Informe 4 - Trabajo y Energia Cinetica

18
INDICE 1. OBJETIVOS..............................................1 2. FUNDAMENTO TEORICO.....................................1 3. EQUIPO UTILIZADO.......................................7 4. PROCEDIMIENTO EXPERIMENTAL.............................7 5. DATOS EXPERIMENTALES...................................8 6. PROCESAMIENTO DE DATOS Y RESULTADOS...................10 3. CONCLUSIONES Y RECOMENDACIONES........................13 4. BIBLIOGRAFIA..........................................14

Transcript of Informe 4 - Trabajo y Energia Cinetica

Page 1: Informe 4 - Trabajo y Energia Cinetica

INDICE

1. OBJETIVOS..............................................................................................................1

2. FUNDAMENTO TEORICO.........................................................................................1

3. EQUIPO UTILIZADO.................................................................................................7

4. PROCEDIMIENTO EXPERIMENTAL...........................................................................7

5. DATOS EXPERIMENTALES.......................................................................................8

6. PROCESAMIENTO DE DATOS Y RESULTADOS........................................................10

3. CONCLUSIONES Y RECOMENDACIONES.................................................................13

4. BIBLIOGRAFIA.......................................................................................................14

Page 2: Informe 4 - Trabajo y Energia Cinetica

1

TRABAJO Y ENERGIA

1. OBJETIVO

Verificar que el trabajo realizado por la fuerza resultante sobre un cuerpo es igual al cambio de la energía cinética de dicho cuerpo. Resultado conocido como el “Teorema del trabajo y la energía cinética”.

2. FUNDAMENTO TEORICO

Concepto de trabajo

Se denomina trabajo infinitesimal, al producto escalar del vector fuerza por el vector desplazamiento.

Donde Ft es la componente de la fuerza a lo largo del desplazamiento, ds es el módulo del vector desplazamiento dr, y q el ángulo que forma el vector fuerza con el vector desplazamiento.

El trabajo total a lo largo de la trayectoria entre los puntos A y B es la suma de todos los trabajos infinitesimales

Su significado geométrico es el área bajo la representación gráfica de la función que relaciona la componente tangencial de la fuerza Ft, y el desplazamiento s.

Page 3: Informe 4 - Trabajo y Energia Cinetica

1

 Concepto de energía cinética

Supongamos que F es la resultante de las fuerzas que actúan sobre una partícula de masa m. El trabajo de dicha fuerza es igual a la diferencia entre el valor final y el valor inicial de la energía cinética de la partícula.

En la primera línea hemos aplicado la segunda ley de Newton; la componente tangencial de la fuerza es igual a la masa por la aceleración tangencial.

En la segunda línea, la aceleración tangencial at es igual a la derivada del módulo de la velocidad, y el cociente entre el desplazamiento ds  y el tiempo dt que tarda en desplazarse es igual a la velocidad v del móvil.

Se define energía cinética como la expresión

El teorema del trabajo-energía indica que el trabajo de la resultante de las fuerzas que actúa sobre una partícula modifica su energía cinética.

Fuerza conservativa. Energía potencial

Una fuerza es conservativa cuando el trabajo de dicha fuerza es igual a la diferencia entre los valores iniciales y final de una función que solo depende de las coordenadas. A dicha función se le denomina energía potencial.

El trabajo de una fuerza conservativa no depende del camino seguido para ir del punto A al punto B.

El trabajo de una fuerza conservativa a lo largo de un camino cerrado es cero.

El peso es una fuerza conservativa

Calculemos el trabajo de la fuerza peso F=-mg j cuando el cuerpo se desplaza desde la posición A cuya ordenada es yA hasta la posición B cuya ordenada es yB.

Page 4: Informe 4 - Trabajo y Energia Cinetica

1

La energía potencial Ep correspondiente a la fuerza conservativa peso tiene la forma funcional

Donde c es una constante aditiva que nos permite establecer el nivel cero de la energía potencial.

La fuerza que ejerce un muelle es conservativa

Como vemos en la figura cuando un muelle se deforma x, ejerce una fuerza sobre la partícula proporcional a la deformación x y de signo contraria a ésta.

Para x>0, F=-kx

Para x<0, F=kx

El trabajo de esta fuerza es, cuando la partícula se desplaza desde la posición xA a la posición xB es

La función energía potencial Ep correspondiente a la fuerza conservativa F vale

El nivel cero de energía potencial se establece del siguiente modo: cuando la deformación es cero x=0, el valor de la energía potencial se toma cero, Ep=0, de modo que la constante aditiva vale c=0.

Page 5: Informe 4 - Trabajo y Energia Cinetica

1

Principio de conservación de la energía

Si solamente una fuerza conservativa F actúa sobre una partícula, el trabajo de dicha fuerza es igual a la diferencia entre el valor inicial y final de la energía potencial

Como hemos visto en el apartado anterior, el trabajo de la resultante de las fuerzas que actúa sobre la partícula es igual a la diferencia entre el valor final e inicial de la energía cinética.

Igualando ambos trabajos, obtenemos la expresión del principio de conservación de la energía

EkA+EpA=EkB+EpB

La energía mecánica de la partícula (suma de la energía potencial más cinética) es constante en todos los puntos de su trayectoria.

Comprobación del principio de conservación de la energía

Un cuerpo de 2 kg se deja caer desde una altura de 3 m. Calcular

1. La velocidad del cuerpo cuando está a 1 m de altura y cuando llega al suelo, aplicando las fórmulas del movimiento rectilíneo uniformemente acelerado

2. La energía cinética potencial y total en dichas posiciones

Tomar g=10 m/s2

Posición inicial x=3 m, v=0.

Ep=2·10·3=60 J, Ek=0, EA=Ek+Ep=60 J

Cuando x=1 m

Page 6: Informe 4 - Trabajo y Energia Cinetica

1

Ep=2·10·1=20 J, Ek=40, EB=Ek+Ep=60 J

Cuando x=0 m

Ep=2·10·0=0 J, Ek=60, EC=Ek+Ep=60 J

La energía total del cuerpo es constante. La energía potencial disminuye y la energía cinética aumenta.

Fuerzas no conservativas

Para darnos cuenta del significado de una fuerza no conservativa, vamos a compararla con la fuerza conservativa peso.

El peso es una fuerza conservativa.

Calculemos el trabajo de la fuerza peso cuando la partícula se traslada de A hacia B, y a continuación cuando se traslada de B hacia A.

WAB=mg x 

WBA=-mg x

El trabajo total a lo largo el camino cerrado A-B-A, WABA 

es cero.

La fuerza de rozamiento es una fuerza no conservativa

Cuando la partícula se mueve de A hacia B, o de B hacia A la fuerza de rozamiento es opuesta al movimiento, el trabajo es negativo porque la fuerza es de signo contrario al desplazamiento

Page 7: Informe 4 - Trabajo y Energia Cinetica

1

WAB=-Fr x 

WBA=-Fr x

El trabajo total a lo largo del camino cerrado A-B-A, WABA es distinto de cero

WABA=-2Fr x

 

Balance de energía

En general, sobre una partícula actúan fuerzas conservativas Fc y no conservativas Fnc. El trabajo de la resultante de las fuerzas que actúan sobre la partícula es igual a la diferencia entre la energía cinética final menos la inicial.

El trabajo de las fuerzas conservativas es igual a la diferencia entre la energía potencial inicial y la final

Aplicando la propiedad distributiva del producto escalar obtenemos que

El trabajo de una fuerza no conservativa modifica la energía mecánica (cinética más potencial) de la partícula.

Page 8: Informe 4 - Trabajo y Energia Cinetica

1

3. EQUIPO UTILIZADO

Plancha de vidrio

Un disco con sistema eléctrico

Un chispero electrónico con su fuente de poder

Dos resortes de diferente coeficiente de elasticidad

Una hoja de papel eléctrico y dos hojas de papel bond

Pesas

Una regla milimetrada, compás y escuadras

4. PROCEDIMIENTO EXPERIMENTAL

Montamos el sistema disco – resortes como se muestra en la figura 1. El disco está sobre un colchón de aire que reduce las fuerzas de fricción y está unido a dos resortes fijos de distinto coeficiente elástico, los cuales producen un movimiento curvilíneo.

Ilustración 1: Sistema Disco - Resortes

El disco está conectado a un chispero electrónico, cuya frecuencia se deberá encontrar. Este chispero hace que la trayectoria del centro del disco quede registrada por una sucesión de puntos sobre el papel bond.

Marcamos sobre el papel los puntos A y B, correspondientes a los extremos fijos de los resortes, y trazamos arcos de radio igual a la longitud natural de cada resorte.

Page 9: Informe 4 - Trabajo y Energia Cinetica

1

Llevamos el disco hasta una posición 0 y en el momento de soltarlo encendemos el chispero. Apagamos el chispero cuando el disco realice una trayectoria como el de la siguiente figura.

Ilustración 2: Trayectoria registrada por el chispero en el papel

Encontramos la curva de calibración de cada resorte trazando una gráfica elongación versus peso para diferentes masas y encontrando la mejor recta.

5. DATOS EXPERIMENTALES

Las siguientes tablas muestran la relación entre diferentes masas y la elongación que producen en ambos resorte. Estos datos servirán para establecer la curva de calibración de cada resorte:

Tabla 1 Tabla 2Calibración del resorte A Calibración del resorte B

N° ∆W (N) ∆L (cm) N° ∆W (N) ∆L (cm)1 0.49 0.5 1 0.49 0.52 0.98 1.2 2 0.98 0.73 1.49 2.8 3 1.49 1.04 1.98 4.5 4 1.98 2.05 3.14 8.0 5 3.14 4.56 4.12 10.5 6 4.12 7.0

Las curvas de calibración se muestran en la siguiente página. Con estas, encontramos la fuerza que ejerce cada resorte sobre el disco en cualquier punto de su trayectoria, correspondiente a la elongación sufrida por los mismos.

.A

.B

Y

X

Page 10: Informe 4 - Trabajo y Energia Cinetica

1

Gráfica 1: Curva de calibración del resorte “A”

Gráfica 2: Curva de calibración del resorte “B”

Page 11: Informe 4 - Trabajo y Energia Cinetica

1

6. PROCESAMIENTO DE LOS DATOS Y RESULTADOS

Usamos la hoja donde quedó registrada la trayectoria del disco para realizar lo siguiente:

1. Escogemos una parte de la trayectoria de la cual evaluaremos el trabajo hecho por las fuerzas de los resortes. Donde t=4 ticks sea el punto inicial y t=18 ticks el punto final.

2. Indicamos con letras mayúsculas (G,H,…,T) el punto medio entre cada par de puntos consecutivos de la trayectoria.

3. Sobre cada punto asignado con letra, medimos la elongación de cada resorte y, usando las curvas de calibración respectivas, encontramos las fuerzas FA y FB ejercida por cada resorte sobre el disco en dicho punto.

4. Dibujamos las fuerzas anteriores a escala sobre el papel y, con escuadras, trazamos las

fuerzas tangenciales FA,t y FB,t. Sumamos algebraicamente estas fuerzas para obtener la fuerza neta tangencial Fneta k,t sobre cada punto medio.

5. Medimos los desplazamientos ∆Sk entre cada par de puntos asignados con números.

La gráfica de los vectores fuerza, así como sus componentes tangenciales, se encuentran en la hoja bond que se adiciona al informe. Los resultados numéricos de elongaciones, fuerzas y desplazamientos, con sus respectivas unidades, se registran en el cuadro siguiente:

TIEMPO XA XB FA FB FA,t FB,t Fneta k,t ∆Sk

Puntos medios

(ticks)elongación del resorte

A (cm)

elongación del resorte

B (cm)

fuerza del resorte A (Newton)

fuerza del resorte B (Newton)

componente tangencial

del resorte A (N)

componente tangencial

del resorte B (N)

fuerta tangencial neta k (N)

Desplazamiento (cm)

G 4 - 5 16.6 9.8 6.2 5.9 3.7 -5.8 -2.1 2.2H 5 - 6 15.2 11.7 5.7 6.7 4.1 -6 -1.9 1.8I 6 - 7 13.7 13.2 5.2 7.4 4.5 -5.5 -1 1.85J 7 - 8 12 14.5 4.6 8.4 4.5 -5.2 -0.7 1.75K 8 - 9 10.2 15.3 4 8.8 4 -3.2 0.8 1.85L 9 - 10 8.4 15.7 3.4 9 3 -1.2 1.8 1.9M 10 - 11 6.9 15.8 2.8 9.1 1.8 0.8 2.6 2.3N 11 -12 5.7 15.5 2.4 8.9 1 1.5 2.5 2.1O 12 -13 5 15 2.2 8.7 0.5 2.3 2.8 2.65P 13 - 14 5.2 14.3 2.2 8.3 -0.5 2.7 2.2 2.75Q 14 - 15 6 13.4 2.5 7.8 -1.1 2.6 1.5 2.75R 15 - 16 7.6 12.4 3.1 7.3 -2.1 2 -0.1 3S 16 - 17 9.8 11.5 3.8 6.8 -3 2 -1 3T 17 - 18 12.2 10.6 4.7 6.1 -4.3 2.1 -2.2 2.7

Page 12: Informe 4 - Trabajo y Energia Cinetica

1

6. Utilizamos la ecuación:

para en contrar el trabajo realizado por la fuerza neta entre los intantes t=4 y t=18 ticks.

Si asumimos que la fuerza que realiza trabajo es la fuerza tangencial neta (Fneta k,t) y suponiéndola constante en desplazamientos muy pequeños, entonces la ecuación anterior se convierte en:

Y con los datos de las dos últimas columnas del cuadro anterior, tenemos:

Fneta k,t ∆Sk W k → k+1 = (Fneta t)(∆Sk)

fuerta tangencial neta k (N)

desplazamiento (cm) Trabajo (N.cm)

Trabajo (N.m) (Joule)

-2.1 2.2 -4.62 -0.0462-1.9 1.8 -3.42 -0.0342-1 1.85 -1.85 -0.0185

-0.7 1.75 -1.225 -0.012250.8 1.85 1.48 0.01481.8 1.9 3.42 0.03422.6 2.3 5.98 0.05982.5 2.1 5.25 0.05252.8 2.65 7.42 0.07422.2 2.75 6.05 0.06051.5 2.75 4.125 0.04125-0.1 3 -0.3 -0.003-1 3 -3 -0.03

-2.2 2.7 -5.94 -0.0594

W 4 → 18 = 13.37 0.1337N.cm Joules

El trabajo total (W) realizado por la fuerza de los resortes en el tramo elegido es de 0,1337 Joules.

Page 13: Informe 4 - Trabajo y Energia Cinetica

1

7. Ahora calculamos el cambio de la energía cinética para el recorrido escogido, empleando la ecuación:

En donde Vi es la velocidad instantánea en el punto 4, y Vf la velocidad instantánea en el punto 18 de la trayectoria. De modo que Vi = V(4), y Vf = V(18).

Podemos asumir que la velocidad instantánea se puede aproximar a la velocidad media entre dos puntos muy cercanos, entonces:

Sabiendo que se utilizo una frecuencia de 40 Hz en el chispero, el intervalo de tiempo entre dos puntos consecutivos será igual a 1/40 s ó (0.025 s).

El punto inicial 4 se encuentra entre los puntos 3 y 5, y la distancia entre estos 2 puntos es de 4,15 cm.

El punto final 18 se encuentra entre los puntos 17 y 19, y la distancia entre estos 2 puntos es de 5,7 cm.

Por lo tanto:

Reemplazando en la ecuación para el cambio de la energía cinética, para la masa del disco m=0,824 kg.

8. De los incisos 6. Y 7. tenemos lo siguientes resultados:

La variación de la Energía Cinética entre los puntos 4 y 18 de la trayectoria es 0,2516 Joules

Page 14: Informe 4 - Trabajo y Energia Cinetica

1

Para la trayectoria especificada del punto 4 al punto 18. Comparando ambos resultados vemos que existe una diferencia de:

De acuerdo al teorema delTrabajo y la Energía Cinética, ambos resultados deberían ser iguales; sin embargo, existe un error de casi el 47% respecto al mayor de los valores obtenidos, lo cual indica que se cometieron errores durante la experimentación y la toma de datos.

7. CONCLUSIONES Y RECOMENDACIONES

Entre las causas de error en el experimento realizado podemos mencionar las siguientes:

a.- Errores   al  momento  de   calibrar   los   resortes: resortes deformados y mediciones defectuosas al medir las elongaciones, repercuten a la hora de determinar la curva de calibración de los resortes. De igual modo afectan en la elección de la mejor recta .

b. Errores al graficar los vectores fuerza y al determinar sus componentes tangenciales.

Es recomnedable, para reducir el porcentaje de error, contar con instrumentos más precisos y tomar los datos con más cuidado. También es aconsejable que se tomen las fuerzas correspondientes a las elongaciones de los resortes directamente de la curva de calibración (la mejor recta), y no intentar hallar la constante de elasticidad K ni la pendiente de la recta.

Page 15: Informe 4 - Trabajo y Energia Cinetica

1

BIBLIOGRAFIA

MARCELO ALONSO- EDWARD FINN , FISICA (Mecánica tomo 1), Editorial Fondo educativo Interamericano, año 1976

JHON P. MC. KELVEY – HOWARD GROTCH, Física para Ciencias e Ingeniería 1. Editorial Harper & Row, Publishers, Inc. 1968.

DAVID HALLIDAY – ROBERT RESNICK- KENNETH CRANE Física parte I. Editorial CECSA. 1994.

JHON P. MC. KELVEY – HOWARD GROTCH, Física para Ciencias e Ingeniería 1. Editorial Harper & Row, Publishers, Inc. 1968.