informe_parte ii.pdf

191
1 Al trabajar en un laboratorio, existe el peligro potencial de un sufrir un accidente durante el manejo de las sustancias y de los materiales que se ut izan. Recuerde: SUSTANCIA PELIGROSA + ERROR HUMANO ACCIDENTE Para evitar e n la medida de lo posible los accidentes de laboratorio, conviene tener presente las siguientes reglas fundamentales Como primera regla, para empezar a trabajar. El desord n es causa segura de accidente. Siga cuidadosamente todas las indicaciones que le han sido dadas por el profesor o el asistente de laboratorio Ahorrará tiempo y evitará errores y accidentes innecesarios. El laboratorio es un lugar para trabajar con seriedad. Al profesor o asistente de laboratorio. No realice ningún trabajo experimental si esta regla no se cumple. La presencia del profesor o el asistente de laboratori garantizan un mejor control sobre cualquier situación de peligro. I. SEGURIDAD EN EL LABORATORIO Mantener en absoluto orden el lugar de trabajo. Indicaciones del profesor. Estudiar cada práctica antes de realizarla en el Laboratorio. Seguridad personal y de sus compañeros. Informar inmediatamente sobre cualquier accidente. Utilizar mandil abotonado y si el experimento lo requi e use anteojos de seguridad. No realizar una práctica estando solo en el laboratorio. Al derramar sustancias. L

Transcript of informe_parte ii.pdf

Page 1: informe_parte ii.pdf

1

Al trabajar en un laboratorio, existe el peligro potencial de un sufrir un accidente durante el

manejo de las sustancias y de los materiales que se ut izan. Recuerde:

SUSTANCIA PELIGROSA + ERROR HUMANO ACCIDENTE

Para evitar en la medida de lo posible los accidentes de laboratorio, conviene tener presente

las siguientes reglas fundamentales

Como primera regla, para empezar a trabajar. El desord n es causa segura de

accidente.

Siga cuidadosamente todas las indicaciones que le han sido dadas por el profesor o el

asistente de laboratorio

Ahorrará tiempo y evitará errores y accidentes innecesarios.

El laboratorio es un lugar para trabajar con seriedad.

Al profesor o asistente de laboratorio.

No realice ningún trabajo experimental si esta regla no se cumple.

La presencia del profesor o el asistente de laboratori garantizan un mejor control

sobre cualquier situación de peligro.

I. SEGURIDAD EN EL LABORATORIO

Mantener en absoluto orden el lugar de trabajo.

Indicaciones del profesor.

Estudiar cada práctica antes de realizarla en el Laboratorio.

Seguridad personal y de sus compañeros.

Informar inmediatamente sobre cualquier accidente.

Utilizar mandil abotonado y si el experimento lo requi e use anteojos de

seguridad.

No realizar una práctica estando solo en el laboratorio.

Al derramar sustancias.

è

Page 2: informe_parte ii.pdf

2

Trabaje con precaución. Avisar al profesor o asistente de laboratorio si alguna

sustancia se derrama.

No mirar al interior del tubo durante el calentamiento ni dirigir durante el

calentamiento la boca del tubo de ensayo hacia su cuerpo o hacia otra persona.

Al realizarlo partir de las porciones superiores hacia abajo. Si no se toma esta

precaución el vapor que asciende puede causar peligros salpicaduras del contenido

fuera del tubo cuando se encuentra con la capa superior de líquido (fría).

Para percibirlo mueva lentamente la mano sobre la boca del recipiente que contiene la

sustancia y aspire con precaución. No dirigir directamente la nariz hacia el recipiente.

Evitar mecheros encendidos cerca de los líquidos volátiles e inflamables.

Deben ser manipulados por el profesor o asistente de laboratorio.

agregue agua sobre un ácido. Agregue siempre el ácido concentrado, en pequeñas

cantidades, sobre el agua y agitando continuamente.

Manipúlelas con máximo cuidado.

Asegúrese que el vidrio esté frío antes de cualquier manipulación, a simple vista el

vidrio caliente y frío no se distingue. Al introducir n tubo en un tapón debe lubricar

el vidrio. Al acodar vidrio permita que se enfríe. Nunca fuerce dentro o fuera las

Al calentar tubos de ensayo.

Calentar líquidos en tubos de ensayo.

Olor de sustancias volátiles o de gases.

Líquidos volátiles e inflamables.

Recipientes con cantidades de sustancias peligrosas.

Dilución de ácidos.

No

Sustancias corrosivas.

Trabajar con vidrio (introducción de tubos en tapones de hule o corcho).

Page 3: informe_parte ii.pdf

3

uniones de hule de los tubos de vidrio o cualquier otro material que se pueda quebrar.

La glicerina o el detergente e incluso el agua facilit n la tarea de quitar dichas

uniones.

Ni colocar alimentos sobre la mesa de laboratorio.

Siempre debemos trabajar en un lugar bien ventilado. En el caso en que debas usar

sustancias que desprendan vapores, hazlo dentro de las campanas de extracción.

Las puertas de acceso al laboratorio y salida de emerg ncia deben abrir hacia afuera.

Enlazarse el cabello largo para evitar accidentes con a llama del mechero. No utilizar

exceso de accesorios sobre su cuerpo.

Sistemas cerrados, ni directa ni indirectamente.

Usar soportes que se apoyen bien en la mesa. Vigilar c tinuamente los aparatos con

centro de gravedad alto.

Tener un adecuado equipo para primeros auxilios, conocer los pasos a seguir en cada

caso luego de un accidente e inmediatamente buscar la a de un especialista.

Lavar inmediatamente con abundante agua mínimo durante 10 minutos.

Prohibido comer, beber o fumar en el Laboratorio.

Ventilación.

Acceso al laboratorio.

Cabello largo y accesorios.

No calentar.

Montaje y armado de equipos.

Primeros auxilios.

Sustancias corrosivas en contacto con piel y ojos.

Page 4: informe_parte ii.pdf

4

Todo el material que vayas a emplear debe estar perfectamente limpio tanto al

principio como al final del experimento, con el propós to de evitar contaminaciones o

reacciones no deseadas durante el desarrollo de la práctica.

Las regulaciones ambientales requieren que una persona que ha generado un residuo químico

lo catalogue como peligroso o no peligroso. La información en esta sección ayudará al

generador de residuos químicos a clasificarlos.

Un es cualquier residuo químico líquido, gaseoso o sólido que

exhibe cualquiera de las siguientes características:

Un residuo químico es inflamable si presenta cualquier e las siguientes

Propiedades:

Es un líquido cuyo punto de inflamación sea menor a 60 ºC

No es un líquido pero es capaz bajo condiciones de temperatura y presión estándar, de

causar fuego bajo la acción de una fricción, absorción de humedad o cambios

químicos espontáneos y, cuando arde, se quema vigorosa y persistentemente.

Es un sólido, líquido o gas que consume o libera oxígeno fácilmente, ya sea a

temperatura ambiente o bajo calentamientos suaves. Est incluye a los peróxidos,

cloratos, percloratos, nitratos y permanganatos.

Un residuo químico es si el residuo posee cualquiera de las

siguientes características:

Una disolución acuosa que posea un pH menor o igual a o mayor o igual que 12.5

es considerada como corrosiva.

Limpieza de materia y equipo

CLASIFICACIÓN DE RESIDUOS PELIGROSOS Y NO PELIGROSOS

residuo químico peligroso

Inflamabilidad.

Corrosividad. corrosivo

Page 5: informe_parte ii.pdf

5

Sólidos que, cuando son mezclados con una parte igual de agua, forman disoluciones

con un pH como se describió en el inciso anterior.

Un residuo químico se caracteriza por ser reactivo si osee cualquiera de las

siguientes propiedades:

Normalmente es inestable y fácilmente realiza un cambio violento sin detonación.

Cuando se mezcla con agua, reacciona violentamente, forma mezclas potencialmente

explosivas, o genera gases tóxicos en cantidades suficientes como para representar un

peligro a la salud humana.

Contiene cianuros o sulfuros que, cuando son expuestos a condiciones de pH entre 2.0

y 12.5, pueden generar gases tóxicos en cantidades suf cientes como para presentar un

peligro a la salud humana.

Un residuo se considera peligroso por su toxicidad al nte cuando presenta

niveles excesivos de diversos constituyentes tóxicos entre los que se puede mencionar los

siguientes: arsénico, cadmio, cromo(VI), plomo, mercurio, níquel, selenio, talio, cobre, zinc,

cianuros, disolventes clorados como el cloroformo y el racloruro de carbono.

La etiqueta es, en general, la primera información que recibe el usuario y es la que permite

identificar el producto en el momento de su utilización. Todo recipiente que contenga un

producto químico peligroso debe llevar, obligatoriamente, una etiqueta bien visible en su

envase (Figura) que, redactada en el idioma oficial del Estado contenga:

Reactividad.

Toxicidad.

PRODUCTOS QUÍMICOS

Etiqueta

Page 6: informe_parte ii.pdf

6

Fuente: Martínez Grau, Mª Á. y Csákÿ, A. G., Técnicas experimentales en síntesis orgánica,Ed. Síntesis, Madrid, 2001-2008

Nombre de la sustancia o del preparado. Incluido, en e caso de los preparados y en

función de la peligrosidad y de la concentración de los distintos componentes, el

nombre de alguno(s) de ellos

Nombre, dirección y teléfono del fabricante o importad r. Es decir del responsable de

su comercialización

Símbolos e indicaciones de peligro para destacar los r esgos principales (Figura I-2).

Figura: I-1: Símbolos e indicaciones de peligro de las sustancias y preparados

peligrosos

Page 7: informe_parte ii.pdf

7

C Corrosivo Clasificación: Estos productos químicos causan

destrucción de tejidos vivos y/o materiales inertes.

Precaución: No inhalar y evitar el contacto con la

piel, ojos y ropas.

Ácido clorhídrico

Ácido fluorhídrico

E Explosivo Clasificación: Sustancias y preparaciones que

pueden explotar bajo efecto de una llama o que son

más sensibles a los choques o fricciones.

Precaución: evitar golpes, sacudidas, fricción,flamas

o fuentes de calor

Nitroglicerina

O Comburente Clasificación: Sustancias con capacidad de

incendiar otras facilitando la combustión .

Precaución: evitar su contacto con combustibles.

Oxígeno

Nitrato de potasio

Peróxido de

hidrógeno

Símbolo de

riesgo y

nombre

Significado (definición y precaución) Ejemplos

Page 8: informe_parte ii.pdf

8

F Inflamable Clasificación: Sustancias y preparaciones: -que

pueden calentarse y finalmente inflamarse en

contacto con el aire a una temperatura normal sin

empleo de energía, o

-sólidas, que pueden inflamarse fácilmente por

una breve acción de una fuente de inflamación y

que continúan ardiendo o consumiéndose

después de haber apartado la fuente de

inflamación, o -líquidas que tiene un punto de

inflamación inferior a 21 ºC, o gaseosas,

inflamables en contacto con el aire a presión

normal, o -que, en contacto con el agua o el aire

húmedo, desenvuelven gases fácilmente

inflamables en cantidades peligrosas;

Precaución: evitar contacto con materiales

ignitivos (aire, agua)

Benceno

Etanol

Acetona

F+

Extremadamente

inflamable

. Clasificación: Sustancias y preparaciones

líquidas, cuyo punto de inflamación se sitúa

entre los 21 ºC y los 55 ºC;

Precaución: evitar contacto con materiales

ignitivos (aire, agua).

Hidrógeno

Etino

Éter etílico

Símbolo de

riesgo y nombreSignificado (definición y precaución) Ejemplos

Page 9: informe_parte ii.pdf

9

T Tóxico Clasificación: Sustancias y preparaciones que,

por inhalación, ingestión o penetración cutánea,

pueden implicar riesgos graves.

Precaución: todo el contacto con el cuerpo

humano debe ser evitado.

Cloruro de bario

Monóxido de

carbono Metanol

T+ Muy tóxico Clasificación: Por inhalación, ingesta absorción a

través de la piel, provoca graves problemas de

salud e inclusive la muerte.

Precaución: todo el contacto con el cuerpo

humano debe ser evitado.

Cianuro

Trióxido de

arsénico Nicotina

Xi Irritante Clasificación: Sustancias y preparaciones no

corrosivas que, por contacto inmediato,

prolongado o repetido con la piel o las mucosas, .

Precaución: los gases no deben ser inhalados y el

contacto con la piel y ojos debe ser evitado.

Cloruro de calcio

Carbonato de

sodio

Xn Nocivo Clasificación: Sustancias y preparaciones que,

por inhalación, ingestión o penetración cutánea,

pueden implicar riesgos a la salud de forma

temporal o alérgica;

Precaución: debe ser evitado el contacto con el

cuerpo humano, así como la inhalación de los

vapores.

Etanal

Diclorometano

Cloruro de potasio

Figura: I-2:. : Símbolos e indicaciones de peligro para destacar los riesgos principales

Fuente: http://www.2.udec.cl/sqrt/reglamento/reglresiduos.html

Símbolo de

riesgo y nombreSignificado (definición y precaución) Ejemplos

Page 10: informe_parte ii.pdf

10

Leer la guía experimental atentamente.

Distribuir las de tareas entre los miembros del grupo.

Emplear elementos de protección personal necesarios.

Buscar los materiales y reactivos necesarios.

Leer las etiquetas detenidamente y utilizar los frasco abiertos en primer lugar.

Limpiar los recipientes vacíos

Mantener la mesa de trabajo ordenada: limpiar lo que s derrame y lavar los utensilios

que se van utilizando a medida que se trabaja.

Reutilizar el equipo siempre que sea posible.

Volver a colocar el material en su sitio del laboratorio.

Colocar los residuos en los cubos de basura.

Echar los residuos líquidos no aprovechables por el desagüe, haciendo correr el agua

mientras tanto. No tirar al desagüe cristal, metal, po celana u otros restos sólidos.

Comunicar al del laboratorio qué material se ha roto para reponerlo.

Tapar y guardar los reactivos en el lugar correspondiente .

Cerrar todas las puertas y cajones de las mesas de trabajo.

Limpiar la zona de trabajo si se ha roto material de vidrio.

Asegurarse de que están cerradas todas las llaves de paso d los gases ,agua y

desconectar los equipos

Volver a colocar los equipos especiales en su lugar,

Colocar las mesas y sillas en su lugar

COMPORTAMIENTO EN EL LABORATORIO.• Antes de comenzar el experimento:

Durante la realización del experimento:

• Al abandonar el laboratorio:

Page 11: informe_parte ii.pdf

11

La disposición adecuada de residuos químicos es esencial para proteger la salud y mantener la

seguridad de quienes laboran en un laboratorio químico. Llevarla a cabo también reducirá

amenazas presentes y futuras sobre el medio ambiente. Es por ello que la disposición de todos

los residuos químicos, hecha de una manera segura, eficiente, legal, y a un costo adecuado

resulta imperativa.

La minimización de residuos químicos es la reducción, n lo posible, de la cantidad de

residuos químicos peligrosos que son generados o subsecuentemente tratados, almacenados, o

descargados. Incluye cualquier reducción en la fuente, mediante el reciclaje, o de las

actividades de tratamiento que conduzcan a la reducción del volumen total o de la cantidad de

residuos químicos peligrosos, así como a la reducción e la toxicidad de los residuos

químicos peligrosos.

La reducción en la fuente, el reciclaje, y el tratamie o en el laboratorio son tres tipos de

actividades que reducen el volumen o la toxicidad de cualquier residuo químico peligroso:

Es el mejor acercamiento a la minimización de residuos Puede verse como una actividad que

reduce o elimina la generación de un residuo químico p groso en un proceso. Un elemento

de reducción en la fuente es, por ejemplo el cambio de reacti os. Así, la generación de

residuos por disolventes puede reducirse o eliminarse ustituyéndolos por materiales menos

tóxicos y más seguros desde el punto de vista ambiental. Por ejemplo, los detergentes

biodegradables pueden sustituir a los disolventes que usan en la limpieza del material de

vidrio.

II. PROTECCIÓN AL AMBIENTE Y ELIMINACIÓN DE DESECHOS QUÍMICOS

DISPOSICIÓN DE RESIDUOS QUÍMICOS

1. Reducción en la fuente

Page 12: informe_parte ii.pdf

12

Incluye tanto la reutilización como la recuperación. El reciclaje puede verse como cualquier

actividad que reduce el volumen de residuos peligrosos o tóxicos con la generación de un

material valioso o de alguna forma de energía aprovech a reutilización, la recuperación,

y el reciclaje deberían ser las primeras consideraciones antes de clasificar un reactivo químico

como un desecho.

El tratamiento para la reducción o eliminación de la t xicidad de un residuo químico

peligroso puede realizarse de dos formas, principalmente:

Alteración de los constituyentes tóxicos del residuo a formas menos tóxicas o no

tóxicas.

Disminución de la concentración de constituyentes tóxicos en el residuo, empleando

mecanismos diferentes a la dilución (la dilución de los residuos para lograr las

concentraciones aceptables de disposición de descarga inaceptable). Idealmente,

estos pasos de tratamiento deberían estar descritos en todos los procedimientos de

laboratorio. Los residuos químicos que se generan habitualmente en los laboratorios

de enseñanza experimental incluyen ácidos y bases inorgánicos, disolventes orgánicos,

metales, un gran número de polvos secos, los reactivos sin reaccionar y los productos

de reacción de experimentos. Los residuos que se gener n en el laboratorio son

usualmente mezclas, disoluciones o sustancias contaminadas, y en ocasiones agentes

químicos. Un programa de minimización de residuos debe involucrar un esfuerzo

continuo, no es un procedimiento que se lleva a cabo una sola ocasión. Una de las

metas finales de cualquier experimento debería ser la e reducir al mínimo la

generación de residuos.

2. Reciclaje

3. Tratamiento en el punto de generación (en el laborator o)

Page 13: informe_parte ii.pdf

13

• Normalmente se usa el de CO2

• Para incendio o derrame masivo de y eliminación de desechos

químicos reactivos sobre la vestimenta.

• Para envolver personas en caso de incendio, provocado por

líquidos inmiscibles con el agua, debe estar elaborada de material no combustible.

• Para lavado de ojos en caso de caída de reactivos o partículas

sólidas.

• Para cubrir sustancias que se están quemando o para a sorber derrames de

reactivos.

• Para primeros auxilios con medicamentos básicos

para quemaduras, intoxicaciones, cortaduras, etc.

El laboratorio debe ser construido de manera que haya facilidad para salir en caso de

incendio u otro tipo de emergencia, tener al menos una salida de emergencia, claridad,

extractores de gases, ventilación natural y artificial.

Las vías de salida no deben estar nunca obstruidas por sillas, basureros o mesas, para que

en un momento de peligro no dificulten el paso.

El estudiante debe conocer la localización del botiquí que contiene material de primeros

auxilios, de las llaves generales de agua, gas y elect icidad, las cuales deben estar

señaladas y fácilmente accesibles. Antes de empezar a trabajar en el laboratorio asegúrese

de conocer la ubicación de todos estos elementos.

EQUIPO Y ACCESORIOS QUE DEBE POSEER UN LABORATORIO QUÍ ICOExtintores de incendio: .

Ducha de seguridad:

Manta de seguridad:

Frasco lavador de ojos:

Arena:

Botiquín de primeros auxilios:

Page 14: informe_parte ii.pdf

14

En general los ácidos y álcalis actúan fuertemente sobre la materia orgánica e inorgánica,

cada uno según sus propiedades específicas y concentración. Los ácidos se almacenan

generalmente en frascos de vidrio, con excepción del á fluorhídrico, HF(ac) y las

bases (álcalis) de alta concentración que actúan considerablemente sobre el vidrio,

especialmente caliente, por eso son almacenados de preferencia en botellas de plástico o

polietileno. Los ácidos y álcalis diluidos actúan lentamente y de forma destructiva sobre

tejidos orgánicos.

La piel libre de heridas raramente es afectada, los ojos sí lo son. Los álcalis y ácidos

diluidos deben ser eliminados del cuerpo o de la vestimenta lavando con mucha agua.

Los siguientes ácidos y álcalis en altas concentracion son muy peligrosos:

• Ácido sulfúrico, H2SO4 (ac): Deshidratante, oxidante y sulfonante.

• Ácido nítrico, HNO3(ac) : Oxidante y agente de nitración, reacciona de forma explosiva

con el alcohol.

• Ácido clorhídrico, HCl(ac): Produce fuertes irritaciones en el aparato respiratorio.

• Ácido perclórico, HCIO4(ac): Reacciona explosivamente con sustancias orgánicas.

• Amoníaco, NH3(g) o NH4OH(ac): Produce fuertes irritaciones en las vías respiratorias.

• Hidróxido de sodio, NaOH e hidróxido de potasio, KOH: Muy corrosivos especialmente

con tejidos orgánicos.

A causa de estas características, debe tenerse mucho c idado al trabajar con ácidos y

álcalis concentrados, para eliminarlos de la piel o de la ropa se usa agua en abundancia.

En caso del ácido sulfúrico concentrado (18 M) que se a derramado en la mesa de

trabajo o en el piso se usa primero una tela o algodón seco y limpio para absorberlos (si

está fácilmente accesible) para después lavar con agua. En el caso de los ojos, el

Peligros inherentes al trabajo con sustancias ácidas y básicas

Page 15: informe_parte ii.pdf

15

amoníaco es más peligroso que otros álcalis y estos a vez, más peligrosos que los

ácidos de igual concentración: • El transporte de ácidos y álcalis debe hacerse

cuidadosamente, no sujetar los frascos únicamente por l cuello, también deben

sostenerse por la base.

• Frascos con álcalis deben ser tapados con tapones de hule o corcho. Tapones de vidrio

son atacados por los álcalis volviéndose imposible sacarlos después de cierto tiempo.

• Frascos conteniendo ácido clorhídrico o amoníaco deb n ser protegidos de

calentamiento (fuentes de calor, luz solar), ya que su presión de vapor sube rápidamente

al aumentar la temperatura y puede producir explosione .

• No se debe pipetear ácidos, o álcalis con la boca; para eso se usa una bomba de hule

(pera) y aún así se requiere práctica.

• Al trabajar con ácidos, debe tenerse especial cuidado pues puede haber

desprendimiento de vapores peligrosos.

• Al evaporar ácidos u otras sustancias corrosivas, tóxicas e irritantes, hágalo dentro del

extractor de gases.

• Bajos volúmenes de ácidos y álcalis diluidos se pueden desechar en la pila haciendo

que el agua fluya en abundancia.

Al diluir los ácidos debe agregarse el ácido al agua lentamente y agitando, nunca realice

la operación inversa, pues puede producirse una emisió violenta de calor y en algunos

casos una explosión (caso del ácido sulfúrico concentrado: (H2SO4, 18 M).

Además de las sustancias inflamables (alcoholes, éter, disulfuro de carbono, etc.), el gas

de la tubería, la madera, las mangueras, la vestimenta, las instalaciones eléctricas y

Reglas generales para la protección contra incendios

Page 16: informe_parte ii.pdf

16

también muchos productos químicos sólidos, constituyen potenciales fuentes de incendio

en los laboratorios; por ello debe observar lo siguiente:

Quemadores, calentadores con resistencia sin protección, etc., nunca deben utilizarse

sobre madera.

Las llaves de gas deben estar siempre bien cerradas cu ndo no se esté utilizando los

quemadores. Cuando se perciba olor a gas debe comunica lo inmediatamente al profesor

y no encender fuego antes de que el problema sea resuelto.

Apague todo aparato eléctrico luego de terminar el trabajo de laboratorio

Manipule los productos químicos inflamables con mucha ecaución.

Abrigos, libros y otros objetos personales no deben colocarse sobre la mesa de trabajo

para ello están los estantes correspondientes.

No utilice nunca el quemador a la orilla de la mesa, p evitar que su gabacha o su

ropa se quemen

Evite que mangueras de otros quemadores o del resto de los aparatos armados

permanezcan cerca de quemadores encendidos.

Un quemador de gas “calado” debe apagarse inmediatamente.

Precaución: El quemador de gas puede estar muy calient debido al “calado”. Si a pesar

de todas las precauciones anteriores se iniciara un incendio, tenga presente lo siguiente:

Conserve la calma, actúe rápido pero racionalmente.

Utilice el extintor de incendios adecuado: polvo quími o o CO2.

Cierre las llaves generales de gas y si es posible desconecte la electricidad.

Si no participa en la extinción del fuego, aléjese del lugar.

Page 17: informe_parte ii.pdf

17

La ruptura de vidrio siempre es causa de peligro en el laboratorio, un recipiente de vidrio

que se quiebre deja no solo pedazos de vidrios cortant y puntiagudos, sino que también

puede provocar otros accidentes. Se debe cumplir estr ctamente lo siguiente al trabajar

con material de vidrio:

Los aparatos deben ser armados firmemente, no utilizar cuadernos o libros como

apoyo. Está totalmente prohibido utilizar alambres o c das para sujetarlos.

Nunca utilice equipo de vidrio quebrado

Varillas y tubos de vidrio deben tener los extremos pulidos, esto s logra calentando

los extremos con la llama del quemador Bunsen, hasta la fusión o raspando los bordes

con un cedazo fuerte, use guantes y anteojos de seguridad al hacerlo, es preferible

hacerlo dentro de la capilla extractora de gases, para evitar respi partículas.

Accidentes frecuentes con vidrio ocurren al introducir termómetros y tubos de vidrio

en tapones de hule o mangueras, para evitar esos accidentes debe seguir las siguientes

recomendaciones:

– El extremo del objeto de vidrio, debe ser sumergido en glicerina u otra sustancia

lubricante.

– Nunca aplique mucha fuerza para introducir un objeto d vidrio en un tapón o

manguera

– Proteger ambas manos con una tela (limpión o pañuelo), o guantes gruesos.

– Mucho cuidado al sacar una manguera en un tubo de vidr o, si se dificulta es mejor

cortarla.

Trabajo con vidrio y aparatos de vidrio

.

Page 18: informe_parte ii.pdf

18

Es frecuente que los tapones de vidrio se peguen firme nte en los recipientes, en este

caso, se debe golpear el tapón suavemente con un trozo de madera hasta que se afloje, las

manos y los ojos deben estar protegidos.

Los recipientes cerrados para aflojar un tapón de vidrio.

Frecuentemente se pega la tapa de los desecadores, principalmente cuando estos han sido

sometidos largo tiempo al vacío o se han colocado objetos calientes dentro del mismo.

Para sacar la tapa en estas condiciones se debe, primero quitar el vacío, luego se toma

firmemente la parte inferior del desecador con el brazo izquierdo y se presiona la tapa

fuertemente (pero con cuidado) con la mano derecha en dirección al hombro derecho.

De esta manera se evita una apertura repentina del des cador que en la mayoría de los

casos hace que se derrame la sustancia contenida en él..

Unas prácticas de trabajo y una formación adecuadas pueden contribuir a reducir las

exposiciones peligrosas. Para casi todos los disolvent peligrosos, es posible encontrar

un substituto con características semejantes pero cuyos efectos sobre la salud no sean tan

graves.

La ventilación es importante y debe tenerse muy presenta al emplear disolventes.

Debe tenerse en cuenta también la utilización de equipos apropiados (extintores de

incendios, material adsorbente, etc.), que estarán dis para casos de emergencia,

derrames,etc.

Los equipos de protección personal, como pantallas frontales, guantes y mascarillas con

filtros, deben estar disponibles en los puestos que así lo requieran y se hará uso de los

mismos conforme a las recomendaciones oportunas. Permanecerán guardados en un lugar

limpio y alejado de un posible contacto con los vapores del disolvente.

no deben calentarse

Prácticas y controles en el lugar de trabajo

Page 19: informe_parte ii.pdf

19

La manipulación adecuada de las sustancias y el cuidad al desechar los residuos, son la

clave para disminuir los riesgos inherentes a las mismas.

Las siguientes son definiciones de los términos más utilizados en descripción de las

características de las sustancias que usará durante las prácticas de laboratorio en los

cursos de Química.

Especie química con efectos dañinos. Toda sustancia qu mica es un toxón

dependiendo del período de exposición, lo cual implica que haya grados de exposición

que dan cierta seguridad en lo que concierne a la salud del ser humano. Son excepciones

los carcinógenos y mutágenos químicos.

La capacidad de una sustancia de dañar los tejidos orgánicos vivos cuando ha

alcanzado lugares susceptibles dentro del cuerpo o sobre él. Una sustancia muy tóxica

causará daño a un organismo si se le administra en ca dades muy pequeñas, mientras

que una de baja toxicidad produce efecto si la cantidad es muy grande.

se puede hacer referencia a toxicidad sin considerar:

Cantidad de sustancia suministrada o absorbida (dosis).

Vía de administración de la dosis: absorción cutánea, ingestión o inhalación.

Tipo de la lesión.

Gravedad de la lesión

Tiempo requerido para producir la lesión.

La cuantificación de la toxicidad debe hacerse relacionando la cantidad de toxón (dosis)

con el peso del organismo para producir un efecto determinado. Cuando el efecto es la

muerte del Organismo, a la dosis se le conoce como

El peligro de un toxón se relaciona con su toxicidad y con el riesgo de exposición de

parte del individuo, además debe considerarse la especie, el sexo y la edad del mismo al

igual que los factores ambientales: temperatura, humedad, presión, etc. Por ejemplo, de

Toxón:

Toxicidad:

No

dosis letal .

Page 20: informe_parte ii.pdf

20

las sustancias conocidas es la toxina de la bacteria , causante del

botulismo, para el ser humano es letal una dosis de un picogramo (10-12 g) por kilogramo

de masa, sin embargo, no es peligrosa pues normalmente el ser humano no está expuesto

a ella. Todo lo contrario sucede con el metanol, CH3OH, sustancia considerada muy

venenosa, pues a pesar de que produce toxicidad en dosis muy pequeñas, es muy alto el

riesgo de exposición.

El peligro de toxicidad de un compuesto depende de su estado físi o y de su solubilidad

en algún disolvente, algunas sustancias en estado sóli o no son dañinas, pero pueden ser

muy tóxicas en forma de polvo, vapor (plomo, cromo, berilio) o como disoluciones.

: Capacidad de un organismo para soportar los efectos de una droga.

: Material sólido, líquido, gas, que se enciende y ard fácilmente.

Todo material capaz de quemarse independientemente de temperatura

de autoignición y de su estado físico, sea sólido, líquido o gaseoso.

: Temperatura a la que un líquido desprende la cantidad

de vapor suficiente para formar una mezcla inflamable con el aire cercano a la superficie.

.: Mínima temperatura necesaria para iniciar o causar

combustión auto sostenida de cualquier sustancia en au encia de chispa o de llama.

: intervalo (%) de mezcla de gas o de vapor inflamable y aire que

puede ser encendida a 20°C y 1 atmósfera de presión.

: Descomposición química de un material explosivo que autopropaga

fácilmente, acompañada de una onda sonora de elevada presión y temperatura; esta

reacción puede desencadenarse por impacto mecánico (golpe) o elevación de la

temperatura (calentamiento, chispaeléctrica).

Clostridium botulinum

Tolerancia

Inflamable

Combustible:

Temperatura de inflamación,

Temperatura de autoignición,

Límite de explosión,

Detonación

Page 21: informe_parte ii.pdf

21

La manera de almacenar un producto químico depende de su estado de agregación y de su

reactividad hacia el recipiente, su estabilidad térmica, descomposición espontánea y otras

propiedades propias de cada uno de ellos.

de ilimitada estabilidad (por ejemplo: NaCl), son almacenados en

botellas transparentes, los sensibles a la luz se almacenan en botellas de color ámbar.

o sensibles al aire, son almacenados en recipientes herméticos,

en una atmósfera de gas inerte o en desecadores. La ut ción de estos recipientes solo

está permitida si la sustancia no se vaporiza durante l almacenaje.

deben ser almacenados a bajas temperaturas, sin

embargo hay que prever las medidas de seguridad a tomar, en caso de que los productos

de descomposición sean corrosivos, venenosos, etc.

Para algunos productos hay prescripciones especiales d almacenaje, por ejemplo,

sodio metálico en aceite parafínico, fósforo blanco en agua, etc.

son normalmente almacenadas en botellas para líquidos, aquí

valen las mismas observaciones de almacenaje hechas para sólidos. Líquidos que hierven

a temperatura ambiente, cuando son almacenados herméticamente, requieren que el

envase sea de vidrio grueso, para abrir primero hay qu enfriar, luego se cierra

garantizando de nuevo el cierre hermético Debido a su a presión de vapor, muchos

líquidos tienden a reaccionar con la tapa del recipiente que los contiene y por ello la

selección de la tapa debe ser bien seleccionada.

Almacenamiento de productos químicos

El envase

Productos sólidos

Polvos higroscópicos

Productos de fácil descomposición

Sustancias líquidas

Page 22: informe_parte ii.pdf

22

Son resistentes a los disolventes orgánicos excepto al alcohol . Son

atacados por ácido sulfúrico concentrado, por el ácido nítrico concentrado, por los

halógenos y por los álcalis. Su resistencia aumenta si es sumergido en un baño de

parafina a 120oC por unos minutos.

Son empleados principalmente en botellas con álcalis, de ácido clorhídrico

concentrado, ácido fosfórico al 70% y ácido sulfúrico al 20%. Son destruidos

rápidamente por los halógenos (flúor, cloro, bromo, yodo), ozono, álcalis concentrados y

ácido sulfúrico de elevadas concentraciones. Con muchos disolventes orgánicos tales

como benceno, éter, piridina, disulfuro de carbono, hidrocarburos clorados, etc, el hule

se hincha, se expande, lo que hace difícil quitar los apones de los frascos que contienen

estos disolventes.

: Son resistentes a álcalis concentrados, ácido clorhídrico concentrado y al

ácido sulfúrico concentrado hasta aproximadamente 60oC. Con excepción de los

alcoholes e hidrocarburos alifáticos, los disolventes rgánicos provocan la hinchazón de

PVC.

: Son resistentes hasta 100oC al ácido clorhídrico concentrado, ácido

fluorhídrico al 40%, ácido nítrico y álcalis al 50%. Con el ácido sulfúrico concentrado el

polietileno reacciona con decoloración alrededor de lo 40oC, sin embargo, puede ser

empleado hasta esta temperatura. La estabilidad del po frente a los disolventes

orgánicos es muy limitada.

El politetrafluoretileno (teflón), posee propiedades traordinarias de

estabilidad; no es atacado por el ácido fluorhídrico, cido nítrico o agua regia . El ácido

sulfúrico concentrado o hidróxidos de altas concentraciones solo actúan sobre el teflón a

Los tapones

De corcho:

De hule:

De PVC

De polietileno

De teflón:

Page 23: informe_parte ii.pdf

23

temperaturas superiores a 300oC. Frente a la mayoría de los disolventes orgánicos el

teflón es también estable y además puede ser calentado hasta 200oC sin que se deforme.

El almacenaje de productos químicos inflamables en refrigeradoras, solo es permit si

estas son a prueba de explosión y aún así, los recipientes se deben cerrar herméticamente.

El almacenaje de productos químicos obliga a la utilización siempre una etiqueta de fácil

lectura y resistente, tal regla vale también para recipientes que son empleados por un

corto período (por ejemplo, frascos de reacción).

La etiqueta que identifica un reactivo debe ser preparada de una manera tal que las

personas sin conocimientos especiales puedan ayudar en caso de peligro, especial

importancia requiere el material con que se escribe e a etiqueta, la mayoría de las tintas

utilizadas en lapiceros se destiñen rápidamente en la atmósfera de laboratorios químicos,

se recomienda el uso de marcadores de tinta indeleble o bien utilizar etiquetas impresas

cubiertas con plástico adhesivo. Al sacar líquido de n recipiente se debe tomar la

precaución de no dañar la etiqueta con las gotas remanentes, se tiene como regla general,

verter el líquido del lado opuesto a la etiqueta, limpiándose con un trapo las gotas que

quedan en el exterior del recipiente.

Los cilindros contienen los gases más importantes en el estado gaseoso (H2, O2, N2, CO)

o licuado: (CO2, SO2, NH3, Cl2, C2H2). En el primer caso, las presiones internas son muy

altas, llegando hasta 200 atm. Para los gases licuados la presión interna es la producida

por la presión de vapor del líquido almacenado. Los cilindros de CO2, exigen cuidados

especiales, dado que la temperatura crítica del dióxido de carbono es de 31,5oC, sobre

esta temperatura la presión en el cilindro aumenta considerablemente. Las temperaturas

El almacenaje

La etiqueta

Cilindros de gas y aparatos al vacío.

Page 24: informe_parte ii.pdf

24

críticas del cloro, dióxido de azufre, amoníaco y acetileno son 143,5oC, 157oC, 132,4oC y

35,9oC respectivamente.

.

En el laboratorio se manejan gran cantidad de productos y se efectúan diversas

operaciones que conllevan la generación de residuos, la mayoría de los casos

peligrosos para la salud y el medio ambiente. Aunque el volumen de residuos que se

generan en los laboratorios es generalmente pequeño n relación al proveniente del

sector industrial, no por ello debe minmizarse el prob ema.

Unas adecuadas condiciones de trabajo en el laboratorio implican inevitablemente el

control, tratamiento y eliminación de los residuos generados en el mismo, por lo que su

gestión es un aspecto imprescindible en la organización de todo laboratorio.

Otra cuestión a considerar es la de los derrames, que i bien tienen algunos aspectos

coincidentes con los métodos de tratamiento para la eliminación de residuos, la actuación

frente a ellos exige la consideración de otros factores como la rapidez de acción,

aplicación de métodos de descontaminación adecuados, etc.

Para una correcta realización de lo indicado anteriormente s aconsejable designar

personas responsables, así como facilitar una completa formación a todo el personal del

laboratorio sobre estos temas.

El tipo de tratamiento y gestión de los residuos del laboratorio depende, entre otros

factores, de las características y peligrosidad de los mismos, así como de la posibilidad de

recuperación, de reutilización o de reciclado, que para ciertos productos resulta muy

aconsejable.

Si consideramos su peligrosidad se podría establecer la iguiente clasificación.

Eliminación de productos químicos

Clasificación de los residuos

Page 25: informe_parte ii.pdf

25

Estos residuos, considerando sus propiedades, pueden e iminarse mediante vertidos,

directamente a las aguas residuales o a un vertedero. Si aún no considerándose peligrosos,

son combustibles, se pueden utilizar como combustibles suplementarios, como ocurre,

por ejemplo, con los aceites, que, si son "limpios", se pueden eliminar mezclándolos con

combustibles; los aceites fuertemente contaminados, en cambio, deberán ser procesados

en función de los contaminantes que contengan (metales clorados, etc.).

: Pueden utilizarse como combustible suplementario o incinerarse. Debe

controlarse la posible peligrosidad de los productos de combustión.

: Pueden verterse a las aguas residuales o vertederos ntrolados

siempre que previamente se haya reducido su peligrosidad mediante tratamientos

adecuados.

Son residuos con alto riesgo y normalmente deben ser manipulados fuera del

laboratorio por personal especializado.

Su eliminación está en función de sus características de peligrosidad (tóxica,

irritante, inflamable). Para su eliminación, deberán t erse en cuenta las normativas sobre

emisión existentes.

Deben almacenarse en recipientes específicos convenientemente señalizados y retirarse

siguiendo procesos preestablecidos. Normalmente se est rilizan y se incineran.

Residuos radiactivos

Para su eliminación deben considerarse sus características físico-químicas así como su

actividad radiactiva y vida media (tiempo de semidesintegración). Su almacenamiento

Residuos no peligrosos

Residuos químicos peligrosos

Combustibles

No combustibles

Explosivos:

Gases:

Residuos biológicos

Page 26: informe_parte ii.pdf

26

debe efectuarse en recipientes específicos debidamente señalizados y deben retirarse de

acuerdo a los procedimientos establecidos.

La eliminación de productos químicos requiere siempre cauciones especiales que

dependen del material a ser eliminado.

Page 27: informe_parte ii.pdf

27

Familiarizar al estudiante con los nombres y uso del material de laboratorio.

Conocer el nombre de cada instrumento utilizados en el laboratorio para realizar las

prácticas.

Comprender e identificar la utilidad de los instrumentos y equipo de laboratorio.

En la preparación de una práctica de laboratorio, el e diante debe conocer el uso de los

materiales y equipos comunes de un laboratorio de química, al igual que los reactivos, para de

esta manera poder llevar a cabo con éxitos los experimentos que realiza. Lo que se expresa en

los siguientes:

- Conocer los materiales comunes de uso en un laboratorio de química y para que se utilizan.

- Conocer los equipos comunes de uso en un laboratorio e química y su utilidad.

- Conocer cuáles son las unidades de medida comunes en química

1- La Balanza: Instrumento utilizado para determinar la masa.

2- Desecador: Es utilizado para mantener en ambiente seco el material afectable por la

humedad o el dióxido de carbono (CO2). Para mantener seco el espacio interior del desecador

se coloca una sustancia desecante en la parte inferior desecador que puede ser sulfato de

III.EXPERIMENTOS Y TECNICAS DE LABORATORIO QUIMICA GENERAL I

3.1. Practica Laboratorio N°1: Reconocimiento y usos del material del laboratorio.

I. OBJETIVOS:

II: MARCO TEÓRICO:

RECONOCIMIENTO Y USO DE LOS EQUIPOS DE COMUNES LABORATORIO

Page 28: informe_parte ii.pdf

28

calcio anhidro (CaSO4) o cloruro de calcio anhidro (CaCl2). Los desecadores pueden ser de

vidrio o plásticos.

3- Termómetro: El tipo más común de termómetro es un capilar de vidrio que termina en un

bulbo que contiene Hg. Este capilar a su vez está colocado en un tubo de vidrio graduado de

manera que cada 10 divisiones representan un grado centígrado La longitud de la columna de

Hg es proporcional a la temperatura,dado que el Hg, al igual que todas las sustancias cambian

su volumen cuando la temperatura varia.

4- Mechero: Los dos usos del mechero en el laboratorio son calentar líquidos o soluciones y

para el trabajo con material de vidrio. Actualmente para calentar líquidos o soluciones es más

común utilizar planchas de calentamiento.

FIGURA 3.1—1: Desecador

FIGURA 3.1—2: Mechero

Page 29: informe_parte ii.pdf

29

5- Centrifuga: Una centrifuga se utiliza para separar mezclas de sust ncias que están

contenidas en recipiente, por ejemplo líquidos de sales cristalizadas o precipitados difíciles de

filtrar.

6- Piceta: Es un envase provisto de un dispositivo que permite emitir un chorro fino de agua

destilada,

Solución u otro líquido. Se usa para lavar material de vidrio.

7- Agitadores: Son varillas de vidrio de 3-5 mm de diámetro y de longitud conveniente.

Ambos extremos son redondeados. Se usa para agitar un líquido o como herramienta durante

la filtración.

8- Manejo y medida de reactivos sólidos

Los sólidos son siempre dispensados de las botellas que las contienen (plásticas o de vidrio,

dependiendo del reactivo). Para tomar una cantidad de reactivo de la botella que lo contiene

debe colocar una pequeña cantidad (de acuerdo a lo que se necesite) en un envase para sólidos

(vidrio de reloj, vaso de precipitado), nunca inserte una espátula en la botella y no devuelva el

sólido sobrante, ya que esto puede contaminar el reactivo. Los reactivos sólidos son siempre

medidos por peso, para lo cual se usa la balanza.

8- Manejo y medida de reactivos sólidos

Los sólidos son siempre dispensados de las botellas que las contienen (plásticas o de vidrio,

dependiendo del reactivo). Para tomar una cantidad de ctivo de la botella que lo contiene

debe colocar una pequeña cantidad (de acuerdo a lo que se necesite) en un envase para sólidos

(vidrio de reloj, vaso de precipitado), nunca inserte una espátula en la botella y no devuelva el

sólido sobrante, ya que esto puede contaminar el reactivo. Los reactivos sólidos son siempre

medidos por peso, para lo cual se usa la balanza.

9- Manejo y medida de líquidos

Utilizados para colocar o medir volúmenes de líquido a ser vertidos en otro material.

Page 30: informe_parte ii.pdf

30

a) El beaker o vaso de precipitado: Se utiliza para contener líquidos o para medir volúmenes

cuando no se requiere precisión en la medida o cuando trata de medir un volumen

aproximado.

b) El Cilindro graduado: Se utiliza para medir volúmenes de líquidos, cuando no se requiere

una alta precisión en la medida. La lectura del volume se determina visualizando la base del

menisco (curva en el tope de la columna de líquido). Si el liquido es opaco o forma un

menisco convexo se lee la posición del tope del menisc Como precaución no coloque

líquidos calientes en el cilindro graduado.

c) Las Pipetas: Son utilizadas para medir volúmenes de líquidos con alta precisión en la

medida. La lectura del volumen se determina visualizando la base del menisco. No tome

líquidos volátiles o corrosivos sin utilizar la pera d succión. Existen dos tipos de pipetas

aforadas y graduadas.

d) La Bureta: Son tubos largos de vidrio, cilíndricos de calibre uniforme en la porción

graduada, cuyo extremo inferior se cierra con una llave de vidrio. La bureta es el equipo de

laboratorio utilizado para realizar titulaciones. La lectura del volumen se determina

visualizando la base del menisco.

Page 31: informe_parte ii.pdf

31

FIGURA 3.1—3: Manejo y medida de líquidos

Page 32: informe_parte ii.pdf

32

10-Matraces aforados: Un matraz aforado es un recipiente de fondo plano, en a de pera

con un cuello delgado y largo. Una línea fina alrededor del cuello indica el volumen que

contienen a una temperatura determinada (generalmente 0 °C).

11- Equipos de Filtración: Generalmente los sistemas de filtración son utilizados para separar

un sólido que ha precipitado de una solución, para separar sólidos de líquidos o de soluciones,

donde el sólido no es soluble en la mezcla de solvente donde se encuentra y para transferir

precipitados. Para la filtración se utilizan embudos d filtración (filtración por gravedad) o

equipos de filtración por succión. Para la filtración en estos equipos se utiliza papel de

filtro. Hay papeles de filtro de diferentes tamaños y erente porosidad, de acuerdo al tamaño

del embudo de filtración y del tipo de precipitado que se desea separar. Existen dos tipos de

papel de filtro, cualitativo y cuantitativo. El papel filtro cuantitativo es utilizado para

colectar precipitados para análisis cuantitativos (se quiere conocer el peso del precipitado

con precisión). Los cualitativos son para filtrar precipitados donde no se requiere conocer el

peso del precipitado.

Page 33: informe_parte ii.pdf

33

3.1—4 FIGURA: Equipos de Filtración:

Page 34: informe_parte ii.pdf

34

12- Tipos de Reactivos: Para el análisis químico deben emplearse reactivos de a pureza.

Generalmente se emplean reactivos para análisis (p.a.) Los reactivos de baja pureza son

denominados como reactivos técnicos.

El buen desarrollo del trabajo experimental requiere d una limpieza adecuada del material de

vidrio.

Un material de vidrio mal lavado, acarrea errores en el experimento a realizar y se pueden

obtener resultados no reproducibles.

1. El material de vidrio debe lavarse con agua y detergente (no usar exceso de detergente) y

posteriormente con agua destilada.

3.1—5 FIGURA: Materiales de uso Común en laboratorio.

LIMPIEZA DEL MATERIAL DE VIDRIO

Page 35: informe_parte ii.pdf

35

2. Para comprobar si el material de vidrio está limpio, se lo llena con agua destilada y después

se deja escurrir. Si se forman gotas que se adhieren a las paredes del recipiente quiere d cir

que hay una capa de grasa en las paredes. Un material de vidrio bien limpio debe permitir que

el agua destilada escurra sin dejar residuos.

3. Si el material de vidrio se requiere completamente eco para el experimento que se va a

realizar, debe secarse en la estufa (nunca con papel, paños o la bata).

4. Otra manera de secar el material de vidrio es mediante el uso de acetona técnica.

5. Si se requiere de una limpieza a fondo del material de vidrio, se pueden utilizar soluciones

especiales para ello, tales como potasa alcohólica o mezcla sulfocrómica.

6. Cuando un material de vidrio, por ejemplo una pipet una bureta va a ser utilizado, luego

de su limpieza con agua destilada, debe ser lavada varias veces con el líquido que va a

contener, para de esta manera eliminar la posibilidad e contaminación.

Generalmente, en el laboratorio de química, necesitamos medir unidades de longitud, masa,

volumen, tiempo, temperatura y presión. Estas unidades son expresadas de la siguiente

manera:

Longitud: La unidad primaria de longitud es el metro (m), que es distancia, en condiciones

normales, entre dos líneas grabadas en un patrón que se conserva en el

Masa: La unidad peso es el kilogramo (Kg.), el gramo (g) o el miligramo (mg). El kilogramo

es definido como la masa de 1,000028 decímetros cúbicos de agua.

Volumen: La unidad de volumen es el litro, la cual es igual al de un kilogramo de

agua pura, a una temperatura de 3,98 °C y una presión de 760 mm Hg. El mililitro (mL) es la

milésima parte de un litro. Un mililitro es aproximadamente igual a un centímetro cúbico (cc

o cm3). El centímetro cúbico es el volumen de un cubo cuyas aristas tienen un cm de longitud.

UNIDADES DE MEDIDA

Bereau International

des Poids et Mesures, Sérves, Francia.

Page 36: informe_parte ii.pdf

36

Tiempo: La unidad estándar del tiempo es el segundo solar, el cual corresponde a 1/86400 de

la media de un día solar. Este estándar es difícil de ilizar y los relojes son utilizados como

estándares secundarios. Las unidades de medida comunes en experimentos de laboratorio son

horas, minutos o segundos. Algunos experimentos pueden llevar meses y años, caso común en

la simulación de procesos geoquímicos en el laboratori .

Temperatura: La temperatura se define en términos de las variaciones en la presión de un

volumen constante de un termómetro con mercurio (Hg). a unidad de temperatura es el

grado.

Presión: La unidad común de presión es la atmósfera (atm). Una ósfera se define como la

presión ejercida por una columna de mercurio (Hg) a 0 °C correspondiente a 760 mm.

MASA

1 Kilogramo (Kg)=1000 g

1 gramo (g) Peso de aproximadamente 15 gotas de agua

LONGITUD

1 metro (m)= 100 centímetros (cm)

VOLUMEN

1 litro (L)= Volumen de 1 Kg. de agua a su máxima densidad

1 mililitro (mL)= 0,001 L. Volumen de 1 g de agua a 4 °C, su temperatur de máxima

densidad = 15 gotas de agua

PRESIÓN

1 atmósfera (atm)=Presión ejercida por una columna de Hg a 0 °C

Page 37: informe_parte ii.pdf

37

TEMPERATURA

CENTÍGRADOS FAHRENHEIT

-273 -459 Cero Absoluto

-183 -297 Punto de ebullición del oxígeno

-79 -108 Punto de sublimación del CO2

0 +32 Punto de fusión del hielo

+100 +212 Punto de ebullición del agua

DESARROLLO DE LA PRÁCTICA

Reconocimiento y limpieza del material de vidrio:

En la primera parte de la práctica al estudiante se le entregara un material de vidrio, el cual

deberá reconocer e indicar su utilidad. Antes de este nto el estudiante deberá limpiar el

material de vidrio y utilizar las normas correctas par posterior uso en un experimento.

Uso del termómetro:

En esta parte de la practica al estudiante se le entregara un termómetro, un beaker con hielo,

uno con agua fría, agua a temperatura ambiente y agua caliente. El estudiante deberá realizar

las medidas de las temperaturas correspondientes. Las edidas de temperatura deben

realizarse 5 veces, para ello se debe dejar que el ter ómetro se equilibre a la temperatura

ambiente entre cada medida.

Presente los resultados de las medidas de temperatura forma de tablas.

Realice un gráfico de temperatura en función del tiempo.

Tabla 3.1-1: Equivalencia de Temperatura ºF/ºC

PARTE EXPERIMENTAL

Page 38: informe_parte ii.pdf

38

Conocer y manipular correctamente el Mechero de Bunsen.

Analizar el proceso de combustión y diferenciar los procesos de combustión completa

e incompleta por la coloración de la llama que se prod e.

Existen muchos tipos de mecheros de gas utilizados en los laboratorios de química,

describiremos el mechero de Bunsen, creado en 1866 por el Químico Aleman Robert

Bunsen que quema diferentes gases, tales como gas de hulla, gas de gasolina, gas natural,

acetileno, butano, propano, etc. . El que usamos en el laboratorio quema gas propano.

Algunas técnicas de laboratorio y muchos procesos físico-químicos (fusión, ebullición,

descomposición térmica, destilación de líquidos, ester lización de muestras, etc.) necesitan

calentamiento; gran cantidad de experimentos de laboratorio requieren el uso de una fuente

calórica de fácil manejo y de simple construcción y para ello se utiliza la energía producida

durante la combustión en los quemadores o mecheros de en laboratorios científicos el

Mechero de Bunsen es el más común de estos instrumentos.

3.2. Practica Laboratorio N°2 : Mechero de Bunsen

I. OBJETIVOS:

II: MARCO TEÓRICO:

MECHERO DE BUNSEN.-

Fuentes de calor en el laboratorio: Combustión – Mechero de Bunsen

FIGURA 3.2—1: Mechero de Bunsen

Page 39: informe_parte ii.pdf

39

.L

La es una reacción química exotérmica en la que un material ( ) se

combina con otro ( , generalmente el oxígeno gaseoso presente en el aire),

desprendiendo calor y luz.

Los tipos más comunes de combustible son los materiales orgánicos que contienen carbono

( ) e hidrógeno, ( ), los hidrocarburos. El producto de su combustión puede incluir

monóxido de carbono ( ), dióxido de carbono ( ), agua ( ) y cenizas. Un

combustible debe alcanzar una temperatura mínima, llamada o

, para iniciar la combustión.

Las producidas durante la combustión son las fuentes de ca or más comunes y se

originan en reacciones de combustión muy exotérmicas, na llama está constituida por

mezclas de gases incandescentes. El fuego es el signo e de una reacción química de

combustión, la sustancia que arde se combina con el oxígeno del aire. Solo los gases pueden

arder con llama.

Por tanto, para que un combustible sólido o líquido pr a llamas, antes se debe gasificar.

Una sustancia solo empieza a arder cuando se calienta a una determinada temperatura, la

llamada El calor producido durante la combustión mantiene una

temperatura por encima de la temperatura de ignición, manera que la reacción se

“autosostiene”, continúa mientras haya combustible y una adecuada cantidad de oxígeno.

Cuando la temperatura de la mezcla reaccionante es lo icientemente alta como para que la

sustancia empiece a gasificarse, aparece el fenómeno luminoso denominado .

En la se muestra un diagrama del Mechero de Bunsen y en la se

muestra el detalle de su constitución.

a. Combustión

combustión combustible

comburente

C H

CO CO2 H2O

temperatura de ignición de

inflamación

llamas

temperatura de ignición

fuego

Mechero de Bunsen: descripción y manipulación

Figura 3.2-1 Figura 3.2.2

.

Page 40: informe_parte ii.pdf

40

Detalle del Mechero de Bunsen

En el Mechero de Bunsen el gas ( ) llega a través de un tubo de goma o plástico

desde la llave de gas situada en la mesa del laborator o, la entrada de gas en el quemador se da

a través de un orificio regulado con una válvula de seguridad ubicada en la base del mismo; el

aire (mezcla gaseosa en donde está el ) penetra a través de las aberturas

(ventanillas) en el tubo giratorio (cañón), la mezcla as - aire ( ) se

logra en la parte inferior del tubo del quemador, la expansión del gas a través del pequeño

orificio succiona el aire exterior produciéndose, de e e modo, una mezcla gas-oxígeno que

asciende por el cañón hasta la boca del mismo que es donde se enciende. El encendido se

logra con una chispa ( ) o un fósforo encendido con lo cual se logra que la mezcla

alcance la temperatura de ignición iniciándose la combustión.

Encendido del Mechero

FIGURA 3.2—2:

combustible

comburente

combustible - comburente

Figura3.2.-3

FIGURA 3.2—3:

Page 41: informe_parte ii.pdf

41

En el Mechero de Bunsen se logran tres tipos de combustión para el combustible:

e .

Se produce cuando el combustible (por ejemplo, el hidrocarburo

propano, ) reacciona con suficiente oxígeno; los productos resultantes son dióxido de

carbono, (g) y agua, (l).

La ecuación que representa este proceso es la siguiente:

La combustión se denomina completa o perfecta, cuando odo el combustible se ha oxidado al

máximo, es decir, no quedan residuos de combustible sin quemar. La llama producida en este

caso es muy limpia, su color es gris-azulado, poco luminoso y de gran poder calorífico En la

llama de combustión completa se distinguen varias zonas, tal como se describe en la

Si se posee la información, es muy importante indicar el estado físico en que se encuentran

las sustancias que participan en el proceso, sea como activo o como producto. Así, si la

sustancia es un sólido como subíndice al lado de la fórmula se debe anotar , si es un líquido

y si la sustancia es un gas se anota .

Se produce cuando el combustible reacciona con una no

adecuada cantidad de oxígeno; los productos resultante son el gas monóxido de carbono

(muy tóxico) , (g) y el agua, (l).

La ecuación que representa este proceso es la siguiente:

Se produce cuando la entrada de aire es muy restringid no hay

suficiente oxígeno, el hidrógeno en las moléculas de p opano sí reaccionan con el oxígeno y

forman agua, pero el carbono de las moléculas no se quema, se libera y como es un sólido se

pone incandescente con el calor producido, la infinida de microscópicas e incandescentes

completa,

semi-completa incompleta

Combustión completa:

C3H8

CO2 H2O

2 C3H8(g) + 10 O2(g) 6 CO2(g) + 8 H2O(l) + energía

.

Figura

N°.4.

(s)

(l) (g)

Combustión semi-completa:

CO H2O

2 C3H8(g) + 7 O2(g) 6 CO(g) + 8 H2O(l) + energía

Combustión incompleta:

è

è

Page 42: informe_parte ii.pdf

42

partículas de carbón encendido (pequeñísimas brazas) d n una luminosidad amarilla a la

llama, la que además posee bajo poder calorífico Los productos resultantes son carbono, (s)

y (l). Cuando el carbono incandescente entra en contacto on una superficie más fría se

deposita en forma de hollín (tizne), estas partículas de carbón ensucian y contaminan los

recipientes cuando se calienta con este tipo de llama y por ello no es recomendable cuando se

trabaja en el laboratorio y es necesario realizar algú tipo de calentamiento.

La ecuación que representa este proceso es la siguiente:

En el quemador el tipo de combustión y por tanto de la llama producida y las temperaturas

máximas y mínimas se controlan ajustando las entradas de aire en el cañón,

En las diferentes prácticas que realizaremos durante e te curso de Laboratorio,

simultáneamente con cada una de las técnicas puestas en práctica, se hará una descripción del

equipo utilizado, se darán recomendaciones y sugerencias sobre su adecuada utilización, su

limpieza y su almacenamiento. El diseño, capacidad y en general el detalle en la construcción

. C

H2O

2 C3H8(g) + 7 O2(g) 6 C(s) + 8 H2O(l) + energía

FIGURA 3.2—4: Tipos de Combustión

.4 Tipos de combustión en el Mechero de Bunsen

è

Page 43: informe_parte ii.pdf

43

de cada instrumento está relacionado con un uso en particular; conocer el detalle de cada o

de estos aspectos es objetivo fundamental de la presente práctica.

Conocimiento y manipulación del Mechero de Bunsen

Descripción del quemador

Observe el Mechero de Bunsen y de acuerdo con el diagrama de la , identifique

cada una de sus partes: base, cañón, válvula reguladora de gas y entradas de aire.

El profesor explicará la forma en que el mechero de Bunsen se enciende y

posteriormente cada estudiante lo hará personalmente).

1. Asegúrese de que la llave de entrada del gas, la válvula reguladora del gas y las entradas de

aire estén cerradas y que las mangueras de la conexión del gas estén bien ajustados.

2. Colóquese los y si su cabello es largo, recójalo

3. Abra totalmente la llave de entrada del gas al quem or, ubicada en la parte superior de su

mesa de trabajo;

4. Encienda un fósforo o pequeño encendedor, acerque l llama a la boca del cañón del

quemador y con la mano libre abra lentamente la válvul reguladora de gas. Regule con la

válvula la cantidad de gas de manera que obtenga una l 10 cm aproximadamente.

Si usted abre mucho la válvula reguladora de gas obtendrá una llama de gran

tamaño que podría encenderle y quemarle la cara, pelo ropa. Evite que esta lamentable

situación se dé.

PARTE EXPERIMENTAL

Procedimiento

Figura 3.2-2

Encendido del Mechero de Bunsen

Nota:

anteojos de seguridad .

cuide que la manguera que conduce el gas no esté cerca de ningún

quemador encendido.

¡Cuidado!

Page 44: informe_parte ii.pdf

44

5. Describa la llama producida. ¿Con qué tipo de combustión se asocia este tipo de llama?

Explique.

6. Utilice una pinza para crisol para sostener una cápsula de porcelana limpia y seca. Durante

unos segundos coloque la cápsula sobre la llama. Describa y explique lo observado.

7. Abra lenta y cuidadosamente las entradas de aire. ¿Qué observa? ¿Con qué tipo de

combustión se asocia la llama que se produce? Haga un iagrama simple de la llama

destacando sus zonas características

8. Coloque de nuevo sobre la llama la cápsula de porcelana limpia y seca. Compare lo

observado ahora con lo observado en el punto 6.

9. Coloque (en forma horizontal) una varilla de madera o fósforo directamente sobre la salida

de gas en el cañón del Mechero de Bunsen encendido con combustión completa. ¿Qué

observa? ¿Considera usted que en esta zona de la llama hay suficiente energía como para ue

la madera se encienda? Explique.

10. Para apagar el Mechero de Bunsen, cierre las entradas de aire, inmediatamente después la

válvula reguladora del gas y por último la llave de entrada de gas que se ubica en la mesa.

.

1. El gas propano (C3H8) y el O2 forman una mezcla homogénea que puede permanecer

mucho tiempo sin que ocurra reacción entre ellos; cuan a esta mezcla se le acerca un

fósforo encendido se inicia una reacción que produce gran cantidad de energía en forma de

luz y calor. Explique que función tiene la llama del f ro en este proceso.

2. ¿Investigue por qué si los gases propano y butano c ecen de un olor, los utilizados en los

laboratorios y en los hogares sí lo poseen?

3. Un ama de casa enciende su cocina de gas de la siguiente forma:

a. Abre primero la llave de paso de la tubería para qu el gas llegue a la cocina.

Cuestionario

Page 45: informe_parte ii.pdf

45

b. Gira la perilla hasta la mínima posición.

c. Encienda un fósforo y lo acerca al disco.

d. Regula con la perilla la llama deseada.

¿Cree usted que el ama de casa encendió la cocina en la forma más segura posible?

¿Qué recomendaría usted?

4. Explique la diferencia entre combustible y comburente.

5. Un estudiante tiene la costumbre de cerrar lentamente la entrada del gas del Mechero de

Bunsen, sin cerrar la entrada de aire, con lo cual la ustión empieza a ocurrir dentro del

cañón. A esto se le llama comúnmente “calado del quemador”. ¿Desde el punto de vista de las

normas de seguridad para el trabajo en el laboratorio, es correcto este procedimiento?

Explique

Que interpretación le a usted a lo observado en este gráfico.

3.2—5 FIGURA. Trabajos en vidrio

Page 46: informe_parte ii.pdf

46

Medidas y errores. La balanza.

Determinar la masa de algunas sustancias utilizando la balanza.

Utilizar los recipientes apropiados para medir volúmen de líquidos.

Utilizar el termómetro adecuadamente

Familiarizar al estudiante en el uso y equivalencias de diferentes escalas para medir la

temperatura.

En la preparación de una práctica de laboratorio, el estudiante debe conocer el concepto de

medida (masa, volumen, tiempo, longitud). En cualquier medida que se realiza existe cierta

incertidumbre en cuanto a que el resultado obtenido es válido, expresando esta incertidumbre

como el error en la medida. Para poder realizar con éx to los experimentos y obtener

resultados confiables en el laboratorio es necesario conocer las fuentes de errores en una

medida determinada, cuales pueden eliminarse y cuales minimizarse.

Lo que se expresa en los siguientes objetivos:

Conocer cuáles son las principales fuentes de error cuando se realiza una medida-

determinada.

Conocer que es un error determinado y un error indeterminado.

Entender los conceptos de precisión y exactitud.

Aprender a utilizar una balanza: como se pesa.

Realizar medidas volumétricas y saber cuáles son los e res involucrados.

Establecer la diferencia entre los conceptos masa y peso.

3.3. Practica Laboratorio N°3 :

Medidas volumétricas, Densidad

I. OBJETIVOS:

II: MARCO TEÓRICO:

Page 47: informe_parte ii.pdf

47

Diferenciar propiedades intensivas de propiedades extensivas de la materia.

Definir el concepto de densidad y establecer la difere cia entre densidad relativa y

densidad absoluta.

Determinar experimentalmente los valores de densidad para muestras de sustancias

sólidas y líquidas.

Los errores que se producen al medir una magnitud determinada pueden provenir de:

1. La magnitud que se mide.

2. El equipo utilizado.

3. El operador que realiza la medida.

Los errores inherentes a una medida se pueden clasificar según su origen como er ores

Un error determinado es aquel que puede calcularse y el error

indeterminados es debido acciones fortuitas, el efecto de un error indeterminado sobre una

serie de valores puede, a menudo, ser reducido a límites aceptable pero nunca puede ser

enteramente evitado

Los errores de observación producidos por

imperfecciones en el instrumento de medida o por deficiencias en el método experimental se

denominan Este tipo de error puede ser constante o

variar de forma regular. Algunas de las causas que pueden producir errores sistemáticos son

las imperfecciones en el equipo de medida, mala operación del equipo con el que se mide,

calibración incorrecta de un instrumento, alteración d la constancia en las condiciones

experimentales. Este tipo de error tiende a dar valores reproducibles. Pueden ser difíciles de

detectar porque la repetición de las medidas no lo revelan.

Los errores de observación producidos por

descuidos momentáneos del experimentador o por pequeña variaciones en las condiciones de

ERRORES

ERROR DETERMINADO O SISTEMÁTICO:

ERROR INDETERMINADO O CASUAL:

determinados e indeterminados.

Errores Determinados o Sistemáticos.

Page 48: informe_parte ii.pdf

48

experimentación se denominan Este tipo de error puede

ser descubierto ya que produce medidas poco reproducibles. Pueden ser descubiertos por

repetición de las medidas.

La medida de una propiedad determinada está dada por dos características principales: El

valor verdadero y la reproducibilidad del valor medido, denominándose estas dos

características exactitud y precisión respectivamente.

El termino exactitud denota la proximidad de una medid a su valor aceptado

o verdadero. Se refiere a la cercanía de la magnitud m dida al valor verdadero o aceptado,

está relacionada con la apreciación del instrumento de medida y los errores sistemáticos.

Se utiliza para describir la reproducibilidad de un resultado. Se refiere a la

similitud entre los valores medidos entre sí, está relacionada a los errores indeterminados o

casuales. La exactitud implica una comparación con relación a un valor verdadero o aceptado,

en contraste con la

Precisión la cual compara un resultado con el valor de varias medidas hechas de la misma

manera.

Se tienen las siguientes medidas:

Si el valor verdadero corresponde a 3,33, ¿qué opina usted sobre la exactitud de los valores

medidos?

3,45 13,56 13,27 13,33 3,34 3,35 4,01 3,33

Errores Casuales o Indeterminados.

PRECISIÓN Y EXACTITUD

EXACTITUD:

PRECISIÓN:

Ejemplo N°1

Page 49: informe_parte ii.pdf

49

La media, media aritmética y promedio son términos sinónimos qu se refieren al

valor numérico obtenido dividiendo la suma 'de una serie de medidas dividida entre el numero

de medidas.

Donde:

valores medidos

n: numero de medidas

Calcule la media para los valores del ejemplo N°1I

Corresponde a la diferencia (valor absoluto) entre un alor

medido y el que se toma como mejor de la serie. Generalmente la media se utiliza como el

valor denominado mejor de la serie. Corresponde a una anera de expresar la precisión de un

resultado.

d = ¦ ¦

Donde:

x: media

xi: valor medido

Calcule la Desviación absoluta para los valores del ej mplo N°1

Si se obtiene el promedio de la desviación absoluta, un valor de medida puede expresarse

como: Medida ±

Se define como la diferencia entre el valor medido y el valor

aceptado o verdadero.

TRATAMIENTO ESTADISTICO DE DATOS

MEDIA:

X = S Xi/n

DESVIACIÓN ABSOLUTA:

Desviación absoluta promedio: Por ejemplo 16,2 ± 0,1

ERROR ABSOLUTO:

E = Xv - Xm

Xi:

x - xi

Page 50: informe_parte ii.pdf

50

Donde:

Xv: Valor aceptado o verdadero

Xm: Valor observado o medido

Representa el porcentaje de error en una medida determinada y viene

dado por la expresión:

Donde:

% e: El error porcentual

? X: El error de la medida

X: La medida que se realiza

Si para los datos del ejemplo N° 1 el valor verdadero es 3,33 calcule el error absoluto y

relativo de las medidas.

El número de cifras significativas es la

cantidad medida o tabulada diferente a cero contada de izquierda a derecha. Ejemplos:

38,9 Tiene tres cifras significativas

45832 Tiene cinco cifras significativas

0,005 Tiene una cifra significativa

0,0050 Tiene dos cifras significativas

0,0500 Tiene tres cifras significativas

1 Tiene una cifra significativa

1,2 Tiene dos cifras significativas

1,0 Tiene dos cifras significativas

ERROR RELATIVO:

% e = ? X/X*100

NÚMERO DE CIFRAS SIGNIFICATIVAS:

NÚMERO DE CIFRAS SIGNIFICATIVAS

Page 51: informe_parte ii.pdf

51

Una importante propiedad intensiva de la materia es la densidad. El término dens dad es una

magnitud referida a la cantidad de masa contenida en u determinado volumen y puede

utilizarse en términos absolutos o relativos. Como pro d intensiva que es, el valor de

densidad no depende de la cantidad de masa presente.

La densidad absoluta, también llamada densidad real, e presa el valor de la masa por unidad

de volumen. Cuando no se hace ninguna aclaración al re pecto, el término densidad suele

entenderse en el sentido de densidad absoluta y se determina a través de la sencilla igualdad:

La densidad relativa o aparente expresa la relación en re la densidad de una sustancia y la

densidad del agua, resultando una magnitud adimensional, sin unidades.

La unidad derivada del SI para la densidad es kg/m3, la cual es demasiado grande para la

mayoría de las aplicaciones químicas, la unidad g/cm3 y su equivalente, g/mL, se utilizan casi

siempre para expresar el valor de densidad de los sólidos y los líquidos.

aceite 0,92 éter 0,714

acero 7,80 gasolina 0,680

acetona 0,791 glicerina 1,261

ácido acético 1,049 hidrógeno 0,09 x 10-3

agua 1,000 hielo 0,920

DENSIDAD

Densidad absoluta

D = masa / volumen

Densidad relativa

Sustancia Densidad Sustancia Densidad

Page 52: informe_parte ii.pdf

52

alcohol etílico 0,789 madera 0,600 – 0,900

aluminio 2,700 mercurio 13,556

butano 0,026 oro 19,321

carbono 2,252 oxígeno 1,43 x 10-3

cobre 8,961 plata 10,491

dióxido de

carbono

0,018 plomo 11,361

disulfuro de

carbono

1,263 plumas 0,0025 – 0,0035

FUENTE:

Técnicas y Experimentos en Química, Carlos Armas Ramír 988

Aunque toda la materia posee masa y volumen, la misma masa de sustancias diferentes ocupa

distinto volumen; notamos que el plomo o el acero son esados, mientras que la misma

cantidad de madera o plástico son livianos, lo cual nos permite afirmar que la densidad es la

propiedad de los materiales que nos permite medir qué tan livianos o pesados son, cuanto

mayor sea la densidad de un cuerpo, más pesado nos parecerá.

La densidad de un cuerpo está relacionada con su flotabilidad, una sustancia flotará sobre otra

si su densidad es menor. La madera flota sobre el agua y el plomo se hunde en ella porque el

plomo posee mayor densidad que el agua mientras que la nsidad de la madera es menor, sin

embargo ambas sustancias se hundirán en la gasolina, d ensidad más baja.

Sustancia Densidad Sustancia Densidad

Tabla 3.3-1: Cuadro Densidad (g/mL) a 25 °C de algunas sustancias

Page 53: informe_parte ii.pdf

53

Balanzas; termómetro, cilindro graduado de 50ml, bureta de 50 mL; pipeta de 25 mL

volumétrico de 25 mL; hielo picado; vaso químico de 50 mL; erlenmeyer de 250 mL,

NaCL.

En esta parte de la practica cada uno de los estudiant deberá aprender las normas básicas del

uso de la balanza, para ello con ayuda del preparador el profesor, pesara dos veces un

material volumétrico. El estudiante debe escoger el material volumétrico a pesar. El material

volumétrico que el estudiante elija estará dado por sus conocimientos del Laboratorio

Tome el cilindro graduado limpio de 10 mL, llénelo con agua hasta el enrase de 10 mL.

Vierta el líquido en un beaker limpio y seco previamen e pesado, pese la cantidad de agua

vertida.

III. MATERIALES Y REACTIVOS:

FIGURA 3.3—1:Tipos de Balanza

IV PARTE EXPERIMENTAL

1. Uso de la balanza

2. Calibración del material volumétrico

2.a. Calibración del cilindro graduado de 10 mL.

Page 54: informe_parte ii.pdf

54

Repita la operación en las mismas condiciones 4 veces s. Con el uso de un termómetro

determine la temperatura del agua.

Tome una pipeta volumétrica, de 10 mL, llenarla con ag a hasta el enrase de 10 mL.

Vierta el líquido en un beaker limpio y seco previamente pesado, pesar la cantidad de agua

vertida.

Repita la operación en las mismas condiciones 4 veces .

Con el uso de un termómetro determine la temperatura d l agua.

Verifique sus medidas en el laboratorio.

Presente los datos tabulados utilizando el número de cifras significativas correcto.

Realice los cálculos de errores correspondientes.

Determine el volumen del agua, considerando la tempera ra de la misma y la densidad del

agua a esa temperatura.

Con los datos obtenidos calcule el factor de corrección del instrumento utilizado:

fc = volumen calculado /volumen leído

(Recuerde que debe anotar todas sus observaciones y datos en el cuaderno . Elabore cuadros

de datos, debidamente identificados, para anotar todos los valores que obtendrá al realizar la

experiencia.

1. Lave, seque y pese independientemente en la misma b a probeta de 25 mL, una de

50 mL y otra de 100 mL. Anote los datos obtenidos.

2.b. Calibración de la pipeta volumétrica de 10 mL.

3. Con los datos obtenidos

Procedimiento determinar densidades

Densidad de líquidos

Page 55: informe_parte ii.pdf

55

2. Coloque 20,0 mL de agua destilada en cada una de las probetas. Asegúrese de que el

menisco del líquido coincide con el volumen sugerido. Qué es menisco de un líquido y qué

recomendaciones deben seguirse para una lectura más confiable y precisa de un volumen?

3. Seque la probeta en caso de existir humedad externa. Pese probeta y contenido y determine

la masa del agua contenida en cada uno de los instrume tos volumétricos. Anote valores

obtenidos.

4. Elimine las muestras de agua, seque las probetas totalmente y repita los puntos anteriores

utilizando alcohol etílico, etanol, en vez de agua. Anote todas sus observaciones y datos

obtenidos. No deseche los volúmenes de alcohol al finalizar cada uno de los tres ensayos.

Consulte a su profesor sobre el recipiente en donde se recogerán las muestras de alcohol

utilizadas.

5. Lave y seque la probeta de 50 mL. Anote el valor del peso del instrumento

6. Coloque un volumen cualquiera entre 25 y 35 mL de a eite vegetal en la probeta. Recuerde

lo relacionado con la lectura del menisco del líquido. Seque la probeta en caso de existir

humedad externa.

7. Pese probeta y muestra de aceite. Anote el dato obt y determine la masa del aceite

contenida en la probeta. No deseche la muestra de aceite al finalizar el ensayo. Consulte a su

profesor sobre el recipiente en donde se recogerán las muestras utilizadas.

1. Lave y seque la probeta de 100 mL. Anote el corresp ente valor del peso de la probeta.

2. Determine la masa de 5 monedas de S/ 1.00. Garantic que las monedas coincidan con el

año de su emisión. Anote el dato obtenido. ¿Por qué es importante atender es a

recomendación con respecto a la fecha en que fueron hechas las monedas?

Parte. Densidad de sólidos

Page 56: informe_parte ii.pdf

56

3. Llene la probeta con agua hasta la marca de 70,0 mL. Recuerde todo lo relacionado con la

lectura del menisco del líquido.

4. Vierta lentamente, una a una, las monedas dentro del agua contenida en la probeta. Anote

sus observaciones y anote el nuevo volumen que registra el agua en la probeta.

5. Repita los pasos anteriores utilizando monedas de S/ 0.20.. ¿Es necesario utilizar en este

ensayo igual cantidad de monedas (5) que en el ensayo erior? ¿Es necesario que estas

nuevas monedas sean del mismo año de emisión? Explique.

6. Determine por igual procedimiento los valores de masa y volumen del acero y el caucho,

utilizando objetos constituidos por estos materiales

Con los datos obtenidos al realizar la práctica densid e los líquidos calcule:

La masa del volumen de agua en cada una de las mediciones realizadas

La densidad del agua para cada uno de los ensayos realizados.

Compare los valores de densidad del agua y del alcohol nidos en los tres ensayos y con

base en el valor oficial de densidad de estos dos líquidos (ver TABLA N°1), determine los

respectivos valores de % de error en cada una de esas determinaciones. Consulte sobre la

expresión matemática (la fórmula) utilizada para hacer esa determinación. ¿En cuál de los

tres ensayos es el % de error menor? ¿Qué concluye ust d sobre la precisión de cada una

de las probetas al medir un determinado volumen? ¿Cree usted que experimentalmente

podría obtenerse un menor margen de error al determinar la densidad de un líquido

¿Explique sus respuestas.

Cálculos (para presentar el Informe respectivo)

Densidad de líquidos

Page 57: informe_parte ii.pdf

57

Determine la densidad del aceite utilizado en la práctica y con base en el valor obtenido,

calcule el % de rendimiento en su medición, considerando que el valor real (verdadero)

para la densidad del aceite es 0,91 g/mL.

Realice el mismo tipo de cálculo que realizó en la densidad de líquidos para determinar la

densidad del metal (o aleación) del que están hechas las monedas e igualmente determine

la densidad del acero (o del caucho) con el que se construyeron utilizados en la práctica.

1.¿Cuál es la diferencia en exactitud y precisión. Explique en cuanto a exactitud la diferencia

entre los frascos volumétricos y los erlenmeyers?

2.¿Cuál es la unidad en el sistema internacional para cada una de las siguientes dimensiones :

Volumen, Masa

3.¿Cuales son los requisitos que debe cumplir una balanza para obtener buenos resultados?.

Explique

4. .

5.De acuerdo a lo anterior, que recomendaciones sugier en el uso de la balanza describa en

forma breve el método simple de pesada, ilustrando con un ejemplo.

6. Enumere el material de laboratorio que se utiliza pa a medir volúmenes de líquidos.

7. Explique la diferencia en su uso y pureza entre el agua corriente y la destilada. ¿Con cual

hay que enjuagar el equipo antes de usarlo y por qué? ¿Sería más importante enjuagar una

probeta o una bureta con agua destilada? ¿Por qué?

8. Investigue los materiales (cristalería) que se utiliza en los laboratorios y su función.

Densidad de sólidos

Cuestionario

o

Haga un esquema de la balanza y precise sus partes más delicadas

Page 58: informe_parte ii.pdf

58

9 ¿Cómo explica usted la diferencia (en caso de que la a) entre el valor de densidad

obtenido por usted para cada uno de los líquidos utilizados directamente y el valor reportado

en la literatura química?

10. Aunque no se hizo en la práctica, de todos es sabido que la gran mayoría de los aceites

flotan sobre el agua. ¿Qué explicación podemos dar a este fenómeno físico? ¿Cree usted que

el aceite flotará sobre el alcohol?

Page 59: informe_parte ii.pdf

59

Diferenciar mezcla homogénea de mezcla heterogénea e identificar las fases o

componentes en cada una de ellas.

Separar los componentes de una mezcla a través de las écnicas: decantación,

filtración, cristalización, sublimación y destilación.

Es muy probable que el concepto de mezcla sea de fácil comprensión para el lector, aún sin

conocer una definición formal de lo que es una mezcla. Estamos muy familiarizados con las

mezclas, forman parte de nuestra actividad cotidiana y son la base de importantes procesos

industriales. Prácticamente todos lo materiales a nuestro alrededor son mezclas. El aire, el

agua (a causa de las impurezas) y los alimentos, son mezclas. Mezclas son también los

materiales que entran en la constitución de la ropa, las medicinas, los muebles; los mares, que

constituyen las tres cuartas partes de nuestro planeta, constituyen la ayor mezcla existente;

las materias primas de todas las industrias (petróleo, gas natural, minerales, aire, aguas

pluviales) son mezclas. En fin, es inagotable la lista de materiales y sustancias en nuestras

vidas en donde las mezclas están presentes.

Una es la unión física de dos o más sustancias en iguales diferentes estados, en

proporciones variables, conservando cada una de estas ustancias sus propiedades, los

componentes de las mezclas pueden separarse por medios físicos, (filtración, centri

destilación).

3.4. Practica Laboratorio N°4 : Métodos de separación y purificación: mezclas

I. OBJETIVOS:

II: MARCO TEÓRICO:

mezcla

Page 60: informe_parte ii.pdf

60

Mezclar es una operación muy importante en la industri , el mezclado es una operación cuyo

objetivo fundamental es conseguir la máxima interacción entre varios componentes y una

distribución lo más homogénea posible de los mismos. El mezclado se realiza para lograr: la

mezcla de partículas sólidas (mezcla de sólidos pulver os previamente), la suspensión de

un sólido insoluble en un líquido, la mezcla de líquid miscibles la dispersión de partículas

en un medio semisólido, (preparación de pastas y crema ).

Haciendo de nuevo referencia al diagrama de clasificación de la materia estudiado en la

práctica anterior, podemos visualizar la posición de las mezclas en esta clasificación:

Como se anotó anteriormente, una es la combinación, la unión física de dos o más

sustancias en proporciones o cantidades variables. En una los componentes, las

sustancias mezcladas, no se asocian químicamente y por ello conservan su identidad, la

asociación entre las sustancias mezcladas es básicamente un proceso físico y por tanto no hay

cambios estructurales que signifiquen un cambio químico. Por ejemplo, en una mezcla tan

simple como el agua de azúcar, la naturaleza química t nto del agua, , como del azúcar,

sacarosa, , no cambia y por ello, con técnicas apropiadas, se pueden separar de

nuevo sin cambio alguno.

FIGURA 3.4—1: La Materia y su clasificación

mezcla

mezcla

H2O

C12H22O11

Page 61: informe_parte ii.pdf

61

Son las que presentan una sola fase luego de mezclar s componentes independientemente

del estado físico inicial de cada uno de ellos; al obs rvarlas no hay posibilidad de distinguirlos

debido a que la unión entre las partículas diferentes de cada uno de los componentes muy

significativa.

De forma muy gráfica podemos representar homogeneidad heterogeneidad de la siguiente

manera:

Las disoluciones son mezclas homogéneas pues las sustancias que las c forman presentan

una distribución regular de sus propiedades, por lo tanto al dividir la disolución en partes

iguales o distintas, cada una de las porciones present las mismas propiedades físicas y

químicas que el resto.

El componente de una que se encuentra en menor proporción recibe el nombre de

(o en caso de ser varios), el componente presente en mayo proporción se

denomina En la disolución las partículas de soluto están dispersas, esto es,

Mezclas homogéneas o disoluciones

es

FIGURA 3.4—2: Tipos de mezclas

disolución

soluto solutos

disolvente.

Page 62: informe_parte ii.pdf

62

distribuidas totalmente en forma desordenada pero homogénea entre las partículas del

disolvente.

Puesto que la materia puede presentarse regularmente en tres estados de agregación -sólido,

líquido y gaseoso -, soluto y disolvente podrían estar en cualquiera de estos estados l formar

la disolución. Así, podríamos suponer que hay posibilidad de obtener en la naturaleza posibles

combinaciones de soluto – disolvente, sin embargo solo existen variedades de m zclas

homogéneas o disoluciones las cuales se agrupan finalmente en tres tipos:

, y , clasificación realizada

Son aquellas mezclas en que los sólidos, líquidos y gases se disuelven homogéneamente en un

sólido. Este tipo de disoluciones es poco usual. : Acero (hierro y carbono, ambos

sólidos), amalgamas (mercurio y zinc, líquido y sólido) y el bronce (cobre con estaño, ambos

sólidos).

Son las más comunes, son aquellas mezclas en que los sólidos, líquidos y gases se mezclan

homogéneamente en un líquido. : azúcar en agua (sólido en líquido), alcohol en

agua, líquido en líquido, oxígeno en agua (gas en líquido).

son mezclas homogéneas, constituidas por uno o más gases

disueltos en otro gas. : aire, dióxido de carbono con nitrógeno.

.Los métodos que se describen a continuación y que son objeto de estudio de esta práctica son

procesos físicos y por tanto no afectan la constitución química ni las propiedades de los

componentes de las mezclas Industrialmente son varias as técnicas utilizadas en los

diferentes procesos de purificación de sustancias y po supuesto el equipo utilizado para tal

fin es en la mayoría de los casos muy especializado, la creciente tecnología ha permitido dar

disoluciones

sólidas disoluciones líquidas disoluciones gaseosas

Disoluciones sólidas.

Ejemplo

Disoluciones líquidas.

Ejemplo

Disoluciones gaseosas.

Las disoluciones gaseosas

Ejemplo

Page 63: informe_parte ii.pdf

63

paso a maquinaria y técnicas que garantizan altos rend mientos en la separación y purificación

de sustancias, sin embargo la esencia de todos y cada o de esos procesos a gran escala de

una u otra forma se relaciona con los tradicionales y omunes métodos experimentales de

filtración, decantación, destilación, centrifugación, etc.

Los investigadores en las diferentes ramas del quehace científico con frecuencia se

encuentran en la necesidad de separar las distintas fases de un sistema heterogéneo o de

fraccionar disoluciones para obtener sus componentes. ara ello disponen, en el primer caso,

de métodos mecánicos como la sedimentación, decantación, filtración, etc., en los cuales los

componentes del sistema no sufren transformaciones ni físicas ni químicas.

Para la separación de los componentes de otras mezclas se utilizan métodos como la

destilación y la cristalización, en los cuales uno o más de los componentes para poder ser

separados del resto deben ser sometidos a variaciones más o menos drásticas en la

temperatura o la presión, que provocan cambios en el e ados de agregación sin los cuales no

se podría lograr tal separación. En los laboratorios ( o solo de Química) muchas de estas

técnicas se aplican constantemente a diferente escala. Seguidamente se hace una descripción

general de las técnicas de separación y Purificación d uso más frecuente en los laboratorios.

Este método ( ) consiste en la separación de un sólido insoluble en determinado

disolvente. El método se basa en la diferencia de dens dades de los materiales mezclados y se

emplea para separar mezclas heterogéneas, básicamente adas por sólidos suspendidos en

líquidos (por ejemplo arena u otros sedimentos mezclados con agua).

La mezcla heterogénea se deja reposar hasta la sedimentación total del sólido que se

encuentra mezclado con el líquido y se procede a la se ación de ambas fases, la sólida y la

líquida. En el momento que el sólido se haya asentado en el fondo del recipiente, el proceso se

inicia con la suave y cuidadosa inclinación del recipiente, trasvasando la mayor cantidad de

Decantación

Figura 2

Page 64: informe_parte ii.pdf

64

líquido a otro recipiente, tratando de que la mayor cantidad de sólido se mantenga en el

recipiente original. Para evitar salpicaduras durante el trasvase, se recomienda verter el

líquido a lo largo de una varilla de vidrio, tal como lustra a continuación:

Decantación

La decantación no es un método 100 % efectivo para separar sólidos en contacto con líquidos,

pues no siempre es fácil evitar que algunas partículas sólidas sean arrastradas por el líquido

que se vierte. Es por este motivo que esta técnica generalmente se realiza simultáneamente

con la filtración. Decantación y filtración simultánea sí g antizan la separación total de

ambas fases

Se utiliza para separar totalmente a los sólidos insolubles de un líquido con el que estén

mezclados.

El método se basa en que los componentes poco solubles de la mezcla (en suspensión) se

hacen pasar por una pared porosa o filtro en el que se retienen los sólidos. La retención de las

partículas depende del tamaño de los poros del filtro del tamaño de las mismas partículas

del sólido que se desea separar. Al igual que en la decantación, las mezclas que se pueden

separar por este método son las heterogéneas; el método de filtración es de uso frecuente en

los laboratorios, en la industria y en el tratamiento e aguas residuales; las diferentes formas

FIGURA 3.4—3:

Filtración

Page 65: informe_parte ii.pdf

65

de filtración lo son a causa del medio filtrante y son comunes las llamadas coladeras, los

tamices, algunas telas de algodón, una piedra porosa, pel filtro o capas de arena

pulverizada.

En los laboratorios se practica la filtración tal como se indica en la y al igual que en

la decantación (generalmente ambas técnicas se realizan simultáneamente) se utiliza la varilla

de vidrio para evitar pérdidas de líquido durante el proceso. Con porciones de disolvente,

utilizando un frasco lavador (pizeta) se hacen lavados para recoger la totalidad de partículas

que hayan quedado en el recipiente original e igualmente deben hacerse al menos dos lavados

minuciosos del residuo retenido en el filtro. El resultado final del proceso de filtración es:

, el material sólido que queda retenido en el filtro y , el líquido que pasa a

través del filtro y que es recogido en otro recipiente,

La cristalización se utiliza como método de purificación de sólidos mezclados con otras

sustancias. A través de la cristalización se logra sep rar, con alto grado de pureza, un sólido

que forma parte de una mezcla de sólidos o de una disolución en la que esté disuelto, esta

separación es posible cuando dicha sustancia puede formar cristales y de esta forma separarse

de los otros componentes de la mezcla. La mezcla sólid a separar por cristalización puede

Figura .3

residuo filtrado

FIGURA 3.4—4: Filtración

Cristalización

Page 66: informe_parte ii.pdf

66

estar constituida por dos o más sólidos o por un sólid y un líquido. Este método de

separación y purificación se basa en los diferentes grados de solubilidad que tienen los sólidos

en los diversos disolventes a distintas temperaturas.

Para que los componentes de la mezcla sean separados p cristalización la mezcla sólida

debe disolverse o mezclarse al máximo en un líquido caliente (disolvente), procediéndose

luego al enfriamiento de la mezcla líquida, generalmente colocando el recipiente dentro de

una mezcla agua-hielo, un . Durante el enfriamiento las partículas (cristales puros)

del sólido de interés van apareciendo y sedimentando, eparándose poco a poco del resto de

los componentes que se mantienen disueltos, al finalizar el proceso los cristales se depositan

(sedimentan) totalmente en el fondo del recipiente. Para recuperar el sólido cristalizado se

emplean en serie otras de las técnicas discutidas: decantación, filtración, con los respectivos

lavados para garantizar separación completa. En la se resumen las etapas del

proceso.

Cristalización

Los cristales recién formados y recuperados con estas écnicas pueden ser sometidos a un

calentamiento indirecto para ser secados totalmente, t l como se aprecia en la :

Secado de cristales

baño frío

Figura N°4

FIGURA 3.4—5:

Figura .5

FIGURA 3.4—6:

Page 67: informe_parte ii.pdf

67

La destilación, , es el método utilizado en los laboratorios para separar los

componentes líquidos de una mezcla sea esta homogénea heterogénea. Consiste en separar

por medio del calentamiento dos o más líquidos mezclados, tomando como base la diferencia

que existe entre sus respectivos puntos (temperaturas) bullición. El proceso de destilación

consta de dos fases o etapas: en la primera cada líquido se vaporiza y en la segunda el

respectivo vapor se enfría y se condensa por medio de refrigerante, recuperándose de

nuevo el líquido purificado.

La destilación puede ser:

· , si la mezcla contiene un único componente volátil que se desea separar.

· , si la mezcla contiene dos o más componentes volátiles que se separan mediante

una serie de vaporizaciones-condensaciones en una misma operación.

Destilación simple

Destilación

Figura N°6

FIGURA 3.4—7:

simple

fraccionada

Page 68: informe_parte ii.pdf

68

Como se muestra en la , para efectuar la destilación se coloca la muestra en un

matraz (balón de vidrio) de destilación, por calentami to el líquido se evapora (se debe

conocer la temperatura de ebullición del líquido que se desea separar) y posteriormente, luego

de pasar los vapores por el refrigerante y condensarse se recogen en otro recipiente. El

líquido destilado posee un alto grado de pureza. Este odo de separación no se puede

utilizar para separar cualquier sustancia, solo es útil si las sustancias no se descomponen

químicamente con el calentamiento.

La destilación se emplea en los laboratorios e indust ias para purificar disolventes como el

agua o el éter y en la refinación del petróleo, para s parar sus diferentes componentes, como

la gasolina, aceite, diesel o las parafinas.

Por ejemplo, si la mezcla a separar es agua-alcohol etílico, (el punto de ebullición normal del

agua es de 100°C y el del alcohol es 78 °C), el proceso global, las etapas, se pueden resumir a

través de las siguientes figuras:

- Mechero Bunsen, soporte metálico, trípode , triángulo de arcilla, aro metálico, cedazo con

asbesto,3 tubos de ensayo,3 beakers de 250 mL, probeta de 100 mL, pizeta, agitador de vidrio,

espátula acanalada, vidrio de reloj, papel de filtro, imán, mezcla arena , sal, mezcla azufre,

hierro, agua destilada, etanol, C2H5OH, azufre, S (polvo), hierro, Fe (polvo), yodo, I2, hielo

Destilación de mezcla agua/ alcohol

Figura .6

III. MATERIALES Y REACTIVOS:

Materiales y reactivos

FIGURA 3.4—8:

Page 69: informe_parte ii.pdf

69

1. Caliente aproximadamente 250 mL de agua del tubo en un beaker de 400 mL. El agua

caliente se utilizará posteriormente al realizar el punto 4 de la II parte del procedimiento

2. Coloque un poco (media espátula) de mezcla alcanfor - sal (mentol-azúcar) en un vidrio de

reloj.

3. Observe la mezcla y anote todo lo referente a: color, olor, cantidad y tipo de fases, tamaño

y forma de las partículas, existencia o no de formas cristalinas y todo aquello que usted

considere importante para el logro de los objetivos de esta práctica. Consulte sobre la forma y

lugar en que se eliminan los residuos.

4. Coloque una “punta de espátula” de la mezcla en un bo de ensayo limpio y adiciónele

agua destilada hasta las ¾ partes de su capacidad. Agite, observe y anote lo observado.

5. Repita el ensayo anterior sustituyendo el agua por n volumen igual de alcohol etílico,

, y posteriormente realice un tercer ensayo el ensayo ustituyendo el alcohol por

diclorometano, . En cada caso agite, observe y anote lo observado.

1. Coloque en un vaso de precipitados ±100 mL de agua destilada y adicione ± 10 g (mitad de

la espátula) de mezcla alcanfor - sal. Agite la totalidad de la mezcla preparada.

2. Instale un sistema de filtración tal como se indica en la figura siguiente,

IV PARTE EXPERIMENTAL

Procedimiento

I Parte. Propiedades de una mezcla

C2H5OH

CH2Cl2

II Parte. Separación de una mezcla

Figura .9.

Page 70: informe_parte ii.pdf

70

Decantación-filtración

3. Decante y simultáneamente filtre lenta y cuidadosamente la mezcla. Utilice la pizeta con

agua destilada para realizar al menos dos enjuagues del residuo en el papel. Describa lo

observado.

4. Coloque en un vidrio de reloj un pequeño volumen del filtrado recogido luego de la

filtración y a modo de tapa, cuidadosamente, coloque e vidrio sobre un vaso de precipitados

con agua en ebullición, tal como se indica en la . Observe los cambios que se van

produciendo en el residuo y cuando considere que no se dan más cambios, retire la fuente de

calor y anote lo observado.

FIGURA 3.4—9:

Figura .9

Page 71: informe_parte ii.pdf

71

Cristalización

5. Con el agitador de vidrio limpio y seco recoja una y pequeña cantidad del sólido

cristalizado y pruebe el sabor. ¿Qué percibe? ¿Era de esperar este resultado?

6. Coloque en un extremo del vidrio de reloj limpio y eco una pequeña cantidad de azufre, ,

observe esta muestra del elemento no metálico y anote toda observación que considere

importante.

7. Coloque en el lado opuesto al azufre una pequeña cantidad de de hierro, , en polvo,

observe esta muestra del elemento metálico y anote tod observación que considere

importante.

8. Mezcle, con ayuda de la espátula, ambos elementos hasta lograr la homog neidad y pase un

imán sobre la masa sólida. Anote y explique sus observ ciones. ¿Qué nombre recibe esta

técnica de separación?

9. Coloque unos pocos cristales de yodo, , en un beaker de 150 mL limpio y seco. Observe

los cristales y anote las características de este elem o no metálico.

10. Adicione a los cristales de yodo una pequeña cantidad (punta de espátula) de cloruro de

sodio, , agite con el agitador de vidrio para mezclar los sól . ¿Qué tipo de mezcla se

ha formado?

FIGURA 3.4—10:

Nunca pruebe sustancias sin la autorización expresa de su profesor.

S

Fe

I2

NaCl

Page 72: informe_parte ii.pdf

72

11. Tape el beaker con un vidrio de reloj y coloque en este unos trocitos de hielo.

12. Caliente muy suavemente, durante máximo 10 segundos el beaker con la mezcla yodo sal.

La llama del quemador debe ser pequeña y de combustión completa. Observe y anote. ¿Qué

concluye? ¿Qué nombre recibe la transformación directa del yodo sólido a yodo gas y qué

nombre recibe el proceso ocurrido en la superficie cón a del vidrio de reloj? ¿Experimenta

la sal esos procesos?

13. Adicione un pequeño volumen de alcohol etílico, , al residuo en el pequeño

beaker. ¿Qué observa? ¿Sabe usted cuál es el nombre de la mezcla obtenida (sin considerar la

sal presente?

1. En la se muestra un esquema de un sistema de destilación similar al

que se encuentra sobre una de las mesas del laboratori . El profesor iniciará la

destilación de la mezcla seleccionada y discutirá con os estudiantes sobre

utilidad, limitaciones y aspectos generales de esta técnica de separación-

purificación.

1. ¿Será posible separar completamente dos líquidos inmiscibles por el método de

decantación? Explique.

2. La cristalización como método de separación de muchas sustancias se basa en

elconcepto de solubilidad de las sustancias. ¿Qué debemos entender por solubilidad

para una sustancia ?

3. ¿En que se basa la técnica de destilación?

4. Explique cada uno de los siguientes tipos de destila ón.

C2H5OH

III Parte. Destilación (Demostración general)

Figura 8

Cuestionario

Page 73: informe_parte ii.pdf

73

a) Fraccionada.

b) A presión reducida.

c) Por arrastre con vapor. Explique cómo se realizan y cuándo se usan.

5. ¿Considera usted que cualquier mezcla de líquidos mi cibles es posible de separar

con el método de destilación? Explique.

6. En muchas experiencias de laboratorio se hace refere cia a “baño María”. ¿A qué se

hace referencia? ¿Cuándo se recomienda utilizar el baño María?

7. Aunque no se utilizó en esta práctica, con frecuencia se utiliza como método de

separación la centrifugación. ¿En qué consiste esta técnica y cuando es recomendable

utilizarla?

8. Proponga un método para separar una mezcla de agua-azúcar y alcohol

9. Explique los factores que afectan a la solubilidad de los compuestos químicos.

Page 74: informe_parte ii.pdf

74

Correlacionar las electronegatividades y forma de reaccionar de algunos elementos

con su comportamiento entre el grupo y su posición en la Tabla Periódica,

Demostrar la similitud entre las propiedades químicas físicas de algunos elementos,

Determinar la acidez y basicidad de algunos óxidos y relacionar esta propiedad con

su posición en la Tabla Periódica,

Ordenar la reactividad de los elementos del Grupo VII.

Los elementos químicos presentan una “periodicidad” en sus propiedades, lo que ha hecho

posible su ordenamiento en grupos (Columnas) y períodos (filas). Esto facilita el estudio de la

Química, porque puede corregirse la manera de reaccion el elemento siguiente si se sabe la

del anterior.

Los elementos fuertemente electronegativos son no-metales, mientras que los fuertemente

electropositivos son los metales. Los metales fuertem e positivos se combinan con el agua

para producir hidróxidos con la liberación de Hidróg no. Los menos reactivos se combinan

con los ácidos no oxidantes y también liberan hidrógeno. Todos ellos producen óxidos

básicos.

Los metales, por el contrario, forma óxidos ácidos. Su forma de reaccionar está condicionada

también por su capacidad de reacción con los metales, e allí que los resultados

experimentales coincidan con su colocación en la Tabla Periódica.

3.5. Practica Laboratorio N°5 : La clasificación periódica

I. OBJETIVOS:

II. MARCO TEÓRICO:

Page 75: informe_parte ii.pdf

75

Vaso de 500 mL, vaso de 50 mL, cilindro graduado, 6 tubos de ensayo, papel e aluminio,

papel de filtro, papel tornasol, pedacitos de metales, Zn, Al, Cu, Mg, Na, Sn, Fe; cristales de

B2O3, agua de bromo, agua de cloro, CCL4, Yodo 0,1M en KI, fenolftaleína, NaBr 0,1M,

NaCl 0,1M, NaI 0,1M, NaOH 0,1M, HNO3 conc., NH4OH 6M, Al (NO3)3 1M, HCl 6M

a. Llene una probeta graduado de 100 mL con agua. No dej que quede ninguna burbuja

de aire.

b. Solicite al profesor un pedacito de sodio metálico del tamaño de una lenteja envuelto en

papel de aluminio. Haga 5 agujeritos en el papel con un alfiler.

c. Coloque ahora el sodio dentro del cilindro con la ayud de unas tenazas. ¿Qué sucede?.

Anote los mililitros de gas que se recogen al cabo de minuto. Tome un poquito del

líquido del vaso y échelo en un tubo de ensayo. Guárd para la parte (a). Regrese el

sodio que le queda al profesor. .

d. Repita la operación, pero empleando ahora un pedacito de Magnesio. Anote sus

resultados.

e. Eche un poco de agua destilada en un tubo de ensayo. Añada ahora dos gotas de

fenolftaleína. ¿Qué sucede?. Haga lo mismo con el agua con sodio y con Magnesio,

¿Qué sucede ahora en cada caso?

f. Compare el color producido con el que aparece cuando se añade fenoftaleína a 2 mL de

NaOH 0,1M. Anote sus observaciones.

III. MATERIALES Y REACTIVOS:

IV PARTE EXPERIMENTAL

A. Reacción de los Metales con el agua:

Page 76: informe_parte ii.pdf

76

a. Ponga 3 mL de agua y 3 mL de HCl 6M en cada uno de los 3 tubos de ensayo. Al tubo

Nº 1 añada un pedacito de cinc; al tubo Nº 2, un pedacito de cobre; al tubo Nº 3, un

pedacito de aluminio.

Anote sus observaciones en la hoja de informe.

b. Repita la experiencia anterior empleando ahora pedacit s de Estaño, Hierro y

Magnesio.

a. Ponga cerca de 50 mL, de agua en un vaso . Utilizando nas tenazas, con mucho

cuidado queme un pedacito de cinta de Magnesio encima del agua tratando de que las

cenizas caigan dentro del agua. Agite fuertemente con un baqueta . Pruebe ahora la

disolución preparada con el papel tornasol. Pruebe también disoluciones del HCl y

NaOH. ¿Es el óxido de magnesio ácido o básico? ¿Por qu ?.

b. Prepare un poco de Hidróxido de Aluminio añadiendo 4 mL de NH4OH 6M a 5 mL;

de Al (NO3)3 1M, Caliente por un minuto y deje enfriar. ¿Qué se forma?

c. Decante la disolución y elimine el líquido que sobrena . Lave el precipitado con unos

10 mL más de agua y pruebe la disolución con papel tor asol. Resultados. Es éste

óxido, ácido o básico? Explique.

d. Disuelva una pequeña cantidad de óxido de Boro en agua destilada caliente. Enfríe.

Haga ahora la prueba del papel tornasol a esta disolu sultados.

e. Ponga cerca de 1 g de Na2CO3 en un tubo de ensayo limpio y seco. Añada ahora 6 mL

de HCl 6M.

B. Reacciones de los metales con los Ácidos:

C. Los óxidos de algunos elementos:

Page 77: informe_parte ii.pdf

77

Adapte un tubo de desprendimiento (el profesor le indicará como e arma el aparato) y

haga burbujear el gas que se desprende en un tubo de ensayo que contiene 5 mL de

agua. Cuando cese la reacción pruebe la disolución co papel tornasol. Anote sus

resultados.

a. En cada uno de dos tubos de ensayo con tapa coloque 2 de NaI 0,1M

respectivamente. Añada ahora a cada tubo un poco de agua de cloro.

Añada ahora 1 ó 2 mL de CCl4 a cada tubo de ensayo. Tape los tubos y agite

fuertemente. Observe el color que aparece en CCl4 ¿A qué se debe? Anote sus

resultados. ¿Qué puede decir acerca de la acción del CCl4. Explique.

b. Repita la experiencia usando NaCl y KI, agua de Bromo CCl4.. Anote sus

resultados.

c. Repita la experiencia una vez más, usando ahora NaCl y NaBr, con 1 de Yodo

0,1M y CCl4. .¿Qué observa ahora?

d. Escriba las ecuaciones para las reacciones que se han fectuado. ¿Cuáles son sus

conclusiones acerca de la reactividad de los halógenos? De acuerdo con sus resultados

experimentales compare el carácter no- metálico de los elementos dentro del grupo.

¿Cómo cambia el carácter no- metálico a medida que descendemos en la Tabla

Periódica? Explique.

:

a. Reacción con el Sodio,

¿Qué sucede al agregar fenolftaleína?

b. Reacción con el Magnesio,

C). Reacción de algunos elementos con los Halógenos:

RESULTADOS

A. Reacción de los metales con el agua:

Page 78: informe_parte ii.pdf

78

¿Qué sucede al agregar fenolftaleína?

c. ¿Cuál de los dos metales es mas activo? ¿Por qué?

a. Explique cuál de los dos tubos hay una mayor reacción?

b. ¿Cómo reacciona cada metal en este caso? Son sus reacciones más o menos rápidas que

las producidas en (a)?

c. De acuerdo con (a) y (b) cómo cambia el carácter metá ico cuando nos movemos de

arriba abajo en un grupo determinado? ¿Por qué?

B. Reacción de los metales con los ácidos:

Page 79: informe_parte ii.pdf

79

Observar los colores característicos de los diferentes stados de oxidación de algunos

metales de transición.

Ilustrar cómo ocurren estos cambios de estados de oxid ción en reacciones oxidación

reducción.

Identificar los estados de oxidación de algunos metales de transición utilizando

pruebas específicas.

Los elementos de transición exhiben estados de oxidación variable y coloración fuerte. En la

primera serie de metales de transición los electrones 4s y 3d se pueden transferir a otras

sustancias. Por lo tanto, son posibles varios estados e oxidación.

A diferencia de los cationes, aniones y oxianiones de entos representativos, los cuales

son incoloros, los iones oxianiones de los metales de transición, como el cromato, CrO42-

(amarillo),. El dicromato, Cr2O72- (naranja) y permanganato, MnO4

-4 (púrpura) presentan

coloración.

El color de los metales de transición y sus compuestos se debe a los electrones d en sus

estructuras. Cuando no hay electrones d presentes, co o en el Sc3+ , o cuando todos los

orbitales d están completos, como el Cu+ y Zn2+

3.6. Practica Laboratorio N°6 : Estudio de algunos metales de transición

I. OBJETIVOS:

II: MARCO TEÓRICO:

Page 80: informe_parte ii.pdf

80

Mechero, cápsulas de evaporar, embudo , probeta, tubos de ensayo, Zinc, NH4OH (1:4), HCl

(1:4); 6 M NaOH, H2SO4 (1:6), 0.16M Cr2 (SO4)3 , 0.25 K2CrO4 , H2O2 (3%), MnO2 ,

NaOH, KNO3 , HNO3 (1:5) 0.1 M Fe(NO3)3 HCl (conc), 1M KCNS, NaF, 0,1M K4 Fe

(CN), 0,1M (FeSO4 , 0,1% fenantropina, 1M NaC2H3O2, H2SO4 (con), Nas SO3 .

a. Agregue 5 mL de solución de NH4OH (1:4) a 5 mL de una solución de Cr2(SO4)3 .

Observe y anote el resultado.

Agregue 5 mL de NaOH a 5 mL de una solución de Cr2(SO4)3

Observe y anote el resultado. Agregue un exceso de NaOH hasta la disolución. Gu rde

esta disolución para la parte C.

¿Que propiedad del Cr(OH)3 se demuestra con este comportamiento? ¿Cuál es el estado

de oxidación del Cr en el (Cr (OH)4)2+ o el equivalente CrO2

b A 5 mL de una solución de cromato de potasio agregue ácido clorhídr co (1:4) hasta que

ocurra un cambio de coloración.

Explique el resultado. A la mitad de esta solución agr ue NH4OH hasta restaurar el

color original.

¿Cuál es el estado de oxidación del cromo en K2 CrO4 ?

¿Cuál es el estado de oxidación del ión producido en la solución ácida?

c . A 5 mL de la solución alcalina de la parte a agregue peróxido de hidrógeno hasta que

ocurra un cambio de coloración.

III. MATERIALES Y REACTIVOS:

IV . PARTE EXPERIMENTAL:

A. Reacciones del cromo:

Page 81: informe_parte ii.pdf

81

¿Cuál de los estados de oxidación del cromo se ha producido?

d. A 5 mL de K2CrO4 agregue H2SO4 hasta producir un cambio de coloración. A esta

solución agregue H2O2 . Observe y anote el resultado.

e. A 5mL de Cr2(SO4)3 agregue 2 gránulos de zinc. Caliente suavemente y observe y

anote el cambio de coloración.

Este color es característico del Cr (II). Decante la solución y agite con el aire en el tubo

de ensayo hasta que ocurra un cambio de coloración.

Observe y anote el resultado.

¿En cuál de los estados de oxidación es estable el cromo en presencia del aire?

:

a. Agregue 5 mL de NaOH a 5 mL de una solución de MnSO4 . Observe y anote los

resultados. Agregue 10 mL más de NaOH. ¿Qué indica es o sobre la naturaleza del

Mn(OH)2 .

b. Mezcle 1 gramo de MnO2 con 1.5g de NaOH y 1.5g KNO3 en una cápsula de

evaporar. Caliente hasta que la masa se derrita.

Enfríe. Agregue agua, mezcle y filtre el contenido a u beta llena con agua hasta la

mitad. Guarde la solución para la parte C. ¿Cuál es el color del filtrado) Este es el color

característico del ión manganato, MnO42- Anote sus resultados en la hoja de informe.

c. Acidule 10 mL de la solución de la parte 2 con HNO3 y filtre. ¿Cuál es el color del

filtrado? Este es el color característico del ión permanganato, MnO4 . El precipitado

chocolate que queda en el papel filtro es MnO2 . ¿Cuál es el estado de oxidación del Mn

en MnO2 , MnO4 .

B. Reacciones del manganeso

C. Reacciones del hierro:

Page 82: informe_parte ii.pdf

82

a. Coloque 1 gota de Fe(NO3)3. 0,1 M En un tubo de ensayo, agregue 1 gota de HCl

concentrado y diluya con agua hasta 1 mL. Agregue 1 gota de KCNS 1M. Anote el

resultado.

b. Coloque 1 gota de Fe(NO3)3 0,1M en un tubo de ensayo y diluya con agua hasta 1 mL.

Agregue 5 gotas de K4 Fe(CN)6 0,1 M. Anote el resultado.

c. Repita las pruebas 1 y 2, pero esta vez utilice FeSO4 en lugar de Fe(NO3)3. Anote

resultados.

d. Coloque una gota de FeSO4 0.1M en un tubo de ensayo y agregue 5 mL de agua.

Agregue 0.5 mL de 0-fenantrolina y 0,5 mL de acetato de sodio. Anote el resultado.

e. A una gota de Fe (NO3)3 0.1M agregue 1 gota de ácido sulfúrico concentrado y 0,1g de

Na2SO3 . Diluya con agua hasta 5 mL. Agregue 0- fenantrolina al 0.1% y 0.5 mL de

acetato de sodio 0.1M. Observe y anote la coloración ¿Qué indica el resultado?

a. Cr2 (SO4)3 + NH4OH ______________

+ NaOH ______________

+ exceso de NaOH ______________

b. K2CrO4 + HCl ______________

+ NH4OH ______________

c. Cr2(SO4)3 + exceso de NaOH ______________

+ H2O2

RESULTADOS:

ESTUDIO DE ALGUNOS METALES DE TRANSICIÓN

A. Reacciones del Cromo:

Page 83: informe_parte ii.pdf

83

d. K2CrO4 + H2SO4 ______________

+ H2O2

e. Cr2(SO4)3 + Zn ______________

a. MnSO4 + NaOH ______________

+ NaOH en exceso ______________

B MnO2 + NaOH + KNO3 ______________

a. Fe (NO3)3 + KCNS ______________

+ NaF ______________

b. Fe (NO3)3 + K4Fe (CN)6 ______________

c. FeSO4 + KCNS ______________

+ K4Fe (CN)6 ______________

d Fe (NO3)3 + 0-fenantrolina ______________

e . Fe (NO3)3 + H2 SO4+Na2SO3

+ ______________

1- Cr+3 + OH- _____________

2. Cr (OH)3 (s) + OH- _____________

3. CrO4-2 + H3O

+ _____________

4. Cr2O7-2 + OH- _____________

5. CrO2- + H2O2 + OH- _____________ CrO4

-2 + H2O

6. K2Cr2O7 + H2O2 + H2SO4 _______ K2SO4 + Cr2(SO4)3 + H2O + O2

B. Reacciones del Manganeso:

C. Reacciones del Hierro:

Ecuaciones:

Page 84: informe_parte ii.pdf

84

7. Cr+3 + Zn ______________

8. Mn+2 + OH- ______________

9. MnO2 + NaOH + KNO3 ______ Na2MnO4 + KNO2 + H2O

10- Na2MnO4 + HNO3 _______ NaMnO4 + MnO2 + H2O + NaNO3

11. Fe+2 + K+ + Fe (CN)6-4 + H2O ______________

12. Fe+3 + K+ + Fe (CN)6-4 + H2O ______________

13. Fe+3 +SCN-

Page 85: informe_parte ii.pdf

85

I. OBJETIVOS:

Afianzar en el concepto de enlace químico: Iónico y Co e.

Usar correctamente el conductímetro

Determinar el enlace que forma un compuesto químico me iante su conductividad

eléctrica.

II. MARCO TEÓRICO:

Para explicar el tipo de enlace químico que forma un compuesto, es conveniente utilizar

modelos o representaciones conceptuales para darle sencillez. Atendiendo a estos modelos

podemos concentrar dos grupos: los que conducen la cor iente eléctrica (electrolitos) y los que

no conducen la corriente eléctrica ( no electrolitos). A la primera división se les llama enlace

iónico y a la segunda, enlaces covalentes.

El enlace iónico se forma por una transferencia total electrones de la capa de valencia y

generalmente ocurre cuando se combina un elemento metálico con uno no metálico. Por

ejemplo, el sodio pierde un electrón al combinarse con el cloro, donde el sodio queda con 10

electrones (configuración del gas noble, neón) y el cloro gana un electrón para completar 18

electrones (configuración del argón, gas noble). En este tipo de enlace los eleme tos siempre

buscan quedar con la configuración del gas noble más c rcano.

NaCl Na+ Cl-

Los compuestos que forman enlaces iónicos tienen las s propiedades:

3.7. Practica Laboratorio N°7 : Compuestos electrolíticos y no electrolíticos

è

Page 86: informe_parte ii.pdf

86

Conducen la electricidad en estado acuoso, Son fuertes electrolitos, En estado sólido puro,

tienen alto punto de fusión,Forman redes cristalinas tridimensionales.

Los compuestos que forman enlaces covalentes comprenden la mayoría de los compuestos

orgánicos y muchos inorgánicos. Este tipo de enlace se produce cuando los átomos que

participan en el compuesto comparten sus electrones de la capa de valencia, sin que sea

exclusividad de ninguno.

Los compuestos covalentes presentan las siguientes pro ades:

Malos conductores de la corriente eléctrica, En estado sólido presentan bajo punto de fusión,

No son electrolitos.

En esta experiencia se comprobará los diferentes tipos de enlace mediante la conductividad

eléctrica que presenta los compuestos.

III. MATERIALES Y REACTIVOS:

Conductímetro, vaso químico de 50 y 250cc, policial, t rmómetro, ácido clorhídrico

concentrado, HCl diluido, ácido benzoico, ácido acético glacial y diluido, NaCl sólido, NaCl

diluido, sacarosa, sulfato hidrogenado de sodio, sulfa o de sodio 0,5 N hidróxido de amonio

15%, glicerina.

Page 87: informe_parte ii.pdf

87

IV. PROCEDIMIENTO:

A. Conductividad Eléctrica:

Arme un conductímetro según indicación del profesor. Conéctelo a la fuente de la corriente de

la mesa. Una vez que lo haya conectado, no una los ele rodos ni los toque, recuerde que la

corriente que circula por la fuente es de 110 voltios cirá un fuerte descarga.

En sendos vasos químicos de 50 cc tome muestras de las siguientes sustancias en estado puro:

etanol, glicerina, benceno, clorato de potasio (s) 1 cloruro de sodio (s) 1g, Una vez

colocada la muestra en el vaso químico introduzca los lectrodos dentro. Para comprobar la

conductividad no permita que los electrodos se unan en ningún momento dentro del vaso que

contiene la muestra. Cada vez que realiza una prueba de conductividad eléctrica lave bien los

electrodos con agua destilada. Anote sus resultados en la sección de informe.

Tome muestras de las siguientes sustancias en estado d luido: cloruro de sodio, clorato de

potasio, HCl conc., HCl dil., ácido acético glacial, ácido acético diluido, CuSO4 diluido.

Coloque unos 10 cc de la muestra en un vaso químico de 50cc y ejecute el procedimiento del

paso 2, Anote sus resultados.

Desconecte el sistema eléctrico.

A. Conductividad eléctrica.

Resultados de las sustancias puras.

RESULTADOS:

Page 88: informe_parte ii.pdf

88

Sustancia Conductividad Tipo de electrolito Enlace

Etanol (1)

Glicerina (1)

Benceno (a)

KCl03 (s)

NCl (s)

Agua destilada (1)

Resultado de sustancias diluidas

Sustancia Conductividad Tipo de electrolito Enlace

NaCl (ac)

KCl03 (ac)

HCl conc.

HCl – (ac)

Hac (glacial

HAc (ac)

CuSO4 (ac)

Sacarosa (ac)

Page 89: informe_parte ii.pdf

89

1.-¿Qué relación existe entre la conductividad de una sustancia y el tipo de enlace que tiene?

2.-¿Si usted tiene una sustancia sólida desconocida cómo puede determinar

experimentalmente el tipo de enlace que la forma?

3.-¿Qué enlace químico es más difícil de romper, un enlac iónico o uno covalente Explique.

CUESTIONARIO.

Page 90: informe_parte ii.pdf

90

Reconocer algunos cambios asociados con una reacción química

Aprender a expresar los cambios químicos mediante ecua iones.

Una sustancia se puede caracterizar por sus propiedade físicas y químicas. Las propiedades

físicas son exhibidas por las sustancias sin ningún cam io en su composición química.

Ejemplos de las propiedades físicas son: el color, densidad, punto de ebullición, punto de

fusión, etc.

Una propiedad química se refiere al tipo de cambio que sufre la estructura íntima de la

materia. Por ejemplo: Los metales alcalinos como el so y el potasio son caracterizados por

reaccionar vigorosamente con el agua. La reacción con el agua es una propiedad química de

los metales alcalinas. De un cambio químico, como lo es la reacción del sodio con el agua,

resulta la formación de una nueva sustancia con propiedades físicas y químicas diferentes a

las sustancias que reaccionaron originalmente.

Un cambio químico lo podemos observar por un cambio de color, formación de un gas,

formación de un sólido. Estas características son indi ativas de que ha ocurrido un cambio

químico.

Por conveniencia las reacciones químicas se han clasif cado de la siguiente manera:

a. Reacciones de precipitación

b. Reacciones ácido – base o de neutralización

c. Reacciones de complexión o formación de complejos

d. Reacciones de óxido-reducción o Redox.

3.8. Practica Laboratorio N°8 : Reacciones químicas

I. OBJETIVOS:

II: MARCO TEÓRICO:

Page 91: informe_parte ii.pdf

91

1. Las reacciones de precipitación son caracterizadas por la formación de un

precipitado o sólido cuando se mezclan dos sustancias más generalmente en fase

acuosa. Un ejemplo de este tipo de reacción es el siguiente:

Ba (NO3)2 + Na2SO4 BaSO4 + 2 NaNO3

2. Reacciones ácido – base. Un ácido se puede definir como una sustancia que dona

protones H+ , mientras que una base es aquella sustancia que acepta esos protones.

Una reacción ácido – base produce sal más agua. Por ejemplo:

HCl(a) + NaOH(ac) NaCl(a) + H2O

3. Reacciones de complejación: Es una reacción entre un ión metálico y una

molécula o anión el cual puede formar enlaces por donación de electrones al ión

metálico. Los enlaces que forman los iones o moléculas al donar un par de

electrones son llamados enlaces coordinados. El número de átomos enlazados al

ión metálico es el número de coordinación del complejo y los grupos que están

unidos al ión se les llama ligandos.

Por ejemplo:

Cu2+(ac) + 4NH4OH [Cu (NH3)4 ]2+

(ac) + 4H2O

El complejo de cobre tiene cuatro moléculas de amonio su número de

coordinación es cuatro.

4. Reacciones de óxido – reducción: En este tipo de reacciones cambia el número de

oxidación de los reactantes durante el curso de la reacción. El reactivo que decrece

su número de oxidación es producido, y el reactante qu aumenta su número de

oxidación es oxidado

Por ejemplo:

Cuº + 2 Ag+1(ac) Cu2+

(ac) + 2 Agº

è

è

è

è

Page 92: informe_parte ii.pdf

92

En este proceso el cobre es oxidado y la plata es reducida.

La experiencia estudiará únicamente tres de estas reac Precipitación,

Neutralización y de Oxidación-Reducción.

:

Gradilla, tubos de ensayo, ácido sulfúrico al 10%,nitr to de bario al 5%, sulfato de cobre al

5%, nitrato de plata al 1%, cloruro de sodio al 5%, sulfato de potasio y aluminio al 5%,

hidróxido de sodio 2N, amonio al 20%, ácido nítrico di ido, yoduro de potasio al 5%, HCl

diluido, KMnO4 0,05N, FeSO4 0,1N

1. Coloque en un tubo de ensayo 5 cc de AgNO3 al 1%, agregue HCl diluido, hasta que

ocurra un cambio. Anote sus resultados en la sección d ormes.

2. En un tubo de ensayo limpio coloque 5 mL de Ba(NO3)2 al 5%, agregue CuSO4 gota a

gota hasta que halla precipitación completa.

3. En otro tubo agregue 5 mL de AlK(SO4)2 al 5%, más 0,5 mL de NaOH 2N. Observe lo

que sucede. Agregue luego de formado el precipitado blanco un exceso de NaOH y

observe lo que sucede. Anote sus observaciones en la sección de informes,

1. Coloque en un tubo de ensayo 5 mL de agua destilada y 10 gotas de HNO3 diluido.

Adicione 2 gotas del indicador fenolftaleína, agregue NaOH diluido gota gota hasta

que ocurra un cambio de color. En este punto cuando ocurre un cambio de color se dice

que ha ocurrido la neutralización del ácido por la base.

III. MATERIALES Y REACTIVOS

IV. PARTE EXPERIMENTAL:

A. Reacciones de Precipitación:

B. Reacciones de neutralización ó Ácido Base.

Page 93: informe_parte ii.pdf

93

2. Coloque 5 mL de agua en un tubo de ensayo, agregue 1 mL de NH3 diluido y agregue 2

gotas del indicador naranja de metilo. Adicione ácido cético diluido gota a gota hasta

que ocurra un cambio de coloración. Anote sus resultados.

1. Tome dos tubos de ensayo. Al primer tubo de ensayo agregue 5 mL de una solución de

FeSO4 0,1M y al segundo 5 mL de una solución de KI al 5%.

2. Agregue a cada tubo 1 mL de H2SO4 diluido y agite.

3. Agregue 0,5 mL de KMnO4 0,5 M a ambos tubos y observe en que tubos de ensayo

ocurre reacción.

¿Qué ocurre al agregar HCl al AgNO3? ____________________________

¿De qué es el precipitado?______________________________________

¿Qué coloración presenta?______________________________________

Escriba la ecuación balanceada para la reacción.

____________________________________________________________

¿Qué sucede al agregar CuSO4 al BaNO3 ?__________________________

¿De qué es el precipitado?_______________________________________

¿Qué coloración presenta?_______________________________________

Escriba la ecuación balanceada para la reacción.

_____________________________________________________________

¿Qué se forma al reaccionar AlK(SO4)2 con NaOH?_____________________

¿Qué sucede al precipitado al agregar exceso de NaOH?_ _____________

A. Reacciones Redox:

RESULTADOS:

A. Reacciones de Precipitación.

Page 94: informe_parte ii.pdf

94

______________________________________________________________

Escriba la ecuación para toda la ecuación

______________________________________________________________

Escriba la ecuación para la neutralización entre HNO3 y el NaOH.

______________________________________________________________

¿Qué coloración presenta el naranja de metilo con NH 3?

______________________________________________________________

¿Qué color presenta el indicador fenolftaleìna en medio ácido?

____________________ ¿Y en medio básico?________________________.

1. ¿Qué sucede al agregar el H2SO4 a los tubos que contiene FeSO4 y KI ?

_______________________________________________________.

2. Coloque en la siguiente tabla los resultados observados:

1 FeSO4, H2SO4 KMnO4

2 KI H2 SO4 KMnO4

3. Escriba la reacción balanceada para el tubo 1.

B. Reacciones de Neutralización:

C. Reacciones Redox:

Tubo Contenido Observaciones

Page 95: informe_parte ii.pdf

95

4. Escriba la ecuación balanceada para el tubo 2.

5. ¿Qué observa en ambos tubos al cabo de unos minutos?______________ ¿De qué

color es el precipitado?_____________________ ¿De qué el

precipitado?__________________________________

1. Clasifique las siguientes reacciones como reacciones de precipitación, redox o

complejación.

a. Cuº(s) + HNO3(ac) Cu2+ + NO2(g) + H2O

b. LiOH(ac) + HBr(ac) Li+(ac) + Br- + H2O

c. KMnO4(ac) + H2SO4(ac) + KI(ac) I2(g) Mn2+(ac) + K+

(ac)

d. . Fe3+(ac) + SCN- [Fe (SCN) ]3+

(ac)

2. Calcular en los siguientes compuestos el número de oxidación del elemento indicado.

a Br en BrO-3

b P en H3 PO4

3. Indique el ligando y el número de coordinación en los siguientes compuestos.

[Co(H2O)6]2+ ; [ Ni (DMG)2 ]2+ ; [Pt (NH3)2 (H2O4) ]3+

4. En la siguiente reacción que Ion se oxida y cual se re e.

ClO-3 + Fe2+ Cl- + Fe3+

Cuestionario

è

è

è

è

Page 96: informe_parte ii.pdf

96

Comprobar que para todo proceso químico existe la ley la conservación de la masa.

Destacar la importancia de una ecuación balanceada

Calcular a partir de la ecuación balanceada la cantid d de producto que se formará y

compararlos con las cantidades que se obtienen en la práctica.

La estequiometria que trata las relaciones cuantitativas de masa en una reacción química,

constituye unos de los pilares en el desarrollo de la uímica moderna como ciencia exacta La

primera observación cuantitativa importante la realizó Lavoisier en 1774. El observó que

cuando el estaño reacciona con el oxígeno en un sistema cerrado, el peso de los reactivos y

productos es el mismo. Esto vino a respaldar la ley de la conservación de la masa, que

establece que la masa no se crea ni se destruye.

A partir de este enunciado nosotros podemos realizar a serie de operaciones que nos

permiten establecer la cantidad de masa que se formará en una reacción química, conociendo

la cantidad de reactivos utilizado.

Para llevar a cabo el análisis y el cálculo de los dat debemos tener en cuenta la

estequiometría de la reacción. Antes de esto, la ecua ión debe estar correctamente

balanceada.

Una vez obtenidos los resultados experimentales debemos conocer cuál es el porcentaje de

error experimental, para ello aplicamos la siguiente relación.

3.9. Practica Laboratorio N°9 : Interpretaciones Molares de las Ecuaciones

I. OBJETIVOS:

II: MARCO TEÓRICO:

Page 97: informe_parte ii.pdf

97

Peso teórico – peso experimental x 100

% error =

Peso teórico

En esta experiencia estudiaremos la reacción entre el lfato de cobre y el nitrato de bario,

cuya ecuación es la siguiente:

CuSO4 + Ba(NO3)2 BaSO4 + Cu(NO3)2

Blanco

Luego estudiaremos la reacción entre el Cu (NO3)2 y el hidróxido de sodio.

Cu(NO3)2 + 2NaOH CuO + 2NaNO3 + H2O

Nos basamos siempre en la cantidad de precipitado que e obtenga para efectuar los cálculos

químicos.

Mechero de Bunsen, Trípode, balanza, espátula, vasos micos, baqueta, papel filtro

Watman Nº 42, sulfato de cobre, nitrato de bario, hidróxido de sodio 2M.

1. Pese sobre el papel encerado 1g de CuSO4 anhidro. Páselo a un vaso precipitado de 50

mL y diluya la sal con 15 mL de agua. Agite con ayuda e una baqueta hasta total

dilución.

2. Pese sobre otro papel encerado 2.5g de Ba(NO3)2 , páselo a un vaso precipitado de 50

mL y disuelva la sal con 15 mL de agua. Agite hasta ob ener una completa dilución de

la sal.

çè

çè

III. MATERIALES Y REACTIVOS:

:

IV PARTE EXPERIMENTAL

A. formación del Sulfato de Bario:

Page 98: informe_parte ii.pdf

98

3. Agregue todo el contenido del vaso que contiene el nitrato de bario en el vaso que

contiene el sulfato de cobre. Agite por unos instantes. Anote sus observaciones en la

hoja de informe.

4. Monte un sistema de filtración y proceda a filtrar la solución. Lave las paredes del vaso

químico con ayuda de una botella lavadora. Seque el producto poniéndolo sobre un

vidrio reloj y luego sobre un baño maría. Guarde el filtrante para la parte B.

5. Pese el producto obtenido y calcule el porcentaje de error. Anote sus resultados.

1. A la solución filtrante guardada del paso 4 de la parte A., añádale en pequeñas

porciones NaOH 2M hasta completar 10 mL.

Pruebe que la reacción sea básica con ayuda del papel icador. En caso que no sea

básico agregue NaOH 2M hasta obtener pH básico.

2. Caliente hasta que observe un cambio nítido en la coloración acompañ o de la

formación de un precipitado chocolate.

3. Deje enfriar la solución. Una vez que la solución esté oceda a filtrar como lo hizo

anteriormente. Seque el precipitado en un baño maría colocándolo sobre un vidrio reloj

y éste a su vez sobre un baño. Anote sus resultados.

4. Calcule el % de error para su experiencia.

Peso del papel encerado + CuSO4 ___g

Peso por papel ___ g

Peso del CuSO4 ___ g

Peso del papel necesario + Ba(NO3)2 ___ g

B. Obtención del óxido de cobre.

RESULTADOS:

A. Formación del sulfato de bario.

Page 99: informe_parte ii.pdf

99

Peso del papel ___ g

Peso del Ba(NO3)2 ___ g

Peso del papel filtro + el filtrado ___ g

Peso del papel filtro ___ g

Peso del filtrado (BaSO4 ) ___ g

Peso teórico de BaSO4 ___ g

% error ___ %

¿Qué sucede al mezclar las soluciones?_____________________________

¿Qué se ha formado?____________________________________________

Escriba la ecuación para la reacción:

:

Peso del papel filtro + óxido de cobre ___ g

Peso del papel filtro ___ g

Peso del óxido de cobre ___ g

Peso teórico del óxido de cobre ___ g

% error ___ %

¿Qué sucedería si no se calienta la solución?______________________

¿A qué le atribuye el error obtenido en esta experiencia?________________

Escriba la ecuación balanceada para la ecuación.

CUESTIONARIO:

1. ¿Indique qué ocurre al mezclar las soluciones de Ba(NO3)2 y CuSO4?

2. ¿Qué reactivo limita la reacción? ¿Qué reactivo qu da en exceso?

3. ¿Cuántos gramos de BaSO4 se producirán al reaccionar 3.50g de Ba(NO3)2 con suficiente

CuSO4 ?

B. Obtención del óxido de cobre

Page 100: informe_parte ii.pdf

100

Determinar el porcentaje de agua en un compuesto hidratado

Determinar la fórmula de un compuesto hidratado a partir de datos analíticos.

Observar cambios de coloración y cambios energéticos q ocurren durante la

formación y reacción de un hidrato

Determinar la relación molar entre reacciones y produc os en una reacción química.

Las sustancias químicas que intervienen en una reacción química, podemo representarlos mediante

una ecuación química a fin de determinar la relación molar entre el reactivo y el producto de la

reacción

Ejemplo

2 KClO3 <====> 2 KCl + 3 O 2

2 Moléculas 2 Moléculas 3 Moléculas

2 Mol-g 2 Mol-g 3 Mol-g

2 Mol-kg 2 Mol-kg 3Mol-kg

La ecuación química esta balanceada cuando los elementos de las sustancias reaccionantes es igual a

los elementos de la sustancia producida.

LEYES PONDERALES DE LAS COMBINACIONES QUÍMICAS:

Ley de la conservación de la masa o de Lavoisier.

Ley de las proporciones constantes o de Proust.

Ley de las proporciones múltiples o de Dalton.

. Ley de los equivalentes o de Richter-Wenzel

3.10. Practica Laboratorio N°10 : Estequiometría

I. OBJETIVOS:

II: MARCO TEÓRICO:

Page 101: informe_parte ii.pdf

101

Crisol con tapa, triángulo, mechero, CuSO4 , Termómetro, mortero y pistilo, amoníaco (6M)

H2SO4 (3M ó 6M) Probeta graduado.

a. Coloque un crisol con su tapa en un soporte que lleva riángulo.

b. Caliente el crisol por 2 ó 3 minutos. Déjelo enfriar a temperatura de ambiente. Pese

cuidadosamente el crisol y su tapa. Anote el peso.

c. Añada 1 ó 2 gramos de sulfato de cobre previamente pul erizado en un mortero. Pese

el crisol con la tapa y la muestra y anote el peso.

d. Caliente el crisol suavemente por 5 minutos con la tapa ligeramente separada para que

el agua pueda escapar. Arregle la llama de manera que forme el cono interno azul.

Caliente por 10 a 12 minutos más, tratando de que el remo del cono azul toque el

fondo del crisol (el crisol tomará un color rojizo durante este período).

e. Pasado este tiempo, retire la llama; tape bien el crisol y deje enfriar a temperatura

ambiente. Se necesitan cerca de 10 minutos. Pese nuevamente y anote el peso.

f. Caliente el crisol tapado por 6 minutos más. Enfríe a temperatura ambiente y pese.

Repita este procedimiento hasta lograr una diferencia 0.05g entre dos pesadas,.

Guarde el CuSO4 anhídrido para la parte B.

.

a. Transfiera el sulfato de cobre (II) de la parte A a un tubo de ensayo.

b. Coloque el termómetro dentro del tubo y agregue gota a gota. Observe el cambio de

coloración y anote el cambio de temperatura.

III. MATERIALES Y REACTIVOS:

III. PARTE EXPERIMENTAL:

A. Porcentaje de agua en Hidrato:

B. Formación y Reacción de un Hidrato

Page 102: informe_parte ii.pdf

102

c. Después de anotar la temperatura agregue suficiente agua para disolver los cristales

completamente. Ahora agregue amoníaco (6M) poco a poco hasta que ocurra un cambio

de coloración. Anote los resultados.

d. Agregue ácido sulfúrico (3M o 6M) hasta que ocurra un ambio de coloración. Anote

los resultados en el Cuadro siguiente.

a. Limpie y seque el crisol. Caliente por 2 a 3 minutos. éjelo enfriar a temperatura

ambiente y pese cuidadosamente. Anote el peso.

b. Añada 1 a 2 gramos de NaHCO3 en el crisol y pese nuevamente. Anote el peso.

c. Coloque el crisol con la muestra en el triángulo y caliente suavemente por 5 a 6

minutos. Aumente la intensidad de la llama y caliente fuertemente por 4 minutos más.

Déjela enfriar a temperatura ambiente y péselo. Anote su peso.

d. Caliente el crisol con la muestra 5 minutos más, déjelo enfriar y pese nuevamente.

Peso crisol + CuSO4 . x H2O _______

Peso crisol _______

Peso de CuSO4 x H2O ______

Peso del crisol + CuSO4 ( la pesada) ______

Peso del crisol + CuSO4 (2da pesada) ______

Peso del crisol + CuSO4 (3ª pesada) ______

Peso del agua _____

Peso del crisol + CuSO4 (anhidro) ______

% de agua (experimental) ______

C. Relación Molar en una reacción Química.

RESULTADOS:

A. Porcentaje de agua en un compuesto.

Page 103: informe_parte ii.pdf

103

% de agua (teórico) ______

Mols de H2O/mol de CuSO4 ______

Fórmula del compuesto hidratado ______

Cambio de coloración Observación

a. Calentar CuSO4 . x H2O

__________________ ___________

Agregar H2O al CuSO4 __________________ ___________

Agregar NH3 (ac) al CuSO4 . x H2O __________________ ___________

Agregar H2 SO4 al Cu(NH3 )42+ __________________ ___________

Peso del crisol + NaHCO3 ______________

Peso del crisol ______________

Peso del NaHCO3 ______________

Peso del crisol + Na2CO3 ( 1ª pesada) ______________

Peso del crisol + Na2CO3 (2ª pesada) _____________

Peso del crisol ____________

Peso del Na2 CO3 _____________

Mol de NaHCO3 ______________

Mols de Na2CO3 ______________

Relación molar, NaHCO3 /Na2CO3 ______________

B. Formación de un Hidrato:

C. Relación molar en una reacción:

Page 104: informe_parte ii.pdf

104

1. El yeso CaSO4. 2H2O cuando se calienta a 175º C pierde sus dos moléculas de agua. Si

tenemos 0.8453g de una mezcla de yeso y Na2SO4 y se pierden 0.756g al calentarla a

175ºC, cuál es el % de Na2SO4 en la muestra original:

2- El CaCl2 anhidro se transforma en CaCl2 6H2O al contacto con el agua. ¿Cuál es el %

de agua por peso cuando se forma el hexahidrato?

3- Al calentar 5.00 g de CdBr2 . x H2O disminuye el peso en 1.04g. Asumiendo que al

calentar la pérdida de peso se debe a la pérdida de agua. ¿Calcule la fórmula exacta del

bromuro de cadmio hidratado.?

4. Escriba la ecuación para las siguientes reacciones:

a. Cu2+ + H2O

b. Cu (H2 O)4 2+ + NH3

c. NaHCO3 + calor

Cuestionario

Problemas:

Page 105: informe_parte ii.pdf

105

Aprender a manipular las sustancias gaseosas

Demostrar experimentalmente la relación que existe ent el peso molecular y el

volumen molar.

Reafirmar el concepto de peso equivalente.

Para entender mejor el comportamiento de los gases vamos a determinar dos valores

importantísimos, que están relacionados entre ellos. En experimentos anteriores vimos que un

mol de cualquier sustancia contiene el mismo número de partículas. Ahora vemos que, como

una consecuencia de la teoría cinética, una mol de cualquier gas ocupa siempre el mismo

volumen; 22.4 litros, que se conoce como “volumen molar”.

Como es mucho más fácil obtener la masa de una sustanc a gaseosa midiendo su volumen que

obteniendo el peso de una manera directa en nuestra experiencia vamos a descomponer un

peso conocido de una sustancia que deje en libertad el gas que se desea medir. Recogiendo el

volumen de agua que debe equivaler al volumen del gas. Desde luego, debemos considerar

Presión y Temperatura para poder trabajar luego en condiciones normales y poder emplear así

la ecuación.

PV = nRT

Si sabemos que el volumen molar de cualquier gas es 22.4 litros en condiciones normales y

que el “peso equivalente” de un elemento es el peso de dicho elemento que se combina o

reacciona con 8 gramos de Oxígeno O2 , 1.008g de Hidrógeno entonces el volumen de 1.008g

3.11. Practica Laboratorio N°11 : Volumen molar

I. OBJETIVOS:

II. MARCO TEÓRICO:

Page 106: informe_parte ii.pdf

106

de Hidrógeno (0.5 mol) en condiciones normales debe ser 11.2 litros, ya que su peso fórmula

es 2.016. El equivalente de un metal puede determinarse fácilmente si lo hacemos reaccionar

con un ácido . Por ejemplo:

Cd + 2HCl ----------- CdCl2 + H2

Si tomamos una muestra pesada del metal y lo hacemos reaccionar con el ácido, recogemos el

Hidrógeno que se libera y medimos el volumen en las condiciones experimentales, aplicando

las leyes de los gases podemos calcular el volumen en condiciones normales y llegar al peso

equivalente si, como hemos visto, un gramo de Hidrógeno (H2 ) desplaza 11.2 litros del gas.

KClO3 puro y seco, cinta de magnesio, HCl conc; tubos de ensayo, vaso químico de 300 mL

eudiómetro, tubo de ensayo grande, tubos de desprendimiento.

III. MATERIALES Y REACTIVOS:

IV. PARTE EXPERIMENTAL:

A. Determinación del volumen molar:

FIGURA 3.11—1: Equipo para determinar el Volumen Molar

Page 107: informe_parte ii.pdf

107

a. Arme un aparato como el que se indica en la figura ant , llene el matraz con agua

hasta casi alcanzar el nivel del tapón. Ponga agua en vaso, de manera que la cánula

del aparato liberador esté siempre sumergida.

Llene el tubo del liberador aspirando por la cánula y establezca un sifón en equilibrio.

Ajuste el tubo de ensayo vacío y cerciórese de que el arato está hermético. (El

profesor debe aprobar las condiciones antes de que se mpiece la experiencia.

b Quite el tubo de ensayo ( asegúrese de que está bien seco) y añada ½ g de KClO3 y 2g

de MnO2 Pese todo el sistema (1).

C Ajuste el tubo al aparato, teniendo el cuidado de que la operación se lleve a cabo

después de haber colocado en el mismo nivel las superficies del agua en el vaso y en el

matraz.

d. Retire el vaso y en su lugar ponga otro vaso bien limpio y seco. Comience a calentar la

sustancia en el tubo de ensayo, primero suavemente luego con más intensidad, hasta

cuando se haya liberado todo el oxígeno. Si llega a entrar aire en el aparato comience el

experimento de nuevo- La cánula debe permanecer sumergida y no debe salir del agua

en ningún momento del proceso de la descomposición.

e. Cuando se haya obtenido todo el gas, retire la llama friar el sistema. Vuelva a

nivelar los niveles de agua. Desconecte el tubo de ens Péselo y mida el volumen de

agua desplazado.

f. Anote sus resultados en la hoja de informes.

Peso del tubo con la mezcla: _____________________

Peso del tubo con el residuo; _____________________

Peso del oxígeno liberado: _____________________

RESULTADOS:

EL VOUMEN MOLAR Y EL PESO EQUIVALENTE.

A. Determinación del Volumen Molar:

Page 108: informe_parte ii.pdf

108

Volumen de agua desplazado: _____________________

Temperatura del experimento: _____________________

Presión barométrica: _____________________

Tensión acuosa: _____________________

Volumen molar del oxígeno:

Calculado) _____________________

Valor teórico: _____________________

% de error _____________________

Page 109: informe_parte ii.pdf

109

Aprender a manipular las sustancias gaseosas

Conocer el peso equivalente de un metal con respecto al hidrógeno, aplicando la ley

general de los gases.

El peso equivalente químico es un número relativo, indica que cantidad de sustancia entra en

combinación con 1,008 partes en peso de hidrógeno o co 0 partes de oxígeno, o también

a qué cantidades de estos sustituyen en una combinación.

Para ilustrar el concepto de peso equivalente químico, estudiemos algunos compuestos desde

el punto de vista de su composición cuantitativa y expresemos el porcentaje en peso de cada

uno de los elementos que los forman,

.- Es la capacidad de combinación de los elementos y es un número entero pequeño.

El equivalente de un elemento pude hallarse experimentalmente po métodos químicos:

Determinando la cantidad de hidrógeno, oxigeno u otros elementos combinados o sustituidos,

cuyo equivalente es conocido.

Para realizar los cálculos de los equivalentes de los ácidos, bases, y sales partiendo de su

fórmula hace falta basarse en el principio de que:

Es igual a su peso molecular dividido por su número de los

átomos de hidrogeno contenidos en su molécula y capace e ser sustituidos por un metal.

Ejemplo: El peso molecular de H3 PO4 , es igual a 98.

Y su equivalente será : 98/3

3.12. Practica Laboratorio N°12 : El peso equivalente

I.-OBJETIVOS:

II: MARCO TEÓRICO:

Valencia

El equivalente de un ácido.-

Page 110: informe_parte ii.pdf

110

Es igual a su peso molecular dividido por la valencia del

metal o el número de los grupos hidroxilo contenidos e la molécula de la base.

Ejemplo : El peso molecular del Ca(OH)2 es 74 y su equivalente es 74/2

Es igual a su peso molecular dividido por el producto del

número de átomos del metal en la molécula de la sal y la valencia de este metal.

Ejemplo : El peso molecular del Al2(SO4) 3 es 342 y su equivalente será:

342 / 2x3 = 57

cuba hidroneumática, magnesio, probeta de 100mL, ácido clorhídrico concentrado, balanza

analítica, solución 1N de ácido clorhídrico, matraz Erlenmeyer de 250mL, carbonato de

calcio, vaso de precipitado de 100mL, bureta de 25mL, hornilla eléctrica.

a) Amar el equipo de acuerdo al diagrama mostrado.

b) Pesar aproximadamente 0,5gr de Mg.

c) En un tubo de prueba completamente seco depositar el Mg.

d) En una pera de bromo cerrar la llave y agregar aproximadamente 20ml ácido

clorhídrico 6M.

e) En otro matraz llenarlo completamente de agua y colo ar el tapón de jebe bihorado

conectado a la probeta de 100ml donde se recogerá el agua desplazada.

f) Revisar las conexiones cuidando que no se produzcan fugas por las conexiones.

g) Agregar ácido clorhídrico a la muestra abriendo la llave de la pera de bromo, deje

reaccionar la mezcla hasta la desaparición del metal.

El peso equivalente de una base.-

El equivalente de una sal.-

III. MATERIALES Y REACTIVOS:

IV PARTE EXPERIMENTAL

Peso Equivalente del Magnesio.

Page 111: informe_parte ii.pdf

111

h) Con la probeta medir el agua desalojado por dicho gas desprendido, una vez terminada

que todo el magnesio se ha consumido y medir la temperatura del agua recolectada

:

Peso de la cinta de magnesio. ____________________

Volumen leído en el eudiómetro _____________________

Presión barométrica: _____________________

Temperatura: _____________________

Tensión acuosa: _________________________

Volumen calculado (gas seco): _________________________

Equivalente del magnesio: _________________________

Valor teórico: _________________________

% de error: _________________________

FIGURA 3.12—1: Equipo para determinar peso equivalente

RESULTADOS

Peso equivalente del Magnesio

Page 112: informe_parte ii.pdf

112

1. ¿Cuáles fueron las causas de su error?

2 Determinar el peso equivalente experimental del magnesio

3 Determinar el % de error del peso equivalente del gnesio

Mg +2HCl --------> MgCl2 + H2

4. De acuerdo con sus resultados, ¿Cuál sería el peso atómico del Magnesio?

5. ¿Cómo afectarían los resultados, si todo el magnesio no reaccionara? Si el Mg tuviera

impurezas?

6. Qué relación existe entre el peso equivalente y el peso atómico?

CUESTIONARIO:

Page 113: informe_parte ii.pdf

113

Identificar las diferentes formas de expresar la concentración de las soluciones

Determinar la cantidad de reactivos que serán utilizados en la preparación de

disoluciones

Preparar soluciones con diferentes formas de expresar la concentración en %.

Una mezcla homogénea de dos o más componentes se llama olución. Las soluciones pueden

ser sólidas (bronce, aceros, etc.), líquidas (sangre, orina, etc.), o gaseosas (aire). Las

soluciones más comunes son las soluciones líquidas.

En las soluciones es conveniente definir a uno de los omponentes como y otro

de los componentes como . El componente de una solución cuyo estado físico se

conserva cuando se forma la solución se conoce como solvente. Por ejemplo, cuando el

Cloruro de Sodio (NaCl, sólido) se mezcla con agua, la solución resultante es líquida. En

consecuencia, el agua es el solvente el NaCl es el soluto. Si varios componentes de una

solución conservan su estado físico, el que se encuentre en ma antidad será el solvente.

El término se utiliza para designar la cantidad de soluto disuel una

determinada cantidad de solvente o de solución. Las formas más utilizadas de expresar la

concentración de una solución son:

:

1. Porcentaje masa-masa : gramos de soluto por cada 100 gramos de solución.

IV. EXPERIMENTOS Y TECNCIAS DE LABORATORIO DE QUIMICA GENERAL II

4.1. Practica Laboratorio N°1: Preparación de soluciones I

I. OBJETIVOS:

II: MARCO TEÓRICO:

Concentración de soluciones

(% m/m)

SOLVENTE

SOLUTO

CONCENTRACIÓN

Page 114: informe_parte ii.pdf

114

2. Porcentaje masa-volumen : gramos de soluto por cada 100 mL de solución.

3. Partes por millón miligramos de soluto por cada litro de solución.

También se pueden encontrar expresiones como: masa/volumen ( g/mL, mg/mL, g/L) o

bién en partes por millón (ppm).

Indica la cantidad en gramos de soluto que se encuentra en 100 gramos de solución.

Por ejemplo, una solución al 3,5 %m/m significa que en cada 100 g de solución hay 3,5 g de

soluto.

100%

Indica la cantidad en gramos de soluto que se encuentra en 100 mililitros de

solución. Por ejemplo, una solución al 13,8 %m/v significa que en cada 100 mL de solución

hay 13,8 g de soluto.

100/%

Esta forma de expresar la concentración

indica la cantidad en gramos o en miligramos de soluto disueltos en 1 litro , o en 1 mililitro de

solución.

Esta forma de expresar la concentración indica la cantidad en

miligramos de soluto disueltos en 1 litro de solución.

Balanza analítica, Agua destilada, Vidrio de reloj , Vasos de precipitados d 100 mL ,

(% m/v)

(ppm):

i)

ii)

% m/m :

% m/v :

Masa/Volumen de Solución (g/mL, mg/mL, g/L):

Partes Por Millón (ppm):

III. MATERIALES Y REACTIVOS:

Material :

xsoluciondegramos

solutodegramos

m

m

xsoluciondemililitros

solutodegramosvm

=

=

Page 115: informe_parte ii.pdf

115

Matraces volumétricos de 100 mL , Matraz volumétrico d 250 mL, Matraz volumétrico de

25 mL , Embudo de vidrio , Pipeta graduada de 5 mL, Pi etas graduadas de 10 mL, Matraces

volumétricos de 10 mL, Agitadores, Propipetas, Pizeta

Cloruro de sodio, Sacarosa, , Ácido clorhídrico, Etanol

.

Para preparar una solución 5 %m/m a partir de un sólido(NaCl), se calcula la masa del

soluto que se requiere para preparar la solución. En la balanza adecuada se tara un vaso o

matraz de tamaño conveniente. Se pesa el sólido necesa conjunto se retira de la balanza

sin apagarla. Se agrega un pequeño volumen del solvent y con una varilla se agita hasta

disolver el sólido. Usando un pequeño volumen del solvente se lava la varilla y se retira de la

solución. Luego se añade agua hasta que el marcador digital de la balanza marque la masa de

la solución deseada. Las últimas porciones del solvente se pueden agregar con pisceta, pipeta

o gotario.

Para prepara una solución a 10%(NaCl) m/m a partir de una solución más concentrada, se

calcula el volumen de la solución que contiene la masa del soluto que se necesita. En una

balanza electrónica se tara un vaso o matraz de tamaño conveniente y co una pipeta se

agrega la solución concentrada hasta que el marcador digital de la balanza marque la masa de

la solución deseada. Sin apagar la balanza se retira e vaso o matraz y se agregan pequeñas

porciones de solvente. El conjunto se coloca, nuevament la balanza y se añade solvente

hasta completar la masa deseada.

Reactivos

IV PARTE EXPERIMENTAL

Formas de preparar soluciones % m/m

1.-

2.-

Page 116: informe_parte ii.pdf

116

Para preparar una solución 5%m/v (Sacarosa)a partir de un sólido se procede a pesar el

soluto en un vaso de precipitado de tamaño adecuado y se agregan pequeñas porciones de

solvente. Luego se agita con una varilla para disolver totalmente el sólido y se transfiere a un

matraz aforado de volumen adecuado. Con nuevas porcion s del solvente se lava el vaso y

finalmente, se “enrasa” el matraz de aforo. Para ello, se agrega solvente hasta que el nivel del

líquido esté unos 2 a 3 mm por debajo del aforo. En seguida, con un gotario o pipeta se

completa el volumen hasta que el nivel del líquido quede tangente a la línea del aforo. Luego

la solución se homogeniza y se transfiere a un recipiente rotulado y previamente cebado.

Para preparar una solución 10%m/v (sacarosa) a partir de una solución más concentrada,

se calcula el volumen de la solución que contiene la masa del soluto que se necesita. En un

vaso de precipitado que contenga un pequeño volumen de solvente se agrega exactamente,

utilizando una pipeta, el volumen requerido de soluto luego se transfiere con la ayuda de

una varilla de agitación al matraz de aforo de tamaño adecuado. Con nuevas po ciones del

solvente se lava el vaso y finalmente, se “enrasa” el raz de aforo. Para ello, se agrega

solvente hasta que el nivel del líquido esté unos 2 a 3 mm por debajo del aforo. En seguida,

con un gotario o pipeta se completa el volumen hasta que el nivel del líquido quede tangente

a la línea del aforo. Luego la solución se homogeniza y se transfiere a un recipiente rotulado y

previamente cebado.

a) 50 gramos de Hidróxido de Sodio al 2 %m/m

b) 50 mL de solución de Hidróxido de Sodio al 0,5 %m/v

Formas de preparar soluciones % m/v

1.-

2.-

En esta sesión de laboratorio usted preparará las siguientes soluciones:

Page 117: informe_parte ii.pdf

117

c) 50 mL de solución de sulfato de cobre 0,2 M, a partir de la sal hidratada.

d) 50 ml de una solución de Acido Clorhídrico 0,2 M.

e) Preparar 10 mL de una solución etanol-agua al 20% v/v

1. ¿Cuántas moléculas de agua hay en dos mL de una disolución de HCl , cuya densidad

y % en masa son 1.19 g/mL y 37% en masa respectivamente?.

2. Una planta de producción de NaOH, concentra una disolución que contiene 88% en

masa de agua y 12% en masa de NaOH. Si la densidad de esta lución es de 1,1309

g/mL:

a) ¿Cuántos iones OH- hay por mL de disolución?

b) ¿Cuántos moles de iones sodio hay por mL de disolución?

3. ¿Qué volumen (mL) de una disolución de etanol (C2H6O) que tiene 94% de pureza en

masa, contiene 0.2 moles de etanol? . La densidad de la diso ución es 0.807 g/mL.

4.

Cuestionario

Una aleación que contiene hierro (54.7% en masa), níq (45.0 %) y

manganeso (0.3%) tiene una densidad de 8.17 gramos sobre cm3: ¿Cuántas

moles de hierro hay en un bloque de aleación que mide m x 20cm x15cm?.

Page 118: informe_parte ii.pdf

118

Identificar las diferentes formas de expresar la concentración de las soluciones

Determinar la cantidad de reactivos que serán utilizados en la preparación e

disoluciones

Preparar soluciones con diferentes formas de expresar oncentración en M, N , m

Una mezcla homogénea de dos o más componentes se llama olución. Las soluciones pueden

ser sólidas (bronce, aceros, etc.), líquidas (sangre, rina, etc.), o gaseosas (aire). Las

soluciones más comunes son las soluciones líquidas.

En las soluciones es conveniente definir a uno de los omponentes como y otro

de los componentes como . El componente de una solución cuyo estado físico se

conserva cuando se forma la solución se conoce como solvente. Por ejemplo, cuando el

Cloruro de Sodio (NaCl, sólido) se mezcla con agua, la solución resultante es líquida. En

consecuencia, el agua es el solvente el NaCl es el soluto. Si varios comp ntes de una

solución conservan su estado físico, el que se encuent n mayor cantidad será el solvente.

El término se utiliza para designar la cantidad de soluto disuel una

determinada cantidad de solvente o de solución. Las formas más utilizadas de expresar la

concentración de una solución son:

:

1. Molaridad moles de soluto por cada litro de solución.

2. Normalidad equivalentes de soluto por cada litro de solución.

4.2. Practica Laboratorio N°2 : Preparación de soluciones II

I. OBJETIVOS:

II: MARCO TEÓRICO:

Concentración de soluciones

(M):

(N):

SOLVENTE

SOLUTO

CONCENTRACIÓN

Page 119: informe_parte ii.pdf

119

3. Molalidad moles de soluto por cada kilogramo de solución.

4. Partes por millón miligramos de soluto por cada litro de solución.

Indica la cantidad de moles de soluto que se encuentr en 1 litro de solución. Por

ejemplo, una solución 2 M, significa que en cada 1 litro de solución hay 2 moles de soluto.

Indica la cantidad de equivalentes de soluto que se en entra en 1 litro de

solución. Por ejemplo, una solución 2 N, significa que en cada 1 litro de solución hay 2

equivalentes de soluto.

/%

Esta forma de expresar la concentración

indica la cantidad en gramos o en miligramos de soluto disueltos en 1 litro , o en 1 mililitro de

solución.

Balanza analítica, Agua destilada, Vidrio de reloj , Vasos de precipitados de 100 mL ,

Matraces volumétricos de 100 mL , Matraz volumétrico d 250 mL, Matraz volumétrico de

25 mL , Embudo de vidrio , Pipeta graduada de 5 mL, Pi etas graduadas de 10 mL, Matraces

volumétricos de 10 mL, Agitadores, Propipetas, Pizeta

Cloruro de sodio, Sacarosa, Fenolftaleína , Ácido clorhídrico, Etanol

.

(m):

(ppm):

Molaridad:

Normalidad:

Masa/Volumen de Solución (g/mL, mg/mL, g/L):

III. MATERIALES Y REACTIVOS:

Material :

Reactivos

soluciondeLitros

solutodemolesM

soluciondeLitros

solutodeesequivalentvm

=

=

Page 120: informe_parte ii.pdf

120

a) Preparar 50 mL de una solución de sacarosa 0.1M

b) Preparar 10 mL de una solución al 0.1 % en etanol

c) Preparar 50 mL de una solución 0.5 N de ácido sulfúrico

d) Preparar 100 mL de una solución de ácido clorhídrico 0.1M

e) Preparación de diluciones

i) 50 mL de una solución 0.001 M de HCl a partir de una solución 0.1 M

ii) 50 mL de una solución 5 x 10-4 M de HCl a partir de una solución 0.1 M

1. Una muestra de 35 ml de HCl 12M se diluyó a un volumen final de 125 ml. Calcule la

molaridad de la solución obtenida.

2. ¿Cuántos moles de soluto contiene 1/2 litro de una solución 0.125M de ácido

sulfúrico?

3. Se tiene una disolución de HNO3 que tiene una densidad de 1.42 g/mL y una pureza

del 70%.

a) Calcula la molaridad de la disolución

b) De la disolución se tomaron 5 mL y se llevaron a un volumen final de 500 mL.

Calcula

la concentración de la nueva disolución.

c) Se requieren preparar 100 mL de una disolución 0.6 M a partir de la disolución .

Calcule el volumen de disolución que se debe utilizar para obtener la conc ntración

deseada.

IV PARTE EXPERIMENTAL

Preparación de soluciones

Cuestionario

Page 121: informe_parte ii.pdf

121

4. Se tiene una disolución de HCl que tiene una densidad de 1.18 g/mL y una pureza del

37%.

a) Calcula la molaridad de la disolución b) De la disolución se tomaron 16 mL y se

llevaron a un volumen final de 0.25 L. Calcula la concentración de la nueva

disolución.

c) Se requieren preparar 250 mL de una disolución 0.75 M a partir de la disolución.

Calcule el volumen necesario para obtener la concentración deseada.

5. Se desea preparar una disolución 0.2 M de NaOH, pero sólo se tienen dos matraces

aforados de 50 mL, una pipeta graduada de 10 mL, 2 g de NaOH previamente pesado.

No se cuenta con una balanza para pesar una menor cantida e NaOH. Diga como

preparar la disolución 0.1 M de NaOH en las condiciones anteriores.

Page 122: informe_parte ii.pdf

122

Determinar la variación de la solubilidad de los compuestos al cambiar su

concentración y su temperatura

Graficar la curva de solubilidad por efecto de la temperatura

Estudiar los precipitados y el producto de solubilidad

Definimos solubilidad como:

-La máxima cantidad de soluto que puede disolverse en un volumen fijo de un disolvente a

una temperatura determinada ó cómo -La concentración de su disolución saturada a una

temperatura determinada.

La solubilidad depende en general de la temperatura y e la naturaleza del soluto y del

disolvente :“ semejante disuelve a semejante” ,solutos iónicos y covalentes polares serán

solubles en solventes polares y aquellos solutos que sean de aturaleza apolar serán solubles

en solventes apolares, por ejemplo el NaCl es un sólid por eso es soluble en agua que

es un solvente polar,en el caso del etanol es una s tancia polar por eso se puede mezclar

con agua, en cambio el Yodo molecular I2 es una sustancia apolar por lo cual no es soluble en

agua pero si lo es en tetracloruro de carbono CCl4.el cuál es un disolvente apolar.

Obteniendo la Curva de solubilidad para los compuestos ionicos.

4.3. Practica Laboratorio N°3 : Solubilidad y producto de solubilidad

I. OBJETIVOS:

II: MARCO TEÓRICO:

Page 123: informe_parte ii.pdf

123

Fuente:Ralph H Petrucci pag 545 Octava edicion

En la mayoría de los casos, la solubilidad de una sust ncia sólida aumenta con la temperatura.

Cuando se disuelve la máxima cantidad de soluto a una emperatura dada, se tiene una

solución saturada. Si contiene menor cantidad se dice nsaturada. En contraste con los sólidos,

la solubilidad de los gases en agua al aumentar la temperatura. Esto lo

podemos observar simplemente al calentar agua, vemos q mucho antes de hervir o sea

llegar a los 100 ºC se ven claramente burbujas que se orman en las paredes del recipiente esto

es debido a que el oxígeno disuelto en el agua se torna insoluble.

Agitadores de vidrio, Vasos de precipitado de 50 mL, Pipetas graduadas de 10 mL, Pipetas

graduadas de 5 mL, Balanza analítica, Baño maría, Mech ro.

Solución de NaOH 0.5N, Solución de HCl 0.5 N, NaCl, H2O, KNO3

Ácido fenilcarboxílico

FIGURA 4.3—1: Grafica de la Curva de Solubilidad

III. MATERIALES Y REACTIVOS:

Materiales:

Reactivos

siempre disminuye

Page 124: informe_parte ii.pdf

124

Armar el equipo tal como se muestra en la figura:

En un tubo de ensayo limpio y seco pese 3 g de KNO3 +2 g de H2O

Adaptar el tubo de prueba al aparato mostrado en la figura .

Luego calentar el vaso de precipitado y su contenido, agitando mientras a baño Maria hasta

que se disuelva la sal, dejar enfriar, cuando aparezcan los primeros cristales anote la

temperatura

Luego repetir la experiencia 6 veces adicionado 1 g de agua

Tabular los datos obtenidos

IV PARTE EXPERIMENTAL

PROCEDIMIENTO EXPERIMENTAL

FIGURA 4.3—2: Equipo para determinar la Solubilidad.

A.- Solubilidad del KNO3, con la temperatura

Page 125: informe_parte ii.pdf

125

1. En una gradilla colocar cinco tubos de ensaye limpios, secos y etiquetados para su

identificación. A cada uno de los tubos agregar 1 mL de agua.

2. Agregar etanol con una pipeta a uno de los tubos y itar vigorosamente, anotando los

mililitros adicionados (no exceder de mas de 1 mililit o de etanol así como de propanol).

3. A los tubos sobrantes agregar: propanol, butanol y pentanol respectivamente, agitar

vigorosamente y observar (no exceder de 0.5 mL de butanol y pentanol).

4. El tubo sobrante es un testigo de comparación.

5. Determine la solubilidad de cada alcohol en agua, r istrando sus resultados en g de

alcohol / mL de agua

1. En tres vasos de precipitado limpios y secos de 50 esar 0.5g de ácido benzoico y

numerarlos,

2. Al vaso número uno adicionarle 5 mL de agua, al vas número 2 adicionarle 5 mL de una

solución de hidróxido de sodio 0.5N, al vaso número 3 icionarle 5 mL de una solución de

ácido clorhídrico 0.5 N. agitar vigorosamente.

3. Anotar sus resultados

T°C T1 T2 T3 T4 T5 T6

g sal/100g de H2O

Hacer la grafica de solubilidad colocando en el eje de las abscisas la temperatura

B. Determinación de la solubilidad de alcoholes

C - Influencia del fenómeno de acidez sobre la solubilidad del ácido

fenilcarboxílico

Page 126: informe_parte ii.pdf

126

1. Investigar a que se debe la variación de la solubilidad de KNO3 función de la temperatura.

2. Investigar por que varía la solubilidad de los diferentes alcoholes en agua.

3. ¿Qué relación hay entre la estructura molecular de n soluto y la estructura molecular de su

disolvente ideal?

1.- ¿ Porqué se utiliza el agitador de alambre?

2.- ¿Porqué el bulbo del termómetro no debe tocar las paredes del tubo de prueba?

3.- ¿Qué objeto tiene graficar una curva de solubilidad?

4.-Analizar en detalle las partes de la curva de solubilidad interpretando cada zona del gráfico.

5.-¿Qué es una solución sobresaturada? ¿Por qué se habla n estado metaestable?

6.- La solubilidad de una sal es 64,3 y 13,5 a 80 °C y 17 °C, respectivamente. ¿Qué cantidad

de sal sólida y agua hace falta tomar para obtener 500g de sal, si la re cristalización se

verifica a 80°C con la solución saturada que se enfría a 17 °C.

7.- A la temperatura de 60°C un sistema agua - fenol (H2O - C6 H5 OH ) se separa en dos

capas líquidas. La primera contiene 16,8 % en peso de fenol y la segunda 55,1 % . Si el

sistema contiene 90 g de agua y 60 g de fenol, calcule el peso de cada fase.

RESULTADOS

CUESTIONARIO Y PROBLEMAS

Page 127: informe_parte ii.pdf

127

Comprender las propiedades coligativas de soluciones.

Determinar las constantes ebulloscópica molal (kb) y crioscópica molal (kc) del agua a

partir de soluciones de cloruro de sodio.

Propiedades coligativas:

Las propiedades de una solución son una mezcla de las propiedades del soluto y solvente. En

soluciones diluidas de cualquier solvente, existen algunas propiedades físicas que no depende

de la naturaleza del soluto. Estas propiedades, llamadas propiedades coligativas, dependen

únicamente de la concentración de soluto.

Propiedades coligativas son la presión osmótica, el descenso de la presión de vapor del

solvente, el ascenso del punto de ebullición con referencia al del solvente puro y el descenso

del punto de congelación con referencia al del solvent uro.

El ascenso del punto de ebullición de soluciones se describe mediante la relación

Tb temperatura de ebullic ión de la solución,

Tb0 temperatura de ebullición del solvente puro,

Kb constante de proporcionalidad llamada constante ebulloscópica molal que depende de

la naturaleza del solvente, y

m concentración molal de la solución.

De manera análoga, la relación para el descenso del punto de congelación es

4.4. Practica Laboratorio N°4 : Propiedades coligativas

I. OBJETIVOS:

II: MARCO TEÓRICO:

Page 128: informe_parte ii.pdf

128

Tc temperatura de congelación de la solución,

Tc0 temperatura de congelación del solvente puro,

kc constante de proporcionalidad llamada constante crioscópica molal que depende de la

naturaleza del solvente, y

m concentración molal de la solución.

2 vasos de precipitado de 500mL, Termómetro, Tubo de ensayo, Hornilla eléctrica

Cloruro de sodio (NaCl), Hielo machacado, agua destilada

1. Llenar 3/4 de un vaso de precipitado con agua desti a, y llevarlo a ebullición sobre la

hornilla.

2. Registrar la temperatura de ebullición del agua Tb0 con el termómetro. Al hacer lecturas

con el termómetro, el bulbo no debe hacer contacto con el fondo ni las paredes del vaso.

3. Retirar el vaso de la hornilla, dejar enfriar por u lapso corto de tiempo, y transvasar 200 g

de agua caliente al otro vaso.

4. Agregar 10 g de cloruro de sodio al segundo vaso, disolver c amente, y llevar la

mezcla a ebullición.

5. Registrar la temperatura de ebullición de la mezcla Tb.

III. MATERIALES Y REACTIVOS:

Materiales

Reactivos

IV PARTE EXPERIMENTAL

Ascenso del punto de ebullición

Page 129: informe_parte ii.pdf

129

6. Retirar el vaso de la hornilla, dejar enfriar por un lapso corto de tiempo, añadir 15 g de

cloruro de sodio a la mezcla anterior, disolver, y lleva la nueva mezcla a ebullición.

7. Repetir los pasos 5 y 6 hasta completar 55 g de cloruro de sodio.

1. Preparar una mezcla frigorífica en un vaso con hielo machacado mediante la adición de sal

sobre el hielo en un proporción de 1 a 3 en peso.

2. Agregar 10 g de agua destilada en el tubo de ensayo, e introducir el tubo en la mezcla

frigorífica.

3. Introducir el termómetro en el tubo evitando el contacto con las paredes, y remover el tubo

con precaución hasta congelamiento.

4. Registrar la temperatura de congelación del agua Tc0.

5. Retirar el tubo, descongelar el agua, agregar 0,25 de cloruro de sodio, y disolver

completamente.

6. Introducir el tubo en la mezcla frigorífica, introducir el termómetro en el tubo, y remover

hasta congelamiento.

7. Registrar la temperatura de congelación de la mezcla Tc.

8. Repetir los pasos 5 y 6 hasta completar 1 g de cloruro de sodio.

Ascenso del punto de ebullición

1. Completar la siguiente tabla a partir de los datos exp ales,

1 100 5

2 100 12

3 100 20

4 100 30

Descenso del punto de congelación

Cálculos y resultados

Mezcla Masa H2O(g) Masa NaCl(g) m Tb ? Tb

Page 130: informe_parte ii.pdf

130

2. Con los datos calculados de la tabla anterior, determinar la constante ebulloscópica molal

kb del agua.

3. Determinar el error relativo del valor experimental de kb con respecto al valor teórico de

0,52 ºC kg/mol para el agua.

1. Completar la siguiente tabla con los datos experimentales,

1 10 0,25

2 10 0,50

3 10 0,75

4 10 1,00

2. Con los datos calculados de la tabla anterior, dete minar la constante crioscópica del agua

kc.

3. Determinar el error relativo del valor experimental de kc con respecto al valor teórico de

1,86 ºC kg/mol para el agua.

1) Represente gráficamente las curvas de presión de va or de un compuesto en función de la

temperatura: a) para las fases líquida y sólida del compuesto puro y b) para una solución de un

soluto no volátil en el compuesto. Señale el descenso crioscópico y el ascenso ebulloscópico.

2) Defina constante crioscópica y constante ebulloscópica molal y dé las unidades

correspondientes.

3) ¿Qué condiciones deben cumplirse para aplicar el método crioscópico en la determinación

de la masa molar de una sustancia?

4) ¿Con qué método se comete menos error al determinar masas molares: con el

ebulloscópico o con el crioscópico? ¿Por qué?

Descenso del punto de congelación

Mezcla Masa H2O(g) Masa NaCl(g) m Tc ? Tc

Cuestionario

Page 131: informe_parte ii.pdf

131

5) ¿Qué tipo de error (por exceso o por defecto) se comete en la determinación de la masa

molar si: ¿la constante crioscópica real es mayor que a medida experimentalmente? ¿la

disolución del soluto no es completa? ¿durante la fusión se evapora parte del solvente? ¿el

solvente está impurificado con un soluto no volátil?

7) Si el valor de la constante es alto, ¿aumenta la precisión del método? ¿Por qué?

9) Al determinar la curva de enfriamiento de una solución suele suceder que la temperatura

descienda primero, para luego aumentar y estabilizarse, ¿por qué?

10) ¿Por qué en las curvas de enfriamiento obtenidas en el laboratorio es necesario extrapolar

los datos para obtener las temperaturas de fusión?

Kc

Page 132: informe_parte ii.pdf

132

Consolidar los conceptos teóricos relacionados a la te inámica y a las formas de

transferencia de energía

Determinar experimentalmente el calor transferido al poner en contacto dos cuerpos de

diferente temperatura

Calcular la entalpía de disolución de líquidos y sólidos

Calcular la entalpía neutralización para un ácido y un ase fuerte

La medida del flujo de calor ( )que acompaña a todo cambio químico es posible

experimentalmente mediante la medición de variaciones e temperatura ? T. Por supuesto,

tales mediciones de ? T han de realizarse de modo controlado Esto se consigue sólo si la

reacción transcurre en condiciones de presión y/o volumen constante en un recipiente

adiabático que idealmente no permita el flujo de calor a los alre edores. Los procedimientos

experimentales que permiten determinar un flujo de calor constituyen la ,

denominándose calorímetro a cualquier aparato que mida (q.). Se distinguen dos tipos

principales de calorímetros: aquellos que funcionan a resión constante (por ejemplo, en

condiciones de atmósfera abierta) y aquellos que funcionan en condiciones de volumen

constante (bombas calorimétricas). Los dos tipos de calorímetros son muy importantes en

Termodinámica ya que, como sabrás, los flujos de calor en condiciones de presión o volumen

constante equivalen a variaciones de funciones de estado:

4.5. Practica Laboratorio N°5 : Calorimetría

I. OBJETIVOS:

II: MARCO TEÓRICO:

Calorimetría y Calor Específico

q

Calorimetría

Page 133: informe_parte ii.pdf

133

? H= qp (variaciones de entalpía)

? A= qV (variaciones de la función de Helmholtz)

En este experimento trabajarás en condiciones de atmósfera abierta por lo que debes expresar

tus mediciones calorimétricas como entalpías de reacción. Conocer bien el significado de

capacidad calorífica de una sustancia. Una aproximación termodinámica rigurosa nos dice que

la capacidad calorífica a presión constante (Cp ) relaciona los cambios de entalpía y

temperatura:

Por otro lado, una aproximación empírica nos define Cp como el flujo de calor (q) necesario

para elevar la temperatura de un objeto o de una sustancia pura un 1 K ( 1 oC).

Para substancias puras, es mucho más práctico expresar su capacidad calorífica por mol, o

bien por unidad de masa. En particular, la capacidad calorífica por gramo de ancia se

denomina calor específico (Ce) que es la forma más habitual de expresar capacidad

calorífica.

Tabla 4.5-1:

Química La ciencia básica . M.D.Reboiras COPYRIGHT © 2006

Internacional, Thomson Editores Spain Paraninfo S.A. Pag245

sustancia Calor especifico (J/gºC) Capacidad colorifica molar(Joul/mol 1ºC)

Agua 4,184 75,4

Hielo 2,03 36,6

Aluminio 0,89 24,0

Carbono 0,71 8,5

Hierro 0,46 25,1

cobre 0,39 24,7

Tabla de calores específicos y capacidad calorífica m lar de algunas

sustancias a 25 oC

Fuente:

Page 134: informe_parte ii.pdf

134

Para incrementos de temperatura moderados ? T~10-100 K, la capacidad calorífica o calor

específico son aproximadamente constantes con T. En estas condiciones, podemos emplear la

familiar expresión que relaciona flujo de calor (q), con el calor específico (Ce) de una

sustancia y los cambios de (T ) de una masa (m):

Un calorímetro es un reactor o vaso bien aislado. Idealmente, un calorímetro es un sistema

adiabático que impediría el intercambio de energía con exterior, ya sea por flujo de calor,

ya sea por emisión de radiación electromagnética. Un calorímetro para medir calores de

reacción en disolución y en condiciones de presión constante consiste de un vaso con doble

revestimiento y cámara de aire cerrado con una tapa de material aislante tal como corcho,

poliestireno, etc. El revestimiento interno del calorí tro suele ser de material reluciente (una

fina película metálica). La tapa está perforada para introducir un termómetro (o un dispositivo

de agitación) el cuál debe estar en contacto con la disolución pero sin tocar las paredes del

calorímetro.

El Calorímetro

FIGURA 4.5—1: Calorímetro

Page 135: informe_parte ii.pdf

135

El calorímetro en condiciones de atmósfera abierta ya que cualquier gas a presión

atmosférica se considera a efectos prácticos como un buen aislante térmico. Pa a

comprobarlo, podemos comparar la capacidad calorífica de 1 mL de agua líquida con la de un

1 mL de N2(g) a 25 oC. Aplicando la ecuación de estado del gas ideal tenemos que:

Por otro lado, suponiendo que el H2O tiene una densidad de 1.0 g/mL

Ce( 1mL H2O(l)) ˜ 4.18· J / K mL

lo que supone una diferencia de tres órdenes de magnitud entre la capacidad calorífica por

unidad de volumen entre el agua líquida y el nitrógeno gas.

Ahora que en la disolución dentro del calorímetro tiene lugar una reacción química tal como

una neutralización ácido-base. Esta es una reacción exotérmica y desprende energía en forma

de calor. Por ser el calorímetro un sistema adiabático el calor de reacción no puede escapar

hacia los alrededores y se transforma en un aumento de la temperatura en el interior del

calorímetro, es decir, tanto la disolución como el calorímetro en sí mismo absorben el calor de

reacción. Esto mismo lo expresamos con fórmulas como sigue:

- ? Hreacción = qcalorímetro+ qdisolución = Ccalorímetro · ? T + mdisol · Cdisol ·? T (1)

? H reacción midiendo ? T con la ayuda del Termómetro. Obviamente, también neces tamos

conocer la masa y capacidad calorífica de la disolució Además, también necesitamos

conocer C calorímetro, la capacidad calorífica del calorímetro también llamada constante del

calorímetro. Mientras que mdisol y Cd isol pueden conocerse fácilmente, la determinación de C

calorímetro requiere un experimento previo o calibración del calorímetro.

Page 136: informe_parte ii.pdf

136

: 1 vaso Dewar (calorímetro),2 vasos de precipitados de 50 mL,1 bureta,1

probeta,1 vidrio de reloj,vaso de precipitados de 250 mL, Cuentagotas, varilla y frasco

lavador.,

:, NaOH(aq) 2M, HCl(aq) 2M, CuSO4·5H2O(s), Fenolftaleína, Cinc en polvo

El experimento es sencillo: si llevas a cabo una reacc ón química en el calorímetro cuya ? H

reacción sea conocida podrás averiguar C calorímetro aplicando la relación [1].

Una reacción de neutralización ácido-base es una reacción idónea para calibrar el calorímet o.

Se trata de una reacción rápida que consume completame e al reactivo limitante y es

fuertemente exotérmica. Por ejemplo:

HCl (aq) + NaOH(aq) ? NaCl(aq) + H2O(l) ? Hneutralización = - 57.3 kJ por

mol de H2O

El procedimiento experimental consta de las siguientes etapas y pasos: Preparación de las

disoluciones

1) Extrae del frasco de HCl(aq) 2 M ,aproximadamente 50 mL en un vaso de precipitados.

Carga la bureta con el ácido. No olvides lavar previamente la bureta con una pequeña porción

de HCl y evitar la aparición de burbujas.

2) Descarga exactamente 45 mL de HCl 2 M en el calorímetro, cuyo interior debe estar

perfectamente limpio y seco.

3) Añade 2 gotas del indicador ácido-base fenolftaleína. Deja pasar 2 ó 3 minutos y entonces

sumerge el termómetro en la disolución para leer la temperatura inicial T. Anota el resultado.

III. MATERIALES Y REACTIVOS:

Materiales

Reactivos

IV PARTE EXPERIMENTAL

Determinación de C calorímetro

Page 137: informe_parte ii.pdf

137

4) En un vaso de precipitados pequeño, agregar 50 mL de NaOH 2 M medidos con la probeta.

Toma la temperatura de la disolución de NaOH.

5) Después de la lectura de las temperaturas iníciales, ajusta bien el termómetro en la tapa del

calorímetro para que el bulbo del termómetro esté sumergido en la disolución.

• ¿Qué temperatura inicial Ti tienen los reactivos? (Ha de ser la misma con una precisión de

±0.1 oC)

Esta parte del experimento requiere trabajar en equipo: Un compañero-a se encargará de leer

el cronómetro mientras el otro agita suavemente el calorímetro y lee la Temperatura en

intervalos de un minuto. Se trata de determinar una curva de temperaturas en función del

tiempo que luego deberás analizar.

Asegúrate de que el bulbo del termómetro esté en conta con la disolución dentro del

calorímetro.

1) Si los reactivos están a la misma temperatura (±1 oC), e trasvasa la disolución de NaOH al

calorímetro evitando en lo posible salpicaduras y pérdidas de reactivo. Se observa cualquier

posible cambio de color y se tapa entonces rápidamente el calorímetro. Se pone en marcha el

cronómetro.

2) La temperatura del termómetro se lee con precisión de 0.1 ?C y se anota a intervalos de un

minuto. Entre lectura y lectura (alrededor de 20 lectu as), se agita suavemente el calorímetro

sin despegarlo de la meseta.

Reacción de Neutralización y Toma de Temperaturas frente al tiempo.

Ejemplo

Tiempo(minuto) TºC

1

2

3

Page 138: informe_parte ii.pdf

138

• La fenolftaleína es el más conocido de los ácidos orgánicos débiles que sufren un cambio de

color como consecuencia de su equilibrio entre su form ácida (incolora) y básica (rosa

violáceo) cuya extensión está determinada por el pH del medio. Es pues un indicador visual

ácido-base. Para un pH por encima de 8, la forma básica de l fenolftaleina predomina.

¿Observaste algún cambio de color al mezclar los react ?

¿Cómo lo interpretas?

La representación gráfica de tus datos experimentales be mostrar las siguientes tendencias:

Una vez obtenida experimentalmente la curva de temperaturas debes analizarla.

La Temperatura Inicial Ti de los reactivos corresponde a una Temperatura de Equilibrio

Termodinámico. Necesitamos conocer la Temperatura Final de Equilibrio Tf después de la

reacción. La neutralización es prácticamente instantánea de modo que T asciende

bruscamente (T1). Para alcanzar la temperatura final Tf, la disolución y el interior del

calorímetro deben alcanzar un equilibrio térmico despu s de unos pocos minutos.

Determinación de la Temperatura Final

FIGURA 4.5—2: Grafico de temperatura vs tiempo

Page 139: informe_parte ii.pdf

139

Entonces, deberás observar una serie de lecturas Tn similares muy parecidas entre sí seguidas

de otros datos que indican un descenso lento, pero continuado, de T. A partir de los datos

intermedios debes obtener por extrapolación gráfica un valor de Tf.

• ¿Por qué crees que el calorímetro no alcanza una temperatura constante?

a) Colocar en un beacker 30 mL de agua, medir su tempe ura y dejar el termómetro dentro

dela solución

b) Pesar 0,5 g de yoduro de potasio

c) Disolver la sal en el beacker con agua y medir la temperatura alcanzada por la solución

d) Repetir la reacción de disolución pero ahora emplea do 0,5 g de nitrato de amonio

e) Comparar los resultados obtenidos

f) Calcular el cambio de entalpía de las reacciones de disolución

g) Expresar el cambio de entalpía en J/mol

a) Colocar en un beacker 30 mL de agua, medir su tempe ura y dejar el termómetro dentro

de la solución

b) Pesar un trozo de metal (aluminio, cobre, zinc, etc), y calentarlo en el mechero por

aproximadamente 5 minutos

c) Introducir el trozo metálico en el beacker con agua y cubrir con un vidrio de reloj

d) Medir la máxima temperatura alcanzada por el agua

e) Calcular el calor transferido y la temperatura del zo metálico antes de sumergirlo en el

agua

Calor de disolución de sólidos

Transferencia de calor entre dos cuerpos

Page 140: informe_parte ii.pdf

140

1. Calcula mediante factores de conversión el calor total que se desprendió en la

neutralización de los 45 mL de HCl 2 M sabiendo que ? H neutralización = - 53.7 kJ/mol

H2O.

(Los factores de conversión deben convertir los 45 mL de HCl neutralizados en kJ de calor

producidos) ? Hreacción=

2. A partir del ? T=Tf- Ti que has observado, calcula el calor absorbido por la disolución de

NaCl resultante. Supón volúmenes aditivos. La densidad y calor específico de la disolución de

NaCl son: ?=1.04 g/mL y Cdisolución = 3.93 J / K-g).

3. Obtén finalmente la constante del calorímetro C calorímetro. Recuerda que –

? Hreacción =qcalorímetro+ qdisolución

Ccalorímetro= .

4. Compara Ccalorímetro con el que han obtenido tus compañeros.

1) ¿Qué requisitos debe reunir una reacción química para er determinar su ? H con

precisión mediante mediciones calorimétricas tales como las realizadas en el trabajo

práctico?

2) Si se desea determinar el cambio de entalpía asociado una reacción química

mediante una experiencia calorimétrica, ¿es necesario nocer la constante del

calorímetro empleado? Justifique.

Cálculos Termoquímicos para obtener C calorímetro

qdisolución = mdisolución · Cdisolución ·(Tf- Ti) =

y que Ccalorímetro= qcalorímetro / (Tf-Ti)

Cuestionario

Page 141: informe_parte ii.pdf

141

3) ¿Se verá afectado el valor de la constante del calorímetro si las temperaturas se

expresan en K en lugar de °C?

4) La variación de entalpía que acompaña a la reacción:

MOH (s) + HCl (aq) ? M+ (aq) + Cl- (aq) + H2O

donde M es un metal, es ? H = -24 kcal mol-1. Se desea determinar experimentalmente

esta entalpía mediante un calorímetro que contiene 100 cm3 de HCl (aq), similar al

usado en el laboratorio, cuya constante es 0,03 kcal K-1 (incluyendo el termómetro),

utilizando un termómetro graduado al 0,1° C. ¿Cuál es mínima masa de MOH (s)

que debe pesarse si se desea que el error cometido en determinación de ? T sea

menor del 5%? Desprecie el error de la constante del calorímetro.

Datos: Capacidad calorífica del agua = 1,00 cal g-1 K-1.

5) En el mismo calorímetro del ejercicio anterior se neutralizan 70 cm3 de HCl 0,01 M

con 30 cm3 de NaOH 0,02 M. Sabiendo que el ? H de neutralización es -13,6 kcal por

mol de agua formada, calcule la variación de temperatura producida en el alorímetro.

Considere que las soluciones de ácido y base son lo su icientemente diluidas como

para que en el proceso de mezclado de las mismas pueda despreciarse el calor de

dilución. Suponga que la densidad y el calor específico de las soluciones son los del

agua pura.

6) Explique por qué todas las reacciones de neutralización de ácido fuerte con base

fuerte tienen un valor de ? H = -13,6 kcal mol-1.

Page 142: informe_parte ii.pdf

142

Conocer el concepto de reversibilidad química y las características principales del

estado de equilibrio.

Establecer las condiciones bajo las que en un sistema co se puede establecer un

equilibrio.

Demostrar el cumplimiento del Principio de Le Chatelier en algunos sistemas

químicos en equilibrio.

Explicar el efecto que tiene un cambio en la concentración, la temperatura y la presión

en diferentes sistemas en equilibrio.

Diferenciar equilibrio químico homogéneo de equilibrio químico heterogéneo

El Pricipio de Le Chatelier establece en forma general que: “ toda vez que un factor externo

perturba el equilibrio de un sistema, éste reacciona t atando de anular el efecto perturbador”.

Basándose en este principio podemos predecir lo que ocurriría al efectuar ciertos cambios en

las condiciones de un sistema que se halla en estado de equilibrio.

Cuando algún factor externo, cambio de presión, concentración, temperatura, etc., perturba a

un sistema en equilibrio, éste se pierde momentáneamente, entonces el sistema comienza a

reaccionar químicamente hasta que se restablece el equilibrio, pero en este nuevo ado de

equilibrio, las condiciones son diferentes a las que s hallaba anteriormente el sistema, en

lenguaje químico se dice que el factor perturbador ha ido causante que el equilibrio se

desplace hacia la reacción directa o hacia la reacción inversa. or desplazamiento se entiende

4.6. Practica Laboratorio N°6 : Equilibrio químico

I. OBJETIVOS:

II: MARCO TEÓRICO:

Page 143: informe_parte ii.pdf

143

como el cambio en las condiciones de equilibrio. En un sistema en equilibrio químico

representado por:

Reactantes Productos

Si se hace variar algunas de las concentraciones, el sistema se desplaza tendiendo a eliminar

el exceso del componente y si se hace disminuir la concentración de alguno de los términos, el

sistema tiende a regenerarlo.

La formación de productos poco solubles (precipitados), poco disociados (agua, complejos) o

gaseosos, son tres procedimientos para desplazar de un modo prácticamente total el equilibrio

en un sentido.

El equilibrio que se estudiará será el de CrO4-2 / Cr2O7

-2. En solución acuosa el ión cromato,

CrO4-2 (ac), puede ser transformado en el ión dicromato Cr2O7

-2 (ac) y viceversa. La

predominancia de una u otra especie depende de la concentración del ión H+ presente en la

solución. Esta concentración puede aumentarse agregando una especie que proporcione iones

H+, como por ejemplo HCl, o disminuirse agregando por ej mplo iones OH- (ac) mediante la

especie que proporcione dichos iones, como por ejemplo NaOH. Los iones OH- se unen a los

iones H+ produciendo agua.

FeCl3 0,01 M; NH4SCN 0,01 M; K2CrO4 0,05 M; HCl 1 M; CaCl2 0,01 M; Na2C2O4 0,01 M;

HCl concentrado (12 M); NaOH 2M;

radilla con tubos de ensayo , buretas, vasos de precipitados, probeta de 10 mL.

A + B C + D

III. MATERIALES Y REACTIVOS:

Reactivos:

Material:

G

D

Page 144: informe_parte ii.pdf

144

En dos tubos de ensayo coloque separadamente hasta la tad del tubo, una solución de

cromato de potasio (K2CrO4) 0,1 M y dicromato de potasio (K2Cr2O7) 0,1 M. Estas soluciones

servirán de patrón de los iones cromato y dicromato re ctivamente. Anote el color de cada

una de las soluciones.

Coloque una pequeña cantidad de cada una de las soluci nes en dos tubos de ensayo distintos

y rotule cada tubo, luego a cada tubo agregue gota a gota NaOH 1 M hasta que observe algún

cambio. Anote sus observaciones. A continuación a cada uno de los tubos agregue gota a gota

HCl 1 M hasta que ocurra algún cambio. Anote sus obser es.

En dos tubos de ensayo limpios coloque unas gotas de solución de K2CrO4 0,1 M y K2Cr2O7

0,1 M en forma separada. A continuación agregue gota a ota a cada tubo solución de HCl 1

M, hasta que observe algún cambio. Anote sus observaciones. Luego, a cada uno de los tubos

agregue gota a gota solución de NaOH 1 M, hasta que ocurra algún cambio. Anote sus

observaciones

Explique los resultados de las experiencias realizadas.

Coloque unas gotas de K2CrO4 0,1 M en un tubo de ensayo limpio y rotule, agregue luego 2

gotas de NaOH 1M y a continuación gotas de Nitrato de ario, Ba(NO3)2, hasta que observe

IV PARTE EXPERIMENTAL

1.- Equilibrio ión cromato / ión dicromato:

2 CrO4-2 + 2 H+ Cr2O7

-2 + H2O

2.- Equilibrio del Cromato de Bario (BaCrO4) sólido con una solución saturada de sus

iones:

BaCrO4(s) Ba+2 (ac) + CrO4-2 (ac)

D

D

-

Page 145: informe_parte ii.pdf

145

algún cambio. Anote sus observaciones. Luego agregue gota a gota solución de HCl 1M.

¿Qué puede observar?.

Coloque en otro tubo limpio y rotulado unas gotas de K2Cr2O7 0,1M, agregue luego 2 gotas

de HCl 1M y 10 gotas de Nitrato de Bario. Anote sus observaciones. A continuación agregue

NaOH 1M gota a gota, ¿Qué observa?.

Sugiera una forma de invertir los cambios y reacciones que observó en las dos experiencias

anteriores, realice experimentos.

Coloque unas gotas de K2CrO4 en un tubo de ensayo, identifíquelo y en otro tubo la misma

cantidad pero de K2Cr2O7 , rotule. Luego agregue gotas de nitrato de bario, Ba(NO3)2, a cada

uno de los tubos. Anote sus observaciones. ¿Qué puede concluir?.

En un vaso de precipitado coloque 1 mL de FeCl3 y agregue 1 mL de solución de KSCN y

luego 8 mL de agua. Con esta mezcla usted obtendrá un roducto coloreado que corresponde

al Hexaciano de Hierro (III).

Distribuya la solución anterior en 5 partes aproximadamente iguales, colocándola en 5 tubos

de ensayo rotulados.

Deje un tubo como patrón y a cada uno de los restantes agregue uno de los reactivos indicados

en el cuadro que aparece más abajo.

Antes de agregar cada reactivo debe preverse lo que irá a suceder al equilibrio de este sistema,

en forma teórica y después confirme agregando cada reactivo.

Anote todas las operaciones que se van a realizar en e cuadro siguiente:

3.- Sales férricas en presencia de sulfucianuro.

Fe+3 + 3Cl- + 6K+ + 6SCN- Fe(SCN)6-3 + 6K+ + 3Cl-

Amarillo incoloro rojo

D

-

Page 146: informe_parte ii.pdf

146

El Fe(OH)3 es un compuesto muy insoluble de color rojo ladrillo.

El Fe4(Fe(CN)6)3, ferrocianuro férrico, es un compuesto insoluble de color azul,

conocido como el azul de prusia.

1.- ¿Qué sucede cuando agrega NaOH 1M a la solución de Cromato de Potasio y a la solución

de Dicromato de Potasio?. Explique.

2.- A las mismas soluciones anteriores, usted agregó HCl explique qué sucedió en cada caso.

3.- Del experimento número 2, ¿qué puede decir de las sol bilidades de BaCrO4 y BaCr2O7.

4.- Escriba la ecuación que representa la reacción de Fe+3 con SCN- para formar Fe(SCN)6+3.

5.- Escriba la expresión de la constante de equilibrio pa a la reacción anterior.

6.- Explique brevemente el fenómeno que ocurre al agregar NaOH y K4Fe(CN)6 a la solución

del experimento 3.

7.- ¿Cuál es el motivo por el cual al mezclar el ión cromato con el ión bario y cuando se

mezcla el ión dicromato con el ión bario, en ambos casos existe presencia de un precipitado?.

-

Reactivos Desplazamiento Observación Causa

FeCl3

KSCN

NaOH

K4Fe(CN)6

OBSERVACIONES

a)

b)

Cuestionario

Page 147: informe_parte ii.pdf

147

Determinar la constante de ionización de una solución osa de ácido acético y la

constante de ionización del hidróxido de amonio por hidrólisis del cloruro de amonio.

Cuando una o más especies químicas (reactivos) reaccio an en determinadas condiciones para

formar otras especies químicas (productos), se estable una relación constante entre los

productos formados y los reactivos iniciales. Esta rel es la expresión del equilibrio

químico que se establece durante la reacción.

El equilibrio químico de una reacción puede determinarse cuando ninguna de las propiedades

macroscópicas observables del sistema estudiado (reactivos y productos) varía

apreciablemente con el tiempo, es decir, cuando no hay más cambios químicos ni

transferencia de energía observables.

Para una reacción general tal como:

donde A y B son los reactivos; C y D los productos, y c, y d los coeficientes

estequiométricos de la ecuación balanceada, se puede e presar matemáticamente la ley de

equilibrio químico en términos de concentración molar:

][][

].[][

donde K es la constante de equilibrio.

4.7. Practica Laboratorio N°7 : Equilibrio Ionico

I.-OBJETIVO:

II: MARCO TEÓRICO:

aA + bB cC + dD,

=

ç è

ba

dc

BA

DCkeq

Page 148: informe_parte ii.pdf

148

La constante de disociación del agua (Kw) se obtiene considerando que la concentración del

agua en equilibrio es constante:

es decir,

Por convención, pH = - log [H3O+], de donde se deduce que el pH del agua es 7.

Papel indicador, 5 vasitos de 50 ml, buretas de 50 ml, Varilla de vidrio, Pipeta de 10

CH3COOH 0.2M, CH3COONa 0.2M, NH4Cl 1M

Tome 5 vasos de 50 ml limpios y secos y márquelos como C, D y E y colóquelos en la

mesa de trabajo en este orden .

A cada vaso ponga las cantidades de las soluciones del ácido acético 0.2M y de acetato de

sodio 0.2M indicadas en la tabla 01. Mida los volúmenes exactamente, usando una bureta,

agite contenido de cada vaso con una varilla de vidrio.

Kw = Ke q x [H2O]2 = [H3O+] [OH-] = 10-14 a 25oC

[OH-] = [H3O+] = 10-7 mol/l.

III. MATERIALES Y REACTIVOS:

Materiales:

Reactivos:

IV PARTE EXPERIMENTAL

a.- Determinación de la constante de ionización del acido ético

Page 149: informe_parte ii.pdf

149

Tabla 01

Calcule la concentración molar corregida del ácido acético y del acetato de sodio en cada una

de las soluciones obtenidas, utilizando la ecuación siguiente:

,

,

Las concentraciones molares corregidas resúmalas en la tabla 02:

Tabla 02.

]/[]log[ 33

Con una varilla de vidrio limpia humedezca el papel indicador de escala corta de pH y anote

los valores de pH de cada una de las soluciones:

VASOS CH3COONa 0.2M CH3COOH 0.2M

A 16 ml 4 ml

B 14 ml 6 ml

C 12 ml 8 ml

D 8 ml 12 ml

E 6 ml 14 ml

VASO CH3COOH

moles/litro

CH3COONa

moles/litro

A

B

C

D

E

Temperatura ambiente = ____oC.

VV

ctotalmL

inicialmLinicialcorregida

C

CCOHCHCOONaCH

=

Page 150: informe_parte ii.pdf

150

Tabla 03.

Calcule el pKa para cada tubo, utilizando la siguiente ecuación:

][

][log

3

3

y teniendo en cuenta que la constante de disociación d ácido acético es igual a:

][]][[

3

33

Resuma los valores de pKa en la tabla 04:

Tabla 04.

Tome 5 vasitos limpios y secos de 50 ml de capacidad, rquelos como A, B, C, D y E y

colóquelos en este orden en la mesa de trabajo.

VASOS A B C D E

pH

VASOS pKa Ka (moles/litro)

A

B

C

D

E

Valor promedio: pKa = ____________

Valor promedio: Ka = ______________ mol/l.

b.- Determinación de la constante de ionización del hidróxido de amonio por

hidrolisis del cloruro de amonio

COOHCH

COONaCHpKapH

COOHCH

OHCOOCHKa

+=

+−

=

L

Page 151: informe_parte ii.pdf

151

En cada vaso vierta de las buretas las cantidades de solución de cloruro de amonio y de agua

indicadas en la tabla 05. Agite con varilla las soluciones en cada vaso.

Tabla 05.

Calcule la concentración molar corregida de NH4Cl en cada una de las soluciones, mida su pH

utilizando papel indicador de escala corta de pH, y de a el valor de [H3O+]. Efectúe los

cálculos para cada vaso.

,

,

Anote los resultados en la tabla 06:

Tabla 06.

VASOS NH4Cl 1M H2O

A 10 ml 10 ml

B 8 ml 12 ml

C 6 ml 14 ml

D 4 ml 16 ml

E 2 ml 18 ml

VASOS NH4Cl(moles/litro) pH [H3O+]

A

B

C

D

E

VV

ctotalmL

inicialmLinicialcorregida

C=

Page 152: informe_parte ii.pdf

152

Sabiendo que la hidrólisis del ion amonio se realiza s la ecuación siguiente:

se deduce que su constante de hidrólisis (Kh) es

igual a:

]][[

]][][[

][

]][[

4

33

4

33

donde Kw es la constande de ionización de agua y Kb la constante de ionización del hidróxido

de amonio. Calcule la constante de ionización del hidróxido de amonio, Kb, utilizando los

datos de la tabla 06.

Anote los resultados en la tabla 07:

Tabla 07.

Temperatura ambiente = ___________oC

NH4+ + H2O NH3 + H3O+,

VASO Kb, mol/litro

A

B

C

D

E

Valor promedio de Kb = __________ moles/litro

ç è

Kb

K

OHNH

OHOHNH

NH

OHNHKh W===

−+

−+

+

+

Page 153: informe_parte ii.pdf

153

Definir el concepto de pH y relacionar su valor numéri o con el carácter ácido o

básico de los sistemas o muestras analizadas.

Reconocer la existencia de una escala de pH para establecer el nivel de acidez o

alcalinidad de una sustancia de interés.

Demostrar que los indicadores ácido - base son especies químicas que permiten

establecer con mucha aproximación el carácter ácido o alino de sustancias y

materiales de uso común.

Interpretar el concepto de zona de viraje de un indicador ácido-base.

Relacionar el color que presenta un indicador en conta o con una muestra en estudio

con su respectivo valor de pH.

El agua puede actuar como base y como ácido según el medio en que actúe.

El agua muestra características tanto de ácido como de base , cuando reacc ona consigo

mismo para establecer el equilibrio dinámico

H2O + H2O H3 O+ + OH-

La concentración [H2O] prácticamente es constante, luego:

Kc[H2O] 2 = {H3 O+] [ OH-]

A la expresión:

[ ][ ]

[ ]3

22

4.8. Practica Laboratorio N°8 : Determinacion del pH

I. OBJETIVOS:

II: MARCO TEÓRICO:

.

=+ −

çè

KcH O OH

H O

Page 154: informe_parte ii.pdf

154

Kc[H2O] 2 =Kw, se denomina la constante del producto iónico del agua.

Kw = [H3 O+] [ OH-]

El agua se disocia muy poco y experimentalmente se encontrado que su valor a 25 °C es :

= 1,81 x10-9 Según la ecuación de disociación se tiene:

[H3 O+] = [ OH-] = [ ]( , ) ,100

18181 10 1 0 109 7

Luego :

Kw = [H3 O+] [ OH-] = (1,0 x10 -7M )2 = 1,0x10 -14 M2

La disociación del agua es endotérmica , y según el pr de Chatelier al aumentar la

temperatura Kw debe aumentar .

Cuando:

[H3 O+] = [ OH-] La solución es neutra

[H3 O+] > [ OH-] La solución es ácida

[H3 O+] < [ OH-] La solución es básica

Dado que las concentraciones de los iones H+ y OH- son a menudo números muy pequeños

y por lo tanto inconvenientes para trabajar con ellos Soren Sorensen propuso en 1909 una

medida más práctica llamada pH . El pH de una disolución se define como:

pH = - log [H+]

En la práctica se presenta varias soluciones de pH conocidos a los cuales adicionando

indicadores coloreados ácidos básicos se prepara una e cala de colores en la que cada color

corresponde a un pH determinado.

El pH de una solución problema de denomina adicionando a la solución un indicador luego se

compara el color obtenido con la escala colorimétrico prepa da.

La escala de valores de pH está entre 0 y 14. Por ejemplo el agua pura no es ni ácida ni

alcalina, es neutra. Cuando se disuelven otras sustancias en ella, se obtienen disoluciones que

α

− −=

g

Lg

mol

x x M

Page 155: informe_parte ii.pdf

155

serán o ácidas alcalinas.

FIGURA 4.8—1: Escalas de pH

Page 156: informe_parte ii.pdf

156

Los indicadores son; por lo general ácidos o bases débiles que presentan diferente color al

estado ionizado y no ionizado , lo cual depende del pH de la solución en que se encuentre

dado que el grupo disociable de ellos puede ser ácido o básico.

La disociación de estos indicadores esta sujeta a una tante K; y en las vecindades de la

misma presentará variaciones de color, dependientes de su mayor o menor disociación.

violeta de metilo 1,5 0- 3 amarillo - violeta

Azul de timol 1,5 0,5 - 2,8 Rojo - amarillo

Anaranjado de Metilo 3,8 3,1 - 4,4 Rojo - amarillo

Azul de bromo fenol 3,98 3,0 - 5,0 Amarillo - azul

Verde de bromocresol 14,68 3,7 - 5,7 Amarillo - azul

Rojo de metilo 5,00 4,2 - 6,3 Rojo - amarillo

Azul de bromotimol 7,00 6,0 - 8,0 Amarillo -azul

Fenolftaleina 9,20 8,2 - 10,2 Incoloro,- rojo

grosella

Rojo de fenol 7,9 6,9 - 8,9 Amarillo -rojo

Amarillo de Alizarina 11,0 10,0- 12,0 Amarillo -anaranjado

Tabla 4.8-1: Indicadores acido/base

Fuente: R,H. Petrucci , Química General Octava edición -2003. Pag 725

INDICADORES.-

Indicadores pk Limites Color

Page 157: informe_parte ii.pdf

157

MATERIAL

10 tubos de pruebas, 2 pipetas graduadas de 5 mL, 1 gradilla para tubos de pruebas, papel de

tornasol, etiquetas.

Solución 0,1 M de NaOH, Solución 0,1 M de HCl, Solución 0,1 M de CH 3COOH, Solución 0,1

M de NH3, Solución indicadora de Metil naranja, Solución indicadora de Azul de bromotimol,

Solución indicadora de Fenolftalein, solución indicadora de Amarillo de alizarina, Solución

indicadora de Indigo de carmín, Solución indicadora de Rojo de metilo

1.- En un tubo coloque 10 ml de solución 10-1 M de HCl a partir de entonces , etiquete

colocando N°1.

2.- En otro tubo preparar 10 mL de una solución de 10-2 M de HCl a partir de la solución

10-1 M. En la etiqueta correspondiente coloque N°2.

(Se prepara colocando en un tubo 1 mL de 10-1 M y adicionado 9mL de H2O )

3.- En otro tubo preparar 10 mL de solución de 10-3 M de HCl a partir de la solución 10-2M .

En la etiqueta correspondiente coloque el N°3. Se prep rá igual que la solución anterior

colocando en el tubo, 1 mL de la solución 10 -2 M y adicionado 9 mL de H2O .

4.-En otro tubo prepare 10mL de solución 10 -4 M de HCl a partir de l a solución 10-3 M.

Luego marque con el N°4.

5.- En otro tubo prepare 10 mL de solución 10-5 M de HCl a partir de la solución 10-4 M .

Coloque el N°5

III. MATERIALES Y REACTIVOS:

IV PARTE EXPERIMENTAL

EXPERIMENTO A

REACTIVOS

Page 158: informe_parte ii.pdf

158

6.- Luego con los cinco tubos restantes coloque a cada ubo: N° 1, N°2 y N°3 °5.Adicione a

cada uno de ellos la mitad de las soluciones anteriores correspondientes. De esta manera se

ha preparado dos series de soluciones.

7.- Adicionar; En la serie 1 : 1 gota del indicador metil naranja.

En la serie 2: 1 gota del indicador azul de bromotimol.

El procedimiento en el mismo que ha utilizado en este caso Na OH 10-1 M

Preparar dos series de soluciones en las etiquetas coloque :

: N° 13, N°12, N°11,N° 10, N°9 indicando de esta mane pH correspondiente.

Adicionar : En la serie 1: 1 gota de fenoltaleina

En la serie 2 : 1 gota de alizarina.

Guardar estas soluciones standar para poder determinar el pH de muestras de soluciones

problemas.

FIGURA 4.8—2: Experimento A

EXPERIMENTO B

FIGURA 4.8—3: Experimento B

Page 159: informe_parte ii.pdf

159

Determinar el pH de una solución problema utilizando la escala colorimétrica preparada de la

siguiente manera:

Determine con papel de tornasol el medio de la solució problema que el profesor le entrego.

En dos tubos de ensayo tome 2 mL de solución problema adicione una gota del indicador

respectivo.

Compare los colores con el standar preparado y calcul el pH. De la solución.

1. Mida 5 mL de la solución básicas desconocida en su pro ta

2. Divídala en partes iguales en dos tubos pequeños

3. Añada 2 gotas de indicador de carmín a uno de ellos y 5 gotas de amarillo de alizarina al

otro.

4. Compare los colores de estas soluciones con los colore de la serie preparada

anteriormente.

5. Determine que pH encontró.

EXPERIMETO E

Determinación del pH en reacciones de hidrólisis ( car to de sodio, cloruro de amonio y

cloruro de sodio, agua destilada y acetato de sodio).

1. Lave y seque cuidadosamente una luna de reloj.

2. Coloque separadamente en esta luna 6 trocitos de papel indicador universal.

3. Deje caer cuidadosamente una gota de cada reactivo sob e los trocitos del papel indicador.

4. Observe detalladamente y anote el pH. De cada sal comp rando la coloración de cada

trocito de papel indicador con el patrón correspondiente.

EXPERIMENTO C

EXPERIMENTO D

Determinación del pH en una solución básica desconocida

n

n

n

Page 160: informe_parte ii.pdf

160

5. Llene el siguiente cuadro

Sal Na2CO3 NH4Cl NaCl Agua

destilada

NaCH3COO

pH

2. Indique los diferentes tipos de indicador y sus respe tivos rangos de viraje.

3. Escriba la reacción que se produce en la hidrólisis de carbonato de sodio y cloruro de

amonio

4. Hállase el pH . De una disolución 0,10 M de HCl

5. Una disolución contiene iones H+ y CN- y moléculas HCN en equilibrio ¿ Qué efecto

tendrá sobre su pH. La adición de cada una de las sust ncias siguientes: Agua , ácido

cianhídrico, cianuro sódico?

1. Cuestionario

Page 161: informe_parte ii.pdf

161

Definir el concepto de ácido y base de acuerdo con los criterios de Arrhenius y de

Brönsted-Lowry.

Explicar el proceso de valoración ácido-base, su importancia y utilidad en análisis

químico.

Manipular correctamente el equipo de laboratorio de uso común durante una

valoración.

Definir el concepto de punto de equivalencia durante una valoración y diferenciarlo

del concepto punto final de la valoración.

Definir el concepto de patrón primario.

Valorar una disolución de hidróxido de sodio con un pa rón primario.

Demostrar la utilidad de los indicadores ácido-base en la obtención del punto final de

la valoración.

Determinar la concentración desconocida de una disolución ácida a través de su

valoración con una disolución alcalina de concentración conocida

El análisis volumétrico se determina la concentración de una solución de analito (solución

problema) haciendo uso de la solución patrón (solución de concentración conocida).

4.9. Practica Laboratorio N°9 :acido-base

Introducción al Análisis Volumétrico

I. OBJETIVOS:

II: MARCO TEÓRICO:

Page 162: informe_parte ii.pdf

162

El reactivo patrón debe tener la capacidad de reaccion r completamente con la sustancia que

se analiza, en cantidades químicamente equivalentes. El volumen de la solución patrón

requerido para completar la reacción con el analito se considera la señal o parámetro analítico.

La siguiente expresión resume lo expuesto y es vital su uso para realizar cálculos

volumétricos:

V1 (mL) x N1 (meq/mL) = V2 (mL) x N2 (meq/mL)

Solución analito Solución patrón

En volumetría ácido-base, el analito y la sustancia patrón deben tener car erísticas opuestas,

esto es, si uno es un ácido el otro debe ser una base.

La concentración de la solución patrón es un parámetro tantísimo, pues la exactitud del

análisis volumétrico está directamente relacionada con la calidad de dicho parámetro. Para

determinar la concentración de la solución patrón se r curre a reactivos de elevada pureza,

cuya masa se mide con la máxima rigurosidad. Esta sustancia se conoce con el nombre de

.

El objetivo de esta valoración volumétrica es la adici de la solución patrón en una cantidad

que es químicamente equivalente a la sustancia con que reacciona (analito). Esta condición se

alcanza en lo que se conoce como punto de equivalencia. En la práctica, el punto de

equivalencia se puede observar a través de algún cambi físico asociado, cambio que ocurre

en el punto final de la valoración.

El método habitual para detectar el punto final en una valoración ácido-base, supone el uso de

una sustancia complementaria que se añade al sistema y que experimenta un cambio de color

como resultado de las variaciones de pH que se produce en las proximidades del punto de

equivalencia. Estas sustancias complementarias se conocen con el nombre de de

punto final o simplemente indicadores.

patrones primarios

indicadores

Page 163: informe_parte ii.pdf

163

Existen ciertos términos que en volumetría que se util zan en forma habitual y será de mucha

ayuda poder definirlos para poder entender la explica del profesor ante un experimento

que deban llevar a cabo:

: Para reacciones ácido-base es la masa en gramos de una

sustancia que en solución libera un mol de iones hidrogeno (H+). El peso miliequivalente

(meq) es igual al peso equivalente dividido por 1000, ra, el peso equivalente corresponde

al peso molecular divido por el número de protones lib ados.

Ejemplo: (P.E) H2SO4 = (M.M )H2SO4 / 2; (P.E )H3PO4 = (M.M )H3PO4 / 3

Antes de definir el equivalente (eq) se hace necesario conocer el tipo de reacción

analizada. La concentración de una solución no puede s expresada en término de

normalidad (eq/L) sin este tipo de información.

: Sustancia sólida de elevada pureza y estabilidad ant agentes

atmosféricos y se emplean para valorar soluciones: En volumetría ácido-base los patrones

primarios no son muy numerosos y entre ellos destacar el carbonato de sódico, el tetraborato

sódico, el THAM, el oxalato sódico para ácidos y el ácido oxálico, ácido succinico y ftalato

ácido de potasio para bases.

: proceso mediante el cual se logra conocer el volumen de una solución

patrón para llevar a cabo la reacción completa con el alito contenido en una masa o

volumen conocido de muestra.

: instante de la valoración volumétrica en el cual, por observación de un

cambio físico (cambio de color de un indicador, aparición de una turbidez, etc.) se considera

que se ha agregado una cantidad químicamente equivalente de sustancia patrón a la sustancia

bajo análisis.

a) PESO EQUIVALENTE

b) PATRÓN PRIMARIO

c) VALORACIONES

d) PUNTO FINAL

Page 164: informe_parte ii.pdf

164

: En volumetría ácido-base los indicadores son ácidos o bases orgánicas

débiles que presentan color dependiendo del medio en q se encuentren. Un indicador sólo

sirve para un determinado intervalo de pH. Las características de los indicadores usados

normalmente vienen señaladas en tablas.

Pipeta de 20 ml (doble aforo), 2 Erlenmeyers, Bureta de 25 ml (embudo y vaso de precipitado

para el llenado y enrase de la bureta)

Solución de HCL de concentración a determinar, Solución de NaOH (solución valorada

solicitar su concentración exacta), Solución de indica or de Fenolftaleína

Antes de realizar cualquier valoración (técnica utilizada para determinar la concentración de

una solución), y con el objeto de no gastar una gran cantidad de solución valorante, es

recomendable realizar el ensayo a la gota para determinar “si es que lo está” cuanto más

concentrado está la solución problema.

Se trabajará con una solución de ácido clorhídrico 0,1M y una solución de hidróxido de sodio

(solución problema) cuya concentración se desconoce.

En un matraz erlenmeyer coloque unos 30 mL de agua des ilada y con la ayuda de un gotario

adiciona una gota de la solución problema (solución d NaOH).Agregue una gota de

indicador fenolftaleína y desde la bureta adicione got a gota (contando el número de gotas)

e) INDICADORES

III. MATERIALES Y REACTIVOS:

Materiales:

Reactivos:

IV PARTE EXPERIMENTAL

1. ENSAYO A LA GOTA

Page 165: informe_parte ii.pdf

165

de la solución ácida hasta que note un cambio de color (cambio de color del indicador

fenolftaleína es de incoloro pH= 8,3 a rosado pH= 10,0)

Con el número de gotas de solución de HCl gastado calcule aproximadamente el volumen de

solución de ácido se necesitan para neutralizar la got de solución problema (NaOH). Si es

necesario usted debe realizar una dilución, preparando una solución de hidróxido de sodio con

su concentración aproximada a la concentración del áci disponible.

Ejemplo de cálculo:

Nº de gotas de la solución Problema

(NaOH)

Nº de gotas de solución de

ácido (conc. Conocida)

FACTOR DE DILUCIÓN

1 5 5

1 10 10

1 20 20

Tome alícuotas de la nueva solución y adicione en matraces erlenmeyer, agregue gotas del

indicador y adicione desde la bureta la solución valorante. Repita esta técnica tantas veces

como sea necesario. (Recuerde que la precisión de los os obtenidos es un criterio para el

número de repeticiones que usted debe realizar).

Tome una alícuota de 10 mL de tris-hidroximetil aminometano (patrón primario) de

concentración exactamente conocida, agregue 2-3 gotas de Verde de bromo cresol como

indicador, agua por las paredes del erlenmeyer y valore agregando desde la bureta la solución

de HCl agitando enérgicamente la solución del erlenmeyer hasta cambio de viraje del

indicador, de azul a amarillo. Anote los volúmenes gastados y determine la concentración de

2. VALORACIÓN DE HCl (patrón secundario) FRENTE A TRIS-HIDROXIMETIL

AMINOMETANO (patrón primario)

Page 166: informe_parte ii.pdf

166

HCl. El trabajo se debe hacer como mínimo en duplicado, si los valores dan distintos debe

hacer un triplicado.

Tome una alícuota de 10 mL de NaOH, agregue 2-3 gotas de fenolftaleína, agua por las

paredes del erlenmeyer y valore desde la bureta con solución de HCl previamente valorado,

agite enérgicamente la solución del erlenmeyer después de cada adición de valorante, hasta

cambio de viraje del indicador, de fucsia a incoloro. Anote los volúmenes gastados y

determine la concentración de NaOH. La valoración debe hacerse por lo menos dos veces, si

los volúmenes dan distintos debe hacer un triplicado.

Usted dispondrá de una muestra líquida que contiene CO3= / HCO3

-, la cual deberá

determinar la concentración de ambas especies.

4.1. De acuerdo del método de doble indicador: Tome una alícuota de 10 mL de la muestra

problema y adiciónelo al matraz erlenmeyer, agregue in cador fenolftaleína y valore con una

solución de HCl de concentración conocida, hasta obser ar un cambio de color, anote el

volumen gastado. Al mismo matraz adicione un segundo indicador (verde de bromo cresol) y

continué hasta observar un cambio de color, anote el v n total gastado.

Ejemplo:

VA = Corresponde al volumen de la solución de HCl gastado cuando:

333 Preexistente

VB = Corresponde al volumen de la solución de HCl gastado cuando todo:

223233 (

3. VALORACIÓN DE NaOH (patrón secundario) FRENTE A HCl

PREVIAMENTE VALORADO.

4. DETERMINACIÓN DE LA CONCENTRACIÓN DE CO3= / HCO3

-

−−+= +↔+

+↔+ −−

HCOHCOHCO

OHCOCOHtepreexistenHCOHCO

Page 167: informe_parte ii.pdf

167

Pero el cálculo de la concentración del ión bicarbonat a depender de si B > 2A; en

tal caso se realizan de la siguiente manera:

)()·2(

3

)(·

3

El vinagre es esencialmente una solución diluída de ác do acético en agua. El ácido acético

(CH3COOH, escriba la fórmula desarrollada, ¿cuál es el hidrógeno ácido?) es un ácido

monoprótico cuya masa molar es 60 g.mol-1.

Mida 2,00 mL de vinagre de alcohol con una pipeta afor da y colóquelo en un Erlenmeyer

de 125 mL. Agregue 50 mL de agua y 5 gotas de solución de fenolftaleína. Titule con una

solución valorada de hidróxido de sodio (NaOH) 0,1 M hasta viraje del indicador.

Calcule la concentración del ácido acético en el vinagre expresada como %m/V

1)Un frasco de NaOH (s) destapado. El hidróxido de sodio, que es higroscópico, ha

absorbido humedad del aire. Determinar cuánto NaOH existe realmente en la muestra

humedecida. Para ello determina que, después de disolv r 10,50 del sólido en 25 mL de agua,

se requieren 75,0 mL de HCl 3,0 M para titularlo. ¿Cuál es la pureza el NaOH expresada

como %m/m?

2) Seo mide 25,0 mL de un ácido monoprótico y le agrega un indicador adecuado. Por edio

de una bureta, le añade lentamente NaOH 0,25 M. Al obtener un cambio permanente de color,

se han consumido 35,2 mL NaOH. ¿Cuál es la concentraci n molar del ácido?

3) Para el siguiente equilibrio, en el que HIn es la forma ácida de un indicador:

mLstraVolumenmue

CABC HCl

HCO

mLstraVolumenmue

CAC HCl

CO

−=−

==

2. Titulación: Determinación de la concentración de ácido acét co en vinagre

Cuestionario

Page 168: informe_parte ii.pdf

168

HIn In- + H+ KHIn =10-5

a) si el pH es 6, ¿cuánto vale la relación de concentr ciones [HIn]/[In-]?

b) para pH 8.

c) ¿qué pH se requiere para que la relación de concentraciones: [HIn]/[In-] i) sea mayor que

10 y ii) sea menor que 0,1

4) Indicar cuándo puede usar fenolftaleína como indicador. 5) Para la titulación de cada una

de las siguientes soluciones:

a) HCl 0,1 M con NaOH 0,1 M

b) NH3 (amoníaco) 0,1 M con HCl 0,1 M (pKb = 4,75)

c) HAc (ácido acético) 0,1 M con NaOH 0,1 M (pKa = 4,75)

¿qué indicador de los siguientes elegiría para cometer menos error? Justificar.

Indicador A: pKaA = 4.9 Indicador B: pKaB = 8.6

Indicador C: pKaC = 6.8 Indicador D: pKaD = 3.2

5) Se titulan 10,00 mL de NaOH 0,1 M con HCl 0,2 M utilizando fenolft leína como

indicador:

¿cuál es el pH en el punto de equivalencia?

?

Page 169: informe_parte ii.pdf

169

Desarrollar los conceptos básicos de la cinética química.

Estudiar la influencia cualitativa de distintos factores, tales como concentración de

reactivos, temperatura y catalizadores sobre la velocid de una reacción química.

Toda reacción química requiere un tiempo para su reali ación, pero algunas son prácticamente

instantáneas y otras extremadamente lentas. En ambos casos, es sumamente difícil medir la

velocidad. Por ejemplo: entre el grafito o el diamante y el oxígeno no se produce reacción

apreciable en mucho tiempo en condiciones normales.

_

En cambio, la reacción de neutralización entre un ácido mineral y una base es prácticamente

instantánea.

_

Existe otro tipo de reacciones cuyas velocidades son p ectamente medibles, como por

ejemplo, la descomposición del pentóxido de dinitrógeno:

_

La ecuación tal como se ha escrito no dice nada del mecanismo de l reacción. Algunas

reacciones ocurren en una sola etapa pero, es más frecuente que ocurran en forma de

secuencia y la suma de las etapas nos dé la reacción t al. El estudio de la velocidad y del

mecanismo de las reacciones se conoce con el nombre de .

4.10. Practica Laboratorio N°10: Cinética química

I. OBJETIVOS:

II: MARCO TEÓRICO:

C (s) + O2 (g) CO2 (g)

2 H+ + OH- H2O

2N2O5 (g) 4NO2 (g) + O2 (g)

CINÉTICA QUÍMICA

è

è

è

Page 170: informe_parte ii.pdf

170

Los factores que determinan la velocidad de una reacción son múltiples. No depende

solamente de la composición de las sustancias reaccion es, sino también de su forma física,

de lo íntimamente mezclados que se encuentren, de la temperatura de la presión, de las

concentraciones de los reaccionantes, de la irradiación con luz visible y ultravioleta o de otro

tipo y de la presencia de sustancias que afecten a la cción sin experimentar ellas mismas

ningún cambio ( ).

Estas simples ideas cualitativas pueden expresarse en orma cuantitativa. Para unareacción

genérica en un :

A + B +.....? P + Q ....

se define la velocidad de reacción cómo:

De modo puramente empírico, la velocidad de reacción puede relacionarse con los factores

que la controlan mediante las siguientes expresiones:

exp ley de Arrhenius Factor Temperatura

siendo y los llamados órdenes parciales de reacción y que deben determinarse

empíricamente. Por el otro, la temperatura controla la magnitud de la constante de velocidad

tal y como se refleja en la Ley de Arrhenius.

MATERIALES

Tubos de ensayo, Pipetas , Gradilla , Virutas y clavo de hierro

REACTIVOS

Sulfato de manganeso 2,8, Oxalato de sodio 0,2 M (en H2SO4 1 N), Sulfato ferroso 0,1 M (en

H2SO4 1 N), Permanganato de potasio 0,02 M y 0,004 M ,acido oxálico.

catalizadores

sistema homogéneo

a b p q

r

n m

k

III. MATERIALES Y REACTIVOS:

Page 171: informe_parte ii.pdf

171

Coloque en un tubo de ensayo 5 mL de agua

destilada y agregue dos gotas de solución de permanganato de potasio.

Coloque 5 mL de las soluciones de sulfato ferroso y ox de sodio en tubos de ensayo,.

Agregue 2 gotas de la solución de permanganato de pota io 0,02 M a cada tubo. Observe y

registre.

Coloque 5 mL de la solución de oxalato de sodio en un ubo de ensayo. Mientras que en

otro tubo coloque 2,5 mL de la misma solución y 2,5 mL de agua destilada. Agreguea cada

tubo 2 gotas de solución de permanganato de potasio 0,02 M. Observe y registre:

Coloque 5 mL de solución de oxalato de sodio en un tub e ensayo y agregue dos gotas de

sulfato de manganeso. En otro tubo de ensayo coloque 5 mL de solución de oxalato. Agregue

a ambos tubos dos gotas de solución de permanganato de potasio 0,02 M. Observe y registre.

Coloque 5 mL de solución de oxalato de sodio en dos tu os de ensayo y agregue dos gotas

de solución de permanganato de potasio 0,02 M a cada uno. Caliente uno de los tubos a

aproximadamente 55°C en baño de agua. Observe y registre.

En dos tubos de ensayo coloque 5 mL de la solución de ermanganato de potasio 0,004 M

(en H2SO4 1N). En uno de ellos introduzca un clavo de hierro y el otro un trozo de

virulana. Observe y registre.

1. Tome seis tubos de ensayo y en cada uno agregue 5 mL d una solución 0,0005 M de

permanganato de potasio.

2. A cada tubo agregue 1 mL de H2SO4 0,25 M.

IV PARTE EXPERIMENTAL

A Preparación del testigo de comparación:

B Ensayos

1.

2.

3.

4.

5.

Efecto de la temperatura sobre la velocidad de una reacción química

Page 172: informe_parte ii.pdf

172

3. Tome otros seis tubos de ensayo y en cada uno agregue de una solución de ácido

oxálico. Para mayor facilidad llene la bureta con ácid oxálico y utilice esta para medir

los 9 mL necesarios.

4. Caliente agua en un vaso de precipitado, manteniendo la temperatura a 25 C.

5. Coloque los dos primeros tubos de ensayo con permangan to de potasio y con ácido

oxálico en el vaso de precipitado con el agua cuando la temper tura sea de 25 C.

6. Después de 5 min., usted puede asumir que la temperatu actantes es igual a la

temperatura del baño de agua.

7. De forma rápida pero con precisión agregue el ácido oxálico en el tubo de ensayo que

contiene el permanganato de potasio.

8. Mida el tiempo requerido para que el ácido oxálico rea es con el permanganato de

potasio

9. Repita los experimentos a las siguientes temperaturas 5, 45, 55, 65 y 75 C.

Uno de los fenómenos más interesantes que aparecen en l estudio de las Reacciones

Químicas, es la existencia de . Así, un catalizador es una sustancia que al estar

presente en el medio de reacción . El

en la reacción aunque, evidentemente, debe participar en el proceso

reactivo.

La reacción anterior puede servir para ilustrar el efecto de un sobre la velocidad

de reacción:

1. Vierte en de ensayo aproximadamente de una disolución de ácido oxálico

.

2. Agrega de disolución de a cada uno de los tubos y agita el contenido.

3. Deja uno de los tubos como testigo. Añade de (aq) al otro.

Efecto de un catalizador

catalizadores

acelera la velocidad de reacción catalizador no se

consume

catalizador

dos tubos 2 mL

HOOC-COOH

3 gotas KMnO4

1 mL MnSO4

temporalmente

Page 173: informe_parte ii.pdf

173

• Según tus observaciones, ¿qué efecto tiene la presencia de en el medio de reacción?

• Se dice que el actúa como un en la oxidación de oxálico por

permanganato. ¿Por qué crees que esto es así?

• ¿Crees que el efecto catalítico del es generalizable para cualquier otra reacción

química?

a) Represente en forma de tablas los resultados obtenidos.

b) Escriba la ecuación química de la reacción que ocurre.

c) Realice un gráfico de tiempo (eje X) vs. temperatura de la reacción.

d) Explique y concluya sobre los resultados obtenidos

1. Describa, brevemente, lo observado en cada uno de los yos realizados.

2. ¿Qué conclusiones puede obtener de los diferentes ensayos?

3. Defina cada uno de los términos que se enumeran a continuación: Velocidad de

reacción, Orden de reacción, Energía de activación, Constante de velocidad específica

de reacción

4. Explique cómo influyen los distintos factores, sobre la velocidad de reacción.

5. Cómo explica que el orden de una reacción pueda no coincidir con su molecularidad?

MnSO4

MnSO4 autocatalizador

MnSO4

Resultados:

Cuestionario

Page 174: informe_parte ii.pdf

174

Diferenciar entre pila electrolítica y pila galvánica.

Construir una pila galvánica y Calcular la fuerza electromotriz de una pila

Determinar los procesos que tienen lugar en los electr dos de una pila electrolítica.

Determinar en un proceso REDOX, la acción que realiza l agente reductor y el agente

oxidante

, o “reacciones redox” son aquellas en las que las

sustancias participantes intercambian electrones. La pérdida de electrones por parte de un

reactivo (oxidación) viene acompañada de la ganancia de electrones por parte del otro

reactivo (reducción). La especie que pierde electrones se dice que se oxida y la especie que

gana electrones se reduce.

Una reacción típica de este tipo es la que se produce re zinc y HCl.

Zn (s) + 2 H+(ac) Zn +2 (ac) + H2(g)

La semirreacción de oxidación muestra como los átomos de Zn se oxidan a iones Zn+2

Zn (s) Zn+2(ac) + 2 e-

mientras que en la semirreacción de reducción, los ion s H+ se reducen, proporcionando

moléculas de H2:

2 H+(ac) + 2e- H2(g)

Por lo tanto, la oxidación y la reducción ocurren a la vez, en la misma reacción, no se puede

producir una sin la otra, no hay cambio en el número d electrones en una reacción redox. Los

4.11. Practica Laboratorio N°11 : Ensayos de oxidación-reducción.

Pila Galvánica.

I. OBJETIVOS:

II: MARCO TEÓRICO:

Las reacciones de oxidación-reducción

è

è

è

Page 175: informe_parte ii.pdf

175

electrones perdidos en la semirreacción de oxidación s n los ganados por otra especie en la

semirreacción de reducción.

El concepto de número de oxidación se usa para represe ar la carga que tendría un átomo si

los electrones del enlace se asignasen arbitrariamente al elemento más electronegativo. En la

molécula de HCl se dice que el hidrógeno tiene un número de oxidación +1 y el cloro un

número de oxidación –1.

En una reacción de oxidación-reducción, uno de los reactivos es el agente oxidante otro el

agente reductor.

Un agente oxidante es aquél que efectúa la oxidación d otra especie mientras él se reduce.

Para ello debe aceptar electrones de esa especie (con o que el número de oxidación de dicha

especie aumenta).

Un agente reductor efectúa la reducción de otra especie mientras él se oxida. Para ello debe

ceder electrones a esa especie (con lo que el número de oxidación de dicha specie

disminuye).

En el ejemplo anterior, el H+ es el agente oxidante y el Zn es el agente reductor.

se denomina electrodo a una pieza de metal, M. Un

electrodo sumergido en una disolución que contiene iones del mismo metal, M+n, se denomina

semicélula o semipila.

A la diferencia de potencial existente entre un electr do y la disolución con la que está en

contacto, se denomina potencial de electrodo.

Los cambios que se producen en el electrodo o la disolución como cons cuencia del equilibrio

redox son demasiado pequeños para ser medidos. Las medidas deben basarse en una

combinación de dos semicélulas distintas. Es decir, de emos medir la tendencia de los

electrones a fluir desde el electrodo de una semicélula hasta el e ectrodo de la otra. Los

electrodos se clasifican según tenga lugar en ellos la oxidación o la reducción. Si tiene lugar

En el estudio de la electroquímica

Page 176: informe_parte ii.pdf

176

la oxidación el electrodo se denomina ánodo y si tiene lugar la reducción, cátodo. La

combinación de las dos semicélulas conectadas de un modo adecuado se denomina célula o

pila electroquímica.

Por acuerdo internacional, un potencial estándar de electrodo, E °, mide la tendencia que tiene

un electrodo a generar un proceso de reducción. Para resaltar que E° se refiere a una

reducción, escribiremos un par de reducción como subíndice de E°, como se muestra en la

siguiente semirreacción:

Cu+2(1 M) + 2 e- Cu (s) E°(Cu

+2/Cu)= ¿? V

Para establecer una escala de potenciales de semirreacción, se ha adjudicado un valor

arbitrario de referencia a un determinada semipila y s han medido los potenciales de todas

los demás semipilas en función de ella.

El electrodo escogido como referencia es el electrodo estándar de hidrógeno, constituido por

una disolución de H+ de concentración 1 M, a través de la cual se burbujea gas H2 a 1 atm de

presión, y al cual se le asigna un valor de potencial e 0,000 voltios. Así, para determinar el

valor de E° de un electrodo estándar como el de la semirreacción anterior, se compara con el

electrodo estándar de hidrógeno, de manera que la pila vendría representada de la siguiente

forma:

Pt | H2(g, 1 atm) | H+(1M) || Cu+2(1M) | Cu(s)

El potencial estándar de una célula, E°cel, es la diferencia de potencial o voltaje de una

célula formada por dos electrodos estándar. La diferencia se toma del siguiente modo:

De esta manera se obtienen los potenciales de cualquie electrodo; para el esquema de pila

planteado se obtiene:

340,0)/()/( 2

2

çè

ánodocátodocel EEEEE

VEEEHHCuCucel

°−°=°−°=° −+

=°−°=° ++

Page 177: informe_parte ii.pdf

177

340,00)/( 2

340,0)/( 2

Cuando se enfrentan dos electrodos, se reducirá el que tenga mayor tendencia a reducirse, esto

es, el que tenga mayor potencial estándar de reducción; en el otro electrodo ocurrirá la

oxidación.

Por otra parte, , puesto

que:

donde n = número de electrones transferidos, F = const e de Faraday (96485 C/mol e-) y ? G

es la variación de la energía libre de Gibbs.

El criterio para la espontaneidad de un proceso es que ? G<0. Por lo tanto, según la ecuación

(1), el potencial de la celda Ecel debe ser positivo para que ? G sea negativo. Por lo ta

predecir el sentido de un proceso espontáneo en una reacción de oxidación-reducción es

sencillo si utilizamos las siguientes ideas:

Si Ecel es positivo, la reacción tiene lugar de forma espontá ea en sentido directo para las

condiciones indicadas.

Si Ecel es negativo, la reacción tiene lugar de forma espontá ea en sentido inverso para las

condiciones indicadas.

Si Ecel = 0 la reacción está en equilibrio en las condiciones indicadas.

)1(

VVECuCu

VECuCu

oo EnFG

=−°= +

=° +

∆−=∆

una reacción será espontánea siempre que E° sea mayor que ceroD

Page 178: informe_parte ii.pdf

178

La pila galvánica es una pila electroquímica en la que una reacción química origina una

corriente eléctrica. Está formada por dos electrodos ( ductores sólidos) comunicados

eléctrica e iónicamente.

Conductor sólido para que los electrones puedan circul r del electrodo negativo al positivo.

Un tabique poroso o puente salino (formado por un tubo en “U” taponado en los extremos con

algodón y que contiene una disolución de un electrolito fuerte como NaCl, Na O3 ó KCl).

Cualquiera de estos sistemas permiten la difusión de iones de una semicelda a la otra, para

mantener la neutralidad eléctrica.

En las pilas, como se comentó anteriormente, se denomina

Ánodo, al electrodo negativo, donde tiene lugar la oxidación y

Cátodo, al electrodo positivo, donde tiene la reducción.

En la figura se representa un ejemplo de pila voltaica.

Zn /Zn(NO3)2 (1 M) // Cu(NO3)2 (1 M) / Cu

2.- Pila galvánica

FIGURA 4.11—1:

Page 179: informe_parte ii.pdf

179

Un de las cubas contiene una solución de Zn(NO3)2 y un electrodo de Zn; la otra contiene una

solución de Cu(NO3)2 y un electrodo de Cu. Ambas cubas están unidas por u salino

y los electrodos eléctricamente. Un voltímetro medirá la diferencia de potencial entre los

electrodos, que corresponde con el paso de los electrones por el circuito externo.

Al cerrar el circuito eléctrico, por tanto, los electr nes fluirán por el circuito externo, del

ánodo (Zn) al cátodo (Cu), lo que se pone de manifiesto como una diferencia de potencial

medida por el voltímetro.

¿Qué reacciones ocurren por tanto?: Cada átomo de cinc que se oxida cede dos electrones,

que pasan a otra cuba por el circuito externo, donde r cen a un ión Cu+2, que se deposita en

el electrodo de cobre, como Cu metálico.

Simultáneamente, los iones del puente salino tienen que emigrar para neutralizar la carga el

los compartimentos de la celda, pues si observamos cad una de las reacciones, en el ánodo

aumenta el número de iones positivos mientras que en el cátodo disminuye. Al ir los aniones

hacia el ánodo y los cationes hacia el cátodo se logra la neutralidad eléctrica de ambas cubas.

La fuerza electromotriz, , como ya se ha dicho es la diferencia de potencial entre los

electrodos de una pila que se mide con el voltímetro y corresponde al potencial de reducción

del electrodo positivo o cátodo, que es aquél en el qu tiene lugar la reducción, menos el

potencial de reducción del electrodo negativo o ánodo, que es aquél en el que tiene lugar la

oxidación.

Sabiendo que el potencial estándar de reducción del cobre es de +0,34 V y el potencial

estándar de reducción del zinc es –0,76 V, aplicando la fórmula:

sustituyendo los valores de los potenciales estándar de reducción, obtenemos el ºpila (1,10 V)

n puente

Obtención de la fem, .

ε

°−°=

ε

e

anódocátodopilao eee

Page 180: informe_parte ii.pdf

180

Cuando las concentraciones de las disoluciones no son 1 M, la fuerza electromotriz de

la pila también varía. La ecuación de Nernst muestra la relación entre f.e.m. estándar y

concentraciones de las disoluciones:

La reacción transcurre de la forma:

Zn (s) + Cu+2(ac) Zn+2 (ac) + Cu

La ecuación de Nernst:

2

2

10log2

0592.0

Siendo: ºpila el valor de la fem de la pila cuando la concentración de cada soluto es 1 M

(estándar), 2 el número de electrones que se intercambian en este proceso, [Cu+2] la

concentración molar de la especie que se ha reducido (en este caso iones Cu+2 a Cu metal) y

[Zn+2] la concentración molar de la especie que se ha oxidado (en este caso Zn metal a iones

Zn+2). La resolución de esta ecuación da el valor de la fu rza electomotriz de la pila.

Cuando se establece el equilibrio en la reacción química, ésta se detiene y la fem de la pila es

cero ( pila = 0); en ese momento, se está en condiciones de calcular la con ante de equilibrio,

a 25 ºC, para la reacción de oxidación-reducción que se efectúa en la pila.

10log0592.0

0

Tubos de ensayo y gradilla, Tubos de ensayo, un tubo en U, dos algodones, una placa de

aluminio, una placa de cobre. y Pb metálicos

çè

[ ][ ]+

+

−°=

ε

ε

−=

Cu

Znpilapila

eqpilao K

n

ee

e

Determinación de constantes de equilibrio

III. MATERIALES Y REACTIVOS:

Material :

Reactivos:

Page 181: informe_parte ii.pdf

181

Disoluciones 0,1 M de Zn(NO3)2, Cu(NO3)2 y Pb(NO3)2., Sulfato de cobre (II) pentahidratado

(CuSO4·5H2O), Cloruro de aluminio hexahidratado (AlCl3·6H2O)

1.- Ensayos de oxidación-reducción

En estas experiencias se observarán algunas reacciones de oxidación-reducción en las que

intervienen varios metales e iones metálicos. Analizan los resultados se podrá determinar la

fuerza relativa de los metales como agentes reductores.

Procedimiento experimental

a.- Poner en seis tubos de ensayo limpios:

1) Zn(s) + 3 mL de una disolución 0,1M de Cu(NO3)2

2) Zn(s) + 3 mL de una disolución 0,1M de Pb(NO3)2

3) Cu(s) + 3 mL de una disolución 0,1M de Zn(NO3)2

4) Cu(s) + 3 mL de una disolución 0,1M de Pb(NO3)2

5) Pb(s) + 3 mL de una disolución 0,1M de Zn(NO3)2

6) Pb(s) + 3 mL de una disolución 0,1M de Cu(NO3)2

Los trozos de metal deben estar limpios.

b.- Dejar en contacto cada uno de los metales con cada una de las disoluciones.

c.- Escribir las reacciones químicas que han tenido lugar y decir por qué son o no espontáneas

cada una de ellas.

Parte experimental

Preparar (por mesa de laboratorio) las disoluciones de cloruro de aluminio(III) 0,01M y

sulfato de cobre(II) 0,01M a partir de las correspondientes sales hidratadas

IV PARTE EXPERIMENTAL

Page 182: informe_parte ii.pdf

182

Cada alumno llena un tubo de ensayo (hasta sus dos ter ras partes) con una disolución

0,01M de cloruro de aluminio y sumerge en él la placa de aluminio. En otro tubo de ensayo,

lleno también hasta las dos terceras partes con la disolución 0,01M de sulfato de cobre (II),

sumergirá una placa de cobre.

Se unen ambas placas por un hilo conductor, el cual a u vez está unido a un medidor de

corriente. Para ello, mediante dos pinzas de cocodrilo se conectan los electrodos a los dos

bornes de un voltímetro de corriente continua.

Además, ambas disoluciones han de conectarse por un tu o en “U” lleno con una disolución

de un electrolito fuerte (NaCl) en cuyos extremos se habrán dispuesto dos tapones de algodón

(esto permite el paso de iones y no deja que las disol iones se mezclen). El puente salino se

coloca invertido, de forma que conecte los dos tubos d ensayo (véase la figura de la pila

Daniell ).

De acuerdo con los potenciales de reducción , las reacciones que ocurren son:

Al (s) Al+3(ac) + 3 e-

Cu+2(ac) + 2e- Cu (s)

Al (s) + Cu+2(ac) Al+3(ac) + Cu (s)

1.- ENSAYOS DE OXIDACIÓN-REDUCCIÓN

Combinación Escribir la reacción química que ocurre

Zn + Cu(NO3)2

Zn + Pb(NO3)2

Cu + Zn(NO3)2

Cu + Pb(NO3)2

Pb + Zn(NO3)2

Pb + Cu(NO3)2

D

D

çè

en su caso

Page 183: informe_parte ii.pdf

183

Justificar los resultados experimentales obtenidos, en función de los potenciales estándar de

reducción.

2.- PILA GALVÁNICA.

Resultado

Fuerza electromotriz estándar de la pila ( ºpila) = Voltios

Fuerza electromotriz de la pila ( pila) (medida experimentalmente) = Voltios

Fuerza electromotriz de la pila ( pila) (cálculo por la ec. de Nernst) = Voltios

Escribir la expresión de la constante de equilibrio y cular su valor indicando los cálculos

1.- Calcular el número de oxidación de los diferentes átomos, en los siguientes compuestos: a)

Na2Cr2O7, b) KMnO4, c) O2, d) MgCl2, e) H2SO4 y f) Na2S2O3.

2.- Determinar si el ácido nítrico oxidará al Fe+2, reduciéndose a monóxido de nitrógeno.

Datos: e°(Fe+3/Fe+2)= +0,77V; e°(NO3-/NO)= +0,96V.

3.- ¿Cuál o cuáles de las siguientes especies pueden actuar como oxidante y cuál o cuáles

como reductor?: a) Fe; b) Fe+2; c) Fe+3; d) Ag+.

4.- Dada la reacción de oxidación-reducción:

Al (s) + Cu+2(ac) Al+3 (ac) + Cu (s)

Explicar razonadamente: ¿qué especie se oxida, cuál se reduce, cuál es el oxidante y cuál el

reductor?

5.- Describir lo que representan las notaciones químicas:

a) Zn/ZnSO4(1M)

b) Zn/ZnSO4(1M)//CuSO4 (1M)/Cu

ε

ε

ε

Cuestionario

çè

Page 184: informe_parte ii.pdf

184

6.- ¿Cuál es la fuerza electromotríz de una pila formada por una barra de cobre sumergida en

una disolución 0,1 M de sulfato de cobre (II), y una b e zinc sumergida en una disolución

1M de sulfato de zinc?¿Cómo variarán las concentracion de Zn(II) y Cu(II) y el peso de las

barras de zinc y cobre, si éstas se conectan mediante conductor externo? Escribir las

semirreacciones. e°(Zn+2/Zn)= -0,76V; e°(Cu+2/Cu)= 0,34V; (RT/F)= 0,059V.

Page 185: informe_parte ii.pdf

185

Realizar experiencias de electrólisis y verificar las leyes de Faraday.

Clasificar diferentes materiales en conductores y aisl dores eléctricos

Las dos leyes de Faraday se refieren a las masas de su ancias depositadas en los electrodos

de una celda durante la electrólisis y pueden resumirse en la siguiente fórmula

m, gramos de elemento depositado en un electrodo,

PA, peso atómico del elemento

z, valencia,

F constante de Faraday cuyo valor es 96500 culombios / eq-g,

Pe peso equivalente-gramo del elemento,

Q carga eléctrica en culombios,

I intensidad de la corriente en amperios

t tiempo en segundos

La Primera Ley de Faraday dice: "La masa de un elemento depositado en cualquiera de los

electrodos durante la electrólisis es directamente proporcional a la cantidad de carga eléctrica

que pasa a través del electrolito".

La Segunda Ley de Faraday dice: "Las masas de diferentes sustancias producidas por el paso

de una corriente son directamente proporcionales a sus pesos equivalentes". También se

4.12. Practica Laboratorio N°12: Electrólisis

I. OBJETIVOS:

II: MARCO TEÓRICO:

Leyes de Faraday sobre la electrólisis

Page 186: informe_parte ii.pdf

186

puede establecer esta ley diciendo que: “La misma cantidad de electricidad producirá

cantidades equivalentes químicamente de todas las sust cias".

MATERIAL

Multitester y cables de conexión, Conector para batería de 12V, Dos electrodos de grafito,

vasos de precipitados de 500 ml, Tubos de ensayo, Buretas

REACTIVOS

, Solución saturada de cloruro de sodio., Solución H2SO4, aceite, detergente..

Electrólisis del agua acidulada - Leyes de Faraday.

En un vaso de precipitados colocar 100 cm3 de agua acidulada con H2SO4 e invertir sobre

electrodos inatacables colocados en la parte inferior, dos buretas para recoger gases (Figura).

Mediante un tubo de látex ubicado en el extremo superior de cada bureta enrasar ambas hasta

la marca A. Conectar ambos electrodos a la fuente, ajustando la corriente a aproximadamente

0,2 amperios con la resistencia variable. Tome nota exactamente del valor de la corriente. Con

un cronómetro mida el tiempo mientras circula la corriente por la c electrolítica.

Se deja circular la corriente durante el tiempo necesa io para que el gas de una de las buretas

alcance un volumen suficientemente grande como para me con poco error. Mida el

volumen de los gases recogidos en cada bureta. Calcular la cantidad de cada gas recogido en

las condiciones del experimento (suponer comportamient ideal de los gases). Por otro lado,

calcular la misma cantidad empleando las leyes de Faraday. Comparar los valores obtenidos.

III. MATERIALES Y REACTIVOS:

IV PARTE EXPERIMENTAL

Page 187: informe_parte ii.pdf

187

No mueva los electrodos durante la experiencia para evitar variaciones bruscas de

corriente

Utilizar un circuito como el de la Figura 2 para deter nar si algunos materiales conducen o

no la corriente eléctrica, La determinación se realiza usando un multímetro ( ) en modo

“ohmetro” (R x 1 o R x 10) en cuyas terminales se colocarán chapas de cobre. Para que las

medidas de conductividad, especialmente si se trata de soluciones, sean comparables usar

siempre las mismas chapas de cobre a una distancia apr imadamente constante.

Si el material conectado es conductor de la corriente ctrica, se cierra el circuito y el

indicará la resistencia. A mayor resistencia, mayor es la oposición al paso de la corriente

eléctrica.

a) agua destilada; agregarle NaCl sólido y repetir la edida. Realizar la misma experiencia,

pero ahora usar H2SO4 (conc.) en lugar de NaCl.

b) Agua corriente

c) Aceite,

d) Detergente,

FIGURA 4.12—1: Electrolisis del Agua

Nota:

Conductores eléctricos y conductores iónicos

Medir la conductividad de:

tester

tester

Page 188: informe_parte ii.pdf

188

e) Madera,

d) Cualquier otra sustancia

Nota: Las puntas de prueba se conectan a los materiales a analizar, incluyendo metales,

líquidos y soluciones de electrolitos. Nunca sumergir puntas de prueba del

directamente en los líquidos y las soluciones a medir rque se corroen

1. ¿Cuál es la diferencia entre “hidrólisis” y “electrólisis”?

2. ¿Es posible llevar a cabo la reacción de obtención de no y oxígeno a partir de

agua? Explica tu respuesta.

3. Mediante la relación de volúmenes, identifica en qué t o se está produciendo el

oxígeno y en cuál el hidrógeno.

4. Escribe la semireacción de reducción del agua para produ ir H2

5. ¿Cómo se modifica el pH en la vecindad del electrodo d nde se produce el gas

hidrógeno?

6. Escribe la semireacción de oxidación del agua para producir O2

FIGURA 4.12—2: Ohmetro

Cuestionario

tester

Page 189: informe_parte ii.pdf

189

7. ¿Cómo se modifica el pH en la vecindad del electrodo donde se produce el gas

oxígeno?

8. Dibuja sobre la figura 1 la dirección del flujo de la riente eléctrica.

9. Señala sobre la figura 1, en qué dirección de desplaza os iones SO4 2-

10. Repite el experimento utilizando agua destilada en lugar de la solución de Na2SO4 1M

y explica la diferencia observada,

Escriba las ecuaciones correspondientes a los procesos que tienen lugar en el ánodo y

el cátodo de una celda electrolítica, cuando circula corriente, suponiendo que tiene

a) NaOH (aq) y electrodos inatacables.

b) CuSO4 (aq) y electrodos inatacables.

c) Na2SO4 (aq) y electrodos inatacables

d) AgNO3 (aq) y electrodos inatacables.

Se electrolizan 125 g de una solución de sulfato de potasio 12% m/m durante 4 h

haciendo circular una corriente constante de 8 A.

a) Calcular el número de moles de cada producto obteni o.

b) Calcular la concentración de la solución al termina ectrólisis.

11.

12.

Page 190: informe_parte ii.pdf

190

I. SEGURIDAD EN EL LABORATORIO .............................................................................. 1

II. PROTECCIÓN AL AMBIENTE Y ELIMINACIÓN DE DESECHOS QUÍMICOS.....11

III. EXPERIMENTOS Y TECNICAS DE LABORATORIO QUIMICA GENERAL I.......27

3.1. Practica Laboratorio N°1: Reconocimiento y usos del material del laboratorio...27

3.2. Practica Laboratorio N°2 : Mechero de Bunsen ....................................................38

3.3. Practica Laboratorio N°3 : Medidas y errores. La balanza. ...................................46

3.4. Practica Laboratorio N°4 : Métodos de separación y purificación: mezclas .......59

3.5. Practica Laboratorio N°5 : La clasificación periódica...........................................74

3.6. Practica Laboratorio N°6 : Estudio de algunos metales de transición.................79

3.7. Practica Laboratorio N°7 : Compuestos electrolíticos y no electrolíticos............85

3.8. Practica Laboratorio N°8 : Reacciones químicas...................................................90

3.9. Practica Laboratorio N°9 : Interpretaciones Molares de las Ecuaciones..............96

3.10. Practica Laboratorio N°10 : Estequiometría.........................................................100

3.11. Practica Laboratorio N°11 : Volumen molar .......................................................105

3.12. Practica Laboratorio N°12 : El peso equivalente .................................................109

IV. EXPERIMENTOS Y TECNCIAS DE LABORATORIO DE QUIMICA GENERAL II113

4.1. Practica Laboratorio N°1: Preparación de soluciones I ........................................113

4.2. Practica Laboratorio N°2 : Preparación de soluciones II......................................118

4.3. Practica Laboratorio N°3 : Solubilidad y producto de solubilidad .....................122

4.4. Practica Laboratorio N°4 : Propiedades coligativas ...........................................127

4.5. Practica Laboratorio N°5 : Calorimetría...............................................................132

4.6. Practica Laboratorio N°6 : Equilibrio químico ....................................................142

Índice

Page 191: informe_parte ii.pdf

191

4.7. Practica Laboratorio N°7 : Equilibrio Ionico ........................................................147

4.8. Practica Laboratorio N°8 : Determinacion del pH.........................................153

4.9. Practica Laboratorio N°9 :acido-base ....................................................................161

4.10. Practica Laboratorio N°10: Cinética química .......................................................169

4.11. Practica Laboratorio N°11 : Ensayos de oxidación-reducción.............................174

4.12. Practica Laboratorio N°12: Electrólisis ..................................................................185