorprendentes, relaciones entre dos estructuras, la topológica

y la algebraica, que, al menos en principio, aparecen como fuertemente

independientes.

Estoy en deuda con el doctor don Francisco Benítez Trujillo, quien leyó

y corrigió el manuscrito, haciendo muchas sugerencias siempre valiosas y

útiles.

Page 5: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 5/92

 

Índice General

o Introducción 1

0.1 Valor absoluto . . . . . . . . . . . . 1

0.2 Conjuntos acotados. Supremo e ínfimo 5

0.3 Intervalos 8

0.4 Sucesiones . 10

0.5 Conjuntos numerables 14

0.6 Problemas . . . . . 15

1 Topología usual de R 19

1.1 Conjuntos abiertos y conjuntos cerrados 19

1.2 Interior, exterior y frontera de un conjunto 23

1.3 Adherencia y acumulación de un conjunto 25

1.4 Conjuntos densos . . . 29

1.5 Conjuntos compactos. 30

1.6 Problemas.. .

34

2 Espacios métricos 39

2.1 Distancias . . . .......... 39

2.2 Espacios y subespacios métricos . 42

2.3 Distancias entre conjuntos 45

2.4 Problemas . . . . . . . . . 48

2.5 Apéndice. Espacios de funciones y espacios de sucesiones 50

3 Topología de lo s espacios métricos 53

3.1 Conjuntos abiertos 53

3.2 Conjuntos cerrados 58

3.3 Abiertos y cerrados en los subespacios 61

3.4 Distancias equivalentes . 64

3.5 Problemas . . . . . . . . 66

3.6 Apéndice. Espacios de funciones y espacios de sucesiones 68

i ii

Page 6: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 6/92

 

4 Subconjuntos notables 71

4.1 Interior, exterior y frontera de un conjunto 71

4.2 Adherencia y acumulación de un conjunto 74

4.3 Subconjuntos densos 79

4.4 Problemas . . . . . . 80

4.5 Apéndice. Espacios de funciones y espacios de sucesiones 84

5 Conjuntos conexos 81

5.1 Conjuntos separados 87

5.2 Conjuntos conexos 89

5.3 Componentes conexas 93

5.4 Conjuntos conexos en la recta real 95

5.5 Problemas . . . . . . ........ 96

6 Conjuntos compactos 99

6.1Conjuntos acotados y totalmente acotados .

99

6.2 Conjuntos totalmente acotados 103

6.3 Conjuntos compactos . . . . . . 106

6.4 Propiedad de Bolzano-Weierstrass 110

6.5 Problemas . . . . . . . . . . . . . . 112

6.6 Apéndice. Espacios de funciones y espacios de sucesiones 114

1 Sucesiones y espacios completos 111

7.1 Sucesiones . . 117

7.2 Subsucesiones 122

7.3 Sucesiones de Cauchy 124

7.4 Espacios y subespacios completos 128

7.5 Algunos espacios completos importantes 131

7.6 Conjuntos compactos en Rn 133

7.7 Problemas . . . . . . . . . . 137

7.8 Apéndice. Espacios de funciones y espacios de sucesiones 140

8 Aplicaciones continuas 145

8.1 Continuidad local . 145

8.2 Continuidad global 152

8.3 Continuidad uniforme 158

8.4 Aplicaciones contractivas y teorema del punto fijo. 161

8.5 Homeomorfismos e isometrías 164

8.6 Problemas . . . . . . . . . . . 167

iv

Page 7: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 7/92

 

9 Espacios normados 172

9.1 Espacios normados . . 172

9.2 Topología de los espacios normados . 175

9.3 Normas equivalentes . . 179

9.4 Aplicaciones lineales continuas 182

9.5 Espacios normados de dimensión finita. 185

9.6 Problemas . . . . . 191

9.7 Apéndice. Espacios de funciones y espacios de sucesiones 193

BibliogratTa

í nd ice de términos

197

199

v

Page 8: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 8/92

 

o Introducción

0.1 Valor absoluto

Este capítulo cero debe interpretarse como un breve recordatorio de al

gunas propiedades de los números reales estrechamente relacionadas conlos axiomas de cuerpo y orden que los define. Hemos tenido la necesi

dad de reprimir tentaciones de desarrollar y ahondar en una variedad

de cuestiones que conducen a resultados de gran trascendencia pero que

están fuera de nuestras necesidades. Aunque se espera más bien que este

capítulo sirva de soporte técnico al objeto principal de nuestro estudio,

el lector debería poner un especial cuidado en comprender y dominar los

conceptos y propiedades aquí expuestos porque serán usadas profusamen

te a lo largo de este libro.

El hecho de que -a > Osi a < O es la base de un concepto, el de valor

absoluto, que va a desempeñar un papel sumamente importante en este

curso.

Definición 0.1.1 Para todo número a E IR definimos el valor absoluto

lal de a como sigue:

Tenemos, por ejemplo,

lal ={ a-a

si a O

si a::; O

I - 31 = 3, 171 = 7, 101 = O,

11 +.J2 - V3/ =1 +.J2 - V3,

y

11 +.J2 - v'lOl = v'lO - .J2 - 1.

En general, el método más directo de atacar un problema referente a va

lores absolutos requiere la consideración por separado de distintos casos.

Por ejemplo, para demostrar que

la + bl ::; lal + Ibl

deberían considerarse los cuatro casos posibles

(i) a ~ O y b O;

(ii) a ~ O y b::; O;(iii) a::;O y b O;

(iv) a::;O y b ::; o.y

Aunque estamanera de tratar valores absolutos es a veces el único método

disponible, con frecuencia se pueden emplear métodos más sencillos. Nó

tese, por ejemplo, que lal es siempre positivo excepto cuando a = O y,

1

Page 9: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 9/92

 

por tanto, es el mayor de los números a y -a; este hecho puede utilizarse

para dar una definición alternativa,

lal =máx {a, -a},

que permite probar de forma muy simple algunos resultados básicos.

Proposición 0.1.2 Para todo a E IR se tiene

-lal:5 a :5lal

DEMOSTRACIÓN

Puesto que lal = máx {a, -a} se tiene que

lal a y lal -a,

o bien, -Ial :5 a; así que -Ial :5 a :5 la\.

Proposición 0.1.3 Para todo a, b E IR se verifica

-b :5 a :5 b si y sólo si lal S b

DEMOSTRACIÓN

Se tiene que -b :5 a S b si y sólo si -b :5 ay a :5 bj es decir, si y sólo si

Por tanto, -b :5 a :5 b si y sólo si

y b -a .

2

b máx{a, -a} = lal.

•Los resultados anteriores pueden usarse ahora para demostrar ciertos

hechos muy importantes relativos a valores absolutos.

Teorema 0.1.4 Para todo a, b E IR se verifica

la + bl Sial + Ibl

DEMOSTRACIÓN

Puesto que

se tiene, sumando,

-(Ial + lb!) :5 a+ b :5 lal + Ibl

y, por la proposición anterior,

la + bl :5 lal + Ibl

Page 10: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 10/92

  -Teorema 0.1.5 Para todo a, bE lR se verifica

lal- Ibl $ Ilal- Ibll ::; la - bl·

DEMOSTRACiÓN

La primera desigualdad es obvia. Veamos la segunda: se tiene

lal = la - b+ bl ::; la - bl + Ibl;

por tanto, lal-Ibl ::; la - bl y, de forma análoga, Ibl-Ial ::; lb - al = la - bl·Así que

la - bl máx{lal-lbl, -(¡al-lb!)} = lIal-lbll

•Cuando identificamos lR con la recta real de la manera habitual, el valorabsoluto de un número lal puede interpretarse como la distancia desde el

origen al punto a. Por ejemplo I± 51 =5 significa que los puntos 5 y -5

están a una distancia 5 del origen.

Más generalmente; el valor absoluto noS permite definir la distancia entredos números reales cualesquiera, pero demoraremos esta cuestión hastasu momento adecuado.

La idea fundamental en que se basan en última instancia la mayor parte delas desigualdades que involucran a valores absolutos es, por el elementalque pueda parecer, el hecho de que a2 O para todo numero real a.

En particular se tiene para cualesquiera números reales x e y (¿cómo sededuce esto?)

(0.1)

lo que permite probar la primera, sin duda, de las desigualdades importantes: la desigualdad de Schwarz.

Teorema 0.1.6 (desigualdad de Schwarz)

Si ai y bi son números reales para todo i = 1, . . . , n, entonces

DEMOSTRACiÓN

Si ai = O o bi = O para todo i = 1, . . . , n, la desigualdad es evidente.Supongamos, pues, que existe algún a¡ #- Oy algún b¡ #- OY pongamos

Sustituyendo ahora

lailx= -

p

y

eIb¡1

y=

q

3

Page 11: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 11/92

 

•en la desigualdad (0.1), se tiene

(i::: 1, . . . ,n )

4

de forma que

y, finalmente,

n ( n ) 1/ 2 ( n ) 1/ 2t; laillb/ $ pq::: lail2 t; Ib.1

2

•La desigualdad de Schwarz es la base para demostrar otro hecho que

tendrá unamuy importante consecuencia en el capitulo 2 (en sumomento,

el lector intuirá inmediatamente donde).

Teorema 0.1.1 (desigualdad de Minkowski)

Si ai Y bi son números reales para todo i ::: 1, . . . ,n , entonces

DEMOSTRACIÓN

Puesto que

n n n n

E lai + b;12$ E lail

2 + 2E la;b;1 +L Ibi l2;=1 ;=1 ;=1 i=1

se tiene, por la desigualdad de Schwarz,

y. por tanto,

Page 12: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 12/92

 

0.2 Conjuntos acotados. Supremo e ínfimo

Definición 0.2.1 Se dice que un conjunto no vacío A e IR. está

1. acotado superiormente si existe un número x E lR tal que

a x para todo a E A.

Tal número x se llama una cota superior de A.

2. acotado inferiormente si existe un número x E lR tal que

x a para todo a E A.

Tal número x se llama una cota inferior de A.

9. acotado si está acotado superior e inferiormente.

Obsérvese que si x es una cota superior de A, entonces y > x es también

una cota superior de A¡ por tan to , un conjunto acotado superiormente

tiene, de hecho, una infinidad de cotas superiores. Del mismo modo, un

conjunto acotado inferiormente tiene una infinidad de cotas inferiores.EJEMPLO 0.2.1

1. El conjunto

A =:: {x E IR.: O x < 1}

es un conjunto acotado. Para demostrar que A está acotado basta

con exhibir alguna cota superior y alguna cota inferior de A, lo

cual es bastante fácil: por ejemplo, 138 es una cota superior de A, e

igualmente lo son 2, 3/2, 5/4 Y 1; por otra parte, cualquier número

real negativo es una cota inferior y también lo es O. Evidentemente,

1 es la cota superior mínima de A y Oes la cota inferior máxima.

2. Sean a y b dos números reales tales que a < b. Los intervalossiguientes son todos acotados, siendo a una cota inferior y b una

cota superior.

(a) {x E IR. : a < x < b}

(b) {x E IR : a < x b}

(c) {x E IR : a x < b}

(d) {x E lR: a x b}

3. Para cada a E IR. los intervalos siguientes son conjuntos no acotados

(a) {xEIR:x<a}

(b) {x E IR : x > a}

(c) { x E l R : x ~ a }(d) {x E IR.: x a}

4. El conjunto IR. de números reales y los números naturales N son

ejemplos de conjuntos que no están acotados superiormente.

Sea A e IR un conjunto no vacío y acotado y supongamos que existe

una cota superior mínima x; es decir, si z es otra cota superior, entonces

5

Page 13: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 13/92

 

6

x es menor o igual que z. Es evidente que si x .e y son ambos cotas

superiores mínimas de A, entonces x y e y x (¿por qué?) y, por

tanto, x = y, de forma que no puede haber dos cotas superiores mínimas

distintas. Análogamente, si existe una cota inferior máxima de A, estadebe ser única. Son estas consideraciones las que motivan las definiciones

siguientes.

Definición 0.2.2 Dado un conjunto no vacío A e IR,

1. Se dice que un número x E lR es el supremo de A y se escribe

x = sup A si verifica

(a) x es una cota superior de A; y

(b) si y es una cota superior de A, entonces x y.

2. Se dice que un número x E lR es el ínfimo de A y se escribe x = inf A

si verifica

(a) x es una cota inferior de A; y

(b) si y es una cota inferior de A, entonces y x.

Nótese que si existe un x E A tal que a x para ~ o d o a E A, entoncesx es el supremo de A y, análogamente, si x a para todo a E A, x es el

ínfimo de A. En general, cuando el sup A E A se le suele llamar máximoy se escribe máx A y, de forma análoga, cuando inf A E A se le suele

llamar mínimo y se escribe mín A.

EJEMPLO 0.2.2

1. Sean a y b dos números reales tales que a < b y

A={xE lR:a<x<b} ;

se tiene entonces

inf A =a y sup A = b.

En efecto, a es, evidentemente, una cota inferior de A. Veamos que

si c > a entonces no es cota inferior: si c > b > a, la cuestión es

evidente y si a < c < b, se tiene que x = (a+ c)/2 verifica a < x < c

y x E A, así que c no es cota inferior de A. Por tanto a = inf A.

De forma análoga se demuestra que b=sup A.

2. Si a, b, x E IR con a < by

A = {x: a < x b}, B = {x: a x < b}, C = {x : a x b}

se tiene

inf A = inf B = infC =a

y

supA =supB = supC = b.

Hemos omitido hasta aquí un detalle: la cuestión de cuáles son los conjun-

tos que tienen ínfimo o supremo. Consideremos el problema del supremo

(las cuestiones relativas al ínfimo se resuelven con facilidad por analogía).

Es evidente que si A no está acotado superiormente, entonces A no tiene

Page 14: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 14/92

 

ninguna cota superior, de modo que no puede tener supremo. Recípro-

camente, se tiene la tentación de afirmar que siempre que A tiene alguna

cota superior, t iene supremo. Aunque no daremos una demostración for-

mal aquí, nuestra intuición es correcta y el aserto es verdadero , y por

cierto muy importante; tan importante que vale la pena enunciarlo con

detalle.

Teorema 0.2.3

1. Si A e lR es un conjunto no vacío y acotado superiormente, enton-

ces tiene supremo.

2. Si A e lR es un conjunto no vacío y acotado injeriormente entonces

tiene ínfimo.

Aunque los conjuntos no acotados superiormente no t ienen supremo y,

por tanto, la notación sup A carece de sentido, a veces, por conveniencia,escribiremos sup A = oo. De forma análoga, para el ínfimo pondremos

inf A = -oo.

Es posible que esta propiedad, cuya demostración omitimos, llame la

atención del lector por su falta de originalidad, pero esta es, precisamente,

una de sus vir tudes. La propiedad del supremo no es, en realidad, tan

inocente como parece; después de todo no se cumple para los números

racionalesQ (véase el problema 12). De hecho, la propiedad del supremo

caracteriza, en cierto modo, a los números reales.

EJEMPLO 0.2.3

Dado

A = {l/n : n E N}

se tiene inf A = O.

En efecto, puesto que O< n para todo nE

N, se tiene O<l/n,

así que Oes una cota inferior de A y, por tanto, A tiene ínfimo.

Pongamos a = inf A, con a O; entonces se verifica que a l/n para

todo n E N. En particular, también será

1a< -- 2n

y, por tanto , 2a l /n así que 2a es también una cota inferior y debe

verificar 2a a, de donde a O. Luego, a = O.

Nótese que esto significa que para todo e > Oexiste un número natural

n con l /n < e, un hecho que será utilizado frecuentemente en este curso.

•Al comienzo de este capítulo se ofreció el conjunto N de los números na-

turales como ejemplo de conjunto no acotado. Ahora vamos a demostrar

que N es no acotado. El lector puede quedar sorprendido de encontrarse

con un teorema tan evidente. Si esto es así, quizá la causa sea el que

se haya dejado influir demasiado fuertemente por la imagen geométrica

de lR. Sin embargo, un raciocinio basado sobre una imagen geométrica

no constituye una demostración. La propiedad de que N no es acotado

recibe el nombre de propiedad arquimediana de los números reales porque

se deduce de un axioma de la geometr ía que se suele atribuir (no con

absoluta justicia) a Arquímides.

7

Page 15: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 15/92

 

0.3 Intervalos

Teorema 0.2.4 N no está acotado superiormente.

DEMOSTRACIÓN

Supongamos que N estuviese acotado superiormente. Puesto que N :f 0,

existiría una cota superior mínima cr para N. Entonces

cr n para todo n E N.

En consecuencia,

cr n + 1 para todo n E N,

puesto que n + 1 está en N si n está en N. Pero esto significa que

cr - 1 n para todo n E N,

así que cr - 1 es también una cota superior de N, en contradicción con el

hecho de que cr es la cota superior mínima.

•El que lR sea arquimediano es la base de un resultado extraordinariamente

poderoso que enunciamos aquí porque haremos uso de ella frecuentemen

te.

Teorema 0.2.5 Si X,lI son números reales tales que x < y, entoncesexiste un número racional r tal que x < r < y 11 un número irracional ptal que x < p < Y.

Entre otras consecuencias, el resultado anterior significa que en cada intervalo abierto (a, b) hay, al menos, un número racional. Esta propiedad

es tan importante, que recibe un nombre específico: decimos que 10 es

denso en lR, un concepto que proviene de la topología y que será precisado

en su momento.

Hay nueve tipos de subconjuntos de lR llamados interoalos que tienen un

papel relevante en el análisis de las funciones reales y conviene, por tanto,familiarizarse con ellos.

Los cuatro primeros son conjuntos acotados y pueden visualizarse como

segmentos de la recta real (figura 0.1 (a».

Sean a y b dos números reales tales que a < b. Se llama interoalo abierto

de extremos a y bYse designa por (a, b) al conjunto de los números realesestrictamente comprendidos entre a y b:

(a,b) ={x E lR: a < x < b}

Los interoalos semiabiertos (o semicerrados) de extremos a y b se definen

de la forma

8

(a,b] = {x E lR: a < x b} y [a, b) = {x E lR : a x < b}

Page 16: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 16/92

 

Se llama intervalo cerrado de extremos a y b Y se designa por [a, b] al

conjunto de números reales

[a,b] = {x E IR.: a::; x::; b}.

Además, para cada a E IR. hay cuatro semirrectas

(-oo,a) = {x E IR.: x < a}

(a ,oo)={xEIR.:x>a}

(-00, a] = {x E IR.: x::; a}

[a, (0) = {x E IR. : x a}

representadas gráficamente en la figura 0.1 (b).

Finalmente, (figura 0.1 (c)) IR. en sí mismo puede ser entendido como el

intervalo (extendido indefinidamente en ambas direcciones)

(-00,00) = IR

Fi ura 0.1: Intervalos

(a)

o • (a,b]

• El [a,b)

o El (a, b)

• • [a,b]

I Ia b

(b)

• El (-00, a)

• • (-oo,a]

(a, (0) o

[a, (0) • ..

Ia

(c)

• IO

Todos los intervalos se caracterizan por una propiedad simple llamada

propiedad de convexidad.

Teorema 0.3.1 Sea A e IR. un conjunto no vacío. Las siguientes afir-

maciones son equivalentes:

1. A es un intervalo.

2. Para todo x, y E A, el interoalo [x, y] está contenido en A.

9

Page 17: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 17/92

 

0.4 Sucesiones

DEMOSTRACIÓN

Que (1) implica (2) es evidente. Para ver el recíproco ponemos

a == inf A y b == sup A

(Nótese que permitimos que a y b puedan ser, respectivamente, -00 o

+ 00 si A no está acotado inferior o superiormente).

Entonces, para cada z E (a, b), existen x, y E A ta l que x < z < y (¿por

qué?) y, como por hipótesis, [x,y] e A se tiene (a,b) e A. Puesto que

a == inf A y b == sup A, A es uno de los intervalos con extremos a y b.

El concepto de sucesión es tan natural que incluso aparentemente se puedeprescindir de una definición formal. No es dificil, sin embargo, formularuna definición rigurosa; lo importante acerca de una sucesión es que paratodo número natural n existe un número real an y es precisamente estaidea lo que se formaliza en la definición siguiente.

Definición 0.4.1 Una sucesión de números reales es una aplicación

a:N-+lR

Desde el punto de vista de la definici6n, los valores particulares de lasucesión a deberían designarse mediante

a(I), a(2), a(3),

pero la notación con subíndices

es la que se usa casi siempre; la sucesión misma se suele designar como

(On)'

Cuando el rango de una sucesi6n o es un conjunto acotado superiormente(inferiormente), es decir, existe un número M tal que an M (anM) para todo n, decimos que a es una sucesión acotada superiormente

(interiormente).

Una sucesi6n acotada inferiormente, pero no superiormente es la sucesión(on) definida por

mientras que las sucesiones (bn) y (en) definidas por

1en == -

n

10

son acotadas superior e inferiormente.

Una representaci6n muy conveniente de una sucesi6n se obtienemarcandolos puntos a}, 02 , 0 3 , .. ' sobre una recta como en la figura 0.2.

Este t ipo de gráfica indica hacia donde va la sucesi6n. La sucesi6n (a n )

va hacia el infinito, la sucesión (bn) salta entre -1 y 1, Yla sucesión (en)

Page 18: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 18/92

 

o

Fi ra 0.2: Sucesiones

al

o

oC4•• •

C2 CI

converge hacia O. De las t res frases resal tadas, la última constituye el

concepto crucial asociado con las sucesiones, y será definido con precisión

(la definición se ilustra en la figura 0.3).

Definici6n 0.4.2 Una sucesión (an) converge hacia 1,

lím an =1,n->oo

si para todo > O existe un número natural no tal que

lan -11 < siempre que n > no

Además de la terminología introducidaen esta definición,' decimos a veces

que la sucesión (an ) tiende hacia 1o que tiene el límite l. Se dice que una

sucesión (a n ) converge si converge hacia 1para algún l.

Para demostrar que la sucesión (cn ) converge hacia O, basta observar losiguiente. Si > O, existe un número natural no ta l que

1- < ~ .no

Entonces, si n > no tenemos

1 1-<n no

y, por tanto,

ICn - 01 < ~ .Sin embargo, es generalmente muy difícil determinar el límite de una

sucesión, (o probar que cierto número real lo es) partiendo únicamente

Figura 0.3: Límite de una sucesión

1;

l-é

ano+4 ano+1

• . . l' "... .. . • '1ano+3 1 ano+2 1+ é

11

Page 19: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 19/92

 

12

de la definición; por eso es importante, disponer de algunos criterios quegaranticen la convergencia de sucesiones. El primer criterio, muy fácil de

demostrar, pero que constituye la base para todos los demás resultados,se expresa en términos de crecimiento.

Diremos que una sucesión (an) es creciente cuando an+! > an para todon; y no decreciente si an+I an para todo n; existen definiciones análogaspara sucesiones decrecientes y no crecientes.

Teorema 0.4.3 Si (an ) es una sucesión no decreciente y acotada supe-

riormente, entonces (a n ) converge.

DEMOSTRACIÓN

Puesto que (a n ) es acotada superiormente, pongamos

a = sup{an : n E N};

y veamos que límn --+oo an =a.

En efecto, puesto que a es el supremo del conjunto {an : n E N}, si é > O,

existe algún ano que satisface

Entonces, si n > no tenemos que an ano' de modo que

a - an a - ano < é .

Esto demuestra que límn --+oo = a.

•Un enunciado análogo se tiene si (an ) es no creciente y acotada inferior

mente.La hipótesis de que (an ) está acotada superiormente es claramente esencial en el t eorema anterior; si (an ) no está acotada superiormente, entonces (tanto si es no decreciente como si no lo es) diverge. Con esta

consideración podría parecer que no debería exist ir dificultad alguna endecidir si una sucesión no decreciente está o no acotada superiormente,y en consecuencia si converge o no. De momento puede el lector intenta r decidir si la siguiente (evidentemente creciente) sucesión está o noacotada superiormente:

11111 11,1+ 2 , 1 + 2 + 3 , 1 + 2 + 3 + 4""

Aunque el teorema 0.4.3 trata solamente un caso muy particular de sucesiones, resulta más úti l de lo que a primera vista pueda parecer, puestoque es siempre posible extraer de cualquier sucesión (an ) otra sucesiónque es, o bien no creciente, o bien no decreciente. Hablando sin precisión,definamos una subsucesión de una sucesión (an ) como una sucesión de laforma

donde los n i son números naturales con

Page 20: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 20/92

 

Entonces toda sucesión contiene una subsucesión que es o bien no decre

ciente o bien no creciente (problema 22)

Proposición 0.4.4 Cualquier sucesión (a n ) contiene una subsucesión

que es o bien no decreciente o bien no creciente.

Este hecho, de por sí ya relevante, es además el núcleo de un resultado

aparentemente sorprendente, pero de inmediata comprobación.

Teorema 0.4.5 (de Bolzano-Weierstrass).

Toda sucesión acotada tiene una subsucesión convergente.

Hasta aquí es donde podemos llegar sin suposiciones adicionales: es fácil

construir sucesiones que tengan muchas, incluso infinitas, subsucesiones

que converjan hacia números distintos (véase el problema 21). Existe

otra suposición razonable que, al añadirla, ofrece una condición necesaria

y suficiente para la convergencia de cualquier sucesión; una condición

que, además de simplificar muchas demostraciones (sólo por esta razónya vale la pena que la establezcamos) desempeña un papel fundamental

en el análisis.

Si una sucesión converge, de modo que sus términos eventualmente se

aproximan todos a un mismo número, entonces la diferencia entre dos

cualesquiera de tales términos debe ser muy pequeña. Para ser precisos,

si límn .....oo = l para algún valor l, entonces, por definición, para cualquier

f > O, existe no tal que la n -11 < f/2 para n > no; ahora bien, si es a la

vez n > no y m > no, entonces

Esta desigualdad final, lan - ami < f , que elimina la mención al l ímite1, puede utilizarse para formular una condición (la condición de Cauchy)

que es claramente necesaria para la convergencia de una sucesión.

Definición 0.4.6 Una sucesión (an ) es una sucesión de Cauchy si para

todo f > O existe un número natural no tal que

la n - amI< f , siempre que n, m > no

La elegancia de la condición de Cauchy está en que es también suficiente

para asegurar la convergencia de una sucesión. Después de todo nuestrotrabajo preliminar, queda poco por hacer para terminar la demostración.

Hemos visto ya que (an ) es una sucesión de Cauchy si converge. La idea

fundamental para ver el recíproco consiste en probar que toda sucesión de

Cauchy está acotada y que, por tanto, posee una subsucesión convergente

para, finalmente, demostrar que si una sucesión de Cauchy (an ) tiene una

subsucesión convergente entonces (an ) también converge (problema 23).

Teorema 0.4.7 Una sucesión (an ) converge si y sólo si es una sucesión

de Cauchy.

13

Page 21: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 21/92

 

0.5 C o n j un t o s n u m er a bl e s

La noción de conjunto numerable es, es realidad, muy natural. Se trata

de extender a infinito la posibilidad de contar. La definición matemática

adecuada es la siguiente.

Definición 0.5.1 Un conjunto A es numerable si existe una aplicación

sobreyectiva

Inmediatamente se aprecia que la definición anterior lleva implícita un a

interpretación ligeramente diferente pero extremadamente importante:

el conjunto A es numerable si es posible disponer sus elementos en un a

sucesión

El primer ejemplo inmediato de conjunto numerable es lógicamente N;

evidentemente también es numerable cualquier conjunto finito o el con-

junto de los números pares. Algo más sorprendente es comprobar que Z

es también numerable, pero ver es creer

O, - 1 , 1, - 2 , 2 , . . .

Los resultados siguientes muestran que hay muchos más conjuntos nume-

rables de lo que se pueda suponer.

Te or e m a 0.5.2

1. Cualquier subconjunto de un conjunto numerable es numerable.

2. La unión de dos conjuntos numerables es numerable.

Lademostración de estas propiedades es sencilla y se deja al lector. (Laprimera es inmediata, para la segunda aplíquese el mismo artificio que

dio resultado para Z).

El conjunto de los números racionales positivos es también numerable;para demostrarlo, basta utilizar la siguiente descripción

1 --t 1 1 --t 1 12 3 ¡ 5

¿ / ' ¿2 2 2 2'2 3 ¡ 5.¡. / ' ¿3 3 ª- 3 3

2 3 ¡ 5

Naturalmente, de forma similar, el conjunto de los números racionales

negativos también es numerable y, po r tanto, deducir queQ es numerable

(esto es sí que es verdaderamente sorprendente) es ahora una trivialidad.

Puesto que existen tantos conjuntos numerables, es importante observar

que, por ejemplo, el conjunto de los números reales comprendidos entre

Oy 1 no es numerable (problema 25). En otras palabras, no es posible

disponer todos estos números reales según un a sucesión

14

Page 22: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 22/92

 

0.6 Problemas

1. Dése una expresión equivalente de cada una de las siguientes utili

zando como mínimo una vez menos el signo de valor absoluto.

(a) 1-12 + -13 - v'5 + v'71·

(b) 1(la + bl- lal -lbDI·

(c) 1(la + bl + lel -la + b+ eDI·

(d) Ix 2- 2xy

+ y

2 1.(e) 1(1-12 + -131 - 1v'5 - v'7DI·

2. Dése una expresión equivalente de cada una de las siguientes pres

cindiendo de los signos de valor absoluto, tratando por separado

distintos casos cuando sea necesario.

(a) la + bl - Ibl·

(b) 1(Ixl - 1)\.

(c) Ixl - Ix 2 1·

(d) a - I(a - laDI·

3. Encontrar todos los números x para los que se cumple

(a) Ix - 31 =8.

(b) Ix - 31 < 8.

(c) Ix +41 < 2.

(d) Ix - 11 + Ix - 21 > 1.

(e) Ix - 11 + Ix+ 11 < 2.

(f) Ix - 11 + Ix + 11 < 1.

(g) Ix - 111x + 11

=O.

(h) Ix - 111x + 21 = 3.

4. (a) Dar una nueva demostración la + bl :::; lal + Ibl mediante un

análisis exhaustivo de todos los casos posibles. ¿Cuándo se

verifica la + bl = lal + Ibl y cuándo la + bl < lal + Ibl?·

(b) Dése otra demostración más corta partiendo del hecho de que

..¡;;2 = lal

(¡ojo! no a).

5. Demostrar lo siguiente:

(a) Ixyl = Ixllyl·

(b) I I= I ~ I ' si x # o.

(c) ::1 = I ~ I , si y # O.

(d) Ix - yl :::; Ixl + Iyl. (Dése un demostración muy corta).

(e) Ix + y + zl :::; Ixl + Iyl + Izl· (Indíquese cuándo se cumple la

igualdad).

15

Page 23: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 23/92

 

6. Demostrar que

áx { }x + y + Iy - xl

m x,y = 2

x +y - Iy - xlmín{x,y} = 2

7. Demostrar que si

E

IX - xol < 2" y

E

Iy - Yol < 2

entonces

I(x + y) - (xo + Yo)1 < E,

I(x - y) - (xo - Yo)1 < E.

16

El enunciado de este problema encierra algunos números extraños,

pero su mensaje básico es muy sencillo: si x está suficientemente

cerca de Xo e y está suficientemente cerca de Yo, entonces x+y está

cerca de Xo + Yo, Y x - y está cerca de Xo - Yo.

8. Hallar la cota superior mínima y la cota inferior máxima (si existen)

de los siguientes conjuntos. Decidir también qué conjuntos tienenelemento máximo o elemento mínimo.

(a) { ~ : n EN}

(b) { ~ : n E Z, n ¡é O}

(c) {x: x = O o x = l /n,n E N}

(d) {x E Q :O x vÍ2}

(e) {x: x 2 + x + 1 O}

(f ) {x: x

2

+ x - 1 < O}

(g) {x: x < O y x 2 + x - 1 < O}

(h) { ~ + ( - l ) n : n E N }9. Sea A e IR un conjunto no vacío. Probar que A es acotado si y

s6lo si existe un número real positivo K ta l que Ixl K para todo

xE A.

10. Supongamos que A y B son dos conjuntos no vacíos de números

reales tales que x y para todos x E A, Y E B.

(a) Demostrar que supA y para todo y E B.

(b) Demostrar que sup A in fB.

11. Sean A e B conjuntos no vacíos y acotados superior e inferiormente

de números reales. Probar que

inf(B) inf(A) sup(A) sup(B)

12. Probar que en el conjunto Q de los números racionales, el conjunto

A={aEQ:a>O,a2<2}

es no vacío y está acotado superiormente, pero no tiene supremo.

Page 24: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 24/92

 

13. Use la propiedad arquimediana para demostrar de otra forma que

para todo e > Oexiste un número natural n con l /n < e.

14. Sea A e IR no vacío y acotado superiormente, y sea e un número

real. Demostrar que e :S sup(A), si y sólo si para cada e > O real,

existe x E A tal que e - e < x.

15. Probar que si A es acotado y para todo x, y E A, el intervalo [x, y]está contenido en A, entonces

(a,b) e A e [a,b]

con a = inf A y b= sup A.

Este problema puede ayudar a comprender la demostración del teo

rema 0.3.1.

16. Probar que un conjunto A es acotado si y sólo si existe un intervalo

(a, b) que lo contiene.

17. (a) Demostrar que si 1 y J son intervalos en IR tales que JnJ: f . 0,entonces J U J es un intervalo.

(b) Si 1 Y J son intervalos tales que JUJ es un intervalo, entonces

J n J:f. 0. ¿Verdadero o falso? (explíquese).

¿y si son intervalos abiertos? ¿Y si son intervalos cerrados?

18. Hallar00

(a) n[n,+oo)n=l

00

(b) n<-I /n , l /n )

n=l

19. ¿Verdadero o falso? (explíquese en cada caso)

00

(a) U[O, 1 - l/n] = [0,1]n=l

00

(b) n(a - l /n, b+ l/n) = [a, b]

n=l

20. Sea S una familia de intervalos tales que para cada par de intervalos

J, J de S, existe K E S tal que J U J e K. Probar que la unión de

todos los intervalos de S, es un intervalo.

21. (a) Hallar todas las sucesiones convergentes de la sucesión

1, -1 , 1, -1 , 1, -1 , .. ,

(Existen infinidad de ellas, pero s610 hay dos limites que estas

subsucesiones pueden tener).

(b) Hallar todas las subsucesiones convergentes de la sucesión

1, 2, 1, 2,-3, 1, 2, 3, 4, 1,2,3,4,5, . . .

(c) Considérese la sucesión

1 1 2 1 231 234 1

2' 3' 3' 4' 4' 4' 5' 5' 5' 5' 6' ...¿Para qué números a existe una subsucesi6n que converge ha-. ?

Cla a ..

17

Page 25: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 25/92

 

18

22. Probar que cualquier sucesión contiene una subsucesión que es o

bien no decreciente o bien no creciente.

(Es muy posible confundirse al tratar de demostrar esta afirmación,

si bien la demostración es muy corta cuando se acierta con la idea

adecuada).

23. (a) Demostrar que si una subsucesión de una sucesión de Cauchy

converge, entonces también converge la sucesión original.

(b) Demostrar que cualquier subsucesión de una sucesión conver-gente es convergente.

24. Probar que si Al, Az,A3 , ••• son todos numerables, entonces

es también numerable.

(Utilizar el mismo artificio que para Q)

25. Probar que el conjunto de los números reales comprendidos entre O

y 1 no es numerable .

(Utilícese un desaNYJllo decimal y reducción al absurdo)

Page 26: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 26/92

 

1 Topología usual de R

En este capítulo construiremos sobre IR una estructura topológica que,

fundamentalmente, se basa en la idea de proximidad; una idea que subyace en los conceptos habituales del análisis. Las propiedades topológicas

nacen, al menos en principio, para dar una forma precisa a tales concep

tos.

1.1 Conjuntos abiertos y conjuntos cerrados

Desde el punto de vista del análisis, los subconjuntos más importantes

de IR son, sin duda, los intervalos. Sin embargo, entre ellos hay ciertas

diferencias, algunas importantes y otras no (dependiendo, en parte, del

contexto).

Por ejemplo, la diferencia entre (O, 1) Y(0,5) es únicamente de escala; las

. desigualdades que los definen son las mismas.

Por otra parte, los intervalos (0,1) Y (O, +00) son de tipos diferentes: uno

está acotado y el otro no; incluso así, aún presentan ciertas semejanzas

-de hecho, es posible trons/ormar el primero en el segundo-o

En contraste, los intervalos l = (0,1) Y J = [0,1] tienen propiedades

muy diferentes; el punto crucial es el hecho de que los puntos ex tremos

° 1 pueden ser aproximados tanto como se quiero mediante puntos del , pero ellos mismos no son puntos de l . Más precisamente, a pesar de

que° 1 no son puntos de l , son límite de sucesiones convergentes cuyos

términos sí están en l . Por el contrario, si una sucesión convergente tiene

sus términos en J entonces su límite también debe estar en J.

Esta importante propiedad caracteriza no solamente a los intervalos sino

también a otra clase mucho más amplia de subconjuntos de R Pero

precisar esta idea necesita de ciertas definiciones previas.

Definición 1.1.1 Dado un número real x, se llama entorno de x de rodio

r >°l conjunto

E(x; r) = {y : Ix - yl < r} = (x - r, x + r)

En lo que sigue, cuando no sea necesario especificar el radio del entorno,designaremos cualquier entorno de x mediante E(x) y llamaremos entorno

reducido del punto x al conjunto

E*(x) = E(x) \ {x}.

Así pues, un entorno reducido de x es un entorno de x del que se ha

suprimido el punto x.

Es evidente que la intersección de un número finito de entornos de x es

también un entorno de x: la intersección

E(x; r¡ ) n E(x; r2) n ... n E(x; rn )

19

Page 27: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 27/92

 

20

es el entorno E(x; r) donde r :::: mín {r¡, r2,"" rn } ; es importante obser-

var, sin embargo, que esto no ocurre, en general, para un número infinito

de entornos (¿puede el lector encontrar un contraejemplo?).

También está claro que si x e y son dos números reales distintos, existen

un entorno de x y otro de y disjuntos: basta considerar los entornos

E(x;r) y E(y;r) con r:::: Ix - yl/2.

Sea ahora x un punto cualquiera del intervalo (a,b); si tomamos

r :::: mín {I x - al, Ix - bl},

entonces se tiene

E(x,r):::: (x - r,x + r) e (a,b);

en otras palabras, no sólamente x está en (a, b), sino que -informalmente

todos los puntos cercanos a x están en (a, b); nótese que esto no pasa, porejemplo, para algunos puntos de [a, b]. Precisemos esta idea.

Definición 1.1.2 Un conjunto A e lR es un conjunto abierto si para

cada x E A existe un entorno E(x) contenido en A.

EJEMPLO 1.1.1

1. Los intervalos (a, b), (-00, a) y (a, 00) son evidentemente conjuntos

abiertos. En particular, todo entorno es un conjunto abierto.

2. Un intervalo cerrado [a, b] no es un conjunto abierto pues, por

ejemplo, todo entorno de a contiene puntos que no están en [a, b].

(¿cuáles?).

3. Ningún conjunto no vacío finito o numerable es abierto, pues todo

abierto contiene intervalos abiertos que son infinitos no numerables.En particular, Z, Q y cualquier sucesión (an ) de números reales no

son conjuntos abiertos.

En el resul tado siguiente se expresan las primeras propiedades de los

conjuntos abiertos.

Teorema 1.1.3 Se verifican las siguientes propiedades:

1. 0 Y lR son abiertos.

2. La unión de cualquier colección de conjuntos abiertos es un conjunto

abierto.

3. La intersección de cualquier colección finita de conjuntos abiertos

es un conjunto abierto.

DEMOSTRACiÓN

Si x E IR, cualquier entorno E(x) está contenido en lR; por tanto IR es

abierto. Por otra parte, 0 es, trivialmente, abierto (¿para qué punto no

existe un entorno contenido en él?). Veamos 2 y 3.

Page 28: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 28/92

 

Sea A la unión de una colección arbitraria {A;}¡EI de conjuntos abiertosy sea x E A. Existirá. un i ta l que x E A¡ Y como A¡ es abierto, existirá.un entorno E(x} contenido en A¡. Entonces E(x} e A y A es abierto.

Sea B la intersección de una colección finita B I , B2 , • •• B n de conjuntosabiertos y sea x E B. Entonces x E B¡ para i = 1,2, . . . ,n y como

cada Bi es abierto existirán n entornos E¡(x} e Bi . La intersección delos Ei(X} es un entorno de x contenido en B y B es, pues, un conjuntoabierto.

•Sin embargo, la intersección de una colección no finita de conjuntos abier-tos puede no ser un conjunto abierto como prueba el siguiente ejemplo.

EJEMPLO 1.1.2

1. Para cada n E NseaAn = (-I /n, l /n) . La intersección de todos losabiertos An es el conjunto {O} que no es abierto pues todo entornode Ocontiene puntos distintos de O.

2. Más generalmente, sea An = (a- l /n, b+l/n). Si x E [a, b] entonces

x E A n para todo n, y x pertenece a la intersección de todos los

An ; por otra parte, si x It [a, b], existe n suficientemente grande talque x E An y, por tanto , x no pertenece a la intersección de todoslos An .

Resumiendo00

nAn = [a,b]

n= !

que no es un conjunto abierto.

A la familia T formada por todos los conjuntos abiertos de IR le llama-

remos topología usual de Jll Por simplicidad, en lo que resta de capítulo,

cuando hablemos de IR lo supondremos siempre dotado de la topología

T.

Como cabría esperar, la relación entre los conjuntos abiertos y los inter-

valos abiertos es muy es trecha . El resultado siguiente, de importantesconsecuencias, pone de manifiesto la estructura interna de los conjuntosabiertos. su estructura intrínseca.

Teorema 1.1.4 Un conjunto no vacío A e IR es abierto si y sólo si es

unión de una colección numerable de intervalos abiertos disjuntos.

DEMOSTRACIÓN

Como A es abierto, para cada x E A existe un intervalo (y, z) que contienea x y está contenido en A. Sean

a = inf{y E IR: (y,x) e A} y b= sup{z E IR: (x,z) e A}

(obsérvese que permitimos que muy bien pudiera ser a = -00 o b= 00).

Entonces a < x < b y, por tanto, 1., = (a, b) es un intervalo abierto quecontiene a x.

21

Page 29: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 29/92

 

22

Veamos que además, Iz e A. En efecto, si t E Iz , o bien es a < t < x, en

cuyo caso existe un y < t ta l que (y, x) e A, o es x < t < b, en cuyo caso

existe un z > t tal que (x, z) e A, luego en todo caso t E A.

Por otra parte, a rt A pues, en caso contrario, por ser A abierto, existiríar > Otal que el intervalo (a-r, a) estaría contenidoen A y esto contradicela definición de a. Análogamente se prueba que b rt A.

Consideramos la colección de intervalos abiertos {Ix : x E A}. Como

cada x E A está contenido en Ix Ytodo Ix está contenido en A, se tiene

y, por tanto A es uni6n de intervalos abiertos.

Por otra par te , si dos de los intervalos (a, b) Y (e, d) de esta colección

tienen un punto común, deben ser e < b y a < d. Como e no está en A,

tampoco está en (a, b) Y es e :$ a y como a no está en A tampoco estáen (e, d) y es a :$ e. Por tanto a = c. De manera análoga se prueba que

b= d. Por consiguiente, dos intervalos distintos de la colecci6n {Iz } son

disjuntos y A es uni6n de intervalos disjuntos.

Finalmente, como cada uno de los intervalos abiertos Ix contiene unnúmero raciona, puede definirse una aplicación biyectiva entre la colec-

ción {Iz} y un subconjunto de números racionales que, naturalmente, es

numerable, luego la colección {/z} es numerable.

El recíproco es evidente, puesto que los intervalos abiertos son conjuntos

abiertos y la unión de abiertos es un conjunto abierto.

•Consideremos ahora otros subconjuntos de IR que, en cierto sentido, po-seen propiedades complementarias de los abiertos.

Definición 1.1.5 Un conjunto e e IR es un conjunto cerrado si su com-

plementario IR \ e es abierto.

Los conjuntos cerrados tienen, en realidad, una caracterización muy suge-rente, que aún no estamos en condiciones de demostrar, pero que conviene

tenerla en mente -ya hemos aludido a ella previamente-. En IR, un con-junto e es cerrado si y sólo si cualquier sucesión convergente de elementos

de e tiene su límite en C.

EJEMPLO 1.1.3

1. Todo intervalo cerrado [a, b] es un conjunto cerrado pues su comple

mentario es abierto por ser la unión de los dos conjuntos abiertos

(-00, a) y (b,+oo).

2. Todo intervalo de la forma [a, (0) es cerrado pues su complementario

es el conjunto abierto (-00, a); análogamente, (-00, al es cerrado

pues su complementario es el conjunto abierto (a, (0).

3. {a } es cerrado, pues su complementario es (-00, a) U (a, (0) que es

un conjunto abierto por ser uni6n de abiertos.

Page 30: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 30/92

 

Antes de alargar la lista de ejemplos, veamos las propiedades básicas que

resultan inmediatamente -l a demostración se deja al lector- de las leyes

de De Margan y las propiedades de los abiertos.

Teorema 1.1.6 Se verifican las propiedades siguientes:

1. 0 11 lR son cerrados.

2. La uni6n de cualquier colecci6n finita de conjuntos cerrados es un

cerrado.

9. La intersecci6n de cualquier colecci6n de conjuntos cerrados es un

conjunto cerrado.

En este punto parecen convenientes algunas palabras de precaución: en

nuestro quehacer diario, "cerrado" significa generalmente ' 'no abierto";

sin embargo esto no es así en III Por una parte hay subconjuntos que no

son abiertos ni cerrados, por ejemplo el intervalo (0,1) , Y por otra hay

conjuntos, como 0 y IR, que son abiertos y cerrados a la vez.

EJEMPLO 1.1.4

1. Si

A = {Xl ,X2" . . 'X n }

es un conjunto no vacío finito, entonces podemos poner

n

A = U{x;}i= 1

y, puesto que cada {Xi} es cerrado, se tiene que A es un conjunto

cerrado.

2. Sin embargo, la unión arbitraria de conjuntos cerrados no es, nece

sariamente, un conjunto cerrado; por ejemplo, el conjunto00

U [O, 1 - l/n) = [0,1)

n=1

no es un conjunto cerrado.

1.2 Interior, exterior y frontera de un conjunto

Desde un punto de vista conjuntista, cualquier conjunto A e lR clasifica

lospuntos

delR en

dos clases: aquellos que pertenecen a A y los que no.Sin embargo, desde una perspectiva topológica es importante hacer una

distinción más fina.

Así, dado un punto X E lR podemos afirmar que ocurre una y sólo una de

las siguientes situaciones:

1. Existe algún entorno E(x) contenido en A.

2. Existe algún entorno E(x) contenido en lR \ A.3. Todo entorno E(x) tiene puntos de A y de su complementario.

Precisemos esta idea.

23

Page 31: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 31/92

 

Definición 1.2.1 Un punto x E lR es un punto interior a un conjunto

A e IR si existe un entorno E(x) contenido en A. El conjunto de los

puntos interiores a A se llama interior de A y se designa por int(A).

Un punto x E IR es un punto exterior a un conjunto A e IR si existe un

entorno E(x) contenido en el complementario de A. El conjunto de los

puntos exteriores a A se llama exterior de A " se designa por ext(A).

Un punto x E IR es un punto frontera de un conjunto A e IR si todo

entorno de x contiene puntos de A " de su complementario. El conjunto

de los puntos frontero de A se llama frontero de A " se designa por fr(A).

Informalmente: si x es un punto interior a A, no solamente x está en Asino que además hay una pequeña zona alrededor de x que permanece en

Aj esto es: todos los puntos suficientementecercanos a x están en A y algo

análogo ocurre si x es un punto exterior. Sin embargo, un punto frontera

no puede moverse porque puede perder inmediatamente su condición.

Consecuencia inmediata de la definición es que, para cualquier A e Ji,

int(A) e A y ext(A) e IR \ A.

Además, es evidente que los conjuntosint(A), ext(A) y ír(A) son disjuntosdos a dos y que

int(A) U ext(A) U fr(A) =: IR.

EJEMPLO 1.2.1

1. Si A es un intervalo acotado de extremos a y b, entonces

int(A) = (a,b), ext(A) = (-oo,a)U(b+oo) y fr(A) = {a,b}.

2. Sea M = (0,1) U {2}; entonces:

int(M) =: (0,1),

y

fr(M) = {O, 1, 2}

24

ext(M) =: (-00, O) U (1,2) U (2, +00).

3. Sea el subconjunto de IR, A = {l/n : n E N}; entonces se tiene que

int(A) =0, ext(A) = IR \ (A U {O}) Y fr(A) = A U {O}.

El resultado siguiente precisa el carácter topológico de estos conjuntos.

Teorema 1.2.2 Paro todo A e IR, se tiene que int(A) "ext(A) son

conjuntos abiertos" fr(A) es cerredo.

DEMOSTRACIÓN

Desde luego, int(A) es abierto si es vacío. En otro caso, por definición

de interior, para cada x E int(A) existe un entorno E(x) contenido en

A. Como E(x) es abierto, para cada y E E(x) existe un entorno E(y)

contenido en E(x) y, por tanto, E(y) e A. Esto prueba que todos los

Page 32: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 32/92

 

puntos de E(x) son inter iores a A, es decir que E(x) e int(A). Así,

int(A) es abierto.

Como ext(A) = int(IR - A) , también ext(A) es un conjunto abierto.

Finalmente, como

fr(A) = IR - (int(A) Uext(A»

y el conjunto int(A)U

ext(A) es abierto po r ser unión de abier tos, fr(A)es un conjunto cerrado.

•Tenemos, pues, que int(A) es un conjunto abierto; pero, aú n más, como

pone de manifiesto el resultado siguiente cualquier conjunto A es abiertosi y sólo si coincide con su interior .

Teorema 1.2.3 Un conjunto A es abierto si y sólo si todos sus puntos

son interiores.

DEMOSTRACIÓN

Si A es abierto y x E A, existe un entorno E(x) contenido en A, luego

x E int(A). Recíprocamente si todos los puntos de A son interiores, se

tiene que int(A) =A y, por tanto, A es abierto.

1.3 Adherencia y acumulación de un conjunto

Cuando un punto x es exterior a A, existe un entorno E(x) que -entérminos informales- separa a x del conjunto A. Esto no ocurre con los

puntos frontera ni, desde luego, con los puntos interiores. Precisemos

esta idea.

Definición 1.3.1 Un punto x E IR es un punto adherente a un conjunto

A e IR cuando todo entorno E(x) contiene puntos de A.

El conjunto de puntos adherentes a A se llama adherencia o clausura de

A y se designa por A.

Puesto que todo entorno E(x) contiene a x, t od o p un to x E A es ad

herente a A, así que, en general, A e A, aunque, como se verá, nonecesariamente es A =A.

EJEMPLO 1.3.1

Sea A el intervalo abierto (a, b). La adherencia de A es el intervalo

cerrado [a, b). En efecto: los puntos a y b son adherentes al intervalo

(a, b) puesto que todo entorno E(a) y E(b) contiene puntos de Aj po rtanto, la adherencia de A incluye como mínimo al intervalo cerrado [a, b).

Po r otra parte, si x f/. [a, b), uno de los entornos E(x, Ix - al), E(x, Ix - bl)

no contiene puntos de A, así que x no es punto de adherencia de A.

25

Page 33: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 33/92

 

26

Obsérvese que si x E A todo entorno E(x) contiene puntos de A, así que

x no pertenece a ext(A); es decir: x E int(A) U fr(A). Recíprocamente,

todo punto interior a A o frontera de A es adherente, así que, en realidad,

A = int(A) U fr(A).

Este hecho nos permite mostrar cómo los puntos adherentes pueden de

terminar si un conjunto es cerrado o no.

Teorema 1.3.2 Un conjunto A e IR es cerrado si y sólo si A =A.

DEMOSTRACIÓN

En primer lugar, observamos que, A es un conjunto cerrado puesto que

A = int(A) U fr(A) = IR - ext(A);

así que si A =A, A es cerrado.

Recíprocamente, sea A es cerrado. Si xr¡. A, se tiene que x E IR \ A,

que es un conjunto abierto; por tanto, existe un entorno E(x) eIR

\ AY E(x) n A = 0 y x no es un punto adherente. Así, pues, A e A y, por

tanto A =A.

•Sea ahora A = {l/n : n E N}. Es fácil ver que O E A, puesto que

todo entorno de O contendrá puntos de A. Como se verá, no es difícil

probar que, en general, el límite de una sucesión convergente es un punto

adherente del conjunto formado por los términos de la sucesión. Desde

luego, este hecho no es casual; existe una estrecha relación entre puntos

adherentes y sucesiones.

Teorema 1.3.3 Un punto x es adherente a un conjunto A si y sólo si x

es límite de una sucesión (xn ) de puntos de A.

DEMOSTRACIÓN

Si x es un punto adherente a A, se tiene que para todo n

Podemos escoger entonces, para cada n un punto xn E A tal que

xnE ( x - ~ , x + ~ )Esto define una sucesión (x n ) tal que IXn - xl < l/no Luego lfmxn = x.

Recíprocamente, sea (x n ) una sucesión de puntos de A cuyo límite es

X. Entonces dado f > O, se tiene que Xn E (x - f , X + f ) para todo n

suficientemente grande y, por tanto, (x - f,X + f ) n A:f. 0; así, pues

xEA.

Page 34: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 34/92

 

Conviene hacer notar que en el teorema anterior no se exige que los

términos de la sucesión (xn ) sean todos distintos. Es más: muy bien

pudiera ocurrir que, para cualquier n, el único punto

sea el propio x.

Por otra parte, este resul tado nos permite mostrar de otra forma que,

por ejemplo,°s un punto adherente de A = (O, +00), puesto que °lím l /n, y l /n E A para todo n. Pero su importancia no se reduce a

un simple mecanismo de decisión sino que tiene una consecuencia muy

importante: es posible caracterizar a los conjuntos cerrados mediante sus

sucesiones convergentes, una cuestión que ya fue apuntada en la sección

anterior.

Teorema 1.3.4 Un conjunto A es cerrado si !J sólo si toda sucesión con-

vergente (x n ) con x n E A tiene su límite en A.

DEMOSTRACIÓN

En primer lugar, si A es cerrado y límxn = x con X n E A para todon E N, entonces todo entorno E(x) contiene puntos de {xn } y, por tanto,de A; luego x E A =A (A es cerrado).

Recíprocamente, supongamos que toda sucesión en A convergente tiene

su límite en A. Si x E A, existe una sucesión (x n ) en A tal que lím X n = x

y, por tanto, x E A; luego A =A y A es cerrado. •Consideremos ahora el conjunto M = (O, 1)U{2}. No es difícil comprobar

que M = [0,1) U {2}. Ahora bien, puesto que 2 es un punto adherentede M debe existir alguna sucesión convergente, llamémosle (x n ), con sus

términos en M ta l que lím X n = 2. Como 2 E M la sucesión constante 2

verifica esta condición. Pero no hay ninguna más. Así que 2 es un puntoadherente pero con ciertas características especiales. Obsérvese por otraparte que, efectivamente, todo entorno E(2,r) contiene puntos de M,

pero si r ::s 1, el único punto de intersección es precisamente 2. Estas

reflexiones nos llevan a afinar un poco más el concepto de adherencia.

Definición 1.3.5 Un punto x E lR es un punto de acumulación de unconjunto A e lR cuando todo entorno reducido E·(x) contiene puntos de

A.

Un pu nto x E lR es un punto aislado de un conjunto A si es un punto de

A que no es de acumulación.

El conjunto de puntos de acumulación de A se llama el conjunto derivado

de A !J se designa por Al.

EJEMPLO 1.3.2

1. Se tiene (a, b)' = (a, b]' = [a, b)' = fa, b]' = [a, b).

2. Si A = {l , 1/2, 1/3, . . . , l /n, .. . r . ~ l l t o n c e s Al = {D}.

27

Page 35: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 35/92

 

28

3. En general, si A = {x" : n E N} Y límxn = a con a #- xn paratodo n E N, entonces A' = {a}. Si, por el contrario, a E A puede

ocurrir que A' = {a}, como en la sucesión definida por Xo = a y

X n = a+ lln, o que A' =0 como en la sucesión X n = a.

4. Todo punto x E Z es un punto adherente de Z, pero no es de

acumulación puesto que EO(x, 1/2)nZ = 0. Es interesante observar,no obstante, que si a E A\A, entonces a es un punto de acumulación

de A (Probarlo).

•A la vista de la definición, es evidente que todos los puntos de acumulación

son puntos de adherencia, así que, en general, A' e Aj pero, como se

ha visto en el ejemplo anterior, el reciproco no es, en general, cierto. La

estrecha relación entre los puntos de acumulación y los puntos adherentes

se pone de manifiesto en el resultando siguiente.

Teorema 1.3.6 Para cada A e lR se verifica A =A U A'.

DEMOSTRACIÓN

Está claro que AUA' e A, puesto que tanto A como A' están contenidosen A. Veamos que también se verifica el reciproco.

Sea x E A; entonces para todo entorno E(x) se cumple E(x) nA#- 0.

Puede suceder que exista un entorno E(x) tal que E(x) n A = {x} encuyo caso x E A, o bien que para todo entorno E(x) sea EO(x) nA :¡. 0,en cuyo caso x E A'. En todo caso x E A UA'.

•Como consecuencia inmediata es posible caracterizar a los conjuntos ce

rrados mediante sus puntos de acumulación. Basta tener en cuenta que

A es cerrado si y sólo si A =A = A UA'. Por tanto

Corolario 1.3.7 Un conjunto A e lR es cerrado si y solo si contiene a

todos sus puntos de acumulación.

El resultado más notable con respecto a los puntos de acumulación es, sin

duda, el teorema de Bolzano-Weierstrass. Afirma que todo subconjunto

A de lR, infinito y acotado, tiene al menos un punto de acumulación (que

puede o no pertencer a A).

Teorema 1.3.8 (de Bolzano-Weierstrass).

Todo conjunto infinito y acotado A e IR tiene al menos un punto de

acumulación.

DEMOSTRACIÓN

Puesto que A está acotado, está contenido en un intervalo (ao, boj. Di

vidamos [ao, boj en dos partes iguales; al menos uno de ellos contiene unsubconjunto infinito de A. Llamemos a este subintervalo [al, b1). Divida

mos de nuevo (al, b1Jen dos partes iguales y obtendremos un subintervalo

[a2, b2) que contendrá un subconjunto infinito de A y continuemos este

Page 36: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 36/92

 

1.4 Conjuntos densos

proceso. De esta manera obtenemos una sucesión de intervalos tales queel n-ésimo, [an, bnl tiene longitud

Además, la sucesión (a n ) es creciente y acotada superiormente por be y

(bn ) es decreciente y acotada inferiormente por no. Ambas, pues, tienen

límite, y

así que ambos coinciden; llamémosle x y veamos que x es un punto deacumulación de A.En efecto: si r es cualquier número real positivo, tomemos n suficientemente grande para que bn - an < r /2 ; entonces [an, bnl estará contenidoen E(x, r). Así, pues, el intervalo E(x, r) contiene puntos de A distintos

de x y, por lo tanto, x es un punto de acumulación de A.•

Sea x un punto cualquiera de lR. Es evidente que en cualquier entornoE(x) hay puntos de Q. Informalmente podríamos decir queQ está por todas par tes o que Q rellena a lR. Para hacer precisa esta idea introducimosel concepto de conjunto denso.

Definición 1.4.1 Un conjunto D es denso en IR si D = IR.

IR es denso trivialmente. También se tieneQ= IR y IR - Q = IR (véase elproblema 8), así que Q y IR - Q son también conjuntos densos en lR.

Casi todas las propiedades importantes de los conjuntos densos descansan, en última instancia, en el hecho de que la intersección de un conjuntodenso con cualquier conjunto abierto (no vacío) es siempre no vacía.

Teorema 1.4.2 Un conjunto D es denso en IR si y sólo si para todo

abierto no vacío A e IR se verifica que A n D # 0.

DEMOSTRACIÓN

Sea D denso en IR y A un subconjunto abierto. Sea x E A; y E(x) e A;

puesto que x E D se tiene E(x) n D # 0 y, por tanto,

DnA # 0.

Recíprocamente, supongamos que todo abierto no vacío tiene intersecciónno vacía con D. Sea x E IR y E(x) un entorno de x; puesto que E(x) es

abierto,

E(x )nD#0

y x E D, lo que prueba que D es denso.

29

Page 37: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 37/92

 

1.5 Conjuntos compactos

Los conjuntos compactos son conjuntos que presentan características muysimilares, desde el punto de vista topológico, a los conjuntos finitos. El

concepto es, sin embargo, más amplio y, por ende, más útil que la me-

ra noción de cardinalidad. Comencemos por un ejemplo ilustrativo queayudará a conseguir cierta familiaridad con algunas conceptos previos

imprescindibles.

Sea A = {l/n : n E N} y consideremos para cada x E (0,1), el conjunto

abierto B", = (x, 1). No es difícil comprobar que

AC U B",

"'E(O,!)

Ydecimos, entonces, que la familia 'Ro = {B", : O< x < 1} es un recubri-miento abierto de A. Por otra parte, la familia

S = {B1/ n : n E N}

verifica que S e 'R. y, además,

A =U BrIn>nEN

y decimos, entonces que S es un subrecubrimiento abierto del recubri-miento R de A.

Definición 1.5.1 Sea'R. una familia de conjuntos de lR. Decimos que R

es un recubrimiento de A e lR cuando la unión de todos los conjuntos de

R contiene a A.

Un recubrimiento abierto es un recubrimiento formado por conjuntos

abiertos.

Un subrecubrimiento de un recubrimiento R de A es una subfamilia S

de R que es también un recubrimiento de A.

Conviene precisar que, aunque muy bien pudiera suceder, en general no

es cierto que A e Rj el sentido preciso de la definición de recubrimiento

es que para cada punto x E A existe al menos un conjunto C E R ta l que

xEC.

EJEMPLO 1.5.1

1. Sea

A = {1, 1/2, 1/3, . ..}.

A es un conjunto infinito formado por puntos aislados puesto que

para cada x E A existe un entorno E(x) ta l que E(x) n A = {x}.

Consideremos entonces la familia

'R. = {E(x) : x E A}j

claramente se tiene

A e n E(x).

"'EA

así que 'R. es un recubrimiento abierto de A. Sin embargo, nótese

que 'R. no posee ningún subrecubrimiento propio: si omitimos algún

E(x), el punto x queda descubierto, pues x no pertenece a ningúnotro E(y) con x 1= y.

30

Page 38: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 38/92

 

2. Sea A el intervalo [-1,1]. La familia

R = {( -1 + l/n, 1 - l/n) : n E N} U{(-3/2, -1/2), (1/2, 3/2)}

es un recubrimiento abierto de A y

s = {( -1 , 1), ( -3/2 , -1/2) , (1/2, 3/2)}

es un subrecubrimiento finito de A. •

Como ilustran los ejemplos precedentes, la estructura de un conjuntodetermina en gran medida el comportamiento de sus posibles recubri

mientos. Pero antes de analizar en profundidad esta cuestión conviene

ver qué ocurre en algunos casos particulares.

Teorema 1.5.2 Todo recubrimiento abierto del intervalo cerrado y aco-

tado [a, b] posee un subrecubrimiento finito.

DEMOSTRACIÓN

Llamemos R a un recubrimiento abierto de [a; b]. Sea S el conjunto de

los puntos x E [a, b] ta l que el intervalo cerrado [a, x] está cubierto por unnúmero finito de conjuntos de R. Nuestro objetivo, entonces, es probarQue bES.

El conjunto S no es vacío, ya que, al menos, a ES, porque [a, a] = {a} y apertenece a algún conjunto de R. Además, S está acotado superiormente

porque S e [a, b]. Ponemos, entonces,°= sup S y, puesto que S e [a, b],

se tiene que a ° b.

Procedemos, ahora, de la siguiente forma: probaremos, en primer lugar(1), que°E S y seguidamente (2), mostraremos que °= b, lo que lleva

implícito que bES.

(1) Puesto Que °E [a, b] y R cubre al intervalo [a, b], existirá A E R ta lque °E A; ahora bien, A es abierto , así que podemos encontrar 10 > O

ta l que [o - 10,0] CA.

Por ser °= sup S, existe x E S ta l que °- 10 X < o. Pongamos

[a, o] = [a, x] U [x, o]

Puesto que x E S, el intervalo [a, x] está cubierto por un número finito

de conjuntos de R y, por otra parte, el intervalo [x,o] e [o - E:,o] estácubierto por A; luego el intervalo [a, o] está cubierto por un número finito

de conjuntos de R y, por tanto, °E S.

(2) Para concluir, basta probar que °= b. Si fuese °< b, como °E A

y A es abierto exist irá z con °< z < b ta l que [o, z] e A y el intervalo

[a, z] estaría cubierto por un número finito de conjunto de R, luego sería

z E S Y z >°=sup S, lo cual es imposible. Por tanto, °= b.

•En la demostración anterior, para determinar un cierto subrecubrimiento

finito de R se han utilizado dos hechos acerca del intervalo [a, b]: que es

cerrado y que es acotado. La cuestión, entonces, surge inmediatamente:

31

Page 39: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 39/92

 

32

¿son sólo convenientes para la demostración o, por el contrario, son con-

diciones imprescindibles? El ejemplo siguiente muestra que ninguna de

las dos puede ser excluida.

EJEMPLO 1.5.2

1. La recta lR, que es un conjunto cerrado pero no acotado, posee un

recubrimiento abierto Ji = UnEN( -n , +n), que no admite ningúnsubrecubrimiento finito. En efecto, la unión de un número finito de

intervalos (-n, n) es igual al mayor de ellos y, por tanto, no puede

ser IR.

2. El intervalo (O, 1], que es un conjunto acotado pero no cerrado posee

un recubrimiento abierto (O,lJ e UnEN ( ~ , 2) del que no puedeextraerse un subrecubrimiento finito porque la unión de un número

finito de intervalos de la forma (1/n,2) es el mayor de ellos y, por

consiguiente, no puede contener a (O, 1J.

Veamos ahora otro caso muy importante.

Teorema 1.5.3 Si X consiste de los términos de una sucesión conver-

gente y su límite, todo recubrimiento abierto de X posee un subrecubri-

miento finito.

DEMOSTRACIÓN

Pongamos, para fijar ideas, X ={x} U {x n : n E N} con límxn = x.

Si 'R es un recubrimiento abierto de X, el l ímite x debe estar en un

conjunto de n, digamos U. Toda vez que U es abierto y (x n ) converge a

x existe no ta l que x n E U si n > no. Ahora, cada uno de los términos

xi(i = 1, . . . ,no) está en algún Ui E 'R. Así, X está cubierto por los

conjuntos U,U1"",Uno '

•Los resultados precedentes muestran que de todo recubrimiento abierto

de [a, bJ o del conjunto X formado por los términos de una sucesión con-

vergente y su límite se puede extraer un subrecubrimiento finito. Ahora

bien, la cuest ión es: ¿hay otros conjuntos con ta l propiedad? La res-

puesta es sí. En realidad en el caso del conjunto X se puede da r una

demostración alternativa observando que es un conjunto cerrado y acota-

do (la sucesión es convergente) y, por tanto, existe un intervalo cerrado

y acotado [a, b] ta l que X e [a, b]. A partir de aquí no es difícil determi-

nar un subrecubrimiento finito (¿cómo?). Esta misma idea nos permitirá

responder rigurosamente a la cuestión planteada. Antes, sin embargo,conviene dar nombre a tales conjuntos.

Definición 1.5.4 Un conjunto K e Ji es compacto cuando todo recu-

brimiento abierto de K admite un subrecubrimiento finito.

Así, los intervalos cerrados y acotados [a, bJ y los conjuntos X formados

por los términos de una sucesión convergente y su límite son conjuntos

compactos y no lo son JR y (a, b]. El resultado siguiente permite identificar

a los conjuntos compactos

Page 40: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 40/92

 

Teorema 1.5.5 (de Borel-Lebesgue).

Un conjunto K e lR es compacto si y sólo si es cerrado y acotado.

DEMOSTRACIÓN

Supongamos en primer lugar que K es compacto (así, pues, K i- lR) Y

sea x E lR \ K. Para cada y E K tomemos dos entornos, E(x) y E(y)

disjuntos. La familia

{E(y): y E K}

es un recubrimiento abierto de K y de él se podrá extraer un subrecubri

miento finito E(Yl), E(Y2)"'" E(Yn). Sean El (x), E2(X), ... ,En(x) losentornos de x correspondientes. La intersección

es un entorno de x contenido en lR \ K, luego IR \ K es abierto y K es

cerrado.

Para ver que K es acotado consideremos el recubrimiento abier to de

K formado por todos los intervalos (-n, n) con n E N. De él podráextraerse un subrecubrimiento finito cuya unión es el mayor de ellos,

digamos (-no,no). Así, K e (-no,no) y es, pues, acotado.

Recíprocamente, si K es cerrado y acotado entonces K estará contenido

en algún intervalo cerrado [a, b] y si n es un recubrimiento abierto de K,

adjuntándole el abierto lR \ K obtendremos un recubrimiento abierto del

compacto [a, b] del que se podrá extraer un subrecubrimiento finito. Tal

subrecubrimiento estará formado por un número finito de conjuntos de

n, A1 ,A2 , • •• ,AA: y, ta l vez, lR\K. Entonces los conjuntos Al l A2 ,.·· ,AA:

cubren a K. Por tanto K es compacto.

•Tendremos numerosas ocasiones de apreciar la extraordinaria utilidaddel concepto de compacidad. Con su ayuda, podemos, por ejemplo, daruna nueva demostración del teorema de Bolzano-Weierstrass que tiene uncarácter existencial.

Teorema 1.5.6 (de Bolzano-Weierstrass).

Todo conjunto infinito y acotado A e lR tiene al menos un punto de

acumulación.

DEMOSTRACIÓN

Si A es acotado estará contenido en un intervalo cerrado [a, bJ. Si A no

tiene puntos de acumulación, ningún punto de [a, b] será de acumulación

de A, lo cual implica que para cada y E [a, b] existe un entorno E(y) ta lque el entorno reducido E*(y) no contiene puntos de A. La colección

{E(y) : y E [a, b]} es un recubrimiento abierto del compacto [a, b] del

que se podrá extraer un subrecubrimiento finito, E(y¡) ,E(Y2)"'" E(YA:)que también cubren a A. Además, ninguno de los entorno reducidos

E*(y¡), E*(Y2)"'" E*(YA:) tiene puntos de A, luego A consta a lo sumode los k puntos Yl, Y2," . ,YA:·

33

Page 41: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 41/92

 

1.6 Problemas

34

1. Probar que Q no es abierto ni cerrado y que Z es cerrado en IR,

2. Si A, F e lR son dos conjuntos abierto y cerrado respectivamente,demostrar que

(a) F \ A es cerrado.

(b) A \ F es abierto

Indicación: ¿qué es A \ B P.

3. ¿Verdadero o falso? (Explíquese)

(a) Si A YB son abiertos disjuntos tales que AUB es un intervalo

abierto (acotado o no), entonces A o B es vacío.

(b) Si F, G son cerrados disjuntos tales que F UG es un intervalo

cerrado (acotado o no), entonces F o G es vacío.

4. Sea I un intervalo con puntos extremos a < b. Si U es un conjunto

abierto en IR tal que un I '" 0, entonces U n (a, b) '" 0.

5. Dados dos números reales x e y definimos la distancia de x a y como

d(x, y) = Ix - yl

Probar que para cualesquiera x, y, z E lR se verifica

(a) d(x,y) O.

(b) d(x, y) =O {:=:} x = y.

(c) d(x, y) =d(y,x).

(d) d(x,y) +d(y,z) d(x,z).

6. Probar que para cualesquiera x, y, z E lR se verifica

Id(x,y) - d(z,y)1 :5 d(x,z)

7. Este ejercicio muestra las estrechas relaciones entre los conceptos

de abierto y cerrado y las sucesiones.

(a) Un conjunto A e lR es abierto, si y sólo si se cumple la siguientecondición: si una sucesión (x n ) converge hacia un punto a E A,entonces xn E A para todo n suficientemente grande.

(b) Sea F un conjunto cerrado y (xn ) una sucesión cuyos términos

están en F. Demostrar que si (x n ) converge a un punto a

entonces a pertenece a F.

8. Determinar el interior, el exterior, la frontera, la adherencia y los

puntos de acumulación de los conjuntos siguientes

(a) Z

(b) Q

(e) lR-Q

(d) A = {(-1)n/n: n E N}.

9. ¿Verdadero o falso?00 00

UAn=UAnn= l n= l

Page 42: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 42/92

 

10. Dar explícitamente el significado de cada una de las afirmaciones

siguientes En las explicaciones no se pueden utilizar las palabras

entrecomilladas.

(a) a E X "no" es un pun to ' ' interior'' de X.

(b) a E IR ' 'no' ' es "adherente" a X.

(e) X e IR ' 'no'' es un conjunto "abierto"

(d) El conjunto Y eIR' 'no'' es "cerrado".

(e) a E IR ' 'no' ' es "punto de acumulación" de X e IR.

(f) X' =0.

(g) X e Y pero X ' 'no' ' es "denso" en Y.

(h) int(X) = 0

(i) X nx' =0.

11. Sea X e IR un conjunto acotado. Probar

(a) a = inf X y b =supX son puntos de adherencia de X.

(b) X es un conjunto acotado y sup X = sup X. ¿Cuál es elresultado análogo para el ínfimo?

12. Probar que si A es un conjunto no vacío cerrado de IR ta l que A :f; IR,

entonces IR \ A no es cerrado. Así, los únicos subconjuntos de IR que

son abiertos y cerrados a la vez son 0 y IR.

(Utilícese 11)

13. Sea A e IR y, para cada n E N sea

Un = {x E IR : Ix - al < 11n para algún a E A}

Probar

(a) Un es un conjunto abierto.

00

(b) A = n Un.

n=l

14. A = {X¡,X2,""X n , ... } , el conjunto formado por los términos de

la sucesión (x n ). Hallar A' cuando

(a) Xn -+ x y X n :f; x para todo n.

(b) X n = x para todo n.

(e) (x n )

=(x,x+ l ,x ,x+ 1/2,x,x+ 1/3, . .. )

15. Contestar razonadamente

(a) Dado un entero positivo k, dése un ejemplo de un conjunto

A e IR ta l que A' tenga exactamente k elementos.

(b) Dése un ejemplo con A' = {O} U {lln : n E N}

16. Probar

(a) x es un punto de acumulación de A si y sólo si x E A \ {x}.

(h) x es un punto de acumulación de A si y s610 si es l ímite de una

sucesión de elementos de A distintos dos a dos.

35

Page 43: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 43/92

 

36

17. Constrúyase un conjunto A en la recta real tal que

A fe A' fe (A')' = {O}.

18. Demostrar

(a) A es denso en IR si y sólo si IR \ A tiene interior vacío.

(b) A es denso en IR si y sólo si todo punto de IR es l ímite de una

sucesión de puntos de A.

19. (a) Hallar un conjunto A e IR con A fe IR, ta l que A es denso pero

IR \ A no lo es.

(b) Dar un ejemplo no trivial de un subconjunto abierto y denso

en IR.

20. Probar que el conjunto

IR \ {x n : n E N}

es denso en IR.

21. Por extensión, diremos que un conjunto D e A es denso en A, si

A e D. Probar que todo intervalo 1 eIR

posee un subconjuntodenso en 1 y numerable.

22. Probar las siguientes variantes del teorema de Bolzano-Weierstrass.

(a) Un conjunto C e IR es compacto si y sólo si todo subconjunto

infinito de C tiene al menos un punto de acumulación en C.

(b) Un conjunto C es compacto si y sólo si cada sucesión en Ctiene una subsucesión que converge a un punto de C.

23. Si (A n ) es una sucesión de conjuntos compactos no vacíos de IR ta l

que An+1 e An para todo n, demostrar que el conjunto intersección

es no vacío y compacto.

24. Probar que dado un conjunto A e IR, todo recubrimiento abierto

de A admite un subrecubrimiento numerable.

25. (Propiedades de separación). Demostrar:

(a) Si C es compacto y x f/: C, existen dos abiertos disjuntos que

contienen a C y a x. ¿Es cierto esto si C es cerrado?

(b) Si C I y C2 son compactos disjuntos, existen abiertos Al y A2

disjuntos que los contienen. ¿Existe un análogo para conjuntoscerrados?

26. Probar

(a) La unión finita de compactos es un compacto.

(b) La intersección arbitraria de compactos es un compacto.

(c) Si K es una familia de conjuntos cerrados, al menos uno de los

cuales es compacto, entonces nK es compacto.

(d) Si e es compac to y F cerrado, C n F es compacto.

Page 44: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 44/92

 

27. ¿Verdadero o falso? (explíquese). Si A es un subconjunto acotado

de lR entonces A' es compacto.

28. Si X n x y A = {x} U {x n : n E N}, entonces A es compacto y,

por tanto, cerrado y acotado. Probar que A es cerrado y acotado

sin hacer uso del teorema de Borel-Lebesgue.

29. Construir recubrimientos abiertos de Q y de [0, 00) que no admitan

subrecubrimientos finitos.

37

Page 45: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 45/92

 

2 Espacios métricos

Desde un punto de vista intuitivo, un espacio métrico es, simplemente,

un conjunto en donde podemos hablar de la distancia entre sus elemen

tos, lo que nos permitirá precisar la noción de proximidad, una idea que

está presente implícitamente en todos los conceptos fundamentales de la

Topología y el Análisis.

La recta real o el plano geométrico constituyen ejemplos simples de es

pacios métricos, concepto que es en realidad una abstracción de las pro

piedades de lo que habitualmente se conoce como distancia.

Los espacios métricos son muy numerosos y diversos. Por razones evi

dentes, no podemos abordar en este texto el estudio de ciertos espacios

para los que se necesita un conocimiento matemático amplio; por ello

nos centraremos únicamente en aquellos conjuntos con los que el lector

tiene cierta familiaridad y que surgen de forma natural en el análisis. No

obstante, en la mayoría de los casos, los conceptos y propiedades que seestudiarán son fácilmente generalizables.

2.1 Distancias

Comencemos con un caso sencillo: el conjunto IR de los números reales.

Si, como es habitual, identificamos IR con una recta, podemos intuir,

sin mucha dificultad, lo que normalmente entendemos como medir la

distancia entre dos puntos -después de todo para hallar la distancia entre

los puntos -3 y 5 sólo se necesita algo de aritmética-o Sin embargo, es

necesario dar una definición precisa que, por una parte, recoja nuestras

nociones intuitivas y, por otro, sea matemáticamente rigurosa; ello se

consigue con el auxilio del valor absoluto.

Definición 2.1.1 Dados dos números reales x e y definimos la distancia

euclídea de x a y como

d(x,y):::: Ix-yl

Tenemos, por ejemplo, d(3,2) :::: 13 - 21 :::: 1 y d(3, -7) = 13 + 71 = 10.

Puede sorprender que hallamos puesto un apellido, euclídea, en nuestra

definición. Ello se debe a que sobre un mismo conjunto se pueden definir

distancias distintas; pero esto será precisado más tarde. Veamos, de

momento, algunas propiedades más o menos evidentes -y deseables- quese deducen de forma inmediata de las propiedades del valor absoluto.

Teorema 2.1 .2 Para cualesquiera x, y, z E IR se verifica

1. d(x,y) = O si y sólo si x = y.

2. d(x, y) 2: O.

3. d(x,y) = d(y,x).

4. d(x,y)::; d(x,z) +d(z,y).

39

Page 46: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 46/92

 

40

Una precisión, antes de seguir. En lo que sigue consideraremos el con

junto ]R.n como el conjunto de las n-plas (XI, X2, . . . , x n ), donde Xi E

lR (i == 1,2, ... , n) a las que llamaremos puntos siguiendo la terminolo

gía geométrica que fue su origen; es decir lRn no es más que el producto

cartesiano(n )

lR x lRx . , . xlR

sin ninguna otra estructura definida.

Pasemos ahora a]R2 que identificamos con el plano geométrico. Podemos

medir la distancia, que entendemos como habitual, entre dos puntos X ey con la ayuda del teorema de Pitágoras (fig. 2.1).

Definición 2.1.3 Dados x,y E lR2 definimos la distancia euclídea de X

a y como

Al igual que en IR, también en este caso se demuestra con relativa facilidad

que se verifican las propiedades siguientes.

Teorema 2.1.4 Para cualesquiera x, y, z E ]R2 se verifica

1. d2(x,y) == O si y sólo si X == y.

2. d2 (x,y);:::O.

3. d2(x, y) == d2 (y, x).

4· d2(X, y) =::; d2 (x , z) + d2 (z, y).

Como se ve, las definiciones de distancia en ]R y en lR2 verifican las mismas

propiedades. Podemos interpretar con facilidad lo que significan tales

propiedades. La primera nos dice que la distancia entre dos puntos es

cero si y sólo si los puntos coinciden; la segunda establece que la distanciaes siempre un número real posit ivo o cero; la tercera es una propiedad

de simetría: indica que la distancia de x a y es igual a la de y a Xj

finalmente, l a cuarta propiedad nos dice que un lado de un triángulo

nunca t iene longitud mayor que la suma de las longitudes de los otros

dos lados.

No es difícil reconocer en las definiciones que hemos dado la noción de

distancia que conocemos intuitivamente y que habitualmente usamos. No

ocurre lo mismo, sin embargo, con la definición siguiente.

Definición 2.1.5 Dados x, y E ]R2 definimos la distancia de Manhattan

de x a y como

Aunque menos habitual, es fácil interpretar lo que significa dI' Para

medir la distancia entre (Xl, X2 ) e (YI, Y2 ) hallamos primero la distancia

horizontal entre XI e YI y le añadimos la distancia vertical entre X2 e Y2

(fig. 2.1). No es muy difícil imaginar situaciones donde ta l medida sea la

adecuada: supongámonos, por ejemplo, midiendo distancias en una gran

ciudad con todas su calles dispuestas en sentido horizontal y vertical; se

comprenderá ahora por qué la denominación de distancia de Manhattan.

Page 47: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 47/92

 

La definición anterior pone de manifiesto una cuestión importante que

ya anticipamos: sobre un mismo conjunto se pueden definir distancias

distintas; la elección de una u otra dependerá de nuest ros intereses y de

su conveniencia para resolver nuestros problemas. Se comprende ahora

por qué ponemos apellidos a lo que denominamos distancias. Ahora bien,

¿qué nos permite denominar a d¡ con el nombre de distancia? Esto es:

¿qué propiedades tiene d¡ que refleje lo que intuitivamente entendemos

como distancia? y, también, ¿qué hay de común entre d¡ y d2? La

respuesta viene de l a mano del resultado siguiente.

Teorema 2.1.6 Para cualesquiera x, y, z E IR? se verifica

1. d¡(x,y) =O si y sólo si x = y.

2. d¡(x,y) O.

9. d¡(x,y) =d¡(y,x).

4. d¡(x,y) d¡(x, z) + d¡(z,y).

Figura 2.1: Distancias en IR2

/ JHasta aquí, hemos tratado de intuir qué propiedades son esenciales cuan-

do hablamos de distancia. Algunas de ellas han quedado conveniente-mente expuestas, pero hay que destacar un aspecto que quizás no ha

quedado suficientemente explícito: es evidente que toda distancia debe-

ría estar definida para cualquier par de elementos del conjunto; es, por

tanto, conveniente entenderla como una aplicación que asocia a cada par

de elementos del conjunto, un número real positivo.

Estamos ahora en condiciones de definir lo que se entiende, en general,

por distancia.

Definición 2.1.7 Sea E un conjunto no vacío. Se denomina distanciad definida sobre E a toda aplicación

d:ExE--+IR

que asocia al par (x,y) E E xE el número real d(x,y) y que verifica las

siguientes propiedades para todo x, y, z, E E:

1. d(x, y) = O si, y sólo si x = y

2. d(x,y) O

9. d(x, y) =d(y,x)

4. d(x, y) d(x, z) + d(z, y)

(axioma de separación)

(axioma de simetría)

(desigualdad triangular)

41

Page 48: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 48/92

 

No entraremos a discutir las complejas razones por las cuales se eligen

precisamente estas propiedades -y no otras- para definir la noción de

distancia, ni por qué resultan ser suficientes para nuestros propósitos.

Baste decir que se trata de propiedades que reflejan nuestras percepciones

y que son consistentes; es to es: no da lugar a contradicciones.

Algunos ejemplos más nos ayudarán a familiarizarnos con el concepto.

EJEMPLO 2.1.1

1. La aplicación definida en ]R2 x ]R2 por

doo(x,y) = máx {!XI - YI!, !X2 - Y2J}

es una distancia en ]R2 (fig. 2.1).

2. Las aplicaciones siguientes son distancias definidas sobre ]R3 :

dl(x,y)

d2 (x,y)

doo(x,y)

= IXI - yd + IX2 - Y21 + IX3 - Y31

V(X¡ - YI)2 + (X2 - Y2)2 + (X3 - Y3)2

= máx {lxI - vd, IX2 - Y21, IX3 - Y3!}

Conviene hacer notar que los subíndices utilizados hasta aquí para dist inguir unas distancias de otras son los habituales en la literatura; para

comprender, sin embargo, su justificación habrá de esperarse a los pro

blemas.

Los conjuntos]R, ]R2-y, en general,]Rn son muy adecuados para obtener un

reflejo de lo que intentamos definir como distancia. Sin embargo, no hay

nada en estos conjuntos que no pueda ser generalizado a otros conjuntos

menos familiares. El lector interesado puede ver algunos ejemplos muy

significativos en el apéndice del final del capítulo.

2.2 Espacios y subespacios métricos

La definición de una distancia sobre un conjunto dota a éste de una

estructura rica y fructífera sobre la que se asienta gran parte del Análi

sis. Tales estructuras reciben el sugerente nombre de espacios métricos y

constituyen la primera aproximación formal a los conceptos topológicos.

Definición 2.2.1 Sea E un conjunto no vacío y d una distancia definida

en él. Al par (E, d) se le denomina espacio métrico.

Así, (lR, d), donde d es la distancia euclídea, es un espacio métrico (estructura que se suele conocer con el nombre de recta real). A menos que

se exprese lo contrario , en lo que sigue, cuando se considere a ]R como

espacio métrico se entenderá que la distancia es la euclídea, también lla

mada usual. Pero , sobre lR, pueden definirse otras distancias que dan

lugar a espacios métricos diferentes. Lo mismo ocurre con ]R2, con ]Rn y,

en general, con cualquier conjunto. En particular (]R2, d2 ), que identifi

camos con el plano geométrico, es un modelo intuitivo natural de espacio

métrico.

El ejemplo siguiente es especialmente significativo y recurriremos a él

frecuentemente en este texto.

42

Page 49: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 49/92

 

EJEMPLO 2.2.1

Sea E un conjunto cualquiera no vacío y dt la aplicación definida por

d x = { 1 si x;:j:. yt( ,y ) °si x = y

Se deja al lector la sencilla comprobación de que ta l aplicación es una

métrica para E.

A la distancia así definida se le suele llamar la distancia trivial y al espacio

métrico resultante (E, d¡) se le l lama discreto.

Aunque tales espacios carecen de interés dada su evidente trivialidad,

nos indica que todo conjunto no vacío puede proveerse de una métrica;

por otra parte, tales espacios discretos se emplean con frecuencia como

contra-ejemplos.

Consideremos el espacio métrico (E, d) YseaF un subconjunto cualquiera

no vacío de E. De inmediato se comprueba que la aplicación

dF: F x F -+

(x,y) -+

IR.dF(X,y) =d(x,y)

es una métrica para el conjunto F. A dF se le suele llamar métrica

inducida en F por d y, por sencillez, se acostumbra a designar también

por d cuando no hay peligro de confusión. Nótese que dF no es más que

la restricción de d a F x F.

Definición 2.2.2 Sea (E, d) un espacio métrico y F un subconjunto novacío de E. El par (F, dF), donde dF es la restricción de d a F, se le

denomina subespacio métrico de (E,d).

Desde luego, cualquier subespacio métrico es un espacio métrico en sí

mismo y cualquier espacio métrico puede considerarse como subespacio de

sí mismo. Pero veamos algunos ejemplos menos triviales aunque sencillos.

EJEMPLO 2.2.2

1. Si restringimos la distancia euclídea en IR. a los números enteros 2:.,

obtenemos el subespacio métrico (2:., d).

2. Consideremos la recta real y el subconjunto [0,1]. Entonces

([O,IJ,d)

es un subespacio métrico.

Una cuestión evidente pero que conviene hacer notar es el hecho

siguiente: consideremos el conjunto X como el conjunto de los pun

tos cuya distancia a 1/2 es menor que 1; en (IR, d), X es el intervalo

(-1/2,3/2), mientras que en ([0, 1],d) , X es el intervalo [0,1]. Este

hecho puede parecer ahora trivial, pero la apreciación es engaño

sa; no obstante tendremos que esperar a capítulos posteriores para

mostrar toda su importancia.

43

Page 50: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 50/92

 

3. Sea (IR2 , d2 ). Podemos identificar a IR con el subconjunto de IR2 ,

IR· = IR x {O};

es decir el conjunto de todos los puntos de la forma (x, O), con

x E III La restricción de d2 a IR· viene dada por

De esta forma, en sentido amplio, es posible considerar a la recta

real como un subespacio métrico de (IR2, d2 ). De forma similar,es posible considerar, en general, a (IRn -

k, d) como subespacio de

(IRn, d).

La noción de subespacio métrico es importante porque nos permite cons

truir nuevos espacios métricos a partir de algunos dados, pero no debe

olvidarse su interés intrínseco: más adelante estudiaremos con cierta pro

fundidad algunas propiedades que se apoyan directamente en el compor

tamiento de algunos conjuntos como subespacios métricos.

Hemos visto ya algunos ejemplos particulares de espacios métricos. Algu

nos de ellos tienen importancia considerable por sí mismos y todos, vistosen conjunto, ponen de manifiesto la gran generalidad del concepto. Así,

cuando demostremos una propiedad para un espacio métrico abstracto,

ésta queda establecida automáticamente para una extraordinaria diver

sidad de espacios. Es el caso del resultado siguiente que generaliza la yaconocida propiedad de los triángulos: la longitud de uno cualquiera de

sus lados es mayor que el valor absoluto de la diferencia de las longitudes

de los otros dos.

Teorema 2.2.3 En un espacio métrico (E, d) se verifica

44

Id(x,z) - d(z,y)j d(x,y)

paro todo x, y, z E E.

DEMOSTRACIÓN

Por la desigualdad triangular y el axioma de simetría se tiene

d(x,z) d(x, y) +d(y,z) = d(x,y) +d(z,y)

y, por tanto,d(x,z)-d(z,y) ~ d ( x , y )

De igual forma

d(z, y) d(z, x) + d(x, y) =d(x, z) + d(x, y)

y

-d(x, y) d(x, z) - d(z, y)

Luego

-d(x, y) d(x, z) - d(z, y) d(x, y)

y

Id(x,z) - d(z,y)1 Id(x,y)1 =d(x,y)

(2.1)

Page 51: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 51/92

 

2.3 Distancias entre conjuntos

Sea (E, d) un espacio métrico. Fijemos arbitrariamente un punto Xo E EY un conjunto no vacío A e E.

Designemos por

{d(xo,x) : x E A}

al conjunto de números reales constituido por las distancia de Xo a todos

los puntos de A. Este conjunto está acotado inferiormente por O, lo que

implica que admite ínfimo no menor que O.

Definición 2.3.1 Definimos la distancia de un punto Xo E E a un con-

junto A e E al número real

d(xo, A) = inf d(xo,x)xEA

Es evidente que si Xo E A entonces d(xo, A) = O; pero el recíproco no

es, en general, cierto. Puede suceder que d(xo, A) = OY Xo iI A. Esta

cuestión quedará definitivamente dilucidada más adelante.

EJEMPLO 2.3.1

1. Consideremos JR con la métrica usual y A = (1, 2J. Es trivial com

probar que

d(3/2,A)

d(1, A)

d(O,A) =

inf 13/2 - xl =OxEA

inf 11- xl =OxEA

inf Ixl = 1xEA

Obsérvese que d(1, A) =Oy, sin embargo 1 rt A.

¿Existe x E A ta l que d(1, x) = d(1, A)?2. Consideremos el espacio métrico (JR2, d¡), y sea el subconjunto A

de JR2 formado por los puntos

entonces

d¡((2,O),A) inf d¡((2,O), (x,y»(x,y)EA

inf d¡((2,O), (x,x2»xER

inf {12 - xl + x 2}

xER

Si ponemos f(x) = 12 - xl + x2 (figura 2.2), se tiene

{

X2 - x + 2 si x < 2f(x) = x2 + x - 2 si x 2

y, por tanto,

inf f(x) = f(1/2) = 7/4.xER

Luego d¡((2,O),A) = 7/4

45

Page 52: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 52/92

 

46

Figura 2.2: f(x) = l ~ - ~ 1 _ + ; ¡ ; 2

La siguiente desigualdad, de carácter auxiliar, será de uso frecuente en lo

que sigue.

Teorema 2.3.2 Sean (E, d) un espacio métrico, A e E un conjunto no

vacío, y x, y E E. Entonces

Id(x,A) - d(y,A)1 d(x,y)

DEMOSTRACIÓN

Para todo z E se tiene, por la desigualdad triangular,

d(x,z) d(y,z) + d(x, y)

y, por tanto,inf d(x, z) inf {d(y, z) + d(x, y) }zEA zEA

así que

d(x, A) d(y, A) + d(x, y)

De forma análoga

d(y, A) d(x,A) +d(x,y)

Luego

-d(x, y) d(x, A) - d(y, A) d(x, y)

y

jd(x,A) - d(y,A)I d(x, y)

•Tomemos ahora dos conjuntos no vacíos A, B e E y designemos por

{d(x,y): x E A,y E B}

al conjunto de números reales constituido por todas las distancias entre

un punto de A y uno de B. Está claro que ta l conjunto está acotado

inferiormente por O, por lo que admite un ínfimo no menor que O. Estonos permite dar la siguiente definición.

Page 53: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 53/92

 

Fi ra 2.3: Distancia entre con 'untos

Definición 2.3.3 Definimos la distancia entre los conjuntos A y B al

número real

d(A,B) = inf d(x,y):lEAyEB

Si A n B :1: 0, es inmediato que d(A, B) = O; pero de nuevo el recíproco

no es, en general , cierto: la distancia puede ser cero aunque los conjuntos

sean disjuntos. Un ejemplo sencillo de esta situación resulta si tomamos

los conjunto de la recta real A = (a, b) y B = (b, e); ambos intervalos

son, evidentemente, disjuntos y, sin embargo, d(A, B) = O como puede

comprobarse fácilmente.

Conviene des tacar que no es en general cierto que exista algún punto

Yo E A ta l que

d(xo,A) =d(xo, Yo).

Análogamente, tampoco es cierto que en general existan Xo E A e Yo E B

ta l que

d(A, B) = d(xo, Yo)

Mostrar estos hechos no es muy difícil. ¿Puede hacerlo el lector?

EJEMPLO 2.3.2

1. Consideremos la recta real lR y sean Q el conjunto de los números

racionales e JI

=lR - Q. Entonces

d(Q,lR) = d(JI, IR) = d(Q,JI) =O

2. Dados el espacio métr ico (1R2 , d2 ) Ylos subconjuntos de lR2

A= {(x, y) ElR2 :x2+y2=1} y B={(x,Y)EJR

2: x+y=2 }

entonces

d(A, B) = v'2 - 1

Un sencillo gráfico ayudará al lector a establecer este hecho.

47

Page 54: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 54/92

 

2.4 Problemas

1. Demostrar que la aplicación

d(x,y) = Ix - yl

define una distancia sobre IR.

2. Probar que se verifican para x, y, z E IR las siguientes relaciones:

(a) IIx - z\ - Iz - y¡l $ Ix - yl

(b) IIxl - Iyll $ Ix - yl3. Demostrar que las aplicaciones siguientes son distancias sobre IR2

dI (x, y)

d2 (x, y)

doo(x, y)

IXI - YII + IX2 - Y2/

J(XI - y¡)2 + (X2 - Y2)2

máx {lxI - YII, lx2 - Y21}

(dI Ydoo son fáciles; para la propiedad triangular de d2 es muy útil

la desigualdad de Minkowski)

4. En lR2 y IR3 , determine gráficamente los puntos que verifican

(a) d2 (O, x) $ 1

(b) ddO, x) $ 1

(e) doo(O, x) $ 1

5. Consideremos IIr'. Demostrar que las aplicaciones siguientes sondistancias

n

dI (x, y) = L / x i - Y i l

i=1

(n Y/22 (x, y) ~ I X i -Yi1

2

doo(x, y) = sup IXi - YilI$i$n

6. Demostrar que en un espacio métrico (E, d) se verifica la relación

Id(x, y) - d(z, t)1 $ d(x, z) + d(y, t) (x,y,z,t E E)

48

y probar la desigualdad (2.1) a partir de ella.

7. Sea E un conjunto no vacío y d: E x E IR una aplicación queposee las siguientes propiedades

(a)d(x, y)

=°i y sólo si x =y.

(b) d(x, y) $ d(x, z) + d(y, z)

Demostrar que d es una métrica sobre E. Este problema muestrael hecho de que las propiedades exigidas para que una aplicaciónsea distancia, son, en realidad, redundantes.

8. Sea I una aplicación inyectiva de un conjunto E en Ji; demostrarque la aplicación

d(x,y) = I f(x) - l(y)J

es una distancia sobre E.

Page 55: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 55/92

 

9. Tomemos un número natural i entre 1 y n. Definamos para x, y de]Rn ,

d(x,y) = IXi - Yil

¿Qué propiedades de una métrica posee d?

10. Sean d¡,d2"'" dn métricas sobre un conjunto E. Demostrar que

n

d(x,y) = E d i ( X , y )

;=1

es una métrica para E.

11. Mostrar cómo puede considerarse a (]R2, d) corno un subespacio

métrico de (lRn, d).

12. Sea (lR2, d2 ) YA e lR2 definido por

{(x, y) E lR?: ( X - 2) 2 + y2 : 51} U { ( x , y ) E lR2: ( x+ 2 )2 + y2 :51}

Determinar en (A, d2 ) los puntos que verifican

13. Sea A e ]R2 definido por

A={(x ,Y)ER2: y=X

2}

•Dar una forma explícita de la distancia inducida por d¡, d2 Ydeo en

A.

14. Sea (lR, d) Y A e lR definido por

A={_n : nEZ }n+1

Hallar d (l , A ) ¿Cuánto vale lím~ 1 ?

n--4eo n +15. Sea lR con la distancia usual y A e lR definido por

A = { ~ + ( _ l ) n : n E N}

Hallar d (l ,A ) y d ( - l , A ) . ¿Cuánto vale lím (.!. + ( _ l ) n )n-+oo n

16. Sea lR3 con la métrica definida por

d(x,y) = inf{l,d¡(x,y)}

y A e JR3 definido por

A = {(x,y,z) E JItl : 0:5 x:5 1, 0:5 Y: 5 1, 0:5 z :5 1}

Hallar los puntos x E lR3 que verifican

d(x, A) = 1

17. Dado el subconjunto de ]R2

A = {(x, y) E R2 : y = x2} = {(x , x2) : x E R}

Calcular d¡((2,0),A), d2((2,0), A) Y deo ((2,O),A).

49

Page 56: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 56/92

 

2.5 Apéndice. Espacios de funciones y espacios de sucesiones

La noción de distancia es un concepto lo suficientemente preciso como

para ser fructífero, pero también de una gran generalidad, de forma que

puede extenderse a conjuntos de muy diversa naturaleza. Entre ellos,

los espacios de funciones y los espacios de sucesiones son, sin duda, los

que tienen un papel más destacado en el análisis matemático. En lo que

sigue, introducimos uno de ellos y dejamos otros como ejercicio para el

lector.

Sea C([a, b]) el conjunto de las funciones reales continuas en el intervalocerrado [a, b].

La aplicación

doo(f,g) =máx{I/(x) - g(x)1 : x E [a,b]}

es una distancia.

En efecto. En primer lugar doo está bien definida, puesto que I/(x) - g(x)les una función continua en [a, b] y, por tanto, existe el máximo.

Por otra parte, I/(x) - g(x)1 es posit iva o cero para todo x E [a, b]; esto

es: d(f,g) O. Además, d(f,g) = Osi y sólo si I/(x) - g(x)l = O para

todo x E [a, b]; es to es: si y s610 si /(x) = g(x) para todo x E [a, b].La propiedad de simetría es trivial. Finalmente, si h E C([a, b]), se tiene:

d(f,g) máx I/(x) - g(x)\zE[a,b]

máx I/(x) - h(x) + h(x) - g(x)¡zE[a,b]

máx {I/(x) - h(x)/ + Ih(x) - g(x)l}zE[a,b]

máx I/(x) - h(x)1 + máx Ih(x) - g(x)1zE[a,b] zE[a,b]

d(f,h) +d(h,g)

Así, pues, (C([a, b]), doo) es un espacio métrico.

Figura 2.4: Métrica uniforme o del máximo en C( a, b )

a b

Los siguientes ejemplos muestra como puede extenderse a este tipo de

espacios los conceptos y propiedades de los espacios métricos en general.

50

Page 57: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 57/92

 

EJEMPLO 2.5.1

1. Consideremos C([O, 211'"]) con la métrica del máximo y el conjunto

A = {sen x + k:° k 1}

Veamos cuál es la distancia de la función f(x) = x 2 + 2 al conjunto

A. Se tiene

inf {máx Ix2 +2-senx-kl = inf { máx {x2+2-senx -k}

0:9:9 ze[o,27rj 0:5k:51 ze[o,2"1

Para hallar este valor, pongamos g(x) = x 2 + 2 - senx - k. Puesto

que

g ' ( x )=2x-cosx y g"(x )=2+senx>0,

si existe algún extremo relat ivo de 9 en el intervalo [0,211'"] será un

mínimo; por tanto , el máximo -que debe existir- estará en uno de

los extremos.

Hallando g(O) y g(211'") , es fácil verificar que el máximo ocurre en

211'", as í que

inf { máx x2 + 2 - sen x - k} = inf {411'"2 + 2 - k} = 411"2 + 10:5k:9 ",e[o.2"] 0:5k:51

2. Si

B = {cosx + k: 2 k 3}

¿cuánto vale d(A, B)?

PROBLEMAS

1. Sea A un conjunto cualquiera no vacío. Diremos que una función

f de A en IR es acotada si existe algún número real M > O ta l que

I/(x)! M para todo x E A. Designemos por B(A) al conjunto de

todas estas funciones.Probar que

d: B(A) x B(A)

(/,g)

- t IR

- t sup I/(x) - g(x)1"'eA

es una distancia en B(A).

2. Sea E el conjunto de todas las sucesiones reales (x n ) acotadas (exis

te algún k > O ta l que Ixnl k para todo n E N). Demostrar que

doo((xn), (Yn» = sup IX n - Ynln

define una métrica sobre E.

Al espacio (E,d) así definido se le denota por loo

3. Sea E el conjunto de todas las sucesiones reales (x n ) tales que

lím X n = O. Demostrar que

doo((xn), (Yn» =sup jXn - Ynln

define una métrica sobre E.

Al espacio (E , d) así definido se le denota por ca

51

Page 58: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 58/92

 

52

4. Demostrar que

dI (f, g) = lb If(x) - g(x)l dx

define una métrica en C([a, b)). Haga una representación gráfica dea idea.

Page 59: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 59/92

 

3 Topología de los espacios métricos

En los espacios métricos, hay ciertos subconjuntos con propiedades muy

notables y que se revelan como elinstrumento

indispensablepara un

estudio serio y riguroso del Análisis Matemático. Éstos son los conjuntos

abiertos. Intuitivamente, A es un conjunto abierto si todos los puntospróximos a x E A pertenecen también al conjunto. Po r ejemplo, en larecta real, el intervalo (a, b) es un conjunto abierto, pero no lo es (a, b]

porque hay puntos próximos a b que no pertenecen al conjunto. Desde

luego, esto no es más que una aproximación informal y el determinar siun conjunto es abierto o no depende fundamentalmente, en los espacios

métricos, de qué distancia se ha de considerar.

Las definiciones precisas y las propiedades que de ellas se derivan es el

objetivo de este capítulo.

3.1 Conjuntos abiertos

Sea (E,d) un espacio métrico, un punto a E E y r > Oun número real.

Definici6n 3.1.1 Se denomina bola abierta de centro a y rndio r > O al

conjunto

B(a,r) = {x E E: d(x, a) < r}

Se llama bola cerrada de centro a y rndio r > O al conjunto

B(a,r) = {x E E : d(x, a) r}

Obsérvese que puesto que exigimos, y esto es importante, que r > O, tantocualquier bola, tanto abierta como cerrada, es un conjunto no vacío, yaque al menos el centro per tenece a ella.

En (lR3 , d2 ) el nombre de bola tiene un sentido geométrico clásico. Porejemplo,

B(O,l) = {(x,y,Z)EJR3:y!X2+y2+ z2<1}

= {(x,y,Z)EJ!tl:x 2+y2+ z2<1}

representa geométricamente una esfera, (sin la superficie esférica) unabola a la que pertenecen todos los puntos cuya distancia al origen es

menor que l .

Esta visión geométrica suele ser, en general, muy útil. Sin embargo,

deberíamos ser muy precavidos cuando la usemos. En otros espacios o

con otras distancias las bolas abiertas o cerradas son conjuntos a los que

difícilmente llamaríamos bolas en la vida cotidiana.

Los ejemplos siguientes son muy importantes porque, sin duda, ayudarána aclarar nuestra definición pero también pondrán de manifiesto el peligro

de apoyarnos excesivamente en los conceptos geométricos.

53

Page 60: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 60/92

 

EJEMPLO 3.1.1

l . Consideremos la recta real. La bola abierta de centro a y radio res el intervalo abierto

(a-r,a+r);

la bola cerrada de centro a y radio r es el intervalo cerrado

la - r,a + r).

2. En (1R2, d

2) la bola abierta

de centro

°radio 1 es el conjunto

B(O,l) {(x,y) E 1R2

: "j(x2+ y2 < 1}

{(x,y) E 1R2 : x2+y2 < 1}

Es decir, el círculo geométrico de centro° radio 1, excluida lacircunferencia.

En (1R2, dd, se tiene

B(O, 1) :::: {(x,y) E 1R2

: Ixl + Iyl < 1}

que son los puntos interiores a un cuadrado que está girado 1r / 4

radianes con respecto a los ejes.

y en (1R2 , doo )

B(O,l):::: {(x,y) E 1R2

: máx{lxj,lyl} < 1}

que son los puntos interiores a un cuadrado (fig. 3.1).

Fi ra 3.1: Bolas abiertas en 1R2

d ~

54

El resultado siguiente, que se conoce como propiedad de Hausdorff, tiene

una demostración casi evidente. A pesar de ello es tan importante y de

resultados tan fructíferos que conviene enunciarlo como un teorema.

Teorema 3.1.2 (Propiedad de Hausdorff). Sean x,y dos puntos distin-tos de un espacios métrico (E, d) . Existen, entonces, dos bolas abiertas

B(x,r) yB(y,s) talque

B(x, r) n B(y, s) :::: 0

DEMOSTRACIÓN

Basta poner, por ejemplo, r:::: s:::: ~ d ( x , y )•

Page 61: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 61/92

 

La noción de bola abierta es la que nos permite definir con precisión a

los conjuntos abiertos.

En la recta real, sea x un punto cualquiera del intervalo (a, b)j si tomamos

r =mín {Ix - al, Ix - b\},

se t iene que

B(x,r) = (x - r,x + r) e (a,b)j

sin embargo, en el intervalo (a, b] existe un punto, b, para el que no existe

ninguna bola abierta B(b,r) contenida en él. De otra forma: existen

puntos tan cercanos como se quiera a b que no pertenecen al intervalo

(a,b].

Sea (E , d) un espacio métrico cualquiera y A un subconjunto de E.

Definición 3.1.3 Decimos que el conjunto A es un conjunto abierto en

(E, d) si para todo punto x de A existe una bola abierta de centro x

contenida en A.

Trivialmente, el propio conjunto E es abierto , lo mismo que el conjunto

vacío -¿para qué punto de 0 no existe una bola abierta contenida enél?- Por otra parte el nombre de bola abierta nos sugiere que debería sertambién un conjunto abierto, pero este hecho, que es cierto, no es, sin

embargo, evidente y necesita de una demostración rigurosa.

Teorema 3.1.4 Toda bola abierta es un conjunto abierto

DEMOSTRACIÓN

Consideremos la bola abierta B(a,r) y x E B(a,r) un punto cualquiera

de ella (fig. 3.2). Nos proponemos demostrar que existe una bola abiertade centro x contenida en B(a, r) .

Seap = r - d(a, x) > O.

Veamos que B(x,p) e B(a,r). En efecto: sea y un punto cualquiera de

B(x,p); entonces

d(x, y) < P

y

d(a, y) ~ d ( a , x ) + d ( x , y ) <d(a ,x )+p=r

Luego y E B(a,r)

y, por tanto,B(x,p) e B(a, r)

•Conviene observar que el resul tado anterior se verifica para cualquier

espacio métrico, independientemente de cuál sea el conjunto sobre el que

se define e independientemente de la distancia elegida.

55

e

Page 62: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 62/92

 

56

Figura 3.2: llustración de la demostración en (lR2, d2 )

r

EJEMPLO 3.1.2

1. En la recta real, todo intervalo abierto es un abier to. En efecto:

consideremos el intervalo abierto (a, b) y x E (a, b). Es fácil com-probar que si

r = mín {Ix - al, Ix - bl},

entonces

B(x, r) e (a, b)

Sin embargo, conviene observar que esto se debe a la definición de

la distancia. Podemos, ciertamente; considerar en IR una distancia

de forma que un intervalo abierto no sea un conjunto abierto. No

deben, pues, confundirse ambos conceptos.

2. Consideremos el espacio métrico (IR2, d2 ) Y el subconjunto de IR2

P = {(x, y) E lR

2

: Ixl < 1,lyl 2}

P no es abierto, ya que para los puntos en los que y = 2 no es posible

encontrar bolas abiertas de centro el punto considerado incluidas en

P.

En cambio, el conjunto

A = {(x,y) E IR2 : Ixl < 1, Iyl < 2}

sí es abierto.

El teorema siguiente, a pesar de su sencilla demostración, es de extraor-

dinaria trascendencia.

Teorema 3.1.5

1. E Y 0 son conjuntos abiertos.

2. La unión de una familia cualquiera de conjuntos abiertos es un

conjunto abierto.

3. La intersección de un número finito de conjuntos abiertos es un

conjunto abierto.

Page 63: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 63/92

 

DEMOSTRACiÓN

1. Evidente

2. Sea F la familia de conjuntos abiertos y

S= U AAE:F

Si x E S, entonces x E A para algún A E F; pero A es abierto,

así que existe una bola abierta B(x, r) contenida en A y, por tanto,contenida en S. Luego S es abierto.

3. Sean los conjuntos abiertos Al , A22 , • •• , An Y

Si T = 0 la propiedad es trivialmente cierta. Supongamos queT :f 0 y tomemos x E Tj entonces x E A", para k = 1,2, . . . ,n, y

como A", es abierto, existen bolas abiertas

(k = 1,2, ... ,n )

Sea r =mín {ri, r2 , " " rn } . Puesto que r r", se tiene

así que

B(x,r) e B",(x,r",) e A",

B(x,r) e T

(k = 1,2, . .. ,n)

•El teorema anterior nos indica que las uniones de abiertos siempre resul-

tan ser abiertos, y lo mismo ocurre respecto a las intersecciones finitas.

Pero no se puede garantizar que la intersección de un número infinito deabiertos sea un abierto.

EJEMPLO 3.1.3

Consideremos la recta real y los subconjuntos

An = (-1/n,1/n) nEN

La intersección de ta l familia es el conjunto {O} que no es un abierto. Estosignifica que la demostración del teorema precedente debe fallar cuando

se aplica a este casOj ¿puede determinar dónde?

A la familia T formada por todos los conjuntos abiertos de (E, d) le

llamamos topología inducida en E por la distancia d. En lo que sigue,

cuando hablemos de un espacio métrico lo supondremos siempre dotadode la topología inducida por la distancia.

Como ejemplo, el teorema precedente nos permite determinar la estruc-

tura topológica de cualquier espacio métrico discreto

EJEMPLO 3.1.4

Consideremos un conjunto E en el que se define la distancia trivial

dt(x,y) = { ~ : ~ :57

Page 64: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 64/92

 

Para cualquier punto x E E, la bola abierta de centro x y radio r, viene

dada por

B(a,r) ={ ~ } si r S 1

si r> 1

lo que supone que cualquier conjunto unitario es un abierto -contrástese

con lo que ocurre en la topología usual de 1R- y, por tanto, cualquier

subconjunto A e R es abierto, puesto que podemos poner

A =U {x}

"'EA

En general, en cualquier espacio métrico discreto todos los conjuntos son

abiertos. Desde luego este tipo de espacios carecen de interés por sí

mismos, pero se usan frecuentemente como contraejemplos.

3.2 Conjuntos cerrados

El sentido habitual en la vida ordinaria de cerrado es, desde luego, noabierto. Aunque esta terminología sugiere que hablamos de una clasifi

cación de los conjuntos en abiertos y cerrados, ta l suposición es, desde el

punto de vista topológico, errónea. Debemos poner, pues, cierto cuidado

y revisar detenidamente las impresiones que inmediatamente se nos ocu

rren cuando tratamos problemas de este tipo. Veamos ahora la definición

y las propiedades básicas.

Sea (E, d) un espacio métrico cualquiera y A un subconjunto de E.

Definición 3.2.1 Decimos que el conjunto A es un conjunto cerrado en

(E, d) si su complementario E \ A es un conjunto abierto

Trivialmente, el propio E y el conjunto vacío son conjuntos cerrados.

Veamos algún ejemplo más.

EJEMPLO 3.2.1

1. En la recta real, todo intervalo cerrado [a, b] es un conjunto ce

rrado pues su complementario es abierto por ser la unión de los

dos conjuntos abiertos (-00, a) y (b, +00). También todo interva

lo semiabierto no acotado es cerrado: [a, 00) es cerrado pues su

complementario es el conjunto abierto (-00, a).

2. Consideremos el espacio métrico (1R2 , d2 ) .

El conjunto

p = {(x, y) E R2 /lxl < 1, Iyl::; 2}

no es cerrado.

En cambio, el conjunto

A = {(x,y) E]R2 /Ixl ::; 1, Iyl ::; 2}

sí es cerrado.

58

Page 65: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 65/92

 

3. En cualquier espacio métrico (E,d) todo conjunto unitario es ce

rrado. En efecto, sea x E E; de acuerdo con la propiedad de Haus

dorff, para cualquier y E E distinto de x, existen dos bolas abiertasB(x,r) y B(y,s) disjuntas. Por tanto,

B(y,s) n {x } = 0

y

B(y,s)

eE - {x};

luego E - {x} es abierto y {x} es cerrado.

Nótese que tanto E como 0 son conjuntos abier tos y cerrados a la vez.

Resulta oportuno llamar la atención del lector sobre el hecho de que

conjunto cerrado no se ha definido como aquél que no es abierto, ni

viceversa. Esto admite la posibilidad de que algún conjunto sea abiertoy cerrado, que sea una de las dos cosas o que no sea ni una ni otra.

La existencia de conjuntos abiertos y cerrados a la vez es particularmenteinteresante y seráestudiadamás a fondo cuando tratemos de los conjuntos

conexos.

De forma análoga a las bolas abiertas, las bolas cerradas son tambiénconjuntos cerrados.

Teorema 3.2.2 Toda bola cerrada es un conjunto cerrado.

DEMOSTRACIÓN

Sea la bola cerrada B(a, r) en un espacio métrico (E, d) (fig. 3.3); veamos

que E \ B(a, r) es abierto.

Sea x E E \ B(a, r); entonces

d(x,a) > r

Llamemos

p = d(x,a) - r > O

y veamos que

B(x,p) e E\B(x,r) .

En efecto, si

y E B(x,p),

entonces

d(x,y) < p= d(x,a) - r d(x,y) + d(y,a) - r

y, por tanto,

d(y, a) > r

así que

y ~ B ( a , r )e

yEE\B(x , r )

59

Page 66: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 66/92

 

60

Figura 3.3: ilustración de la demostración en (1R2, d2 )

- - - - - - ~ a

r

Antes de alargar la lista de ejemplos, veamos las propiedades básicas que

resultan inmediatamente de las leyes de De Morgan y las propiedades de

los conjuntos abiertos.

Teorema 3.2.3

1. E Y 0 son conjuntos cerrados

2. La unión de un número finito de cerrados es un conjunto cerrado.

3. La intersección arbitraria de cerrados es un conjunto cerrado.

DEMOSTRACIÓN

1. Trivial

2. Sean los conjuntos cerrados Al, A2 , • • • , An Ydesignemos

n

S= U AA:A:=l

Se tienen n

E \ S =E \ U AA: =n(E \ AA:)A:=l A:=l

Pero E \ AA: es abierto, po r ser AA: cerrado y la intersección finita

de abier tos es un abier to, así que E \ S es abierto y, por tanto, Ses cerrado.

3. Sea:F un a familia de conjuntos cerrados y designemos po r

T= nAAEF

entonces

E \ T = E \ n A = U (E \ A)AEF AEF

Pero E \ A es abierto por ser A cerrado, así que E \ T es abierto

por ser unión de abier tos y, por tanto, T es cerrado.

Page 67: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 67/92

 

EJEMPLO 3.2.2

1. Sea (E, d) un espacio métrico y A = {x}, X2 , " " xn } un subconjun

to no vacío finito de E. Puesto que

n

A = U{Xi}i= 1

se tiene que A es cerrado por ser unión de conjuntos cerrados.

2. La unión arbitraria de conjuntos cerrados no es, necesariamente, unconjunto cerrado; por ejemplo, considérese l a rec ta real y

00

A =U[O, 1 - l /n] = [0,1)n=1

que no es un conjunto cerrado.

Comentario. En un espacio en el que la unión arbitraria de cerrados

sea siempre un conjunto cerrado todos los conjuntos son abiertos;

es decir: su topología es la discreta. En efecto: si A es un conjunto

cualquiera, se tiene

E\A= U {x}"'EF\A

y, puesto que todo conjunto unitario es cerrado, E \ A sería cerrado

y A abierto.

3.3 Abiertos y cerrados en los subespacios

Si (E, d) es un espacio métrico y F un subconjunto no vacío de E, sabemos

que F da origen a un espacio métrico (F, d) con respecto a la métrica

inducida por d.

Nos proponemos ahora averiguar cómo son los conjuntos abiertos y los

conjuntos cerrados en el subespacio (F, d) Yqué relación guardan con los

abiertos y los cerrados en (E,d).

Antes que nada conviene precisar cómo son las bolas abiertas en (F, d),punto de partida para todo. Tomemos un punto a E F Y un número real

r > O. De acuerdo con la definición, una bola abierta de centro a y radio

r en (F, d) es el conjunto

{x E F: d(a, x) < r};

pero esto no es otra cosa que FnB(a, r) , donde B(a, r) es la bola abierta

de centro a y radio r en (E,d). Resul ta , pues, que las bolas abiertas en(F,d) no son más que las intersecciones de las bolas abiertas en (E,d)

con F.

Teorema 3.3.1 Un conjunto C e F es abierto en el subespacio (F, d)

de (E, d) si y sólo si existe un conjunto A abierto en (E, d) tal que

C=AnF

61

Page 68: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 68/92

 

62

DEMOSTRACIÓN

Supongamos que A es abierto en (E,d) y C = AnF. Si C = 0, es abiertoen (F, d). Consideremos que C ¡. 0 y tomemos x E C. Pero entonces

x E A y A es abierto en (E, d), luego existe r > Otal que B(x, r) e Aj

pero esto implica que

FnB(x,r) e AnF =C

Es decir, existe un a bola abierta de centro x en (F,d) contenida en C;

luego C es abierto en (F, d).

Recíprocamente, supongamos que C es abierto en (F, d). Entonces, paracada x E C, existe un número real r., > Ota l que

FnB(x,r.,) e C

Pero esto implica que

C = U(FnB(x,r.,))

.,ec

y, empleando la propiedad distributiva, tenemos:

C=F n (U B(X,r.,)) ..,eC

El conjunto A = U.,ecB(x,r.,) es abierto en (E,d) po r ser unión deconjuntos abiertos.

•Al igual que los abiertos, los cerrados en (F, d) son las trazas de los

cerrados en (E, d) con F. Pero, antes de demostrar este hecho convienedestacar que F es siempre abierto y cerrado en (F, d) aunque no sea

ninguno de los dos en (E, d).

Teorema 3.3.2 Un conjunto C e F es cerrado en el subespacio (F, d)

de (E, d) si y sólo si existe un conjunto A cerrado en (E, d) tal que

C=AnF

DEMOSTRACIÓN

Si A es cerrado en (E,d), es D = E \ A abierto y, po r tanto, D n Fes

abierto en (F, d)j pero

así que A n F es cerrado en (F, d).

Recíprocamente, si C es cerrado en (F, d), es F \ C abierto en (F, d) y,

por tanto, existe D abierto en (E, d) tal que

F \C=DnF

El conjunto A = E \ D es cerrado en (E, d) y se tiene

A n F = (E n F) \ (D n F) =F \ (F \ C) =C

Page 69: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 69/92

 

Como se ha visto, cerrados y abiertos en (F, d) pueden tener carácterdistinto como conjuntos del espacio métrico (E , d). Esto es porque los

resultados anteriores son independientes del carácter de F como subcon-

junto del espacio (E, d). Sin embargo, cuando F es abierto o cerrado, larelación entre los abiertos y cerrados de (E,d) y (F,d) es muy simple.

Teorema 3.3.3 Todo conjunto abierto en (F, d) es abierto en (E , d) si

y sólo si F es un conjunto abierto en (E,d).

DEMOSTRACIÓN

Si todo conjunto abierto en (F, d) es abierto en (E , d), entonces F que es

abierto en (F,d) será abierto en (E,d).

Recíprocamente, supongamos que F es abierto en (E , d); todo conjunto

B abierto en (F, d) es ta l que B =AnF, siendo A abierto en (E, d); peroesto implica que B es abierto en (E, d) por ser intersección de abiertos.

•Ahora será fácil para el lector probar el resultado análogo para los cerra-

dos.

Teorema 3.3.4 Todo conjunto cerrado en (F, d) es cerrado en (E , d) si

y sólo si F es un conjunto cerrado en (E , d) .

Lalectura precipitada de los resultados anteriores dan lugar a errores muy

comunes. Cuando F es abierto en (E , d), todo conjunto abierto en (F, d)

es abierto en (E , d), pero, ¡ojo!, no se afirma nada sobre los conjuntos

cerrados; de hecho, no todo cerrado en (F,d) tiene que ser cerrado en

(E,d). ¿Puede el lector buscar un ejemplo?

EJEMPLO 3.3.1

1. En el espacio (IR, d) consideremos el subconjunto de Q de los núme-

ros racionales. Cualquier abierto en (IQ, d) es de la forma A n Q,

donde A es un abierto de (IR, d). Así, por ejemplo, el conjunto

B = {x E IQ:° x < 1}

es un conjunto abierto en (IQ, d).

(Obsérvese, sin embargo que B no es un conjunto abierto en (IR, d».

2. Sea el subconjunto de R2

F ={ ( X ,Y ) E I R2 : x y > 1 }

Fácilmente se ve que F es abierto en (1R2

, d2) y, por tanto, todoabierto en (F, d2) es un conjunto abierto de (1R2

, d2 ). En particular

A = B « O , O ) , 2 ) n F

es un conjunto abierto en (F,d2 ) yen (1R2,d2).

Por otra parte,

F \A

es un conjunto cerrado en (F, d2 ) , pero no lo es en (1R2

, d2 ) . ¿Podríael lector decir por qué?

63

Page 70: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 70/92

 

3.4 Distancias equivalentes

Hemos visto que es posible definir distancias diferentes sobre un mis-

mo conjunto E, y que esto da lugar a espacios métricos que, al menos

en principio, han de considerarse distintos. Sin embargo no siempre las

topologías inducidas por tales distancias son diferentes; esto es: los con-

juntos abiertos en una son conjuntos abiertos en la otra y viceversa. Eneste sentido, cabe considerar, desde un punto de vista topológico, ambos

espacios como idénticos. El estudio de bajo qué condiciones ocurre talcosa es el objeto de esta sección.

Definición 3.4.1 Dos distancias dI y d2 definidas sobre un mismo con-

junto E son topol6gicamente equivalentes si las topologías de los espacios

(E , d¡) Y (E , d2) coinciden.

La definición anterior significa que si el conjunto A es un conjunto abierto

en el espacio métrico (E,d¡) también lo es en el espacio (E,d2) y vice-

versa. Obviamente, los cerrados también coinciden. En realidad, supone

que todas las propiedades topológicas coinciden. Cuestiones como la con-

vergencia o la continuidad, por ejemplo, mantienen, pues, su condición

bajo distancias topológicamente equivalentes.Ahora bien, no es fácil determinar mediante la definición si dos distancias

son topológicamente equivalentes. Por ello se hace necesario dar algunos

criterios más operativos y es lo que hacemos a continuación.

Teorema 3.4.2 Dos distancias dI y d2 definidas sobre un mismo con-

junto E son topológicamente equivalentes si y sólo si

1. para cada bola abierta Bd, (a, r) en el espacio (E , d¡) existe una bola

abierta B d2 (a, s) en el espacio (E, d2) tal que B d2 (a, 8) e Bd, (a, r);y

2. para cada bola abierta Bd2(a, s) en el espacio (E,d2) existe una bolaabierta Bd, (a, r) en el espacio (E, dI) tal que Bd, (a, r) e B d2 (a, 8).

DEMOSTRACIÓN

Supongamos primero que dI y d2 son equivalentes y sea Bd, (a, r) una bola

abierta en (E,d¡). Puesto que todo conjunto abierto en (E,d¡) es tam-

bién un conjunto abierto en (E, d2), se tiene que Bd, (a, r) es un conjunto

abierto en (E,d2) y, por tanto, debe existir una bola Bd2(a,8) incluida

en Bd, (a, r) . Un razonamiento análogo prueba la inclusión contraria.

Recíprocamente, sea A un conjunto abierto en (E, dI)' Para cualquier

x E A existe entonces una bola abierta Bd, (x, r) contenida en A; peroesto significa que hay una bola abierta en (E, d2 ) , B d2 (x, 8),0 tal que

Luego, A es un conjunto abierto en (E, d2 ). De forma análoga se prueba

que A es abierto en (E,d¡) si A es abierto en (E,d2).

•El que dos distancias dI y d2 sean topológicamente equivalentes significa,

pues, que las topologías inducidas en (E,d I ) y (E,d2) coinciden y con

64

Page 71: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 71/92

 

ella, todas las propiedades topológicas. Sin embargo, no tiene por qué

ocurrir así con las propiedades estrictamente métricas. Por ejemplo, ladistancia usual d y la distancia d' (x, y) = inf{1, d( x, y)} son topológica-

mente equivalentes (véase el problema 17); sin embargo no existe ningún

número real k > O ta l que d(x,y) k para todo x,y E IR mientras que

d'(x,y) 1 para todo x,y E IR.Así, pues, para que tales propiedades métricas coincidan en un espacio y

en otro, necesitamos imponer condiciones más fuertes sobre las distancias.La definición siguiente muestra qué condiciones deben cumplir dI y d2

para poder considerarlas como métricamente equivalentes.

Definición 3.4.3 Dos distancias dI y d2 definidas sobre un mismo con-

junto E son equivalentes si existen dos constantes reales positivas h y k

tales que para todo x, y E E se verifica

1. dI(x,y) hd2(x, y)

2. d2(X, y) kd I (x, y)

Teorema 3.4.4 Si dos distancias dI y d2 definidas sobre un mismo con-

junto E son equivalentes, entonces son topológicamente equivalentes.

DEMOSTRACiÓN

Supongamos que dI y d2 verifican 1; probaremos que para cada bolaabierta Bd, (a, r) existe una bola Bd. (a, s) contenida en ella. En efecto,

todos los x E E que verifican

verifican tambiéndI (a, x) < hd2 (a, x) < r

luego

Bd.(a,r/h) e Bd,(a,r)

De forma análoga, si dI y d2 verifican 2 entonces todo x E E que verifica

kd¡(a,x) < r

verifican también

luego

Bd,(a,r/k) e Bd.(a,r)

Esto prueba que las distancias dI y d2 son topológicamente equivalentes.

•Es natural estar tentado de concluir que el recíproco del teorema ante-

r ior es cier to, pero no es así; dos distancias pueden ser topológícamente

equivalentes y no verificar alguna (o ambas) de las condiciones para ser

equivalentes (problema 17).

65

Page 72: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 72/92

 

3.5 Problemas

66

EJEMPLO 3.4.1

1. En lR la distancia usual d y la métrica trivial dt no son equivalen

tes. Basta observar que los conjuntos unitarios {x} son abiertos en

(IR, d¡) Yno lo son en (IR, d).

2. En lR2, las distancias, dI y doo son equivalentes. En efecto; se tiene

dl(X,y) = IXI - YII + IX2 - Y21

2máx {lxI - yd , IX2 - Y21}

= 2doo (x, y)

y también

doo(x,y) máx{lxI - YII, IX2 - Y21}

IXI - YI! + IX2 - Y21

= dI (x, y)

1. Sea el espacio métrico (lR2,d), con

d(x, y) = inf{l,d2(x,y)}

Hallar B(a, r) y B(a, r).

2. Decidir si los conjuntos siguientes son abier tos o cerrados en los

espacios

(lR2,dd, (lR2 , ~ ) Y (lR2,doo ).

(a) A = {(x,y) E lR2 : y = tanx}

(b) B = {(x,y) E lR2 : y = v'4 - x2 }

(c) C = {(x,O) E lR2 : x E [0,1]}

3. Decir si los conjuntos siguientes son abier tos o cerrados en (lR2, d)

yen (lR2 , dd.

(a) A = {(x, y) E lR2 : y = tan x}

(b) B= {(x, y) E lR2 : y=v '4 - x2 }

(c) C={(x,0)ElR2 :xE[0,1]}

4. Demostrar que un conjunto no vacío en un espacio métrico cual

quiera es abierto si y sólo si es la unión de una familia de bolas

abiertas.

5. Mostrar que en cualquier espacio métrico, la unión infini ta de ce

rrados no es, necesariamente, un cerrado.

6. Demostrar que todo conjunto cerrado en lR es intersección de una

familia numerable de abiertos.

7. Sean los conjuntos A y B en el espacio métrico (E, d). Probar que

se verifica

(a) Si A es abierto y B es cerrado, entonces A \ B es abierto.

(b) Si A es cerrado y B es abierto, entonces A \ B es cerrado.

Page 73: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 73/92

 

8. Encontrar dos conjuntos A y B de IR? cerrados y disjuntos tales que

no existan Xo E A, Yo E B de forma que

dz(xo,yo) =dz(A,B)

¿Ocurre lo mismo en (lR?, d¡)?

9. Sea A un conjunto de números reales abierto, no vacío y acotado. Si

llamamos Q = inf A y (3 = sup A, demuéstrese que Q l/. A Y (3 l/. A.

10. Sea (E, d) un espacio métrico, a E E Y r > O un número real.

Probar que

{ xEE:d ( x , y» r }

es un conjunto abierto y que

{ X E E : d ( x , y ) ~ r }es un conjunto cerrado.

11. Sea el subconjunto de lit?

F = {(x, y) E lRz : xy > 1}

y

A = B(O, 2) nF

Probar que F \ A es un conjunto cerrado en (F, dz), pero no lo es

en (lRz, dz).

12. En (lR, d) consideramos el subconjunto Z de los números enteros.

(a) ¿Cómo Son las bolas abiertas en (Z,d)?

(b) Describir los abier tos y los cerrados de (Z, d)

13. En (lRz , dz) se considera el conjunto

F = {(x, y) E lRz : Ixl < 2, Iyl < 1}

Decidir si el conjunto

A={(x,Y)ElRZ :(x-2)2+ y2::;I ,x<2}

es abier to o cerrado en (lRz , d2) yen (F, dz).

14. Sea (E, d) un espacio métrico y F un subconjunto de E. Enton-ces (F, d) es un subespacio métrico. Sea ahora G e F. Probarque (G,d) es el mismo considerado como subespacio de (E,d) y de

(F,d).

15. Sea (E, d) un espacio métrico y F YG subconjuntos de E tales que

FUG=E

Probar que si A e F n G es abierto en (F, d) Y (G, d), entonces es

abierto en (E , d).

16. Probar que d1 , dz Ydeo son distancias topológicamente equivalentes

en 1R2

• (Generalizar también a lRn) .

(a) Util izando el teorema 3.4.2

(b) Uti lizando el teorema 3.4.4

67

Page 74: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 74/92

 

17. Definimos en 1R2 la aplicación

d·(x,y) =mín {K,d2(X, y)}

donde K > O es una constante. Probar que d· es una distancia y

es topológicamente equivalente a d2. ¿Son equivalentes?

18. Para cualquier número real x se define l a par te entera de x, [x]

como el mayor entero menor que x. Sea

dq(x, y) = I[x] - [y]1 + ¡(x - [x]) - (y - [y])1

(a) Probar que dq es una distancia en IR.(b) ¿Cómo son las bolas abier tas?

(c) ¿Existen constantes positivas h y k tales que

hdq(x,y)::; d(x,y)::; kdq(x,y)?

(d) ¿Son equivalentes dq y la distancia usual?

(e) Probar que dq y d inducen la misma métrica sobre Z.

3.6 Apéndice. Espacios de funciones y espacios de sucesiones

EJEMPLO 3.6.1

1. En C([a, b]) con la métrica uniforme la bola abierta de centro f y

radio r es el conjunto de todas las funciones reales, g, continuas en

[a, b] y tales que

f (x) - r < g(x) < f (x) + r

para todo x E [a, b] (fig. 3.4).

2. Sea C([O, 27r]) con la métrica del supremo y

A = {sen x + k: O< k < 1}

Tomemos

f (x) = sen x + leo E A

La bola abierta de centro f y radio r > Oes el conjunto de funciones

g, continuas en [O,27r] que verifican

sen x + ko - r < g(x) < sen x + leo + r

Si ponemos (fig. 3.5)

para todo x E [O,27r]

r

g(x) = sen x + 2sen(8x) + ko,

puesto quer

- r < 2sen(8x) < r

se tiene

sen x + leo - r < g(x) < sen x + leo + r

Por lo tanto, g(x) E BU, r) y 9 A. Así que A no es un conjunto

abierto.

68

Page 75: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 75/92

 

Figura 3.4: Bola abierta en C([a, b])

I

g(x) I

I

a

Figura 3.5:

~ - - . . ; : f(x) + r

I

I

--;-----,: f (x )II

I

~ _ - . . , I f(x) - rI

I

II

II

I

b

PROBLEMAS

1. Decir si los conjuntos siguientes son abiertos o cerrados en C([O, 1])

con la métrica uniforme.

(a) A = { s e n x + k : O ~ k ~ l }(b) B = { j E C([O, 1]) : f(O) =O}

2. En el conjunto E de todas las sucesiones reales (x n ) acotadas (es

decir Ixnl k, para algún k > O), la aplicación

d«xn), (Yn)) = sup IXn - Ynln

define una métrica sobre E. Decir si el conjunto

A = {(xn ) E E: límxn = O}

es abierto o cerrado.

69

Page 76: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 76/92

 

3. En C([O, 1]) consideramos las distancias

d(J,g) = máx If(x) - g(x)¡ y lf(J,g) = rl

If(x) - g(x)1 dx0$"'9 Jo

Sea r > O; se define 9 E C([O, 1]) mediante

{

4x

( )_ --+4

9 x - r

2

si O$ x < tr

si tr $x$ 1

70

Probar que 9 E Bd' (J, r) y que 9 f/. Bd(J, 1). Deducir de ello que d

y d' no son equivalentes.

Page 77: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 77/92

 

4 Subconjuntos notables

4.1 Interior, exterior y frontera de un conjunto

En (1R2 , d2 ) consideremos el subconjunto (fig 4.1)

A = {(x,y) E 1R2

: 4x2+y2 < 1}

Si tomamos el punto

a = (O, - 1 / 4 ) E A

podemos encontrar un a bola abierta B(a,r) incluida en A; basta tomar,

po r ejemplo, r = 1/4.

Se a ahora el punto

b= (1, -1);

la bola abierta B(b, 1/2) está incluida en el complementario de A.

Es decir, no sólo a E A Y b E E \ A, sino que además podríamos decir

informalmente, que a está completamente dentro de A y que b está com-

pletamente fuera de A. Con otras palabras: los puntos suficientemente

cercanos a a son también de A y los puntos suficientemente cercanos a b

son también del complementario de A.

Ahora bien, no todos los puntos de 1R2 se comportan de esta forma; para

el punto

c = (1/4, ..12/3)

no existe ninguna bola abierta B(c,r) contenida en A o en su comple-

mentario; esto es: toda bola abierta B(c, r) contiene a la vez puntos de

A y puntos de su complementario (¿cuáles, po r ejemplo?), lo que suponeque existen puntos cercanos que pertenecen a A y puntos cercanos que

no pertenecen a A.

Fi ur a 4.1: Interior, exterior y frontera

71

Page 78: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 78/92

 

72

Sea (E,d) un espacio métrico.

Definición 4.1.1 Un punto x E E es un punto interior a un conjunto

A e E si existe una bola abierta B(x, r) contenida en A. El conjunto de

los puntos interiores a A se llama interior de A y se designa por int(A).

Un punto x E E es un punto exterior a un conjunto A e E si existe una

bola abierta B(x, r) contenida en el complementario de A. El conjunto de

los puntos exteriores a A se llama exterior de A y se designa por ext(A).

Un punto x E E es un punto frontera de un conjunto A e E si toda

bola abierta B(x, r) contiene puntos de A y de su complementario. El

conjunto de los puntos frontera de A se llama frontera de A y se designa

porfr(A).

Consecuencia directa de ladefinición es que int(A) e A y ext(A) e E\A.

Nótese, sin embargo, que la condición de interior, exterior o frontera de

un punto depende de la existencia o no de cier tas bolas abier tas y, por

tanto, de la distancia y como se haya definido. Esto significa que para un

conjunto dado un punto puede ser interior a un conjunto si se considera

una distancia y no serlo si se considera otra distancia. Por otra parte es

evidente que si las distancias son equivalentes, los puntos no pierden su

condición. Basta tener en cuenta el teorema 3.4.2.

Frecuentemente, para determinar el interior, exterior y frontera de un

conjunto en IRR, las ayudas geométricas son de gran ayuda, pero no siem-

pre tenemos situaciones cercanas a nuestra intuición, y fiarse en exceso

de ella puede ser a veces muy peligroso. Veamos algún ejemplo.

EJEMPLO 4.1.1

1. En la recta real, consideremos el conjunto Q de los números racio-

nales. Ningún intervalo abierto está contenido enteramente en el

conjunto Q, luego

int(Q) =0.

Tampoco existe un intervalo abierto enteramente incluido en IR \ Q,

por tanto

ext(Q) =0.

Finalmente, entonces,

fr(A) = IR.

Como se ve, int(A) puede muy bien ser vacío sin que lo sea A. Tal

situación es de mucho interés y volveremos sobre ella más adelante.

2. Sea el espacio (lR,dd y A = [0,1). Si x E A, entonces

B(x,1) = {x} e A,

así que x es un punto interior a A. Por otra parte, si x A, la bola

abierta B(x, 1) estará contenida en IR \ A y x es un punto exterior

a A. Es evidente, finalmente, que entonces fr(A) =0.

El resultado siguiente pone de manifiesto, como es fácil de intuir, que

para cada conjunto A, los conjuntos int(A), ext(A) y fr(A) suponen una

clasificación del conjunto E.

Page 79: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 79/92

 

Teorema 4.1.2 Para cada A e E, los conjuntos int(A), ext(A) y fr(A)

son disjuntos dos a dos y

int(A) U ext(A) U fr(A) = E.

DEMOSTRACIÓN

Es evidente que

int(A) n fr(A) =0 y ext(A) n fr(A) = 0.

También se verifica que int(A) n ext(A) = 0 pues si x E int(A) entonces

x E A Ysi x E ext(A) entonces x E E -A .

Además

E = int(A) Uext(A) U fr(A),

pues si x E E Y x r¡. int(A) Uext(A) entonces toda bola B(x, r) contiene

puntos de A y de su complementario, luego x E fr(A).

•La clasificación de los puntos de E que, de esta forma, genera cualquier

conjunto A da lugar a numerosas cuestiones interesantes. De entre todasellas, sin embargo, la de mayor importancia es la de que el concepto de

interior de un conjunto permite caracterizar a los abiertos.

Teorema 4.1.3 Para todo A e E, se tiene que int(A) y ext(A) son

conjuntos abiertos y fr(A) es cerrado.

DEMOSTRACIÓN

Desde luego, int(A) es abierto si es vacío. En otro caso, por definición de

interior, para cada x E int(A) existe una bola abierta B(x, r) contenida

en A. Veamos que todo punto de B(x, r) es interior a A.Como B(x, r) es abierto, para cada y E B(x, r) existe una bola abiertaB(y,s) contenida en B(x,r); luego B(y, s) e A. Esto prueba que todos

los puntos de B(x, r) son interiores a A, es decir que B(x, r) e int(A) y,

por tanto, int(A) es abierto.

Por otra parte, es inmediato que ext(A) = int(E \ A) , así que tambiénext(A) es un conjunto abierto.

Finalmente, como

fr(A) =E \ (int(A) U ext(A))

y el conjunto int(A) U ext(A) es abierto por ser unión de abiertos, fr(A)

es un conjunto cerrado.

•El hecho de que int(A) sea un conjunto abierto tiene una consecuencia

muy interesante: los puntos interiores nos permiten dar una caracteriza-

ción de los conjuntos abiertos.

73

Page 80: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 80/92

 

Teorema 4.1.4 int(A) es el mayor abierto contenido en A. Esto es: si

B es otro conjunto abierto contenido en A, entonces B e int(A).

DEMOSTRACiÓN

En efecto, si B es un abierto contenido en A y x E B, existe una bolaabierta B(x, r) contenida en B y por tanto en A, luego todo punto x E B

es interior a A y B e int(A). •El resultado anterior tiene una consecuencia inmediata:

Teorema 4.1.5 Un conjunto A es abierto si y sólo si todos sus puntosson interiores. Esto es: si y sólo si A = int(A).

Resulta ahora conveniente para lo que sigue ampliar la noción de entorno de un punto x -que ya se vio en IR, aunque con una definición másrestr ingida- al de un conjunto que, en cierta medida, enooelve a x.

Definición 4.1.6 Un conjunto A es entorno de un punto x si x es unpunto interior a A.

En particular, una bola abierta de centro x y radio r > Ocualquiera esun entorno de x y un conjunto abierto es entorno de cualquiera de suspuntos. También es fácil ver que la unión arbitraria y la intersecciónfinita de entornos de x son también entornos de x.

Teorema 4.1.7 Para cualquier subconjunto A y x EE,

las condicionessiguientes con equivalentes

1. A es un entorno de x.

2. Existe un conjunto abierto U tal que x E U e A.

DEMOSTRACiÓN

Que (1) implica (2) es evidente, pues si x es interior a A, existe una bolaabierta B(x, r) ta l que x E B(x, r) cA.

Veamos el recíproco. Puesto que x E U y U es abierto, existe una bolaabierta B(x,r) e U e A y, por tanto, x E int(A). •

4.2 Adherencia y acumulación de un conjunto

Como se ha visto, los puntos interiores pueden servir para caracterizar alos conjuntos abiertos. De forma análoga, existen puntos que permiten

caracterizar a los conjuntos cerrados: son los puntos adherentes. Intuiti

vamente, un punto x es adherente a un conjunto A si no puede separarsede A mediante una bola abierta. La definición precisa y apropiada es la

siguiente.

74

Page 81: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 81/92

 

Fi ura 4.2: Puntos adherentes

Definición 4.2.1 Un punto x E E es un punto adherente a un conjunto

A e E cuando todo bola abierta B(x,r) contiene puntos de A.

El conjunto de puntos adherentes a A se llama adherencia o clausura de

A y se designa por A.

Desde luego, todo punto x E A es adherente a A: basta tener en cuenta

que toda bola abierta B(x, r) contiene a x. Sin embargo puede muy bien

ocurrir que x sea adherente a A sin que x pertenezca a A; en la práctica,

este es el caso más interesante.

EJEMPLO 4.2.1

1. Consideremos en (IR2, d2 ) el grafo de la función f (x) = sen (l/x)

sobre (0,1/11-]; es decir:

A = {(x,sen(l/x) : O< x 1/1l}

Todo punto (O,y) tal que -1 Y 1 es un punto adherente a A.

Por supuesto, también todo punto (x,sen(l/x)) con O < x < 1/1les también un punto adherente puesto que pertenece a A.

2. En un espacio discreto (E, dd un punto x es adherente a un sub-

conjunto A de E si y sólo si x E A. Para ver esto basta recordar

que B(x, 1) = {x}

! i ~ u r a ~ - : ~ - . : . j J x ) = sen(l/x)r-I

I

iL___ .

75

Page 82: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 82/92

 

76

Como puede suponerse, los puntos adherentes guardan una estrecha re-lación con los puntos interiores y los puntos frontera.

Teorema 4.2.2A = int(A) U fr(A)

DEMOSTRACIÓN

Si x E A toda bola abierta B(x, r) contiene puntos de A, así que x no

pertenece a ext(A)¡ es decir:

x E int(A) U fr(A)

y, por tanto,

A e int(A) U fr(A).

La inclusión contraria es evidente a partir de las definiciones.

•El resultado anterior nos permite mostrar cómo los puntos adherentes

pueden determinar si un conjunto es cerrado o no.

Teorema 4.2.3 Para cada conjunto A e E el conjunto A es cerrado y

es el mínimo cerrado que contiene a A; esto es: si B es un conjunto

cerrado tal que A e B entonces A e B.

DEMOSTRACIÓN

Desde luego, A es un conjunto cerrado puesto que

A = int(A) U fr(A) =E \ ext(A).

Sea B un cerrado que contenga a A. Tenemos que probar que A e B olo que es equivalente,

E \B e E\A .

Sea x E E \ B; como B es cerrado, E \ B es abierto y existirá una bola

abierta B(x, r) contenida en E \ B; además, como E \ B e E \ A, será

B(x,r) nA =0,

luego x f/. A, es decir, x E E \ A como queríamos probar.

•Y, como consecuencia inmediata:

Corolario 4.2.4 Un conjunto A e E es cerrado si y sólo si A =A.

Consideremos ahora el conjunto M = (0,1) U {2}. No es muy dificil

comprobar que M = [0, lJ U{2}. Ahora bien, entre los puntos adherentes

1 y 2 hay ciertas diferencias que conviene precisar; en efecto, toda bolaabierta B(I , r) contiene puntos de M distintos del 1. Sin embargo, el

único punto deM que contiene la bola abiertaB(2, 1/2) es, precisamente,2; ningún otro punto de la bola pertenece a M. Precisemos estas ideas.

Page 83: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 83/92

 

Definición 4.2.5 Un punto x E E es un punto de acumulación de un

conjunto A e E cuando toda bola abierta B(x, r) contiene puntos de A

distintos de x.

El conjunto de puntos de acumulación de A se llama el conjunto derivadode A y se designa por A' .

Puede muy bien suceder que un conjunto no admita ningún punto deacumulación, así como admitir muchos. Nótese que no se exige en la

definición que x E A, pero puede suceder. Es evidente, además, que todo

punto de acumulación es punto de adherencia, pero el contrario no es

cier to. Existen puntos de adherencia que no son puntos de acumulación.

Un ejemplo trivial es el conjunto

A = {a}.

Esto motiva la siguiente definición.

Definición 4.2.6 Un punto x E E es un punto aislado de un conjunto

A si es un punto de A que no es de acumulación.

Veamos algún ejemplo.

EJEMPLO 4.2.2

1. En la recta real, todo punto x E N es un punto adherente de N,

pero no es de acumulación puesto que

(B(x, 1/2) \ {x}) n N =0

En otras palabras, todo punto x E N es aislado.

2. Si

A = {1, 1/2, 1/3, .. . , l/n, ... }

entonces A' = {O} Y todos los elementos del conjunto son aislados.

3. En (lR2, d2 ) consideremos el conjunto

A = {(x,sen(l/x) : O< x llrr}

Todo punto (O, y) tal que -1 Y 1 es punto de acumulación y

también lo son los puntos x E A.

Para que un conjunto tenga la posibilidad de admitir puntos de acumu

lación debe ser infinito (problema 12); dicho de otra forma: un conjunto

finito no admite puntos de acumulación.

Recíprocamente, como se ha visto en los ejemplos, si un conjunto es infini

to no puede asegurarse que admita puntos de acumulación. No obstante,

en ciertos espacios (los normados de dimensión finita), conjuntos infinitos

que satisfagan una débil hipótesis adicional (acotados) sí tienen puntos de

acumulación. Este es el famoso teorema de Bolzano-Weierstrass ya visto

en (Ji, d) Ysobre el que volveremos más adelante; desgraciadamente, no

es válido en un espacio métrico cualquiera.

77

Page 84: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 84/92

 

78

En general, A' puede contener desde ninguno hasta infinitos puntos y su

relación con A puede ser cualquiera: coincidir con él, contenerlo, estarcontenido en él, ser disjunto o ninguna de estas cosas. Algunos de estos

casos dan origen a diversos tipos de conjuntos de gran importancia, como

veremos más adelante.

Teorema 4 . 2 ~ 7 Para cada A e E se verifica A ::: A U A'.

DEMOSTRACIÓN

A e A y todo punto de acumulación es adherente, luego A' e A. De

ambos resulta que

AUA' cA.

Veamos que también se verifica el recíproco. Sea x E A¡ entonces paratoda bola abierta B(x, r) se cumple B(x, r) nA -1- 0. Puede suceder que

exista una bola abierta B(x, r) ta l que

B(x,r)nA= {x},

en cuyo caso x E A, o bien que para toda bola abierta B(x, r) sea

(B(x,r) \ {x}) n A -1- 0,

en cuyo caso x E A'. En todo caso x E A U A'.

•La consecuencia inmediata del resultado anterior es que es posible carac-

ter izar a los cerrados por medio de sus puntos de acumulación. Bastatener en cuenta que A es cerrado si y sólo si A ::: A = A U A'. Por tanto

Corolario 4.2.8 Un conjunto A e E es cerrado si y sólo si contiene a

todos sus puntos de acumulación.

A pesar de todos los casos patológicos, nos atrevemos a dar algunas inter-pretaciones intuitivas, con la poca confiabilidad que ellas merecen, pero

contando con la benevolencia del lector.

Podemos pensar que cualquier conjunto de un espacio métrico está limi-

tado (de su complementario) por una concha o cáscara que es su frontera.

Lo que se encuentra dentro de la cáscara es el interior del conjunto y el

conjunto con toda la cáscara es la clausura. Si el conjunto no incluye

nada de la frontera es abier to y si la incluye toda es cerrado; en caso deincluir sólo una parte, el conjunto no es abierto ni cerrado (problema 4).

Debemos insistir en que tales interpretaciones son excesivamente simplis-

tas. El concepto de espacio métrico es de una extraordinaria generalidade incluye una abrumadora variedad de espacios, algunos de los cuales

son muy extraños, sucediendo en ellos cosas que desconciertan nuestramodesta intuición que no pasa de ]R3. Aun en ]R2 y hasta en la recta,

pueden considerarse conjuntos tan complejos que desafian nuestro senti-

do común. Debe, pues, el lector tomar las interpretaciones intuitivas en

esta teoría abstracta con toda la desconfianza que merecen y a guisa de

mera orientación.

Page 85: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 85/92

 

4.3 Subconjuntos densos

Definición 4.3.1 En un espado métrico, (E, d), un conjunto D es denso

si

D=E .

El conjunto E es denso trivialmente; es, por cier to, el único conjunto

cerrado y denso, ya que si A fuese denso y cerrado, entonces A =A =E.Pero existen también subconjuntos propios que son densos. Por ejemplo,

ya se ha visto que i j = IR - Q = IR así que Q y IR - Q con subconjuntos

densos en (IR, d).

La idea de que un subconjunto denso rellena a E se pone de manifiesto

en el resultado siguiente.

Teorema 4.3.2 Un conjunto D es denso en E si y sólo si para todo

abierto no vacío A e E se verifica que A n D # 0.

DEMOSTRACIÓN

Sea D denso en E y A un subconjunto abierto. Para cualquier x E A

existe una bola abierta B(x, r) e A. Puesto que x E 15 se ~ i e n e que

B(x, r) n D # 0 y, por tanto,

DnA # 0.

Recíprocamente, supongamos que A es abie rto y A n D # 0. Sea x E E;puesto que B(x, r) es abierto, B(x, r) n D # 0 y D es denso.

•Por extensión, si D e A e E, diremos que D es denso en A si D es densoen el subespacio métrico (A, d). Esto significa que D es denso en A si y

sólo si

DnA=A

o, equivalentemente, si y sólo si

AeD .

(Véase el problema 8).

EJEMPLO 4.3.1

Sea IR con la distancia usual y A = (0,1). El conjunto de los númerosracionales del intervalo (0,1), es decir, el conjunto

D=QnA ,

es denso en A, puesto que

QnA = [0,1]

y, por tanto,

79

Page 86: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 86/92

 

4.4 Problemas

BO

Los conjuntos densos son, desde luego, de muy variada especie. Algunosde ellos, los que son a la vez conjuntos numerables, tienen una gran-importancia.

Definición 4.3.3 Un espacio métrico (E,d) es separable si contiene unsubconjunto denso y numerable.

La recta real es un ejemplo típico de espacio separable puesto queQ= IRYQ es numerable. También lo es, en general, (IR", d2 ) y, por supuesto,con cualquier otra distancia equivalente. En el apéndice de este capítulopuede el lector interesado ver un ejemplo muy sugerente de espacio noseparable.

Teorema 4.3.4 Si (E , d) es separable, toda familia de abiertos no vacíos

y disjuntos entre sí es numerable.

DEMOSTRACIÓN

Si (E, d) es separable, contendrá un conjunto A denso y numerable. Sea:F una familia de abiertos Ba disjuntos entre sí.

Puesto que A es denso y Ba abierto, se tiene que

AnBa f 0

Además, (A n Ra ) n (A n B/3) =0. Así, pues, la familia

g = {A n Ra : Ba }

que es numerable, por serlo A, puede ponerse en biyección con:F. Portanto :F es numerable.

•Aunque la denominación de separable se suele reservar a los espacios,por extensión, diremos que un conjunto A es separable si posee un subconjunto denso en A y numerable, lo que no supone nada nuevo: lo querealmente estamos diciendo es que (A, d) es separable.

1. En (lR, dt) y (lR; dq ) , hallar el interior, exterior y frontera de lossiguientes conjuntos:

(a) (0,1)

(b) [0,1]

(e) {(- l )nln:nEN}

(d) Q

2. En (lit? , d2 ) hallar el interior, exterior y frontera de los conjuntos

(a) {(x, y) E]R.2 : x = l ln (n E N),O $ V $ l}

(b) {(x,V) E]R.2 : xV > l}

(e) {(x,y) E lR2: x =n, V = lln (n EN)}

Page 87: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 87/92

 

3. Sean A y B dos subconjuntos en (E,d). Demostrar que

(a) int(A n B) = iot(A) n int(B)

(b) int(A) U int(B) e int(A U B). Dése un ejemplo en el que el

contenido sea estricto.

(e) int(A UB) = int(A) U int(B) si fr(A) n fr(B) = 0

(d) int(int(A» = int(A)

4. Probar que

(a) fr(A) = freE \ A)

(b) A es abierto si y sólo si A n fr(A) = 0.

(e) A es cerrado si y sólo si fr(A) e A

(d) A es abierto y cerrado si y sólo si fr(A) =0.

5. Sean A y B dos subconjuntos en (E, d). Demostrar que

(a) AUB=AuB

(b) A n B e A n B. Dése un ejemplo en el que el contenido sea

estricto.

(e) A es abierto si y sólo si A nBe A n B para todo B e E.

6. Sea A e E y

:F = {B e E : A e By B es cerrado}

Probar que

A= n BBEF

7. Sea A un conjunto abierto y B un conjunto cualquiera en un espacio

(E,d). Demuéstrese que

(a) AnBCAnB

(b) AnB=AnB

(e) A n B = 0 si y sólo si A nB = 0

8. Sea (F, d) un subespacio de (E, d) YA e F; designemos por int(A)F

y AF

al interior y la clausura de A en (F, d), respectivamente.

(a) Probar que int(A)F = (E \ F \ A) n F

(b) Dar un ejemplo en el que int(A)F f. int(A) nF.

-F -(e) Probar que A =A n F

9. (F, d) subespacio de (E, d) Y B cerrado en (F, d). Demostrar que

B es cerrado en (E,d) si y sólo si B e F.

10. Sean A y B dos subconjuntos en (E, d). Demostrar que

(a) A' es un conjunto cerrado.

(b) Si A e B, entonces A' e B' .

(e) (AUB) '=A'UB' .

(d) (A n Bl' e A' n B' . Dése un ejemplo de contenido estricto.

81

Page 88: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 88/92

 

82

11. Contestar razonadamente si son ciertas o falsas las siguientes afir-maciones.

(a) Si a E A YA es abierto, a es de acumulación de A.

(b) Sea F cerrado y x E F, entonces x es un punto aislado de F

si y solo si F \ {x} es cerrado.

(c) Si A no es cerrado y a E A \ A, entonces a es un punto de

acumulación de A.

12. Sea x un punto de acumulación de A. Probar que B(x, r) n A

contiene infinitos puntos para todo r > O.

13. Probar las siguientes relaciones

(a) (A)' =A'.

(b) E\A=E\ in t (A) .

(c) E \ A == int(E \ A).

14. Probar que todo punto aislado de A es también un punto aislado

de A. ¿Se cumple el recíproco?

15. En (lR, dt ) Y (IR; dq ) , hallar la adherencia y los puntos de acumula-ción de los siguientes conjuntos:

(a) (0,1)

(b) [0,1)

(c) {(_l )njn:nEN}

(d) iQ

16. En (lR2 ,d2 ) hallar la adherencia y los puntos de acumulación de los

conjuntos

(a) {(x,y) E lR2 : x = l /n (n E N),O :s Y:S 1}

(b) {(x,y) E ]R2 : xy > 1}

(c) {(x,y) E ]R2 : x == n,y = l/n (n E N)}

17. Probar los siguientes hechos relativos a las distancias. (Se supone

A ~ E )(a) x E A si y sólo si d(x, A) = O.

(b) x E int(E \ A) si y sólo si d(x, A) > O

(c) x E int(A) si y s610 si d(x, E \ A) > O

(d) d(A,B) =d(A,B)

(e) A es denso en E si y sólo si d(x, A) =°ara todo x E E.

18. Dado un conjunto A del espacio métrico (E,d), comprobar si los

conjuntos siguientes son densos o no en E.

(a) E \ fr(A)

(b) (E \ A) U A

(c) (E\A)Uint(A)

19. Si A es un abierto y B es denso en (E, d), demostrar que A n B =A.

20. Probar que A es denso si y sólo si int(E \ A) = 0.

Page 89: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 89/92

 

21. Demostrar que si A y B son abiertos y densos en (E, d), entonces

A U B es denso.

22. Proporcionar un ejemplo de una familia numerable de conjuntos

densos cuya intersección no sea densa.

23. Probar que

(a) Un espacio discreto es separable si y sólo si E es numerable.

(b) ]Rn con la métrica usual es separable.

(c) En un espacio métrico separable todo subconjunto es separa-

ble.

24. Sean dI y d2 dos distancias equivalentes sobreE y A un subconjunto

de E. Probar que

(a) el interior, exterior y frontera de A coinciden en (E, d¡) Y

(E,d2 ).

(b) la adherencia y los puntos de acumulación de A coinciden en

(E, d¡) Y (E, d2 ).

(c) si A es denso en (E, dI) , entonces es denso en (E,d2 ).

25. Un conjunto A es fronterizo en (E , d) si su complementario, E \ Aes de1l8o. (Precaución con las intuiciones).

(a) Mostrar que, en general, la frontera de un conjunto no es siem-

pre un conjunto fronterizo.

(b) Probar que si A es abierto y fronterizo, entonces A =0.

(c) Probar que A es cerrado y fronterizo si y sólo si fr(A) == A

26. Un conjunto A es diseminado en (E, d) si el complementario de su

clausura, E \ A es denso.

(a) Probar que si A es un conjunto abierto o cerrado en un espacio

(E, d), entonces fr(A) es diseminado.

(b) Probar que si A y B son diseminados en un espacio métrico

(E, d), entonces A UB es diseminado.

(c) Consideremos (Q, d) donde d es la mét rica inducida por la de

la recta real. Probar que todo conjunto unitario es diseminado.

N6tese que Q es la unión de todos los conjuntos unitarios, así

que esto prueba que la unión arbitraria de conjuntos disemi-

nados no es, necesariamente, un conjunto diseminado.

27. Probar

(a) A es fronterizo si y sólo si int(A) =0.

(b) A es diseminado si y sólo si int(A) == 0

28. Probar

(a) Si A es cerrado y fronterizo, entonces A es diseminado.

(b) si A es diseminado entonces A es fronterizo.

29. (a) Proporcionar un ejemplo de conjunto fronterizo que no sea

diseminado.

(b) Dar un ejemplo de conjunto fronterizo y denso.

83

Page 90: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 90/92

 

4.5 Apéndice. Espacios de funciones y espacios de sucesiones

EJEMPLO 4.5.1

Sea C([O, 1]) con la distancia del máximo y el subconjunto

A = { f E C([O, 1)) : f(x) < 1 para todo x E [0, In

Se está tentado de decir que la frontera es la función f(x) = 1. En cierto

sentido esto es cierto, pero no totalmente.

Sea una función cualquiera, f E C([O, 1]. Si

máx f(x) =p < 1,"'E[O,l]

entonces se tiene BU, 1 - p) e A. En efecto, si 9 E BU, 1 - p) entonces

g(x) < f(x) + 1 - P < 1

para todo x E [0,1], así que 9 EA.

Por otra parte si

máx f(x)

=p > 1,

"'E[O,l]

entonces f(xo) =p para algún Xo E [0,1). Por tanto si 9 E B(f,p - 1) se

tiene

g(xo) > f(xo) - p+ 1> 1

y

máx g(x) > 1,"'E[O,l]

de modo que 9 't Aj asi pues, B(f,p - 1) e C([O, 1)).\ A.

Finalmente, si máx"'E[O,l] f(x) = 1, se tiene para cualquier r >°1

f(x) - r < f(x) - 2r < f(x) + r

y1

f(x) - r < f(x) + 2r < f(x) + r

de forma que f(x) - ~ r y f(x) + ~ r pertenecen a la bola abierta B(f, r).

Además1 1

máx f(x) - -r = 1 - -r < 1" ' E ~ ) J 2 2y

1 1máx f(x) + -2r =1+ -r > 1"'E(O,l] 2

así que en toda bola abierta BU, r) hay puntos de A y de su complemen

tario y, por tanto, f es un punto frontera.

En resumen

84

int(A)

ext(A)

fr(A)

{ f E C([O, 1]) : máx f(x) < 1}"'E[O,l]

= { f E C([O, 1]) : máx f(x) > 1}"'EIO,l]

{f E C([O, 1]) : máx f(x) =1}"'EIO,l]

Page 91: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 91/92

 

EJEMPLO 4.5.2

Llamemos COO al conjunto de todas las sucesiones reales tales que x n =O

salvo para un número finito de términos.

Claramente COO es un subconjunto de CO, Tomemos u n p un to cualquiera

(x n ) de Co y se a r > Oun número real positivo cualquiera.

Puesto que X n --+ O, existirá no ta l que X n E (-r, r) para n > no. Ponga-

mos, entonces

{

X si

Yn = On si

Es claro que la sucesión (Yn) E COO,

Además, se tiene

IXn - Ynl = O

IXn - Ynl < r

n:S no

n > no

si n : S n o

si n>no

(recuérdese que X n E (-r, r) para n > no) así que

suplXn - Ynl < rn

lo que supone que (Yn) E B«xn), r). P o r t a nt o, en cualquier bola abierta

B«xn),r) hay algún punto de Coo, y, po r tanto, COO es denso en Co.

EJEMPLO 4.5.3

lOO, el espacio de las sucesiones reales acotadas con la distancia del su-

premo no es un espacio separable. En efecto: llamemos B al conjunto

de las sucesiones cuyos términos son todos ceros o unos. Este conjunto

no es numerable y es inmediato que si (xn) e (Yn) son dos puntos de B,

entonces

d«xn), (Yn» = su p IXn - Ynl = 1n

De aquí se deduce que el conjunto

es un a familia de abiertos disjuntos no numerable. En resumen lOO no

puede ser separable.

PROBLEMAS

1. Hallar el exter ior, inter ior y frontera en C([O, 1)) con l a m ét ri ca

uniforme del conjunto

A = { f E C([O, 1)) : feO) = f(l) =O}

2. Hallar la adherencia y los puntos de acumulación en C([O, 1)) con

la métrica uniforme de los conjuntos

(a) A = { f E C([O, 1]) : f(x) < 1 para todo x E [0,1]}

(b) B = { f E C([O, 1]) : feO) = f(l) = O}

85

Page 92: Intro a La Topologia de Espacios Metricos - Diaz Moreno

5/17/2018 Intro a La Topologia de Espacios Metricos - Diaz Moreno - slidepdf.com

http://slidepdf.com/reader/full/intro-a-la-topologia-de-espacios-metricos-diaz-moreno 92/92

 

5 Conjuntos conexos

La propiedad topológica de la conexión es de gran interés en el Análisis

y la Topologia. Intuitivamente un conjunto es conexo cuando es de de

una sola pieza, es decir no está separado en partes, ta l como el intervalo

[0,1) en la recta real; en consecuencia será no conexo cuando conste de

varias piezas. Ahora bien, en toda partición de un conjunto las partes

son disjuntas y, por consiguiente, el in.tervalo conexo [0,1) se puede partir

en partes disjuntas, aun siendo de una sola pieza. No basta, pues, para la

conexión la posibilidad de par tición, sino que es necesar io que las partes

estén separadas.

5.1 Conjuntos separados

Que dos conjuntos estén separados es una propiedad más fuerte que tener

simplemente intersección no vacía. Por ejemplo, es intuitivamente claroque los subconjuntos A = (0,1) YB = [1,2) de la recta real tienen inter-

sección vacía, pero no puede decirse que estén separados: basta observar

que A UB = (0,2) que está constituido por una sola pieza. Sí están se-

parados, sin embargo los subconjuntos (0,1) Y (1,2). Debemos imponer,

por tanto, condiciones más fuertes para admitir que dos conjuntos están

separados.

Comenzamos con una definición formal.

Definición 5.1.1 Dos subconjuntos A y B de un espacios métrico (E, d)

están separados si ningún punto de adherencia de A pertenece a B, ni

ningún punto de adherencia B pertenece a A. O sea:

AnB=0 y AnB=0

A la vista de la definición, es importante observar que si dos conjuntos

están separados, entonces son disjuntos; el recíproco, sin embargo, no es

cierto como ya ha quedado de manifiesto.

EJEMPLO 5.1.1

1. Los subconjuntos del plano (fig. 5.1)

A = {(x, y): x

2+

y2>

l}

y

B={(x ,y) :x2+y2<1}

están separados. En efecto: puesto que

A = {(x,y): x2+y2 l}

y

B= {(x, y) :X 2+y2 l}

se t iene que

AnB=0 y AnB=0

87