Inst. en Edific. 2012 Presentación 5

109
INSTALACIONES INSTALACIONES EN EDIFICACIONES EN EDIFICACIONES Profesor: Profesor: INGº JUAN HARMAN I. INGº JUAN HARMAN I. Clave: CIV 283 Clave: CIV 283 Horario: H Horario: H-701 701

description

teoria de instalaciones sanitarias, desague.

Transcript of Inst. en Edific. 2012 Presentación 5

Page 1: Inst. en Edific. 2012 Presentación 5

INSTALACIONES INSTALACIONES

EN EDIFICACIONESEN EDIFICACIONES

Profesor: Profesor: INGº JUAN HARMAN I.INGº JUAN HARMAN I.

Clave: CIV 283Clave: CIV 283 Horario: HHorario: H--701701

Page 2: Inst. en Edific. 2012 Presentación 5

DISTRIBUCIÓN DE AGUA FRÍA DISTRIBUCIÓN DE AGUA FRÍA EN EDIFICIOSEN EDIFICIOS

Page 3: Inst. en Edific. 2012 Presentación 5

5.4.- SISTEMA DE ALIMENTACIÓN INDIRECTA 5.4.1.- SISTEMA SUPERIOR SIN BOMBEO (Tanque Elevado por alimentación directa y Abastecimiento por gravedad) Se utiliza cuando el suministro público garantiza cantidad pero no presión suficiente, sino durante algunas horas, para asegurar el abastecimiento continúo.

DISEÑO

Page 4: Inst. en Edific. 2012 Presentación 5

Se requiere por tanto instalar un tanque elevado de regulación, que pueda ser llenado en cuatro horas (generalmente en las noches). La capacidad de este tanque será, cuando menos, igual a la dotación diaria y nunca menor de 1,000 litros.

El diseño debe empezar por establecer o verificar la altura del tanque elevado, desde el NPT de la azotea, para garantizar la presión mínima de salida en los aparatos sanitarios.

DISEÑO

Page 5: Inst. en Edific. 2012 Presentación 5

Los cálculos, como en todos los casos, deben acompañarse de reducciones de planos o croquis acotados en los que se indiquen claramente: La ubicación de los aparatos sanitarios, la identificación de los diversos tramos, sus longitudes y UG. Correspondientes. Para efectuar los cálculos se utilizarán formatos apropiados, evitándose en todo lo posible los cálculos sueltos.

DISEÑO

Page 6: Inst. en Edific. 2012 Presentación 5

Para los cálculos hidráulicos se utiliza la fórmula de Hazen y Williams para C = 100 (o en el Nomograma) y para las “piezas especiales” o accesorios su Longitud equivalente (Le) La longitud equivalente del “especial” comprendido entre dos tramos sucesivos, se considerará una sola vez (como final del tramo de aguas abajo)

DISEÑO

Page 7: Inst. en Edific. 2012 Presentación 5

Para la conexión domiciliaria y la línea de alimentación: El gasto de diseño será el necesario para llenar el tanque elevado en un tiempo no mayor de 4 horas. La línea de alimentación debe estar provista de una válvula de interrupción al inicio y de una válvula flotadora en la descarga.

DISEÑO

Page 8: Inst. en Edific. 2012 Presentación 5

Ejemplo de diseño: de un sistema de alimentación superior sin bombeo (Este ejemplo numérico es aplicable al diseño de los demás sistemas)

DATOS BÁSICOS: Edificio bi-familiar de dos pisos iguales Área del lote : 250 m2 Altura de piso a piso: 3.00 m Presión disponible del primer piso: 20 p.s.i.g. Altura de descarga de los aparatos (ver RNC) Tubería a usar PVC (clase 10), factor = 0.537

DISEÑO-Ejemplo

Page 9: Inst. en Edific. 2012 Presentación 5

DISEÑO-Ejemplo

Aparato sanitario Altura (m)

Ducha

Lavadero

Lavatorio

Inodoro

2.00

1.10

0.90

0.70

Pautas a seguir para el cálculo del sistema de distribución: •Hacer croquis del sistema de distribución (típico) •Definir el camino o línea crítica (hasta la salida mas desfavorable)

Page 10: Inst. en Edific. 2012 Presentación 5

DISEÑO-Ejemplo

Pautas a seguir para el cálculo del sistema de distribución:

• Definir los tramos de la línea crítica, según las UG. • Confeccionar cuadro con las siguientes columnas:

Tramo, Longitud (m), Unidades de gasto UG. Caudal Q (litros / segundo (según Hunter), Diámetros máximo y mínimo (según método práctico de cuadro)

Page 11: Inst. en Edific. 2012 Presentación 5

Ver transparencias (desde pag.15)

• Ver el uso del Nomograma

Page 12: Inst. en Edific. 2012 Presentación 5

DISEÑO-Ejemplo

Solución a: De los planos adjuntos (para lectura)

Page 13: Inst. en Edific. 2012 Presentación 5

DISEÑO-Ejemplo

b) Croquis Isométrico (ver ejemplo en transparencias)

X m.

3.00 m

3.00 m

Page 14: Inst. en Edific. 2012 Presentación 5

DISEÑO-Ejemplo

c) Determinación de diámetros máximos, mínimos y el diámetro asumido y definición de ruta crítica (en Negrita)

TRAMO LONG. (m) UG Q: (l.p.s.) Ø” máx. Ø” mín Ø" asum.

T – A2

3.00 + X

24

0.61

1 1/4”

3/4”

1"

A2 – a2 5 12 0.38 3/4” 1"

a2 – b2 6 6 0.24 3/4” 1/2" 3/4”

b2 – c2 1.5 3 0.12 3/4” 1/2" 3/4”

c2 – d2 6.5 2 0.08 1/2" 1/2" 1/2"

a2 – e2 10 6 0.24 3/4” 1/2" 1/2"

A2 – A1 – a1

8

12

0.38

3/4”

a1 – b1 6 6 0.24 3/4” 1/2" 3/4”

b1 – c1 1.5 3 0.12 3/4” 1/2" 3/4”

c1 – d1 6.5 2 0.08 1/2" 1/2" 1/2"

a1 – e1 10 6 0.24 3/4” 1/2" 1/2"

Page 15: Inst. en Edific. 2012 Presentación 5

DISEÑO-Ejemplo

Nota: Definida la ruta crítica entonces se define: d) Altura del tanque elevado: Cálculo de la pérdida de carga (hf) en la línea crítica: T-A2-a2-b2-c2-d2 Donde; (d2 es el punto más desfavorable, por estar más alejado y elevado y requerir la presión mínima en la descarga: 2.00 mca)

Page 16: Inst. en Edific. 2012 Presentación 5

DISEÑO-Ejemplo

TRAMO CONDICIONES

ELEMENTOS Le Hf

Suma en Le C = 100 (m.c.a.) T-A Long 3,00+X 3.00 m tubería PVC 1.61

U.G. 24.0000 X tubería PVC 0.537*X

Q(l/s) 0.6100 1 Válvula compuerta 0.25

Q(gl./m) 9.6400

Diámetro 1.2500

S 0.0500 Suma en Le 1.86+0.537*X 0.15

A2-a2 Long 5.0000 tubería PVC 2.69

U.G. 12.0000 1 tee derivada 1-1Wa 0.63

Q(l/s) 0.3800 1 Válvula compuerta 0.2

Q(gl./m) 6.0000 0.2

Diámetro 1.0000

S 0.0600 Suma en Le 3.72 0.22

a2-b2 Long 6.0000 tubería PVC 3.222

U.G. 6.0000 1 tee recta (3) 0.08

Q(l/s) 0.2400 1 reducción 1" a 3/4" 0.15

Q(gl./m) 3.7900 1 Válvula compuerta 0.15

Diámetro 0.7500

S 0.1000 Suma en Le 3.602 0.36

b2-c2 Long 1.5000 tubería PVC 0.8055

U.G. 3.0000 1 tee recta 0.25

Q(l/s) 0.1200

Q(gl./m) 1.9000

Diámetro 0.7500

S 0.0300 Suma en Le 1.0555 0.03

c2-d2 Long 6.5000 6.50 m tubería PVC 3.4905

U.G. 2.0000 1 tee recta (4) 0.04

Q(l/s) 0-08 1 reducción 3/4" a 1/2" 0.1

Q(gl./m) 1.2600 3 codos 1/2" x 90°(3*0.60) 1.8

Diámetro 0.5000 1 Válvula compuerta 1/2" 0.1

S 0.0900 Suma en Le 5.5305 0.5

Page 17: Inst. en Edific. 2012 Presentación 5

DISEÑO-Ejemplo

Presión disponible en A2: 3.00 +X = 2.00 + 2.00 + 0.09 +0.03X + 0.22 + 0.36 + 0.03 + 0.55 = 5.25 + 0.03X X (altura) = 2.25/ 0.97 = 2.30 m. Donde: Hf (T-A2) = 0.09 +0.03 * 2.30 = 0.16 (1) 1.85 * 0.34 = 0.63 m (3) 0.30 * 0.25 = 0.08 (4) 0.25 * 0.14 = 0.04

Page 18: Inst. en Edific. 2012 Presentación 5

DISEÑO-Ejemplo

e) Entonces las presiones y diámetros definitivos:

DIÁMETROS DEFINITIVOS Y PRESIONES

Tramo ” Hf Punto Nivel

Piezm.

Nivel

Físico

Presión

m.c.a.

T – A2

A2 - a2

a2 - b2

b2 – c2

c2 – d2

1 ¼”

1”

3/4”

3/4”

1/2”

0.16

0.22

0.36

0.03

0.55

= 1.32

T

A2

a2

b2

c2

d2

8.30

8.14

7.92

7.56

7.53

6.98

8.30

3.00

3.00

3.00

3.00

5.00

0.00

5.14

4.92

4.56

4.53

1.98

(2.00 aprox.)

Page 19: Inst. en Edific. 2012 Presentación 5

DISEÑO-Ejemplo

Tramo en derivación a2 – e2 Condiciones de diseño: Q = 0.25 l/s ”= ¾” , entonces S = 0.098 L = 10.0 m de tubería de PVC

Pérdida de carga: Tee derivada de 1”: 0.38 m (1.5*.25) Reducción 1” a 3/4”: 0.15 m 2 Valv. De compuerta: 0.30 m 10.00 m de tub. PVC: 5.37 m (10*0.537) le = 6.20 m, entonces Hf = 0.62 m.c.a.

Page 20: Inst. en Edific. 2012 Presentación 5

DISEÑO-Ejemplo

Presión en e2 = Cota piezométrica - cota física: = (Cota piezométrica en a2 - Hf ) - (3.00 +1.10) = (7.92 – 0.62) - 4.10 = 3.20 m.c.a. Presión requerida en e2: 2.00 m.c.a.

Nota: puede verificarse si el diseño pasa con tubería de 1/2” de diámetro

Page 21: Inst. en Edific. 2012 Presentación 5

DISEÑO-Ejemplo

e) Completamos la

hoja de cálculo incluyendo el tramo de derivación (a2-e2)

HOJA DE CALCULO PARA DISTRIBUCIÓN DE AGUA

TRAMO CONDICIONES ELEMENTOS Le Hf

PUNTO NIVEL PRESIÓN

Suma en Le C = 100 (m.c.a.) Piezómetro Físico (m.c.a.)

T-A Long 3,00+X 3.00 m tubería PVC 1.611 T 8.3 8.3 0

U.G. 24.0000 X tubería PVC 0.537*X

Q(l/s) 0.6100 1 Válvula compuerta 0.25

Q(lg/m) 9.6400

Diámetro 1.2500

S 0.0500 Suma en Le 1.861+0.537*X 0.15 A2 8.15 3 5.15

A2-a2 Long 5.0000 tubería PVC 2.685

U.G. 12.0000 1 tee derivada 1-1Wa 0.63

Q(l/s) 0.3800 1 Válvula compuerta 0.2

Q(lg/m) 6.0000 0.2

Diámetro 1.0000

S 0.0600 Suma en Le 3.715 0.22 a2 7.92 3 4.92

a2-b2 Long 6.0000 tubería PVC 3.222

U.G. 6.0000 1 tee recta (3) 0.08

Q(l/s) 0.2400 1 reducción 1" a 3/4" 0.15

Q(lg/m) 3.7900 1 Válvula compuerta 0.15

Diámetro 0.7500

S 0.1000 Suma en Le 3.602 0.36 b2 7.56 3 4.56

b2-c2 Long 1.5000 tubería PVC 0.8055

U.G. 3.0000 1 tee recta 0.25

Q(l/s) 0.1200

Q(lg/m) 1.9000

Diámetro 0.7500

S 0.0300 Suma en Le 1.0555 0.03 c2 7.53 3 4.53

c2-d2 Long 6.5000 6.50 m tubería PVC 3.4905

U.G. 2.0000 1 tee recta (4) 0.04

Q(l/s) 0-08 1 reducción 3/4" a 1/2" 0.1

Q(lg/m) 1.2600 3 codos 1/2" x 90°(3*0.60) 1.8

Diámetro 0.5000 1 Válvula compuerta 1/2" 0.1

S 0.0900 Suma en Le 5.5305 0.5 d2 7.03 5 2.03

a2-e2 Long 10.0000 tubería PVC 5.37 a2 7.92 3 4.92

U.G. 6.0000 1 tee derivada 1" (5) 0.38

Q(l/s) 0.2400 1 reducción 1" a 3/4" 0.15

Q(lg/m) 3.7900 2 válvulas compuerta 0.3

Diámetro 0.7500

S 0.1000 Suma en Le 6.2 0.62 e2 7.3 4.1 3.2

OBSERVACIONES: Presión disponible en A2:

3.00+X= 2.00 +2.00+(0.09 + 0.03 X + 0.22 + 0.36 + 0.33 + 0.50) = 5.20 + 0.03 X

Entonces X = Altura mínima de Tanque = 2.20/0.97 = 2.27 () (1)

1.- Hf (T-A") = 0.05*1.86 + 0.05 * 0.54 X = 0.09 + 0.03* 2.30 = 0.15

2.- 1.85 * 0.34 = 0.63

3.- 0.30 * 0.25 = 0.08

4.- 0.25 * 0.14 = 0.04

5.- 1.50 * 0.25 = 0.38 NOTA: Tubería PVC : C = 140 usar Factor = 0.537

Page 22: Inst. en Edific. 2012 Presentación 5

DISEÑO-Ejemplo

5.4.2 Conexión domiciliaria y línea de alimentación:

a) Dotación (S.222.2.01): Se ha considerado como dos viviendas

unifamiliares con área de lote de 250 m2. Dotación (l/d/vivienda)= 1,700

l/d/vivienda. Dotación del edificio = 3,400 l/d. b) Almacenamiento en el tanque elevado (S.222.4.03):

Igual a la dotación: 3,4 m3

Page 23: Inst. en Edific. 2012 Presentación 5

DISEÑO-Ejemplo

c) Dimensiones del Tanque elevado: Considerando un tirante de 1.20 m, se requerirá

una sección cuadrangular de 1.70 * 1.70 m2 d) Gasto requerido para llenar el tanque en cuatro

horas: 3,400 / 4*(3,600) = 0.24 l/s e) Diámetros límites para este gasto: ”máx. = 3/4” ,”mín. = 1/2”

Page 24: Inst. en Edific. 2012 Presentación 5

DISEÑO-Ejemplo

f) Diámetro de diseño:

Considerando que para un diámetro de 1” el gasto

mínimo es de 0.30 l/s. Se ha tomado este como diámetro de diseño.

Asimismo: 3/4” para la conexión

domiciliaria y 1” para la alimentación, con el objeto de reducir la pérdida de presión y por tanto garantizar la presión de servicio necesaria. (ver separata, 29)

Page 25: Inst. en Edific. 2012 Presentación 5

DISEÑO-Ejemplo

Pérdida de carga en la línea: (Se omite, es de Sedapal)

ELEMENTOS

Le

(C=100)

CONDICIONES

Hf en m.c.a.

Conexión domiciliaria:

Corporación y curva

de tubería de plomo

Medidor volumétrico

2 Llaves en medidor

3.20

4.00

3.10

12.60

= 22.90

Q = 0.24 l/s = 3.79 g/m

= ¾” , entonces:

S = 0.10

Hf = 2.29

Alimentación:

Ampliación 3/4”a ´1”

Válvula Compuerta

14.75 de tub. PVC (5 + 9.75)

2 codos de 90°

Válvula flotadora

0.20

0.20

7.92

1.80

4.30

= 14.42

Q = 0.24 l/s = 3.79 g/m

= 1”, entonces:

S = 0.03

(0.13)

Hf = 0.43

Page 26: Inst. en Edific. 2012 Presentación 5

DISEÑO-Ejemplo

Pérdida de carga total: 2.29 + 0.43 = 2.72 m.c.a. Pérdida de carga antes de la válvula flotadora: 2.72-0.13=2.59 g) Presión requerida a nivel del primer piso: Altura de la descarga en tanque elevado = 3.00 + 3.00 + 2.30 + 1.20 + 0.25 = 9.75 Pérdida de carga: 2.59 RNC (Antes de la válvula flotadora): 2.00 Total: 14.34 m.c.a. = 1.434 Kg./cm2 = 20.36 p.s.i.g.

Page 27: Inst. en Edific. 2012 Presentación 5

DISEÑO-Ejemplo

Nota: Normalmente la presión de servicio en la línea matriz, es el dato básico para el cálculo de los diámetros. La presión disponible en la línea es de 20

p.s.i.g = 14.1 m.c.a. Se requiere de 14.34 m.c.a. (102 %) Probablemente se llenará en 4.07 horas = 4:4´ Hf / H = 2.72 / 9.75 = 0.28 = 28%

Page 28: Inst. en Edific. 2012 Presentación 5

DISEÑO

5.4.3.-SISTEMA SUPERIOR CON BOMBEO

Se utiliza cuando el suministro público garantiza cantidad pero no la presión suficiente para llenar el tanque elevado. En este caso es necesario instalar una cisterna y un equipo de elevación de presión (electrobomba).

Según la norma S.222.4.05 la capacidad de la cisterna no será menor de las 3/4 del consumo diario (dotación) y la del tanque elevado no menor de la tercera parte de dicho consumo; cada uno de ellos con un mínimo de 1,000 litros.

Page 29: Inst. en Edific. 2012 Presentación 5

DISEÑO

Conexión domiciliaria y alimentación El cálculo es similar al del sistema de

“Alimentación superior sin bombeo”, variando solamente la capacidad de la cisterna y el tiempo de llenado, que no lo especifican las normas y que puede estimarse de 4 a 8 horas (usar 6 horas)

Sistema de Distribución El procedimiento es igual al del sistema que no

requiere de bombeo (pues ya se resolvió la altura del tanque elevado).

Page 30: Inst. en Edific. 2012 Presentación 5

DISEÑO

Equipo de Bombeo (Luego del cálculo de la altura del tanque elevado)

• La capacidad del equipo de bombeo será la necesaria para llenar el tanque elevado en un tiempo no mayor de dos horas. • El cálculo teórico de la potencia de la bomba está dado por la fórmula:

H.P = Q x Ht / 75 (H.P=potencia)

(solo para fines de PRE-dimensionamiento)

Page 31: Inst. en Edific. 2012 Presentación 5

DISEÑO

Donde: Q = Gasto en litros por segundo (Capacidad de

tanque / tiempo de llenado) Ht = Pérdida (altura) de carga total en metros Ht = He + Hf + Ps He = Diferencia de elevación del agua, de cisterna a tanque = Hs + Hi Hf = Pérdida por fricción en tuberías y

accesorios (desde cisterna hasta salida en T.

elevado)

Ps = Presión de salida de agua en tanque (2.00 m.c.a., mínimo)

Page 32: Inst. en Edific. 2012 Presentación 5

DISEÑO

Donde: = Eficiencia de la bomba: de 60 % a 70% Nota: Sin embargo, el equipo siempre se elegirá considerando la altura total (Ht) y el caudal o gasto: Se usa la “Curva característica” de cada electrobomba, según el fabricante

La potencia teórica solo sirve de referencia

Page 33: Inst. en Edific. 2012 Presentación 5

DISEÑO

El diámetro mínimo de la tubería de impulsión se elegirá se determina aplicando el anexo N° 5 de las Normas sanitarias:

Gasto de bombeo Tubería de impulsión

(lt/seg) (”)

Hasta 0.50 3/4”

1.00 1”

1.60 1 1/4"

3.00 1 1/2"

5.00 2”

8.00 2 1/2”

15.00 3”

25.00 4”

• La tubería de succión debe ser siempre de un diámetro mayor o igual que la de impulsión.

Anexo # 5

Page 34: Inst. en Edific. 2012 Presentación 5

DISEÑO

Ejemplo numérico: El diseño arquitectónico de un edificio de 4 pisos indica 8 departamentos pequeños, el que será habitado por 40 personas (Cinco personas por departamento). El sistema de abastecimiento es indirecto con cisterna, bombas (dos) y tanque elevado, desde el cual por medio de bajadas se abastece de agua a los diferentes departamentos.

Consumo diario: 40 x 250 = 10,000 l.p.d. (Admitiendo un consumo medio de 250 litros/persona/día: USA, Perú 200 l/p/d)

Page 35: Inst. en Edific. 2012 Presentación 5

DISEÑO

Capacidad de cisterna: Vol. cisterna= 3/4 * 10,000 = 7,500 lt. = 7.5 m3

(Puede considerarse el factor de seguridad ≥ 1.25)

Gasto para llenar la cisterna en 6 horas: Q = 7,500 / 6 * 3,600 = 0.35 l/s

Entonces: máx = 1” y mín = 3/4” (se adopta este diámetro)

Capacidad de tanque elevado: Vol. tanque elev:= 1/3 * 10,000 lt. = 3.33 m3

Page 36: Inst. en Edific. 2012 Presentación 5

DISEÑO

Características de c/u de las bombas:

Gasto = 3,333 / (2 x 3,600) = 0.46 l/s (Asumiendo que debe llenarse el tanque en 2 horas)

Considerando:

*He = 17 m (Diferencia de elevación del agua, de cisterna a tanque: succión hasta descarga)) Hf = 10% de He = 1.7 m (Pérdida por fricción en tuberías y accesorios) *[ver separata: He = 2.50+(4 x 2.75) + 3.50 = 17.00 ]

Page 37: Inst. en Edific. 2012 Presentación 5

DISEÑO

Ps = 2.0 m (Presión de salida de agua en tanque: 2.00 m mínimo)

Entonces: Ht = 1.1 * 17 + 2 = 20.7 m Para: Ht = 20.7 m y Eficiencia de bomba = 60%

Entonces la potencia teórica será: 0.46 * 20.7 / 75 *0.60 = 0.21 H.P. (siempre será un valor mínimo de referencia)

Page 38: Inst. en Edific. 2012 Presentación 5

DISEÑO

Tubería de impulsión: = ¾” Tubería de succión: = 1”

De las tablas de rendimiento de electro bombas se escoge (ver separata, pag. 21a):

Electro bomba marca HIDROSTAL, monofásica,

de 220 v. y 60 ciclos, tipo B1C– 0.5, (de 0.5 caballos de fuerza). Según su curva característica proporciona un caudal de 0.5 lts/seg. para una altura de 22 metros.

Page 39: Inst. en Edific. 2012 Presentación 5

DISEÑO

TABLA DE RENDIMIENTO DE BOMBAS ELÉCTRICAS TABLA DE RENDIMIENTO DE BOMBAS ELÉCTRICAS MONOFÁSICAS DE 220 VOLTIO / 60 cpsMONOFÁSICAS DE 220 VOLTIO / 60 cps (Herz)(Herz)

Modelos HP

Diámetro Peso CAUDAL (Litro por segundo

Succión Descarga (Kg.) 0.3 0.5 1.0 1.5 2.0 3.0 4.0 5.0 8.0

B1C - 0.3 0.33 1" 1" 15 20.0 18.0 13.0 Altura de elevación en

metros

BIC - 0.5 0.50 1" 1" 16 24.0 22.0 15.0 (según la curva

característica)

B1C - 1 1 1" 1" 19 33.0 32.0 26.0 19.0

32-125-0.5 0.50 2" 1-1/2" 22 13.0 13.0 13.0 12.0 12.0 9.0 2.0

B1 - 1M 1 1-1/2" 1" 21 32.0 30.0 30.0 28.0 23.0

32-125-1M 1 2" 1-1/2" 27 18.0 18.0 18.0 18.0 17.0 15.0 11.0

40-125-1M 1 2-1/2" 1-1/2" 27 12.0 12.0 12.0 12.0 12.0 12.0 11.0 7.0 6.0

2B1-1 1 1-1/2" 1" 21 38.0 29.0 15.0 15.0 15.0 15.0

Page 40: Inst. en Edific. 2012 Presentación 5

DISEÑO

TABLA DE RENDIMIENTO DE BOMBAS ELÉCTRICAS TRIFÁSICAS DE 220 VOLTIO / 60 c.p.s

Modelos HP Diámetro Peso CAUDAL (Litro por segundo)

Succión Descarga (Kg.) 0.5 1.0 1.5 2.0 3.0 5.0 7.0 10.0 15.0 20.0

B1 - 2.5 3 1-1/2" 1" 32 44.0 43.0 41.0 37.0 Altura de elevación en

metros

B1 - 2.5 3 1-1/2" 1" 33 62.0 57.0 48.0 (según la curva

característica)

32 - 125 - 2.5 3 2" 1-1/2" 35 25.2 25.2 25.0 24.6 23.2 16.4

40 - 125 - 2.5 3 2-1/2" 1-1/2" 8 18.2 18.2 18.2 18.2 18.0 17.4 15.9 9.2

32 - 125 - 5 5 2" 1-1/2" 45 41.0 41.0 41.0 41.0 40.0 35.8 24.0

32 - 160L - 5 5 2" 1-1/2" 52 62.0 61.8 61.2 60.0 54.0

2/ 32 -200L - 5 5 2" 1-1/2" 55 85.5 83.5 80.0 73.5

40 - 125 - 5 5 2-1/2" 1-1/2" 51 29.6 29.8 29.8 30.0 30.0 29.4 28.2 24.0

32 - 160L - 6.6 7 2" 1-1/2" 72 63.0 63.0 62.5 61.8 58.6 47.4

2/32 - 200L - 6.6 7 2" 1-1/2" 74 98.0 96.0 92.5 85.0

40 - 125 - 6.6 7 2-1/2" 1-1/2" 71 37.0 37.0 37.0 37.0 37.0 37.0 35.0 33.0

40 - 160 - 6.6 7 2-1/2" 1-1/2" 72 40.5 41.0 41.6 42.0 42.6 42.0 38.6 32.0

2/32 - 200L - 12 12 2-1/2" 1-1/2" 78 97.5 96.0 95.0 92.5 87.0 60.0

40 - 160 - 12 12 2-1/2" 1-1/2" 78 57.0 57.4 57.8 68.0 58.4 58.0 56.0 48.4

50 - 160 - 12 12 3" 2" 81 41.0 42.0 42.0 42.0 42.0 42.0 42.0 40.0 36.0 29.0

Page 41: Inst. en Edific. 2012 Presentación 5

DISEÑO

5.4.4.- SISTEMA DE ALIMENTACIÓN INFERIOR (CON EQUIPO HIDRONEUMÁTICO)

Es un sistema alternativo del anterior, sustituye la presión proporcionada por el tanque elevado por la generada en un tanque hidroneumático. Principio de operación: •En un tanque hidroneumático el aire comprimido por el agua, que se inyecta por bombeo, actúa como un resorte que mantiene una presión constante sobre ésta. Presión que se transmite a través de todo el sistema.

Page 42: Inst. en Edific. 2012 Presentación 5

DISEÑO

• Cuando un grifo es abierto el aire se expande para reemplazar al agua liberada que ha sido forzada a salir por la presión del aire comprimido.

• Al descender la presión del aire en el tanque hasta el límite previsto en el diseño, entran en acción las bombas de agua hasta comprimir el aire a la condición inicial.

Page 43: Inst. en Edific. 2012 Presentación 5

DISEÑO

• La bomba trabaja permanentemente bajo dos condiciones de presión: La presión necesaria para tener, cuando menos 2.0 m.c.a. en las salidas mas desfavorables del sistema y una presión adicional que varía de 15 a 30 psig. Según los fabricantes. (10.6 @ 21.2 m.c.a.)

• La bomba debe detenerse al alcanzar la presión máxima y arrancar cuando ésta descienda a la presión de diseño, que ocurre cuando se ha consumido parte del agua contenida en el tanque hidroneumático.

Page 44: Inst. en Edific. 2012 Presentación 5

DISEÑO

• Para disminuir el volumen del tanque hidroneumático se incluye en el equipo un compresor o cargador de aire, para aumentar la presión de éste y obligarlo a ocupar menos volumen en el tanque. El cargador solo necesita trabajar cuando se ha perdido parte del aire contenido en el tanque y, por consiguiente, se ha reducido el tiempo de parada de la bomba. (también se usa una vejiga o “blader” para el aire)

Page 45: Inst. en Edific. 2012 Presentación 5

DISEÑO

• El volumen del tanque hidroneumático (agua + aire) se calcula considerando el caudal y las presiones máxima y mínima del funcionamiento del motor. Se propone una fórmula teórica, para el cálculo del volumen:

V = 44 Q * ( P2 + 14.7) / ( P2 - P1) Donde: V = Volumen en galones americanos Q = Caudal en litros por segundo P2 = Presión máxima en psig. P1 = Presión mínima en psig.

Page 46: Inst. en Edific. 2012 Presentación 5

DISEÑO

Conexión domiciliaria y la alimentación •El cálculo es similar al del sistema de “alimentación superior”, variando solamente la capacidad de la cisterna, que en este caso será cuando menos igual al consumo diario. (puede usarse un FS mayor de 1.25

Page 47: Inst. en Edific. 2012 Presentación 5

DISEÑO

Sistema de distribución

• Este sistema emplea: equipo hidroneumático, que bombea directamente de la cisterna y cuya capacidad debe satisfacer la máxima demanda de la edificación.

• El procedimiento de cálculo es igual al del sistema anterior, variando solo en el sentido del flujo.

• La altura mínima de bombeo será la necesaria para que la presión de salida sea, por lo menos, de 2.0 m.c.a. (Presión mínima: Ps))

Page 48: Inst. en Edific. 2012 Presentación 5

DISEÑO

Ejemplo de diseño de un sistema indirecto de alimentación inferior (El mismo ejemplo numérico de alimentación superior con tanque) DATOS BÁSICOS: Edificio bi-familiar de dos pisos iguales Área del lote totalmente construida: 250 m2 Altura de piso a piso: 3.00 m Presión disponible del primer piso: insuficiente Croquis del sistema de distribución (típico):

Page 49: Inst. en Edific. 2012 Presentación 5

DISEÑO

1.- Sistema de alimentación a cisterna Dotación: 2 x 1,700 = 3,400 litros/día Almacenamiento en cisterna: Se asume 6,000 litros (FS >> 1.25) Gasto para ser llenado en 6 horas: Entonces: Q = 6,000/ (6 3,600) = 0.28 lt./seg. Entonces: máx. = mín. = 3/4“ (se asume 1” F)

Dimensiones netas de cisterna: Dimensiones = 2 m. * 2m. * 1,5m. de altura

Page 50: Inst. en Edific. 2012 Presentación 5

DISEÑO

2.- Dibujo Isométrico: del plano (no corresponde)

Page 51: Inst. en Edific. 2012 Presentación 5

DISEÑO

(No corresponde al ejemplo)

Page 52: Inst. en Edific. 2012 Presentación 5

DISEÑO

3.- Determinación de diámetros:

TRAMO LONG ( M) UG Q (l.p.s. ) Ø Máx. Ø Min. Ø Asumido

A-a' 2.00 30.00 0.75 1 -1/4" 1" 1"

a'-a 11.70 27.00 0.69 1 -1/4" 1" 1"

a-b 3.80 21.00 0.56 1 -1/4" 3/4" 1"

b-c 2.03 18.00 0,25 3/4" 3/4" 1"

c-d 5.30 14.00 0.42 1" 3/4" 3/4"

d-e 3.80 12.00 0.38 1" 3/4" 3/4"

e-f 5,70 6.00 0.25 3/4" 3/4" 3/4"

f-g 0.40 3.00 0.12 1/2" 1/2" 1/2"

g-x 3.30 2.00 0.08 1/2" 1/2" 1/2"

(Ver ejemplo en separata)

Page 53: Inst. en Edific. 2012 Presentación 5

DISEÑO

4.-Calculo de pérdida en la línea de impulsión desde la cisterna hasta el ingreso al tanque-Hidroneumático.

ELEMENTOS Le (C=100) CONDICIONES

Hf en m.c.a.

Succión:

"S" - ala toma de succión de la bomba Q = 0.69 l/s = 10.88 g/m

Válvula de pie !" 2.84 Ø = 1", => S = 0.1747

de Tubería PVC 1.61

1 codo de 90º 0.6

Impulsión:

Al inicio de la línea de impulsión

continuo al punto "A"

Q = 0.69 l/s = 10.88 g/m

Válvula de compuerta 0.2 Ø = 1", => S = 0.1747

Válvula Check 2.12

de tubería PVC 1.07

8.44 Hf = 8.44x0.1747=1.47

Page 54: Inst. en Edific. 2012 Presentación 5

DISEÑO

Nota: La pérdida de fricción en tuberías y accesorios Hf, desde la succión hasta el punto más desfavorable incluyendo los 1.47 m. generado por la pérdida de carga en la succión y la línea de alimentación. (en algunos casos se adopta un valor igual al 10% de He).

Page 55: Inst. en Edific. 2012 Presentación 5

DISEÑO

5.- Calculo de Pérdida en la ruta crítica. (De la tabla Hf = 7.70 m.c.a) Sistema de regulación de presión: Equipo de bombeo: Unidades de gasto = 24, Q = 0.61 l/s = 9.64 g/min. = 580 g/hora, máx. = 1-1/4" , mín. = 3/4" , => se asume = 1"= 1"

Page 56: Inst. en Edific. 2012 Presentación 5

DISEÑO

Cálculo de la presión disponible: En la hoja de formato se encuentra una pérdida de carga (Hf) de 7.70 m Ht = (Hs + Hi) + Hf + 2.00 +2.00 = Ht = 5.02 + 7.70 + 2..00+2.00 = 16.09 m. Ht = 1.69Kg./cm2 = 22.84 psi Pmín. = 25, Pmáx.= 45 (comercial Pmín. = 30 y Pmáx. = 50) => Paveg = 40 psi) Entonces la Presión de Trabajo = 40 p.s.i. = 2.82 Kg./m2 = 28.2 m.c.a. y Q = 0.69 lps.

Page 57: Inst. en Edific. 2012 Presentación 5

DISEÑO

Se escoge una bomba monofásica Hidrostal tipo

B1C - 1, capaz de levantar una presión de 28.2 m.c.a. ( 40 psi)

Para una presión mínima de 30 psi. , una presión promedio de 40 psi. y un caudal de 0.69 lps = 656 gal/hora, se requiere un tanque de 64 galones, se asume un tanque comercial de 70 70 óó 80 galones80 galones. Nota: El régimen de operación de la bomba: prende a la presión de 30 psi. y apaga a la presión de 50 psi.

Page 58: Inst. en Edific. 2012 Presentación 5

DISEÑO

Capacidad de tanque hidroneumático (Basado en la capacidad de la bomba y la presión de operación)

PRESIÓN (Libras/Pulgadas2)

Presión Mín. 20 20 30 40 50 50 60 60 70 Presión Mín.

Presión Máx... 35 40 50 60 80 70 70 80 100 Presión Máx.

Presión Prom. 28 30 40 50 65 60 65 70 85 Presión Prom.

Volumen(gal) CAPACIDAD en (Galones/Hora) a Presión Promedio

Volumen(gal)

T.Hidro-Neumático T.Hidro-Neumático

18 185 230 145 100 90 80 80 60 65 18

32 325 400 260 185 155 140 150 110 120 32

42 430 530 340 240 200 180 190 140 155 42

82 840 1,020 660 475 400 355 365 270 295 82

120 1,230 1,500 970 695 585 520 550 400 445 120

144 1,470 1,800 1,160 830 700 620 650 480 525 144

180 1,830 2,250 1,460 1,040 860 770 820 600 660 180

220 2,250 2,760 1,760 1,265 1,060 940 990 730 800 220

315 3,240 3,930 2,550 1,810 1,520 1,350 1,440 1,040 1,150 315

525 5,360 6,545 4,260 3,030 2,540 2,250 2,360 1,740 1,900 525

1,000 10,400 12,500 8,100 5,760 4,850 4,300 4,500 3,310 3,560 1,000

1,500 15,300 18,800 12,180 8,650 9,700 6,420 6,750 4,980 5,450 1,500

2,000 20,400 25,000 16,200 11,500 13,000 8,520 9,000 6,600 7,250 2,000

3,000 30,600 37,500 24,300 17,300 19,500 12,800 13,500 9,980 10,900 3,000

5,000 51,000 62,500 40,500 28,800 32,400 21,700 22,300 16,550 18,300 5,000

7,000 76,000 94,000 61,000 45,000 48,500 32,400 33,700 25,000 27,400 7,000

10,000 107,000 130,000 81,000 57,600 64,800 43,400 45,000 33,100 36,600 10,000

64 656

Page 59: Inst. en Edific. 2012 Presentación 5

DISEÑO

Page 60: Inst. en Edific. 2012 Presentación 5

DISEÑO

6.- Entonces se completa la tabla para calcular la presión en el punto más

desfavorable:

HOJA DE CALCULO PARA DISTRIBUCIÓN DE AGUA

TRAMO CONDICIONES

ELEMENTOS Le Hf PUNTO NIVEL PRESIÓN

Suma en Le C = 100 (m.c.a.) Piezómetro Físico (m.c.a.)

Long S 26.85 -1.35 28.2

A-a Long 14.5000 14.5 m tubería PVC 7.7865 1.47 A 25.38 0.1 25.28

U.G. 27.0000 2 uniones simples 0.6

Q(l/s) 0.6900 2 codos de 1" X 90º 1.8

Diámetro 1.0000

S 0.1747 Suma en Le 10.1865 1.78 a 23.6 0.4 23.2

a-b Long 3.8000 tubería PVC 2.0406

U.G. 21.0000 1 tee recta de 1" (1) 0.08

Q(l/s) 0.5600 1 reducción de 1" a 3/4" 0.2

Diámetro 0.7500

S 0.4819 Suma en Le 2.3206 1.12 b 22.48 0.4 22.08

b-c Long 2.3000 tubería PVC 1.2351

U.G. 18.0000 1 tee recta de 3/4" 0.25

Q(l/s) 0.2500 1 codo de 3/4" 90º 0.75

Diámetro 0.7500

S 0.1084 Suma en Le 2.2351 0.24 c 22.24 0.4 21.84

c-d Long 5.3000 tubería PVC 2.8461

U.G. 14.0000 1 tee derivada 3/4" (2) 0.17

Q(l/s) 0.4200

Diámetro 0.7500

S 0.2830 Suma en Le 3.0161 0.88 d 21.36 0.3 21.06

d-e Long 3.8000 3.80 m tubería PVC 2.0406

U.G. 12.0000 1 tee recta 3/4" 0.25

Q(l/s) 0.3800 1 US 0.25

Diámetro 0.7500

S 0.2352 Suma en Le 2.5406 0.82 e 20.54 0.7 19.84

e-f Long 5.7000 tubería PVC 3.0609

U.G. 6.0000 1 tee recta 3/4" 0.25

Q(l/s) 0.2500 6 codos de 3/4" x 90º 4.5

Diámetro 0.7500 1 válvula compuerta + 2 UU 0.65

S 0.1084 Suma en Le 8.4609 0.92 f2 19.62 3.05 16.57

f-g Long 0.4000 tubería PVC 0.2148

U.G. 3.0000 1 tee derivada 3/4" (2) 0.17

Q(l/s) 0.1200 1 reducción 3/4" a 1/2" 0.2

Diámetro 0.5000

S 0.2008 Suma en Le 0.5848 0.12 g 19.5 3.05 16.45

g-x Long 3.3000 tubería PVC 1.7721

U.G. 2.0000 1 tee 1/2" 0.2

Q(l/s) 0.0800 2 codos 1/2" x 90º 1.2

Diámetro 0.5000 1 válvula compuerta + 2 UU 0.5

S 0.0949 Suma en Le 3.6721 0.35 x 19.15 5.05 14.1

Perdida por fricción 7.70 Observaciones:

Ht= (hs+Hi) + Hf + Ps = (5.05+1.35)+7.70+2.00 = .c.a.= 22.84 psi (1) 0.30*.25= 0.08

Pmín. = 30 psi Pmáx. = 50 psi (valores comerciales entonces) Promedio= 30 psi (2) 1.2*.14= 0.17

Para un Pprom. = 30 psi y un caudal = 0.69 lps = 0.69x951 = 656 gal/hora (3)

Entonces elegida B1C-1 Succión/ Impulsión = 1" Capacidad del tanque Hidroneumático = (comercial)

Page 61: Inst. en Edific. 2012 Presentación 5

DISEÑO

6.0.- SUMINISTRO DOMÉSTICO DE AGUA CALIENTE

6.1.- ALCANCES

El sistema de abastecimiento de agua caliente en un edificio es la instalación de plomería que produce, almacena y conduce dicha agua hasta el aparato en el que descarga en cantidad, presión y temperatura conveniente. Se debe garantizar la seguridad y la potabilidad del agua del suministro público.

Page 62: Inst. en Edific. 2012 Presentación 5

DISEÑO

6.2.- COMPONENTES DEL SISTEMA El sistema de abastecimiento de agua caliente está constituido por: Un equipo de producción de agua caliente (calentador) Un tanque de almacenamiento Sistema de distribución que puede ser con o sin retorno del agua enfriada. La tubería de retorno no es requerida en pequeñas instalaciones.

Page 63: Inst. en Edific. 2012 Presentación 5

DISEÑO

Solo es necesaria cuando se instalen equipos centrales de producción de agua caliente.

6.2.1.- El calentador puede ser eléctrico, a gas, a

petróleo o a vapor En instalaciones pequeñas se utilizan los dos primeros. El calentador eléctrico tiene un tanque acumulador, mientras que el calentador a gas calienta directamente.

Page 64: Inst. en Edific. 2012 Presentación 5

DISEÑO

En grandes instalaciones se utilizan calentadores a gas, a petróleo o a vapor y se debe contar con depósitos acumuladores. En este caso se requiere de ambientes de suficiente espacio y con buena ventilación. La dotación diaria de agua caliente, para las diferentes edificaciones se muestran en las tablas N° (30 – 33) de la Norma sanitaria (S222.2)

Page 65: Inst. en Edific. 2012 Presentación 5

DISEÑO

DOTACIONES DE AGUA CALIENTE

TABLA Nº 30 Residencias Unifamiliares y Multifamiliares

NUMERO DE DORMITORIOS DOTACIÓN DIARIA

POR VIVIENDA (litros)

1 120

2 250

3 390

4 420

5 450

>5 80 litros/dormitorio adicional

Capacidad de almacenamiento de AC (respecto de la dotación: 1/5

Capacidad horaria de producción de AC (respecto de la dotación: 1/7

Page 66: Inst. en Edific. 2012 Presentación 5

DISEÑO

DOTACIONES….

TABLA Nº 31 Establecimiento de hospedaje

TIPO DE ESTABLECIMIENTO DOTACION DIARIA

Litros/ dormitorio

Hotel, Hostales y Moteles 150

Pensiones 100

Centros vacacionales y otros 100 Litros/ m2

Almacenamiento: 1/7 Producción: 1/10

Page 67: Inst. en Edific. 2012 Presentación 5

DISEÑO

DOTACIONES…

TABLA Nº 32 Restaurantes

AREA UTIL DE LOS

COMEDORES (mts.)

DOTACIÓN

DIARIA

Hasta 40 900 Litros

41 a 100 15 Litros/m2

Más de 100 12Litros/m2

TABLA Nº 33 Hospitales, Clínicas, y Similares

TIPO DE ESTABLECIMIENTO DOTACION DIARIA

Hospitales, Clínicas con Hospitalización 250 Litros/cama

Consultorios Médicos 130 Litros/consultorio

Clínicas Dentales 100 Litros/unidad dental

Almacenamiento: 1/5 Producción: 1/10

Almacenamiento: 2/5 Producción: 1/7

Page 68: Inst. en Edific. 2012 Presentación 5

DISEÑO

La capacidad horaria de almacenamiento y producción de agua caliente, se muestra al pie de cada tabla [TABLA N° 34 (S.223.4)] Las temperaturas de calentamiento /tipo de uso

Higiene corporal: 45°C ~ 55°C Lavado de ropa y utensilios: 60°C ~ 70°C Para fines medicinales: 90°C ~ 100°C

NOTA: A temperatura menor de 82°C no existe el peligro de explosión

Page 69: Inst. en Edific. 2012 Presentación 5

DISEÑO

6.2.2.- El depósito acumulador es metálico, hermético con entrada y salida controladas. Asimismo contará con cubierta aislante.

La capacidad de almacenamiento se muestra en la TABLA N° 34

Page 70: Inst. en Edific. 2012 Presentación 5

DISEÑO

TABLA Nº 34 Capacidades de equipos de

almacenamiento y producción de agua caliente

TIPO DE EDIFICIO

CAPACIDAD DE

ALMACENAMIENTO

EN RELACION CON

LA DOTACION

CAPACIDAD HORARIA

DE PRODUCCIÓN DE

AGUA CALIENTE EN

RELACION CON LA

DOTACIÓN

Residencias Unifamiliares y

Multi familiares 1/5 1/7

Hoteles y Pensiones 1/7 1/10

Restaurantes 1/5 1/10

Gimnasios 2/5 1/7 Hospitales, Clínicas,

Consultorios y Similares 2/5 1/6

Page 71: Inst. en Edific. 2012 Presentación 5

DISEÑO

6.2.3.- PRINCIPIO DE CIRCULACIÓN DEL AGUA CALIENTE. El movimiento del agua caliente es el resultado de la actividad molecular que se desarrolla en el agua al ser calentada y que se observa claramente en el agua en ebullición. Al proporcionarle calor al agua hace que ésta se expanda, haciéndose menos densas las moléculas en proporción al calor recibido, lo cual le confiere una tendencia natural a elevarse en relación con las moléculas mas frías.

Page 72: Inst. en Edific. 2012 Presentación 5

DISEÑO

La desigualdad de peso entre el agua caliente y el agua fría en el tanque de almacenamiento y en el sistema de distribución con retorno produce la circulación continua por gravedad.

Page 73: Inst. en Edific. 2012 Presentación 5

DISEÑO

Sistemas en grandes instalaciones de producción central:

Sistema ascendente con circulación por gravedad.- Consiste en una red de distribución que partiendo de la fuente de producción del agua caliente, alimenta de abajo hacia arriba a los diferentes servicios, formando montantes ascendentes. Al final de cada una de los montantes se instala una tubería de retorno que regresa con agua enfriada al calentador.

Page 74: Inst. en Edific. 2012 Presentación 5

DISEÑO

TA C

AF.

Page 75: Inst. en Edific. 2012 Presentación 5

DISEÑO

Sistemas en grandes instalaciones de producción central:

•Sistema descendente con circulación por gravedad.- Consiste en instalar una sola montante que lleva el agua caliente hasta la parte superior del edificio, desde donde se distribuye en montantes bajantes que vienen alimentando los diferentes servicios de arriba hacia abajo. Los extremos de las bajantes se unen en una para

llevar de retorno al agua enfriada al calentador.

Page 76: Inst. en Edific. 2012 Presentación 5

DISEÑO

TA C

AF.

Page 77: Inst. en Edific. 2012 Presentación 5

DISEÑO

NOTA: •Debe recordarse que la temperatura de ebullición del agua se incrementa tremendamente a presiones mayores que la atmosférica. Por ejemplo el agua sometida a presión y calentada a 100°C de temperatura, vaporiza si la presión cesa súbitamente y en estas condiciones se expande a 1,700 veces su volumen original, pudiéndose producir una explosión si se rompe el tanque debido al aumento de presión.

Page 78: Inst. en Edific. 2012 Presentación 5

DISEÑO

NOTA: Para prevenir este peligro se debe dispones de válvulas de alivio de temperatura y presión, como lo especifica la Norma Sanitaria (S.223.1)

Page 79: Inst. en Edific. 2012 Presentación 5

DISEÑO

6.2.4.- SISTEMA DE DISTRIBUCIÓN CON RETORNO A LA UNIDAD DE CALENTAMIENTO:

Las tuberías de alimentación de agua caliente se

calcularán de acuerdo con lo establecido en el numeral S.222.3. Es decir, de manera análoga al sistema de agua fría.

NO llevan válvulas de control en cada batería

Page 80: Inst. en Edific. 2012 Presentación 5

DISEÑO

6.2.4.- SISTEMA DE DISTRIBUCIÓN CON RETORNO A LA UNIDAD DE

CALENTAMIENTO:

El objeto del retorno del agua enfriada a la unidad de calentamiento es permitir que el agua caliente circule permanentemente dentro de la tubería de alimentación, para que los ocupantes del edificio puedan obtenerla en cualquier momento, eliminando al mínimo el desperdicio.

Page 81: Inst. en Edific. 2012 Presentación 5

DISEÑO

6.2.4.- SISTEMA DE DISTRIBUCIÓN CON RETORNO A

LA UNIDAD DE CALENTAMIENTO:

El suministro de agua fría, proveniente del tanque elevado o del sistema hidroneumático, a la unidad de calentamiento llega por un tubo que acomete a una altura de 15 cm. del fondo. La tubería de retorno del agua enfriada puede conectarse a la de suministro, para garantizar que el agua caliente siempre se encuentre en la parte superior del tanque del calentador.

Page 82: Inst. en Edific. 2012 Presentación 5

DISEÑO

6.2.4.- SISTEMA DE DISTRIBUCIÓN CON RETORNO A

LA UNIDAD DE CALENTAMIENTO: Las pérdidas de carga en el tanque de

almacenamiento pueden ser omitidas en el cálculo.

NOTA:

Tanto el Proyecto como la instalación del equipo de producción y almacenamiento de agua caliente, no son competencia del ingeniero civil. (solo la supervisión)

Page 83: Inst. en Edific. 2012 Presentación 5

DISEÑO

Veamos un ejemplo:

Page 84: Inst. en Edific. 2012 Presentación 5

DISEÑO

Veamos un ejemplo:

Page 85: Inst. en Edific. 2012 Presentación 5

DISEÑO

7.0.- SISTEMAS CONTRA INCENDIO Al hablar de incendios se está refiriéndose implícitamente al FUEGO, cuyos componentes principales son: Materiales combustibles.- Los que pueden arder o producir lumbre y que necesitan de una sustancia que produzca la combustión. Material Comburente.- Que hace posible la combustión de los materiales pasibles de arder (oxigeno).

Page 86: Inst. en Edific. 2012 Presentación 5

DISEÑO

Calor.- Energía que se libera durante la combustión y que además lo retro-alimenta, pues cada material combustible tiene su temperatura de inflamación. Es evidente la necesidad de protección contra los incendios, pues estaremos preservando las propiedades y lo más importante la vida de las personas.

Page 87: Inst. en Edific. 2012 Presentación 5

DISEÑO

La protección contra incendios se enfoca bajo dos aspectos definidos: Prevención.- Aspecto de diseño: Que contemplan las normas y requisitos arquitectónicos y de ocupación, así como de construcción e instalaciones electromecánicas, estipulados por el R.N.C y por la legislación existente.

Page 88: Inst. en Edific. 2012 Presentación 5

DISEÑO

La protección contra incendios se enfoca bajo dos aspectos definidos: Combate.- Aspecto relativo a los medios y sistemas para la extinción de los incendios en el interior y exterior de las edificaciones. Corresponde a las instalaciones sanitarias el manejo del agua como uno de los elementos extintores e involucrar conceptos de salud.

Page 89: Inst. en Edific. 2012 Presentación 5

DISEÑO

Combate: Materias extintoras: Agua.- Elemento mas barato y mas usado, no es recomendable su uso para apagar incendios de sustancias líquidas y semi-sólidas, tampoco de materiales que contengan sodio, potasio o cal. También presenta el inconveniente del deterioro que causa a mercaderías, libros, cuadros, etc. El vapor de agua se recomienda para sofocar incendios en lugares cerrados.

Page 90: Inst. en Edific. 2012 Presentación 5

DISEÑO

Materias extintoras:

Agua con adición de sales (bicarbonato de sodio o cloruro de sodio).- Presenta mejores condiciones extintoras que el agua sola ya que requiere mayor calor para evaporarse e incluso desprende gas carbónico.

NOTA: Los cloruros pueden producir corrosión en estructuras metálicas

Page 91: Inst. en Edific. 2012 Presentación 5

DISEÑO

Otras materias extintoras: Gases extintores como el ácido carbónico y el nitrógeno, se usan a presión Arena, tierra, tierra de infusorio, cenizas, polvo de ladrillo.- Se usan para extinguir incendios de sustancia semi-sólidas como alquitrán o asfalto. También para líquidos inflamables como gasolina. Productos en forma de espuma química o nieve carbónica.

Page 92: Inst. en Edific. 2012 Presentación 5

DISEÑO

Materias extintoras: El agua como material extintor se emplea en los siguientes sistemas: Alimentadores y mangueras para uso de los ocupantes del edificio (Gabinete contra incendio ) Alimentadores y mangueras para uso del Cuerpo de Bomberos de la ciudad (válvulas siamesas) Alimentadores y mangueras para uso combinado de los ocupantes del edificio y del Cuerpo de Bomberos de la ciudad

Page 93: Inst. en Edific. 2012 Presentación 5

DISEÑO

Materias extintoras: El agua como material extintor se emplea en los siguientes sistemas:

Rociadores automáticos, que se activan con

detectores de humo o de aumento de de temperatura.

Page 94: Inst. en Edific. 2012 Presentación 5

DISEÑO

Page 95: Inst. en Edific. 2012 Presentación 5

DISEÑO

Generalidades: 1. La fuente de agua podrá ser la red de abastecimiento público, tanques con motobombas del Cuerpo de Bomberos, o fuente propia del edificio, siempre que se garantice el almacenamiento previsto en el depósito.

Page 96: Inst. en Edific. 2012 Presentación 5

DISEÑO

Generalidades: 2.Los alimentadores estarán espaciados y distribuidos de manera que todas las partes de los ambientes del edificio puedan ser alcanzados por el chorro de las mangueras. Los alimentadores podrán conectarse entre sí mediante una tubería cuyo diámetro no sea menor al del alimentador de mayor diámetro. Al pie de cada alimentador se instalará una llave de purga y otra de compuerta.

Page 97: Inst. en Edific. 2012 Presentación 5

DISEÑO

Generalidades: 3.Las dimensiones de las mangueras serán las mostradas en la Tabla # 35:

Largo de manguera (m) Diámetro periférico

(pulg.)

15 1”

30 1-1/2”

Page 98: Inst. en Edific. 2012 Presentación 5

DISEÑO

Generalidades:

4.Antes de cada conexión para manguera se instalará una llave de compuerta o de ángulo. La conexión para manguera será de rosca “macho” con el diámetro correspondiente.

4.Cuando el almacenamiento sea común para el agua potable y la reserva para el sistema contra incendio, deberá instalarse a la salida de éste último desde el tanque una válvula de retención de tipo especial para incendios.

Page 99: Inst. en Edific. 2012 Presentación 5

DISEÑO

Generalidades:

6. En aquellos casos en que la presión sea insuficiente o menor que los mínimos especificados en la N.S.E. deberán adoptarse las siguientes alternativas: Usarse extinguidores apropiados en reemplazo de las mangueras. Instalarse equipos de elevación de presión de capacidad suficiente para garantizar el gasto y presión requeridos.

Page 100: Inst. en Edific. 2012 Presentación 5

DISEÑO

Generalidades: 7)Las bombas de agua contra incendios, deberán llevar control de arranque y parada de funcionamiento automático conectado a los sistemas de alarma del edificio.

8)Cuando se instalen sistemas equipados con rociadores automáticos, deberá cumplirse con los requisitos establecidos en la Norma # 13 de la N.F.P.A. (National Fire Protection Association )

Page 101: Inst. en Edific. 2012 Presentación 5

DISEÑO

Generalidades: 9)En todos los casos deberá preverse un sistema de drenaje para la evacuación del agua utilizada en el combate del incendio.

Page 102: Inst. en Edific. 2012 Presentación 5

DISEÑO

Page 103: Inst. en Edific. 2012 Presentación 5

DISEÑO

Ejemplo numérico: Aplicado a un edificio a construirse en Lima, de 15 pisos, con alturas entre pisos de 3.00 m. incluyendo el sótano (semejante al esquema mostrado) Datos: •Tubería alimentadora de fºgº = Ø 2-1/2”; Q = 8 l/s (126.4 g/m) •Entonces S = 0.19

Page 104: Inst. en Edific. 2012 Presentación 5

DISEÑO

Ejemplo numérico:

•Manguera de lona lisa (C = 120) = 1-1/2” (Longitud = 20 m.) Q = 2.5 l/s (39.5 g/m) Entonces S = 0.20 •Boquilla Normalizada: = 1-1/8” (Le = 0.25 m) •Se asume como longitud equivalente, por accesorios) el 10% de la longitud del alimentador

Page 105: Inst. en Edific. 2012 Presentación 5

DISEÑO

Ejemplo numérico: Solución:

Es evidente que solo se alcanzará la presión mínima de 10 mca. Por debajo del piso 14 Determinación de la presión disponible en la salida de la boquilla del gabinete en el piso 13

Page 106: Inst. en Edific. 2012 Presentación 5

DISEÑO

Ejemplo numérico: Solución: •Presión al nivel de la conexión de la manguera •Desnivel entre el tanque y la conexión de manguera = 11.50 m •Pérdida por fricción en tubería tramo T-13: (11.5 + 2.5)1.1 * 0.19 = 2.93 mca. •Pérdida de carga en la manguera y boquilla: (20 * 0.71 + 0.25) * 0.20 = 2.89 mca

Page 107: Inst. en Edific. 2012 Presentación 5

DISEÑO

Ejemplo numérico:

Solución:

•Pérdida de carga total la salida de la boquilla será = 2.93 + 2.89 = 5.82 mca. •Presión disponible a la salida de la boquilla: 11.50 – 5.82 = 5.68 mca. < 10.00

Se verifica que a partir del piso 9° se contará con la presión mínima para que opere el sistema.

Page 108: Inst. en Edific. 2012 Presentación 5

DISEÑO

CARACTERISTICAS N.B. of F.U.

NORMA SANITARIA S.224

Altura 15 @ 50 m.

pisos 6 @ 16

Altura >50 m.,

piso>16

Volumen de Almacenamiento:

Mínimo en cisterna 56,400 lts. 15,000 lts 40,000 lts.

Mínimo en Tanque Elevado 18,900 lts. 15,000 lts (Ver gráfico # 3)

Gasto Mínimo por Alimentador 16 lps Gasto y

diámetro para

garantizar una

presión de 10

@ 25 m.c.a.

Gasto y

diámetro para

garantizar una

presión de 35

m.c.a.(mínimo)

Diámetro mínimo de

Alimentadores 4" (Hasta 6 pisos)

6" (más de 6 pisos)

Presión en conexión de

manguera más desfavorable 35 m.c.a (mínimo)

Diámetro mínimo de manguera 2-1/2" Tabla # 35 2-1/2"

Longitud máxima de manguera 25 mts. Tabla # 35 60 mts.

Boquillas de salida (Nozzles) 1-1/8" Ver Tabla 1-1/8"

COMPARACIÓN ENTRE LAS RECOMENDACIONES DEL N.B. of F.U. Y LAS NORMAS S.224.

(N.B. of F.U.: National Board of Fire Underwriters)

Page 109: Inst. en Edific. 2012 Presentación 5

DISEÑO

COMPARACIÓN DE CARACTERÍSTICAS DE SISTEMAS CON ROCIADORES.

CARACTERISTICAS N.B. of F.U. R.N.C.

Presión mínima en cada rociador º .c.a.

Gasto por Rociador (1) 1.25 lps.

Distancia máxima entre ramales

alimentadores y entre rociadores 3.90 3.6 mts.

Número máximo de rociadores por ramal 8 8

Rango de temperaturas de fusión de

sellos termo sensibles:

* Tipo ordinario 68 a 74ºC 57 a 74ºC

* Tipo intermedio 100ºC 80 a 100ºC

* Tipo resistentes 140ºC 121 a 141ºC

* Tipo extras resistentes 180ºC 162 a 181ºC

Separación mínima del techo 10 cms. 30 cms.

Diámetro de los alimentadores 2-1/2" (2)

Volumen mínimo de almacenamiento 17,000 lts 20,000 lts