Guía_Nuestros marcos teóricos + Neuronas espejo + Neurogénesis

49
 Nuestros marcos teóricos – Guía del Maestro 1 CENTRO ERICKSONIANO DE MÉXICO. Un lugar de encuentro… NUESTROS MARCOS TEORICOS GUÍA DEL MAESTRO

Transcript of Guía_Nuestros marcos teóricos + Neuronas espejo + Neurogénesis

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    1/49

    Nuestros marcos tericos Gua del Maestro

    1

    CENTRO ERICKSONIANODE MXICO.Un lugar de encuentro

    NUESTROS MARCOS

    TEORICOS

    GUA DEL MAESTRO

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    2/49

    Nuestros marcos tericos Gua del Maestro

    2

    MATERIAL:

    Power Point Aportaciones tericas de Teresa Robles

    Power Point Introduccin a Milton H. Erickson y a las tcnicasericksonianas

    DVD con la entrevista de Iris Corzo a Teresa Robles

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    3/49

    Nuestros marcos tericos Gua del Maestro

    3

    INDICE

    INTRODUCCIN.

    I. MILTON H. ERICKSON.

    II. TERESA ROBLES.

    III. NUEVOS PARADIGMAS DE LA CIENCIA.

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    4/49

    Nuestros marcos tericos Gua del Maestro

    4

    OBJETIVO.

    El alumno conocer los tres marcos de referencia tericos que sustentan el trabajo

    teraputico del Centro Ericksoniano de Mxico (CEM): la propuesta de Milton H.

    Erikson, la propuesta de Teresa Robles y los Nuevos Paradigmas de la Ciencia.

    INTRODUCCIN.

    Los marcos de referencia con los que realizamos nuestro trabajo en el Centro

    Ericksoniano de Mxico A.C. (CEM) tienen su fundamento en la visin del ser

    humano que tuvo Milton H. Erickson y las propias aportaciones de Teresa Robles,

    fundadora y directora general del CEM.

    Adems, incluimos en nuestros marcos de referencia las aportaciones de los

    nuevos paradigmas de la ciencia, los cuales nos abren perspectivas sumamente

    ricas, tanto para nuestro trabajo teraputico como para nuestra vida personal.

    I. MILTON H. ERICKSON.

    (Preguntar: qu saben de Milton Erickson? Qu es lo ericksoniano?

    Ir integrando las respuestas.)

    Qu es lo ericksoniano?

    Milton H. Erickson nunca expuso una teora estructurada como tal. Y slo

    hasta finales de los aos cincuenta ense en forma lineal y estructurada qu era

    la hipnosis y cmo utilizarla (ver los Seminarios de Erickson en California 1957).

    Ms tarde, cuando enseaba, en realidad estaba trabajando con sus alumnos

    para producir en ellos cambios internos que los abrieran a nuevas maneras de ver

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    5/49

    Nuestros marcos tericos Gua del Maestro

    5

    el mundo, realizaba con ellos un trance hipntico de principio a fin del Seminario,

    como veremos en los videos que vamos a observar, utilizando lenguaje hipntico

    todo el tiempo. En ese tiempo, sus alumnos llegaban a ver al gran maestro

    hipnotizador a quien crean nadie se poda resistir y, por lo tanto, estabanabiertos a vivir experiencias diferentes. Estaban y se mantenan en un estado

    amplificado de conciencia de principio a fin de su clase.

    El estado amplificado de conciencia (antes llamado estado alterado o

    alternativo de conciencia) es el trmino acadmico utilizado para denominar el

    trance natural, un estado muy similar al que se alcanza cuando uno est

    embelezado contemplando un paisaje hermoso, escuchando una bella pieza

    musical o cuando se medita profundamente.

    Durante el trance natural, la atencin de la persona est ms enfocada hacia

    el interior que hacia el exterior, facilitando la activacin de las funciones del

    hemisferio derecho del cerebro. En este estado, la persona est sintiendo ms que

    pensando, imaginando ms que razonando, y se agudiza la percepcin.

    (Explicar qu es un estado amplificado de conciencia: es el trmino

    acadmico para el trance natural. Pas de ser llamado estado alterado aestado alternativo y de all a estado amplificado.

    Amplificado porque al mismo tiempo que la persona tiene orientada su

    atencin al interior, sigue en cada medida consciente de lo que sucede

    afuera.)

    Aqu en el CEM nos parece que lo esencial del trabajo del Dr. Erickson es,

    tanto su epistemologa, como el trabajo con estados amplificados de conciencia

    (que en ese tiempo se llamaba trance hipntico natural o ericksoniano), as como

    las tcnicas para inducir esos estados y sugerir cambios a travs de una

    conversacin que induce al trance. Milton H. Erickson deca que la hipnosis era

    slo una forma de comunicacin ms eficiente.

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    6/49

    Nuestros marcos tericos Gua del Maestro

    6

    Nosotros, ms que hablar de hipnosis, preferimos hablar de psicoterapia

    ericksoniana, la cual utiliza la hipnosis dentro de un contexto teraputico

    integrado por la epistemologa que vamos a ver ms adelante, pero que podemos

    resumir afirmando que:

    Todos los seres humanos tendemos al crecimiento y al bienestar, pero sin

    quererlo, tambin aprendemos a estar mal; as que del mismo modo,

    podemos aprender a estar bien.

    La vida nos presenta dificultades: si las resolvemos, crecemos, si no, las

    dificultades se transforman en problemas.

    Tenemos todos los aprendizajes que necesitamos para resolver la situacin

    que la vida nos presente. Estos aprendizajes son nuestras experiencias de

    vida, en especial las de nuestros primeros aos de vida. Estn grabadas en

    nuestra mente inconsciente.

    Nuestra mente inconsciente es, por esta razn, como una Parte Sabia.

    Cada persona es nica, por eso Erickson recomendaba nunca poner

    etiquetas o usar teoras que etiquetan al paciente y siempre cortar la terapia

    a la medida de cada persona.

    Utilizaba temas universales, cortados teraputicamente a la medida decada quien.

    (Hasta hace poco, todo el mundo sealaba el cortar a la medida, pero

    los temas universales son importantsimos, y por eso l resolva de un

    golpe tantas cosas. Teresa Robles tom de Erickson el trabajo con temas

    universales.)

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    7/49

    Nuestros marcos tericos Gua del Maestro

    7

    Tres etapas de Milton Erickson.

    En el trabajo clnico realizado por Milton Erickson a lo largo de su vida se

    pueden reconocer tres etapas:

    1. 1927 1940: hace un trabajo muy minucioso, prepara mucho la intervencin,

    cortando con detalle a la medida de la persona. De all surge la PNL. Este perodo

    corresponde a la publicacin del Hombre de febrero.

    2. 1949 1965: tiene ya sistematizado lo que ensea. Una parte del paciente

    recuerda y otra no. Llevaba al pasado protegidamente para que no fuera doloroso.

    Buscaba que el cuerpo expresara lo que suceda dentro de la persona.

    Corresponde a la poca de los Seminarios de Erickson en California.

    3. poca final, hasta su muerte (1980): deja lo racional aparte y deja ir solo al

    inconsciente. Corresponde a la poca en que Erickson imparta seminarios

    didcticos en su casa (en silla de ruedas).

    Desarrollos posteriores a Erickson.

    En una historia hind se cuenta que pidieron a tres ciegos que describieran a

    un elefante. Cada uno toc una parte de su cuerpo y en funcin de eso, hizo su

    descripcin. El que toc la oreja dijo que era como una sbana enorme. El que

    toc la pata, lo describi como el tronco de un rbol y el que toc la cola, como

    una cuerda.

    As sucede con el trabajo de Milton H. Ericsson, pero para bien. Por su gran

    riqueza, cada estudioso ha tomado de l una parte que le interesa particularmentey a partir de ah, se ha dicho que es ericksoniano o ha desarrollado una nueva

    Escuela de Psicoterapia. As surgieron entre otras la PNL, la Terapia Estratgica,

    la Terapia Breve, la Terapia Orientada a las Soluciones. Entre sus discpulos ms

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    8/49

    Nuestros marcos tericos Gua del Maestro

    8

    cercanos, Ernst Rossi, mdico, adems de convertirse en editor de la obra de su

    maestro, se dedic a estudiar la relacin mente-cuerpo. Stephen Gilligan,

    junguiano, incorpor al trabajo ericksoniano el trabajo con arquetipos. Fue el

    primero en integrar un elemento espiritual a su trabajo. Lo sigui Rossi, veinteaos despus. Una propuesta de la Social and Medical Network, asociacin

    europea que integra profesionales de la salud que trabajan tambin con

    espiritualidad, es que cuando se trabaja con estados amplificados de conciencia,

    se llega siempre a un desarrollo espiritual entendido en el ms amplio sentido de

    la palabra, ya que la persona entra en contacto con la totalidad.

    Jeffrey K. Zeigha dedicado su vida a crear y mantener la infraestructura que

    ha hecho posible la difusin del trabajo del Dr. Erickson, sobre todo, a travs de la

    creacin de la Fundacin Milton H. Erickson que promueve tanto la formacin de

    institutos y centros en todo el mundo como organiza congresos varias veces al

    ao. La propuesta terica tcnica de Jeff es establecer criterios diagnsticos para

    cortar la terapia a la medida (como vamos a ver y a practicar) y proponer lo que

    llama El diamante de la terapia (ver Terapia cortada a la medida).

    Algunos otros autores ms incluyen a William OHanlon, creador de la

    Terapia Orientada a Soluciones, y a Stephen Lankton y su esposa, quienes han

    trabajado mucho con metforas.

    El trabajo ericksoniano aqu en Mxico comenz a ser difundido por la Dra.

    Teresa Robles a partir de 1988 a travs del Instituto Milton H. Erickson de la

    Ciudad de Mxico y posteriormente por el Centro Ericksoniano de Mxico A.C.

    (CEM). La propuesta del CEM est estrechamente relacionada con la historia

    personal de Teresa Robles.

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    9/49

    Nuestros marcos tericos Gua del Maestro

    9

    II. TERESA ROBLES.

    Las aportaciones de Teresa Robles a la psicoterapia ericksoniana tienen sus

    races en su primera formacin como antroploga social.

    Muy cercana a la antropologa social se encuentra la etologa humana, es

    decir, el estudio de la conducta instintiva, nuestra parte animal que es importante

    volver a valorar.

    Como parte de esta propuesta est el ofrecer diferentes marcos de referencia

    para entender tanto la epistemologa de Milton H. Erickson como lo que sucede

    cuando trabajamos con estados amplificados de conciencia.

    La doctora Robles retoma la afirmacin de Milton H. Erickson de que

    aprendimos a estar mal y podemos aprender a estar bien, y se pregunta: Cmo

    aprendimos a estar mal?

    A lo largo de su historia se dan varias respuestas. Una de ellas aparece en su

    libro Concierto para cuatro cerebrosdonde propone que aprendimos a estar mal

    debido a tres nudos fundamentales que obstaculizan nuestro crecimiento:

    1. El nudo de la dualidad: el separar en pares opuestos y excluyentes, el

    fragmentar nuestra vida, en lugar de aceptar los pares como dos partes

    necesarias y complementarias. Lnea de trabajo: integrar opuestos.

    2. El nudo del sufrimiento: lo que culturalmente se nos ha enseado es a

    considerar el crecimiento como fuente de sufrimiento, en lugar de

    considerarlo como desafo, como experiencia interesante y satisfactoria.

    Lnea de trabajo: aprender a disfrutar.

    3. El nudo de la rigidez: emplear el estereotipo que nos lleva a seguirutilizando soluciones viejas que ya no son adecuadas. Lnea de trabajo:

    flexibilidad, generar alternativas, abrir nuevos caminos, aprender de las

    dificultades, elegir caminos con corazn.

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    10/49

    Nuestros marcos tericos Gua del Maestro

    10

    1. La Antropologa Social.

    La propuesta es que: La patologa es slo cuestin de grado y

    Se aprende de manera inconsciente, es decir, sin que nos demos cuenta

    cmo.

    Entre la persona psictica que no reconoce hasta dnde llega l y dnde

    empieza el mundo de afuera, (lmites entre Yo y No-Yo) y est alucinando y el

    muchacho que estudia la misma carrera del padre para heredar la empresafamiliar o el despacho sin atreverse a reconocer que tal vez le gustara hacer otra

    cosa, slo hay una diferencia de grado.

    Estas propuestas, as como las conceptualizaciones y esquemas de trabajo

    forman parte del nuevo enfoque y nuevo estilo de psicoterapia que estamos

    desarrollando en el Centro Ericksoniano de Mxico.

    Segn Jean Piaget, antes de que nuestro sistema neurolgico est maduro (y

    en su poca eso ocurra alrededor de los diez aos de edad) no somos capaces

    de analizar, criticar, discutir y, en su caso refutar, la informacin que recibimos, por

    lo que la absorbemos como esponjitas. Gran parte de esa informacin se

    transforma en creencias limitantes(concepto de Robert Dilts). Y como el proceso

    ocurre sin que tengamos consciencia de l, no podemos reconocerlo, al menos

    usando nuestra mente racional.

    Esto trae como consecuencia patologas en la comunicacin:

    Descalificacin. Desconfirmacin. Rechazo.

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    11/49

    Nuestros marcos tericos Gua del Maestro

    11

    No definicin. Doble vnculo.

    Estas situaciones nos conducen a:

    Los nudos mencionados anteriormente que nos impiden nuestrocrecimiento.

    Dejar de escuchar a nuestro cuerpo. Creer que la vida es sufrimiento y que crecer implica sufrir. Que solamente hay un primer lugar. Sealar culpables. Confundir los ideales con las realidades y el deber ser con el ser. Ganarnos el amor de los dems. Descalificarnos nosotros mismos. Ver lo negativo. Renunciar a nuestros sueos.

    2. Etologa humana.

    La etologa es el estudio de la conducta instintiva animal incluyendo a la

    especie humana. La etologa humanaestudia, por lo tanto, la conducta instintiva

    humana. Cuando aprendimos que la mente tiene que controlar al cuerpo, porque

    se le considera como algo de tercera categora y que es sucio, malo, dejamos deescuchar las seales de nuestro cuerpo y olvidamos nuestros mecanismos de

    sobrevivencia. Entonces empezamos a comer cuando tenamos tiempo y no

    hambre, a dejar de preguntarnos qu quiere nuestro cuerpo y a no escuchar la

    sed. Ni qu se diga lo que pasa con las emociones. Aprendimos que deberamos

    controlarlas en nombre de la buena educacin, que nunca deberamos sentir las

    emociones malas y siempre las buenas, aunque tampoco sas se podan

    expresar abiertamente y menos con intensidad.

    Del mismo modo que el hambre y la sed nos dicen qu est necesitando

    nuestro cuerpo, las emociones nos avisan sobre lo que est sucediendo con

    nosotros en relacin con el mundo de afuera y preparan a nuestro cuerpo para

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    12/49

    Nuestros marcos tericos Gua del Maestro

    12

    actuar en esa situacin. Son tambin parte de nuestros mecanismos de

    sobrevivencia, igual que el hambre, la sed y el deseo sexual.

    (Mencionar que de estos temas hablaremos ms en el Grupo de

    Crecimiento y luego cuando tratemos el tema de Trabajo con las

    Emociones.)

    Otro concepto que est surgiendo a partir de la etologa humana es el de la

    resiliencia.

    Resiliencia.

    (Extracto de la Introduccin del libro Estrategias psicoteraputicas de Milton

    H. Erickson de Dan Short. La autora del texto sobre resiliencia es Consuelo

    Casula).

    Esperanza, virtud antigua bien conocida de los griegos, y resiliencia trmino

    moderno para otra virtud antigua, la fortaleza, han sido las principales pasiones de

    Erickson. Ambas son instrumentos teraputicos indispensables para cada

    terapeuta que entre en resonancia con el sufrimiento del paciente para restituirle

    energa protectora y estimularlo a continuar viviendo una vida plena.

    En la Fsica, la resiliencia es la capacidad de un material de resistir un choque

    sin destrozarse, es la resistencia que un material ofrece a la accin dinmica y

    mide la elasticidad. Del latn resiliens, resilire, rebotar, re-salire, saltar atrs.

    En sociologa y en psicologa, la resiliencia indica la fuerza humana, ms bien

    la fortaleza, de reaccionar al evento traumtico. Digo fortaleza, trmino anticuado,

    porque anticuado no es aquella virtud cardinal que hace encontrar la fuerza de

    voluntad y la capacidad de aceptar con sabidura protectora y preactiva, eso que

    no podemos modificar. Fortaleza es la voluntad determinada de remover los

    obstculos y de superar las dificultades contingentes para seguir adelante con

    optimismo consciente.

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    13/49

    Nuestros marcos tericos Gua del Maestro

    13

    Resilientees quien sabe soportar el dolor sin lamentarse, quien sabe soportar

    las dificultades sin desesperarse, quien tiene el coraje de tomar un camino que

    sabe que es tortuoso. Y para esto consigue completar cuanto emprende.

    Resilientees quien ama la vida y cultiva una virtud que modera los temores de lamuerte. La resiliencia defiende de la autocompasin y permite arriesgarse,

    recuerda que estamos expuestos al peligro en cuanto mortales y al mismo tiempo

    nos hace enfrentar lo que nos impide vencer con audacia sabia. La resiliencia

    hace comprender el significado del dicho aristotlico quien no conoce su propio

    lmite, teme el destino.

    La resiliencia es tanto hacer cuentas con la propia impotencia como vencer

    los temores de maana. Slo quien es capaz de soportar es ms fuerte que la

    cadena que lo constrie. Los sobrevivientes de los campos de concentracin o los

    prfugos de largos aos de prisin injusta, como Nelson Mandela, han demostrado

    que la libertad es una fuerza interna que ningn alambre de pas puede

    encarcelar. stos han dado pruebas de coraje y han desenfundado, cuando ha

    sido necesario, la agresividad y han mostrado la capacidad de resistir, sin

    violencia o deseo de poder, en las condiciones de mxima impotencia. Es sta

    una manifestacin de mxima fortaleza.

    Como tambin demuestran los pacientes que salen del tnel de la leucemia o

    los seropositivos que luchan no slo con la enfermedad sino tambin con la

    hostilidad y los prejuicios sociales. Como demuestran tantas personas que han

    superado las dramticas pruebas de la vida porque han tejido con paciencia,

    esperanza y resiliencia el hilo del tiempo. La resiliencia pone en orden las perlas

    de las experiencias de alegra y de dolor con un hilo de correlacin de significados

    que hace plausibles las interpretaciones positivas y reestructura las experienciasnegativas.

    Slo quien ha aprendido a soportar no fracasa nunca, como la pintora Frida

    Kahlo, el violinista Itzhak Perlman (polio), el ciclista estadounidense Lance

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    14/49

    Nuestros marcos tericos Gua del Maestro

    14

    Armstrong (cncer), el corredor de autos italiano Alessandro Alex Zanardi (perdi

    ambas piernas), por nombrar algunos. Personas que han reconocido la

    imposibilidad inmediata de cambiar el curso de los acontecimientos, pero que no

    han sufrido con resignacin. Han credo, en cambio, en su capacidad de generarnuevas potencialidades. Una ejemplar demostracin de resiliencia la ofrece Frida

    Kahlo que, despus de la amputacin del pie, escribe en su diario: Pies para

    qu los quiero, si tengo alas para volar?.

    (Perlman contrajo polio a los cuatro aos y aprendi a movilizarse con

    muletas, mismas que usa hasta la fecha. Toca el violn sentado.)

    (Armstrong sufri de cncer testicular con metstasis pulmonar ycerebral. Se recuper sorprendentemente y gan siete Tours de Francia

    consecutivos, cosa que nadie haba logrado antes.)

    (Zanardi perdi ambas piernas en un choque en 2001 y contina

    compitiendo -2007 en la World Touring Car Championship.)

    La resiliencia es tambin determinacin, perseverancia y paciencia que como

    habamos visto, son tambin componentes de la esperanza. Quien es resiliente

    soporta porque reconoce en el mbito de la propia iniciativa eso que est obligado

    a sufrir: malformaciones genticas, salud inestable, amores perdidos, blancos

    fallidos, la muerte de la persona querida. Para aceptar el propio lmite se necesita

    de una fuerza generativa de recursos, de un sentido de justicia que proteja la

    realizacin del bien y despeje el camino hacia algo perseguible, de una virtud que

    lleva a perseverar, a persistir en las dificultades, a tener paciencia, a manifestar

    coraje en la vida de todos los das.

    Todo esto es resiliencia, un antdoto a cualquier tentacin de resignado

    abandono al destino, a la tragedia o a la fatalidad de la superioridad de los

    acontecimientos en la persona. Es la capacidad de aceptar las heridas en la lucha

    por la realizacin de llegar a ser mismo, lo que requiere discernimiento y sabidura

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    15/49

    Nuestros marcos tericos Gua del Maestro

    15

    para no ser confundido con el impulso ciego o la irresponsabilidad e inconsciencia.

    Es la capacidad que por ejemplo nos hace comprender el sentido de cuanto dice

    Hemingway enAdis a las armas: Cunto nos divide el mundo a todos, pero slo

    algunos se volvern ms fuertes donde han estado divididos.

    Y el deber de nosotros los terapeutas es precisamente ayudar a los pacientes

    que sufren y se conciben dbiles y desesperados para cultivar estas dos pasiones

    afortunadas, esperanza y resiliencia, para llegar a ser proactivos y cambiar su

    destino.

    (Despus de explicar la resiliencia pedir a los alumnos que comenten

    brevemente alguna ancdota propia de resiliencia, o de alguien conocido, obien de la literatura o de la historia. Escuchar mximo tres ancdotas).

    3. NUEVOSPARADIGMASDELACIENCIA.

    Como sabemos, la palabra paradigma, del griego que significa modelo, se refiere a

    las teoras, las prcticas cientficas y valores comnmente aceptados en alguna

    disciplina en particular.

    Con el tiempo, los paradigmas cambian debido a la presencia de anomalas,

    observaciones que no pueden explicarse a partir de la concepcin del mundo en

    vigencia.

    En el CEM consideramos que las teoras son creencias o lentes para ver el mundo,

    que utilizamos para tratar de entender y prever los fenmenos que observamos.

    Proponemos tambin que los conceptos son metforas que tienen un poder explicativo,

    que los utilizamos mientras nos son tiles, y cuando dejan de serlo, damos un salto

    epistemolgico y construimos nuevos conceptos y nuevas teoras.

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    16/49

    Nuestros marcos tericos Gua del Maestro

    16

    El paradigma de la fsica clsica que consideraba al mundo funcionando como un

    reloj gigantesco, funcionando con gran precisin, en cuyo interior se poda conocer y

    predecir hasta el ms mnimo detalle de funcionamiento, o el considerar al universo

    formado como una construccin a base de ladrillos dej de ser creble a principios delsiglo XX con los hallazgos de Max Planck, dando lugar a la nueva fsica llamada fsica

    cuntica.

    Se le llama Fsica cuntica debido al concepto de cuanto o quantum, es decir, la

    cantidad ms pequea de algo que es posible tener. La cuntica desafa el sentido

    comn. Entre ms se trata de describir al micromundo y sus caractersticas, ms

    anomalas encontramos. La fsica cuntica, es decir, la fsica de las dimensiones ms

    pequeas inimaginables ha desafiado y sigue desafiando a los cientficos ms eruditos.

    La fsica terica en el siglo XX estuvo basada sobre dos teoras: la general de la

    relatividad (gravedad y universo macro) y la mecnica cuntica (micromundo). A partir

    de estas teoras se ha tratado de encontrar una teora que unifique ambas, abarcando

    el todo. sta es una tarea en la que siguen trabajando muchos hombres y mujeres de

    ciencia. Es as como se han generado varias teoras cuyo elemento esencial es que el

    cosmos en su nivel macro y en su nivel micro conforma un todo unido, conectado, sin

    hilvanes.

    El nuevo paradigma cientfico en lugar de ver al mundo como una coleccin de

    objetos separados, lo est considerando como un nico y subyacente campo de

    fuerzas, como una red interconectada de energa.

    Estos conceptos son importantes para el trabajo ericksoniano, ya que consideramos

    que a travs de los estados amplificados de conciencia se puede acceder a ese campo

    subyacente, a esa red que interconecta todo. Como veremos a continuacin, a estecampo se le puede llamar de varias formas segn las diversas propuestas: campo

    subcuntico, orden implicado, campo morfognico, etctera.

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    17/49

    Nuestros marcos tericos Gua del Maestro

    17

    Esta intuicin del todo unificado es el factor comn que en la actualidad est

    impulsando a cientficos, artistas, filsofos, psiclogos (sobre todo los que tienen un

    enfoque transpersonal), y que desde tiempo inmemorial han tenido los grandes sabios

    de todas las culturas.

    De especial inters para la psicoterapia ericksoniana se encuentran las

    siguientes teoras:

    Fsica cuntica.

    Albert Einsteincon su teora de la relatividad, en donde demuestra que la materia

    es una forma de energa: la masa es energa ultracondensada y la energa es masa

    ultradiluida. Adems, propone que presente, pasado y futuro estn ocurriendo al mismo

    tiempo y forman una unidad. Entonces, cambiando el presente transformamos nuestro

    pasado y nuestro futuro probable!.

    Alain Aspect con su experimento, en donde comprob que los electrones pueden

    comunicarse instantneamente como si cooperaran telepticamente, pero lo que

    realmente est sucediendo es que no es que se comuniquen a distancia, sino que tal

    distancia NO existe, pues no hay separacin entre ellos.

    Stephen Hawking con su argumento del tiempo imaginario, es decir una direccin

    hacia arriba y hacia abajo, adems de la lnea de izquierda a derecha del tiempo

    ordinario, lo cual implica una unin de las tres direcciones espaciales y la direccin del

    tiempo imaginario constituyendo una especie de superficie cerrada, es decir, un

    universo sin fronteras.

    David Peatmenciona que nuestra naturaleza es dual, como la de la luz, es decir, es

    a la vez onda y partcula. Propone que funcionamos como partcula cuando usamos larazn y como onda cuando usamos nuestra intuicin. Esto es importante cuando

    trabajamos con estados amplificados de conciencia, pues solemos sentirnos como una

    onda.

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    18/49

    Nuestros marcos tericos Gua del Maestro

    18

    Erwin Laszlo propone la existencia del vaco cuntico que explicara muchas de las

    anomalas que se han encontrado en los campos fsico, biolgico y mental, incluidos los

    fenmenos inusuales (antes llamados paranormales). Dice que los seres humanos

    somos como canales del proceso creativo del Universo entero.

    Orden implicado.

    David Bohm con sus teoras del Orden implicado y Orden explicado,

    presentando al Universo como una totalidad en movimiento (holomovimiento). Propone

    que el Universo tiene como fuente o matriz generadora un ocano de energa, no

    manifiesto o implicado, mientras que el orden explicado sera lo que vemos, lo evidente.

    El Universo y el cerebro como un holograma.

    Karl Pribram, neurofisilogo, que propone que el Universo es un gran holograma y

    el cerebro humano funciona hologrficamente, es decir el cerebro es una entidad

    hologrfica que interpreta a un universo hologrfico. La caracterstica sorprendente del

    holograma es que la parte est en el todo y cada parte contiene al todo. Por lo tanto, si

    la parte tiene acceso al todo, podemos afirmar que la informacin del universo est

    dentro de nosotros. La fuerza creadora del universo en m, la sabidura universal

    dentro de m!. O como dice Ervin Laszlo: tenemos un cerebro que es inseparable

    del Universo.

    Entonces, podemos concluir que la informacin de nuestros pacientes est adentro

    de nosotros, por eso la podemos percibir.

    La sntesis de los puntos de vista de Bohm y Pribram es lo que se conoce como el

    paradigma hologrfico.

    Campos morfognicos.

    Rupert Sheldrakepropone la existencia de campos morfognicos, como una especie

    de memoria colectiva en donde se encuentra todo lo vivido por toda la humanidad de

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    19/49

    Nuestros marcos tericos Gua del Maestro

    19

    todos los tiempos, y de todas las especies vivientes. Funciona a travs de la resonancia

    mrfica.

    Tal parece que cuando entramos en un estado amplificado de conciencia tenemos

    acceso a las grabaciones del campo morfognico y las podemos modificar, por lo tanto

    con la psicoterapia ericksoniana podemos influir en las grabaciones de toda la

    humanidad, de todos los tiempos.

    Construccin de nuestra realidad. Sincronicidad.

    Nuestra conciencia construye nuestra realidad material. Entendemos esa

    conciencia como la combinacin del deseo de que algo suceda, la certeza de que as

    ser, la creacin de una imagen mental de su realizacin y la incertidumbre acerca de

    cundo y como suceder. Al esperar salud creamos salud, al esperar bienestar

    creamos bienestar.

    Esto est relacionado con el tema de la sincronicidad (trmino utilizado por Carl

    Jung), es decir, dos eventos que se dan de manera simultnea, uno en el plano

    material y el otro en el plano mental, sin que ninguno sea causa del otro.

    (Si el tiempo lo permite, pasar el DVD de la entrevista de Iris Corzo a TeresaRobles 40 min).

    Neurociencias

    Una de las disciplinas del mbito cientfico que est tomando mucho auge es la de las

    neurociencias, sobre todo con el advenimiento de tecnologas cada vez ms avanzadas

    para dar seguimiento a las mltiples interacciones entre la mente y el cuerpo, las cualesinciden hasta al nivel del ADN.

    Por mucho tiempo se pens que el cerebro era esttico, que las neuronas no se

    regeneraban. Ahora se sabe que el cerebro es plstico, es decir, que tiene la

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    20/49

    Nuestros marcos tericos Gua del Maestro

    20

    capacidad de modificar su estructura y funcionalidad a travs de estmulos que

    favorezcan la formacin de neuronas nuevas, que incrementen las conexiones

    sinpticas, que modifiquen la orientacin dendrtica, etctera. Esto se conoce como

    plasticidad cerebral.

    A partir de los aos sesenta se encontraron evidencias de la formacin de neuronas

    nuevas. Ahora se sabe que hay dos zonas del cerebro en donde se generan neuronas:

    el bulbo olfatorio y el hipocampo. A este proceso se le conoce como neurognesis.

    Lo que resulta sumamente interesante es que se ha encontrado que el cerebro

    responde a varios factores, los cuales influyen sea de forma positiva o bien negativa en

    la formacin de las nuevas neuronas.

    La neurognesis es un proceso complejo que incluye varias etapas: proliferacin de

    clulas pluripotenciales (clulas troncales o madre), la migracin, diferenciacin,

    sobrevivencia de las neuronas nuevas, y la integracin de ellas en los circuitos

    neuronales ya existentes.

    Algunos de los factores que influyen en la neurognesis son: neurotransmisores,

    diversas hormonas, factores de crecimiento y neurotrofinas.

    Adems, se ha demostrado que hay factores sociales que pueden incidir sea

    favorable o desfavorablemente en la neurognesis. Esto resulta relevante para el

    trabajo en el mbito de la psicoterapia

    La actividad fsica promueve la sobrevivencia de las neuronas nuevas. Otros factores

    positivos incluyen el estar en un ambiente que favorezca la novedad, el aprendizaje.

    Algunos de los factores negativos ms considerables son: el estrs psicolgico, la

    depresin, la falta de sueo, y el consumo de drogas y alcohol.

    Uno de los terapeutas ericksonianos que ha estudiado con mayor ahnco la relacin

    entre las nuevas neurociencias y la psicoterapia con estados amplificados de

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    21/49

    Nuestros marcos tericos Gua del Maestro

    21

    conciencia, es Ernest L. Rossi, uno de los seguidores ms connotados de Milton H.

    Erickson.

    Rossi ha investigado el proceso general de comunicacin mente-cuerpo, y cmo los

    estados amplificados de conciencia, siguiendo el ciclo de actividad-descanso de

    manera saludable pueden iniciar verdaderas cascadas de protenas gnicas

    facilitando procesos de curacin, la diferenciacin de clulas troncales en tejido sano, la

    memoria, el aprendizaje, la creatividad y comportamientos saludables.

    Estos procesos se inician en la terapia, en donde se propician pensamientos

    novedosos, capacitadores, as como experiencias emocionales que facilitan procesos

    saludables que sern repetidos creativamente en dilogos entre la corteza cerebral yel hipocampo durante el sueo, los sueos despiertos y dems estados amplificados de

    conciencia. Rossi llama a este dilogo: dilogo creativo con nuestros genes.

    Para Rossi, las aplicaciones teraputicas de los estados amplificados de conciencia

    incluyen la facilitacin de la neurognesis en el cerebro humano, as como la sanacin

    mente-cuerpo a nivel celular-gentico-protenico en todo el cuerpo, propiciando la

    sanacin de trastornos psicosomticos, el fortalecimiento del sistema inmunolgico y la

    resolucin creativa de problemas que se nos van presentando en la vida.

    Otro de los grandes descubrimientos recientes en el rea de las neurociencias, son las

    llamadas neuronas espejo.

    A principios de los aos noventa, el Dr. Giacomo Rizzolatti y su equipo de

    investigadores de la Universidad de Parma en Italia, daba a conocer un mecanismo a

    travs del cual, un tipo de neuronas se activaban en el cerebro de los monos, tanto

    cuando stos realizaban una actividad motora (como tomar un objeto con las manos),

    como cuando los monos observaban a otro individuo (mono o humano) realizar dicho

    movimiento o parecido. A estas neuronas se les llam espejo.

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    22/49

    Nuestros marcos tericos Gua del Maestro

    22

    Este mismo tipo de neuronas se detectaron tambin en seres humanos. Las dos

    regiones del sistema espejo se localizan en algunas zonas del lbulo parietal y del

    lbulo frontal, conocida como la red espejo parieto-frontal.

    Por decirlo de alguna manera, como menciona el Dr. Vittorio Gallese, uno de los

    cientficos del equipo del Dr. Rizzolatti, es como si nuestro cerebro resonara junto con

    el de la persona que estamos observando. Se trata de un mecanismo cerebral

    fundamental, porque permite un tipo de comunicacin no verbal entre los cerebros de

    los individuos involucrados.

    Es sorprendente adems, que se ha encontrado que durante la observacin de actos

    motores realizados por otras personas, hay una activacin (en el observador) delsustrato neural que controla los msculos involucrados en el acto motor, aun cuando el

    observador no hubiera nunca realizado dicho movimiento con anterioridad en su vida.

    Es tambin relevante para el mbito de la psicoterapia, el hecho de que las neuronas

    espejo localizadas en centros emocionales intervengan en fenmenos como la

    empata, la cual es tan importante en la interaccin entre el terapeuta y las personas

    que lo consultan, incidiendo a todos los niveles, desde la mente hasta el gen.

    Ernest Rossi propone que el fenmeno de las neuronas espejo construye puentes entre

    las metforas culturales de los seres humanos, desde la mente hasta la expresin

    gnica y la plasticidad cerebral. Esto abre grandes posibilidades a la disciplina llamada

    genmica psicosocialde la que Rossi es un gran estudioso.

    Rossi menciona que las experiencias positivas en el campo del arte, la belleza, la

    verdad, la espiritualidad, los sueos novedosos generan la reconstruccin creativa de la

    mente-cerebro a los niveles molecular-genmico, de plasticidad cerebral, y psicolgico.

    Se ha llegado a decir que el estudio de los sistemas espejo del cerebro har por la

    psicologa lo que el estudio del DNA ha hecho por la biologa.

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    23/49

    Nuestros marcos tericos Gua del Maestro

    23

    Y apenas nos estamos asomando a las grandes posibilidades que las nuevas

    neurociencias nos estn presentando. Y dentro de ellas, los estados amplificados de

    conciencia estn siendo protagonistas importantes, de all el inters de los tereapeutas

    ericksonianos en estos mbitos, y muy particularmente del Centro Ericksoniano deMxico (CEM).

    QUIZ

    (Para preguntar al final de la clase. Se hace oralmente)

    1. Menciona tres elementos que consideres esenciales de la epistemologa de

    Milton H. Erickson.

    2. Menciona lo que propone Teresa Robles para desenredar los tres nudos

    que de acuerdo con su propuesta han llevado al ser humano a estar mal.

    3. Qu propuesta terica sustenta la expresin todo el Universo dentro de

    m? Explica.

    4. Cul es la importancia del uso teraputico de los estados amplificados de

    conciencia en el mbito de los nuevos paradigmas de la ciencia?

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    24/49

    Nuestros marcos tericos Gua del Maestro

    24

    BIBLIOGRAFA.

    BOHM, D., PEAT, F.D. , Ciencia, orden y creatividad. Las races creativas de la cienciay la vida. (Tercera edicin). Barcelona, Editorial Kairs, 2003.

    BOHM, D., La totalidad y el orden implicado. (Octava edicin espaol). Barcelona,Editorial Kairs, 2005

    CAPRA, F. BOHM, D., LOVELOCK, J, SHELDRAKE, R. y otros. (2000). El Espritu dela ciencia.(Primera edicin). Barcelona, Editorial Kairs, 2000.

    CIMATTI, F. Neuronispecchio il riflesso sociale de la natura umana. Incontro conVittorio Gallese.Da Il manifesto: 22 giugno 2005.

    EINSTEIN, HEISENBERG, SCHRDINGER, PLANCK y otros, Cuestiones cunticas.Escritos msticos de los fsicos ms famosos del mundo. (Octava edicin). Barcelona,Editorial Kairs, 2005.

    KRAUZE, G., Tejiendo sueos y realidades. (Primera edicin). Mxico, Alom Editores,S.A. de C.V., 2005

    LAZLO, E., El cosmos creativo. Hacia una ciencia unificada de la materia, la vida y lamente.(Primera edicin). Barcelona, Espaa, Editorial Kairs, 1997.

    PEAT, D. Sincronicidad.Barcelona, Editorial Kairs.

    PIAGET, Jean. (1975). El desarrollo mental del nio, en Seis Estudios de psicologa.Barcelona, Espaa: Seix Barral. 11-27., 1975.

    ROBLES, Teresa. (2005). Concierto para cuatro cerebros en psicoterapia. Quince aosdespus. (Tercera edicin). Mxico: Alom Editores, 1995.

    RAMREZ-RODRGUEZ, G. et al. (2007). Formacin de neuronas nuevas en elhipocampo adulto: neurognesis.Salud Mental 30 (3): 12-19.

    RIZZOLATTI, G. (2010). Mirror neurons: from discovery to autism. Experimental BrainResearch 200: 223-237.

    ROSSI, E.L., ROSSI, K.L. (2008). La nueva neurociencia de la psicoterapia, la hipnosisteraputica y la rehabilitacin: un dilogo creativo con nuestros genes. Instituto MiltonH. Erickson de la Costa Central de California. www.ernestrossi.com.

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    25/49

    Nuestros marcos tericos Gua del Maestro

    25

    ROSSI, E.L. (2001). In search of a deep psychobiology of hypnosis:Visionaryhypotheses for a new millennium. Presented by the Society for Clinical andExperimental Hypnosis.

    GILLIGAN, Stephen, La valenta del amar, Espaa Edit. Rinden Institut Gestalt, 2008.SHORT, D. Estrategias psicoteraputicas de Milton H. Erickson. (Primera edicin).Mxico: Alom Editores, 2006

    WILBER, K., BOHM, D., PRIBRAM, K y otros, El paradigma hologrfico. Unaexploracin en las fronteras de la ciencia. (Quinta edicin). Barcelona, Editorial Kairs,2001.

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    26/49

    Exp Brain Res (2010) 200:223237

    DOI 10.1007/s00221-009-2002-3

    1 3

    REVIEW

    Mirror neurons: from discovery to autism

    Giacomo Rizzolatti Maddalena Fabbri-Destro

    Received: 12 June 2009 / Accepted: 27 August 2009 / Published online: 18 September 2009

    Springer-Verlag 2009

    How the things started

    In the winter of 1991 I (GR) sent to Naturea report on a

    surprising set of neurons that we (Giuseppe Di Pellegrino,

    Luciano Fadiga, Leonardo Fogassi, Vittorio Gallese) had

    found in the ventral premotor cortex of the monkey. The

    fundamental characteristic of these neurons was that they

    discharged both when the monkey performed a certain

    motor act (e.g., grasping an object) and when it observed

    another individual (monkey or human) performing that or a

    similar motor act (Di Pellegrino et al. 1992). These neurons

    are now known as mirror neurons (Fig. 1).

    Naturerejected our paper for its lack of general inter-

    est and suggested publication in a specialized journal. At

    this point I called Prof. Otto Creutzfeld, the then Coordinat-

    ing Editor of Experimental Brain Research. I told him that I

    thought we found something really interesting and asked

    him to read our manuscript before sending it to the referees.

    After a few days he called me back saying that indeed our

    Wndings were, according to him, of extraordinary interest.

    Our article appeared in Experimental Brain Research a few

    months later.

    The idea of sending our report on mirror neurons to

    Experimental Brain Research, rather than to another neuro-

    science journal, was motivated by a previous positive expe-

    rience with that journal. A few years earlier,Experimental

    Brain Researchaccepted an article in which we presented

    (Rizzolatti et al. 1988) a new view (something that typi-

    cally referees did not like) on the organization of the ventral

    premotor cortex of the monkey and reported the Wndings

    that paved the way for the discovery of mirror neurons. In

    that article we described how, in the ventral premotor cor-

    tex (area F5) of the monkey, there are neurons that respond

    both when the monkey performs a motor act (e.g., grasping

    or holding) and when it observes an object whose physical

    features Wt the type of grip coded by that neuron (e.g., pre-

    cision grip/small objects; whole hand/large objects). These

    neurons (now known as canonical neurons, Murata et al.

    1997) and neurons with similar properties, described by

    Sakata et al. (1995) in the parietal cortex are now univer-

    sally considered the neural substrate of the mechanism

    through which object aVordances are translated into motor

    acts (see Jeannerod et al. 1995).

    We performed the experiments on the motor properties

    of F5 in 1988 using an approach that should almost neces-sarily lead to the discovery of mirror neurons if these neu-

    rons existed in area F5. In order to test the F5 neurons with

    objects that may interest the monkeys, we used pieces of

    food of diVerent size and shape. To give the monkey some

    food, we had, of course, to grasp it. To our surprise we

    found that some F5 neurons discharged not when the mon-

    key looked at the food, but when the experimenter grasped

    it. The mirror mechanism was discovered.

    The next important role ofExperimental Brain Research

    in the discovery of mirror neurons was its acceptance in

    G. Rizzolatti (&) M. Fabbri-Destro

    Dipartimento di Neuroscienze, Sezione Fisiologia,

    Universit di Parma, via Volturno, 39,

    43100 Parma, Italy

    e-mail: [email protected]

    M. Fabbri-Destro

    e-mail: [email protected]

    G. Rizzolatti

    Istituto Italiano di Tecnologia (IIT) Unit di Parma,

    Parma, Italy

    M. Fabbri-Destro

    Dipartimento SBTA, Sezione di Fisiologia Umana,

    Universit di Ferrara, via Fossato di Mortara,

    17-19, 44100 Ferrara, Italy

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    27/49

    224 Exp Brain Res (2010) 200:223237

    1 3

    1996 of two articles which Wrst reported the existence of the

    mirror areas in humans (Rizzolatti et al. 1996; Grafton et al.

    1996). The rational of the experiment was as follows: If

    mirror mechanism exists in humans the observation of

    actions done by another individual should activate, besides

    visual areas, also areas that have motor properties. We ran

    two PET experiments and showed that indeed the areas

    where the mirror neurons are located in the monkey

    become also active in humans. This Wnding was subse-

    quently replicated by dozens of experiments (see Rizzolatti

    and Craighero 2004; Rizzolatti et al. 2009; Cattaneo andRizzolatti 2009).

    At present there is an enormous literature on mirror

    neurons. A set of it concerns experiments in monkeys (see

    Rizzolatti and Craighero 2004; Rizzolatti et al. 2009) and

    more recently in birds (Prather et al. 2008); another set,

    much larger, concerns experiments in humans. In the pres-

    ent article we (GR and MF-D) will review mirror data in

    humans, examining, however, (by necessity) only part of

    the enormous mirror neuron studies triggered by our initial

    PET studies published in Experimental Brain Research.

    The organization of the human parieto-frontal mirror

    system

    In humans the observation of goal-directed motor-acts acti-

    vates, besides visual areas, the inferior parietal lobule (IPL)

    and the premotor cortex, mostly its ventral part, plus the

    caudal part of the inferior frontal gyrus (IFG) roughly cor-

    responding to the pars opercularisof Brocas area. These

    two regions form the core of the human parieto-frontal mir-

    ror system (Rizzolatti and Craighero 2004; Fabbri-Destro

    and Rizzolatti 2008) (Fig. 2).

    Both the premotor and parietal nodes of the human mir-

    ror system present a somatotopic organization, albeit rather

    rough (Buccino et al. 2001; Wheaton et al. 2004; Sakreida

    et al. 2005; Etzel et al. 2008). Observation of motor acts

    done by others with the leg, hand, and mouth activates the

    precentral gyrus and the pars opercularis of IFG in a

    medial to lateral direction, as in the classical homunculus of

    PenWeld and Rasmussen (1950)and Woolsey et al. (1952).

    In IPL, mouth motor acts appear to be represented rostrally,

    hand/arm motor acts caudally and leg motor acts even more

    caudally, and dorsally extending into the superior parietal

    lobule. A similar somatotopic organization based on the

    motor properties of the recorded neurons has been recently

    reported in monkey IPL by Rozzi et al. (2008) (see also

    Hyvarinen 1982).

    It is open question whether the activations found during

    the observation of reaching to grasp movements around the

    superior frontal sulcus (e.g., Grzes et al. 2003; Buccino

    et al. 2004a; Gazzola and Keysers 2009) are due to repre-

    sentation of proximal movements or to motor preparation.

    This uncertainty depends of the fact that there is no clear

    boundary between the ventral (PMv) and dorsal (PMd) pre-

    motor cortices in humans. According to the Wrst, somato-

    topic, interpretation, the dorsal premotor activation is

    Fig. 1 Example of an F5 mirror neuron selectively discharging during

    monkey grasping movements and during observation of a grasping

    movement done by the experimenter. aLateral view of the brain with

    indicated the location of F5. bGrasping observation. cGrasping exe-

    cution. aarcuate sulcus, ccentral sulcus, ipintraparietal sulcus (from

    di Pellegrino et al. 1992)

    Fig. 2 Later view of human brain. The colored areasform the pari-

    eto-frontal mirror network. Red parietal mirror node, yellow frontal

    mirror node

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    28/49

    Exp Brain Res (2010) 200:223237 225

    1 3

    located in a speciWc sector of PMv where proximal move-

    ments are represented. According to the motor preparation

    interpretation, the dorsal premotor activations are located in

    PMd, an area that according to monkey single neuron data

    is mostly involved in covert motor preparation (Kalaska

    and Crammond 1995; Crammond and Kalaska 2000).

    The parietal region active during the observation of

    object-directed motor acts is mostly located in the sector of

    the IPL close to and inside the intraparietal sulcus. This

    restricted localization raises an interesting question: Are

    other types of motor act also represented in other parts of

    IPL and, in that case, what kinds of act? An answer to these

    questions has been recently obtained by two fMRI studies.

    The Wrst investigated the localization of intransitive move-

    ments (Lui et al. 2008), the other that of actions performed

    with tools (Peeters et al. 2009).

    In the Wrst study, volunteers were scanned while they

    observed mimed, symbolic, and meaningless motor acts. As

    during the observation of object-directed actions, fMRI sig-

    nal increase was found in the premotor cortex and in IPL.

    However, while the premotor cortex activation overlapped

    that previously found during the observation of object-

    directed actions, in the parietal lobe the signal increase was

    not restricted to the intraparietal sulcus region, but extended

    into the posterior part of the supramarginal gyrus and the

    angular gyrus. Most interestingly, while the mimed actions

    were located dorsally close to the intraparietal sulcus, that

    is in a location similar to that activated by the observation

    of actual object-directed movements, symbolic motor acts

    were located ventrally, mostly in the angular gyrus. (Lui

    et al. 2008).

    In the second study, volunteers observed a variety of

    motor acts performed by another individual either by hand

    or using tools. The results showed that the observation of

    motor acts performed with tools activates the parieto-fron-

    tal circuit mediating hand grasping and, in addition, a spe-

    ciWc sector of the anterior part of the left supramarginal

    gyrus (aSMG). In a parallel experiment carried out in the

    same study on nave as well as on monkeys proWcient in

    using tools (rake and pliers), no evidence was found for a

    parietal sector activated during tool action observation. It

    was concluded that aSMG is a new evolutionary acquisition

    of homo sapiensthat mediates the human capacity to under-stand the causal relationship between tools and the goal of

    the action achieved by using tools.

    Typically, an activation of SPL is absent or marginal in

    those studies where the experimenters use as visual stimuli

    distal motor acts or acts in which the distal component is

    prominent. The possibility of a proximal mirror represen-

    tation in SPL was recently tested in an fMRI study where

    volunteers were asked to transport their hand to a partic-

    ular location in space without grasping objects. The

    reaching movements were executed, observed, or imagined.

    An overlap between executed, observed, and imagined

    reaching activation was found in SPL extending into IPS,

    and in PMd. This study provides the Wrst demonstration of

    a mirror mechanism for reaching movements (Filimon et al.

    2007).

    Evidence for the activation of human cortical motor

    system during the observation of actions done by others

    The brain imaging studies reviewed above show that human

    cortical areas, active when individuals watch actions done

    by others, strictly correspond to the cortical areas that are

    endowed with mirror properties in the monkey (Rizzolatti

    et al. 2009; for monkey fMRI data see Nelissen et al. 2005).

    Because mirror neurons are motor neurons, the observation

    of motor acts done by others should determine, if mirror

    neurons are present in humans, an increase of motor cortex

    excitability congruentwith the observed motor act.

    Evidence that this is the case has been obtained using

    transcranial magnetic stimulation (TMS). Fadiga et al.

    (1995) recorded the motor-evoked potentials (MEPs)

    induced by the stimulation of the left motor cortex in vari-

    ous muscles of the right hands and arms of volunteers asked

    to watch an experimenter while he grasped objects with his

    hand or performed meaningless arm movements. As a con-

    trol for attentional factors there was a third condition in

    which volunteers detected the dimming of a small light.

    During both the experimental conditions there was a clear

    increase in the observers MEPs, relative to the control con-

    dition. This increase was present in those muscles that were

    recruited when the tested individuals were asked to execute

    the observed movements. Several TMS experiments con-

    Wrmed these Wndings (e.g., Strafella and Paus 2000; Gangitano

    et al. 2001; Maeda et al. 2002; Borroni et al. 2005). Among

    them particularly interesting is the study by Gangitano et al.

    (2001). These authors showed not only that MEPs recorded

    from the hand muscles increased during grasping observa-

    tion, but also that the relative cortical facilitation closely

    reXected the diVerent grasping phases (Fig. 3).

    EEG and MEG studies provided further evidence of acti-

    vation of the motor cortex during action observation.

    Already, in the 1950s, Gastaut and Bert (1954) showed thatthe rhythm, a rhythm recorded in the correspondence of

    the cortical motor areas and known to desynchronize during

    movement execution, also desynchronizes during the obser-

    vation of actions carried out by others. Following the dis-

    covery of mirror neurons, several studies (e.g., Altschuler

    et al. 1997; Cochin et al. 1999) repeated these experiments

    conWrming the desynchronization of rhythm during

    action observation.

    Similar results were also obtained using magneto-

    encephalography (MEG) (Hari et al. 1998), a technique that

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    29/49

    226 Exp Brain Res (2010) 200:223237

    1 3

    analyses the brain electric activity on the basis of the mag-

    netic Welds it generates. MEG data provided evidence of a

    desynchronization of the cortical rhythms of observers

    motor cortex (including those originating from the cortex

    located inside the central sulcus) during object manipula-

    tion and when the manipulation was observed.

    Mirror activity is modulated by motor experience

    There is evidence that only motor acts that are present in

    the motor repertoire of the observer are eVective in activat-

    ing the mirror neuron system. In an fMRI experiment nor-

    mal volunteers observed video-clips showing mouth motor

    acts made by humans, monkeys, and dogs. In one condi-tion, the observed motor act was biting, a motor act present

    in the motor repertoire of all three species and in another

    condition the stimuli were communicative gestures proper

    to each species: reading silently a text, lip-smacking, and

    barking. The data demonstrated that the left IPL and IFG

    responded to actions made by human and nonhuman per-

    formers, as long as the action was part of the human motor

    repertoire (e.g., biting). In contrast, there was no activation

    (barking) or almost no activation (lip-smacking) when the

    action belonged to another species (Buccino et al. 2004b).

    Mirror neuron activation is also related to the observers

    motor experience of a given action. This has been nicely

    demonstrated in experiments using dance steps as observed

    stimuli. First it was shown that, in the observer, the amount

    of mirror activation correlated with the degree of the

    observers motor skill for that action (Calvo-Merino et al.

    2005). A further experiment ruled out the possibility that

    this eVect could be due to mere visual familiarity with the

    stimuli. The observation of steps that are peculiar to male

    dancers determined a stronger mirror activation in male

    professional dancers than those performed by female danc-

    ers and vice versa (Calvo-Merino et al. 2006). A further

    prospective study showed that dancers initially nave to cer-

    tain steps showed an increase in mirror activation over time

    if they underwent a period of motor training in which theybecame skillful in performing the same steps (Cross et al.

    2006).

    Some clues to the mechanism responsible for these

    eVects come from experiments that tested whether conver-

    gence of observation and execution of motor acts facilitates

    the building of motor memories. These experiments

    showed that after a training period in which participants

    simultaneously performed and observed congruent move-

    ments there was a potentiation of the learning eVect, with

    respect to motor training alone, as shown by the kinematics

    Fig. 3 Modulation of the motor cortex excitability during grasping

    observation. a Schematic sequence of events during a grasping

    trial. bAveraged values of motor-evoked potentials (MEPs) of a hand

    muscle (Wrst dorsal interosseus) collected at diVerent times during the

    observation of grasping movements. 500 ms: hand at the starting

    position (time value refers to the onset of the video clip showing the

    action), 3,000 ms: hand maximum aperture (from Gangitano et al.

    2001)

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    30/49

    Exp Brain Res (2010) 200:223237 227

    1 3

    of the movement evoked by TMS (Stefan et al. 2005,

    2008). Further evidence in favor of plasticity of the mirror

    mechanism comes form experiments showing that the mir-

    ror responses triggered by a corresponding movement

    could be modiWed by repetitively coupling the performed

    movement with the observation of diVerent movements

    (Catmur et al. 2007, 2008).

    The functional roles of mirror neurons

    Mirror neurons, directly recorded or demonstrated by non-

    invasive techniques, are present in various cortical areas of

    primates (Rizzolatti and Craighero 2004) and in birds

    (Prather et al. 2008). All of them are endowed with the

    same mechanism: a mechanism that translates sensory

    information describing motor acts done by others into a

    motor format similar to that the observers themselves gen-

    erate when they perform those acts.

    While the mirror mechanism is the same regardless of

    the location of neurons endowed with it, the result of the

    sensory-motor transformation depends on the location of

    mirror neurons. Those located in emotional centers like the

    insula or the cingulate cortex intervene in phenomena like

    empathy (see Gallese et al. 2004), while those located in

    the parieto-frontal circuit provides the observer with motor

    representations of others motor actions devoid of emo-

    tional content (Rizzolatti and Craighero 2004).

    From the discovery of mirror neurons in area F5 of the

    monkey, two explanations, not mutually exclusive, have

    been proposed for the functional role of the mirror neurons

    in this area and in the IPL. The Wrst was that mirror neurons

    underlie imitation. The second was that the correspondence

    between the motor format generated by observing others

    and that generated internally in order to act enables the

    observer to understand others behavior, without the neces-

    sity for complex cognitive elaborations.

    The Wrst view has been thought of as unlikely because of

    ethological data showing that monkeys, unlike humans and

    apes, do not imitate (Visalberghi and Fragaszy 1990). As a

    matter of fact imitation phenomena are also present in

    lower primates (see Zentall 2006). For example, tongue

    protrusion in response to the same motor act done byanother individual, described many years ago by MeltzoV

    and Moore (1979) in newborn babies, has been recently

    reported in macaque monkeys (Ferrari et al. 2006). Yet,

    convincing evidence of true imitation, that is imitation in

    which the learned behavior is performed with the same

    movements (including hand movements) as shown by the

    teacher is lacking. Thus, the presence of a well-developed

    mirror mechanism concerning hand movements suggests that

    understanding motor acts done by others, rather than imita-

    tion, is the evolutionary older function of the parieto-frontal

    mirror network in the monkey. Other cognitive functions

    like imitation (see below) and, most likely, language

    (Rizzolatti and Arbib 1998) evolved on the top of it.

    In the present review we will discuss Wrst the relations

    between mirror mechanism and imitation. We will deal

    later with goal and intention understanding, because the

    discussion of neurophysiological mechanisms underlying

    these capacities leads directly to the issue of autism, whose

    discussion will conclude this article.

    Mirror mechanism and Imitation

    The term imitation has many deWnitions in human litera-

    ture. There are, however, two main senses in which it is

    most commonly used (see Rizzolatti 2005). The Wrst deW-

    nes imitation as the capacity of an individual to replicate an

    observed motor act; the second deWnes imitation as the

    capacity to acquire, by observation, a new motor behavior

    and to repeat it using the same movements employed by the

    teacher. In both cases imitation requires the capacity to

    transform sensory information into a motor representation

    of it.

    There is convincing evidence that the mirror mechanism

    is involved in imitation as an immediate replica of the

    observed motor act. In an fMRI experiment, volunteers

    were tested in two main conditions: observation and

    observationexecution. In the observation condition,

    participants were shown a moving Wnger, a cross on a sta-

    tionary Wnger, or a cross on empty background. The

    instruction was to observe the stimuli. In the observation

    execution condition, the same stimuli were presented, but,

    this time, the instruction was to lift the right Wnger, as fast

    as possible, in response to them. The crucial contrast was

    between the trials in which the volunteers made the move-

    ment in response to an observed action (imitation) and

    the trials in which the movement was triggered by the cross

    (a non-imitative behavior). The results showed that the acti-

    vation of the mirror system and in particular of the posterior

    part of IFG was stronger during imitation than in other

    conditions (Iacoboni et al. 1999).

    Further evidence that the mirror system plays a crucial

    role in this kind of imitation was provided by repetitiveTMS (rTMS), a technique that determines a transient

    depression of the stimulated region. In a group of volun-

    teers the caudal part of the left frontal gyrus (Brocas area)

    was stimulated while they (a) pressed keys on a keyboard,

    (b) pressed the keys in response to a point of red light indi-

    cating which key to press, (c) imitated a key pressing

    movement done by another individual. The data showed

    that rTMS lowered the participants performance during

    imitation, but not during the other two tasks (Heiser et al.

    2003).

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    31/49

    228 Exp Brain Res (2010) 200:223237

    1 3

    Evidence that mirror system is involved in imitation

    learning comes both from EEG and fMRI studies. Marshall

    et al. (2009) examined diVerences in EEG desynchroniza-

    tion during observation of drawing of various characters

    selected from the Cham alphabet, an alphabet used in

    Southeast Asia, and with which none of the participants

    was familiar. Compared to carrying out unrelated drawing

    (Latin letters), brief imitative experience was speciWcally

    associated with a signiWcantly larger desynchronization in

    the 1113 Hz band at mid-frontal sites (F3 and F4) when a

    previously imitated action was presented again. In addition,

    higher Wdelity of imitation was signiWcantly correlated with

    greater bilateral desynchronization of the rhythm at cen-

    tral sites (C3 and C4) during subsequent observation of the

    previously imitated action.

    A more elaborate experimental design was used by

    Buccino et al. (2004a). Using an event-related fMRI

    paradigm these authors tested musically naive participants

    during four events: (1) observation of guitar chords played

    by a guitarist, (2) a pause following model observation, (3)

    execution of the observed chords, and (4) rest. The results

    showed that the basic circuit underlying imitation learning

    consists of the IPL and the posterior part of IFG plus the

    adjacent premotor cortex. This circuit starts to be active

    during the Wrst event: observation. During pause, i.e.,

    during the phase in which visual information is elaborated

    for action production, activations are observed in the

    middle frontal gyrus (area 46) and in structures involved in

    motor preparation (dorsal premotor cortex, superior parietal

    lobule, rostral mesial areas). The activation of these areas

    plus the somatosensory and motor areas contralateral to the

    hand used to execute chords dominates the subsequent

    execution phase (Fig. 4).

    On the basis of this experiment and a following one also

    based on learning of playing guitar chords (Vogt et al.

    2007), the authors proposed a model of imitation learning

    (see Byrne 2002 for a similar model-based ethological

    observations) consisting of two distinct processes: (a)

    Fig. 4 Cortical activations dur-

    ing imitation learning. Upper

    partgraphic illustration of the

    events forming the experimental

    conditions imitation (IMI) and

    non-imitation (NON IMI). Both

    conditions consisted of four

    events preceded by the presenta-

    tion of a coloredcue (a square)

    informing the participants on the

    task they have to perform. IMI

    condition: event 1observe the

    teachers hand playing the chord

    (IMI-1), event 2rehearse the

    observed chord (IMI-2), event 3

    replicate it.Event 4keep the

    hand still. NON IMI condition:

    event 1observe the teachers

    hand playing the chord (Non

    IMI-1), event 2do not rehearse

    the observed chord (Non IMI-2),

    event 3touch the neck of the

    guitar, without playing a chord

    (Non IMI-3).Event 4keep the

    hand still.Lower partcortical

    areas activated during events 1

    and 2in IMI and Non IMI

    conditions (modiW

    ed fromBuccino et al. 2004a, b)

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    32/49

    Exp Brain Res (2010) 200:223237 229

    1 3

    segmentation of the action to be imitated into its individual

    elements and their transformation into the corresponding

    potential movements of the observer; (b) organization of

    these potential movements into a temporal and spatial pat-

    tern that replicates that shown by the demonstrator. The

    Wrst process is achieved through the mirror mechanism,

    while the second one is mostly due to the activity of the

    prefrontal lobe and in particular of area 46 that memorizes

    and recombines the motor elements in the new pattern.

    Action and intention understanding

    Coding the goals of the motor acts

    Social life is based on our capacity to understand the behav-

    ior of others. Let us imagine this situation. John and Mary

    are in a pub and Johns hand comes into contact with a mug

    of beer; Mary immediately understands whether he is

    grasping it or not. Moreover, according to how he grasped

    it, she can also understand why he is doing it (e.g., for

    drinking or for giving the mug to a friend). How does Mary

    understand the goal of the Johns motor act and the inten-

    tion behind it?

    One possibility is that she is using an inferential reason-

    ing elaborating the acquired visual information through

    some cognitive mechanism (see Frith and Frith 1999;

    Csibra and Gergely 2007). Another possibility is that this is

    not necessary in this simple situation, and the understand-

    ing of what John is doing and why he is doing it, is acquired

    through a mechanism that directly transforms visual

    information into a motor format. The proprieties of mirror

    neurons support the existence of such a mechanism.

    There is clear evidence from monkey experiments that

    neurons in the parietal lobe, premotor cortex, and even in

    the primary motor cortex, code the goal of a motor act

    rather than, as traditionally thought, movements of body

    parts (Rizzolatti et al. 1988; Kakei et al. 1999, 2001;

    Fogassi et al. 2005; Umilt et al. 2008). Mirror neurons

    located in F5 and in IPL have motor properties identical to

    those of purely motor neurons. Thus, because the electrical

    activity recorded in these experiments during voluntary

    behavior and action observation always consists of actionpotentials (the neuron output) the messages conveyed dur-

    ing voluntary movement and during mirror activation are

    identical. In both cases the neurons send information on the

    goal of the observed motor act.

    Given these Wndings, it appears logical to assume that a

    similar organization does exist also in humans. Evidence in

    this sense came from fMRI studies. Gazzola et al. (2007a)

    instructed volunteers to observe video-clips where either a

    human or a robot arm grasped objects. In spite of diVer-

    ences in shape and kinematics between the human and

    robot arms, the parieto-frontal mirror system was activated

    in both conditions. These data was recently conWrmed and

    extended by Peeters et al. (2009).

    Further evidence in favor of goal coding in the human

    mirror network comes from an fMRI study in which indi-

    viduals were tested both during motor execution and when

    listening to the sound of an action made by the same eVec-

    tor (Gazzola et al. 2006). The results showed, in both cases,

    a similar activation of the left parieto-frontal circuit.

    An experiment on aplasic individuals conWrmed that the

    mirror network codes the goal of motor acts (Gazzola et al.

    2007b. In this study the authors addressed the following

    question: Can the goal of a hand movement be recognized

    in the absence of any experience of hand movements? To

    answer it two individuals born without arms and hands

    were studied. While being scanned they were asked to

    watch video-clips showing hand actions and their brain

    activations were compared with those of control volunteers.

    All participants also made actions with diVerent eVectors

    (feet, mouth and, for normal volunteers, hands). The results

    showed that the mirror system of aplasic individuals was

    activated by the observation of hand motor acts. This dem-

    onstrates that the brains of aplasics can mirror motor acts

    that they have never executed. The goal is recognized

    through the recruitment of areas involved in the execution

    of motor acts having the same goal but using diVerent eVec-

    tors.

    The issue of goal coding was recently addressed by

    Hamilton and Grafton (2006) using the adaptation tech-

    nique, a technique based on the trial-by-trial reduction of a

    physiological response to repeated stimuli. Participants

    observed a series of video-clips showing goal-directed

    motor acts with the sequence controlled so that some goals

    were novel and others repeated relative to the previous

    movements. Repeated presentation of the same goal caused

    the suppression of the response in the left intraparietal sul-

    cus (IPS) while this region was not sensitive to the trajec-

    tory of the actors hand.

    While the fMRI data support, in agreement with monkey

    data, the notion that mirror neurons code motor acts, most

    TMS data appear to indicate that during the observation of

    motor acts performed by others, there is an activation of the

    neural substrate controlling the muscles that are involved inthat motor act (see Rizzolatti and Craighero 2004). There is

    an ingenious study, however, that was able to demonstrate,

    using TMS, goal coding in human motor cortex (Gangitano

    et al. 2001). In this study motor-cortex excitability was

    tested during the observation of hand movements directed

    to a speciWc goal (predictable movements) and in trials in

    which the hand moved in a diVerent direction (unpredict-

    able movements). The data showed that the observation of

    unpredictable movements did not elicit the expected change

    in the excitability of the motor cortex corresponding to the

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    33/49

    230 Exp Brain Res (2010) 200:223237

    1 3

    observed movements. During the observation of the unpre-

    dictable movements, the excitability pattern was the same

    as that found during the observation of the predicted ones.

    This indicates that the observed motor acts were coded,

    from their very beginning, in terms of the Wnal goal of the

    action and not in terms of the movements forming them.

    Coding the intention behind the motor acts of others

    Studies of the mirror mechanism have provided evidence

    for its role in motor act understanding. What about inten-

    tion understanding? Evidence that the mirror mechanism

    play a role in this capacity has been Wrst provided by an

    fMRI study. In this study there were three conditions. In the

    Wrst one (context) the volunteers saw some objects (a tea-

    pot, a mug, a plate with some food on it) arranged as if a

    person was ready to drink the tea or as if a person had just

    Wnished having his/her breakfast; in the second condition

    (action) the volunteers were shown a hand that grasped a

    mug without any context; in the third condition (inten-

    tion) the volunteers saw the same hand action within the

    previous two contexts. The context and the diVerent grip

    shapes suggested the intention of the agent, i.e., grasping

    the cup for drinking or grasping it for cleaning the table

    (Iacoboni et al. 2005).

    The results showed that in both action and intention con-

    ditions there was an activation of the mirror mechanism.

    Crucial was the comparison between intention and action

    conditions. This comparison showed that the understanding

    of the intention of the doer determined a marked increase in

    the activity of the mirror mechanism.

    The importance of the mirror system in understanding

    intention has been recently conWrmed by an fMRI experi-

    ment based on the adaptation paradigm. Participants were

    asked to observe repeated movies showing either the same

    movement or the same outcome independent of the exe-

    cuted movement. The results showed activity suppression

    in the right inferior parietal and in the right IFG when the

    outcome was the same. Kinematic parameters do not appear

    to inXuence the activity of these regions. These Wnding

    indicate therefore that the right hemisphere mirror system

    encodes the physical outcomes of human actions, an initial

    step for inferring intentions underlying these actions(Hamilton and Grafton 2008).

    Taken together, these data suggest that the intentions

    behind the actions of others can be recognized by the mirror

    neuron mechanism. These Wndings do not imply that other

    more cognitive ways of reading minds do not exist.

    Indeed, recent fMRI studies showed that, in speciWc condi-

    tions, the understanding of motor acts performed by others

    might require, beside the mirror mechanism, the activation

    of areas outside those forming the mirror system. For

    example, when tasks require a topdown inference either to

    assess the meaning of a motor act in an implausible context

    (Brass et al. 2007; Liepelt et al. 2008) or to judge whether

    the intention of the observed action was ordinary or unusual

    (de Lange et al. 2008), there is an increase of activity in the

    posterior superior temporal sulcus (STS) region, posterior

    cingulate cortex, and the medial prefrontal cortex.

    Some studies suggested that a region of right temporo-

    parietal junction, often referred to as right TPJ, plays a cru-

    cial role in mentalizing (e.g., Saxe and Wexler 2005,

    2006). This view, however, should be accepted with cau-

    tion. In fact, as shown by Mitchell (2008) (see, however,

    Scholz et al. 2009) the same right TPJ activated during

    mentalizing is also active in task requiring attention. The

    overlap between these two mental functions casts serious

    doubts on the hypothesis that TPJ plays a crucial role in

    intention understanding.

    In accord with the interpretation of Mitchells view are

    some data by Buccino et al. (2007). In an fMRI study these

    authors investigated the neural basis of human capacity to

    diVerentiate between actions reXecting the intention of the

    agent (intended actions) and actions that did not reXect it

    (non-intended actions). Volunteers were presented with

    video-clips showing a large number of actions performed

    with diVerent eVectors, each in a double version: one in

    which the actor achieved the purpose of his or her action

    (e.g., pour the wine), the other in which the actor performed

    a similar action but failed to reach the goal of it because of

    a motor slip or a clumsy movement (e.g., spill the wine).

    The data showed the activation of the mirror system areas

    in both conditions. The contrast, however, non-intended

    versus intended actions showed an activation of the right

    TPJ and the mesial prefrontal cortex. Because there is little

    doubt that a person observing another person falling down

    or spilling the wine because of a motor slip does notput

    himself in the shoes of that individual, the activation

    observed in the experiment by Buccino et al. (2007) is

    hardly due to an attempt to understand the others intention,

    but rather depends on an increase of the observers atten-

    tion due to the surprising course of the event.

    An impairment of the mirror mechanism explains some

    deW

    cits in children with autism

    Autistic spectrum disorder (ASD) is a heterogeneous syn-

    drome characterized by impairment in social skills, verbal

    and nonverbal communication, coupled with restricted, and

    repetitive behaviors (DSM-IV-TR 2000). DeWcits in the

    domains of aVective links and emotional behavior are other

    aspects of ASD (Kanner 1943).

    Autism aVects a variety of nervous structures, from the

    cerebral cortex to the cerebellum and brainstem (see

    Minshew and Williams 2007). However, in the context of a

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    34/49

    Exp Brain Res (2010) 200:223237 231

    1 3

    broader neurodevelopmental deWcit, a set of ASD symp-

    toms (impairment in communication, language, and the

    capacity to understand others) appears to match functions

    mediated by the mirror mechanism. The hypothesis that

    this speciWc set of deWcits might depend on an impairment

    of the mirror mechanism (Altschuler et al. 2000; Williams

    et al. 2001) has therefore been advanced.

    Evidence coming from EEG, TMS, and brain imaging

    studies supports this hypothesis (e.g., Nishitani et al. 2004;

    Oberman et al. 2005; Theoret et al. 2005; Dapretto et al.

    2006). Oberman et al. (2005) studied the suppression of

    rhythm during the execution and observation of motor acts

    in typically developing (TD) and children with autism. The

    results showed that, in contrast with TD children, ASD do

    not present rhythm suppression during the observation of

    motor acts done by others. The rhythm suppression is

    present only during active movements (Fig. 5). Similar data

    were obtained by Martineau et al. (2008).

    Additional evidence for an impaired mirror mechanism

    in autism came from behavioral and TMS studies. Avikainen

    et al. (2003) showed that, unlike TD individuals, who,

    when viewing persons face-to-face, tend to imitate them in

    a mirror way, children with autism do not show this prefer-

    ence. This imitation peculiarity is most likely due to a deW-

    cit of mirror mechanism coding other persons movements

    on ones own. Theoret et al. (2005) demonstrated an

    impaired motor facilitation in children with autism during

    action observation by using TMS.

    Finally, strong evidence in favor of a deWcit of the mirror

    mechanism in ASD came from an fMRI study. High

    functioning children with autism and matched controls

    were scanned while imitating and observing emotional

    expressions. The results showed a signiWcantly weaker acti-

    vation in IFG in children with autism than in typically

    developing (TD) children. Most interestingly, the activation

    was inversely related to symptom severity (Dapretto et al.

    2006).

    Taken together, these data indicate that children with

    autism process the actions done by others in a manner

    diVerent from that of TD children. The simplest way to

    account for these diVerences is to postulate (see also above)

    that children with ASD have an impairment of the mirror

    mechanism. This hypothesis is also known as the broken

    mirror hypothesis (Ramachandran and Oberman 2006).

    There are some behavioral studies indicating, however,

    that this hypothesis is not fully satisfactory and needs spec-

    iWcations. These studies reported that children with ASD do

    not present deWcits in understanding the goal of motor acts

    done by others (Hamilton et al. 2007; Bird et al. 2007;

    Leighton et al. 2008; Southgate and Hamilton 2008). It

    was, therefore, claimed that the broken mirror hypothesis

    of autism is wrong (e.g., Southgate and Hamilton 2008).

    It must be noted, however, that these studies took into

    account only one aspect of mirror organization, the one

    related to the role of the mirror neurons in the recognition

    of motor acts done by others. If only this aspect of the mir-

    ror system is considered, the criticism against the broken

    mirror hypothesis appears to be well taken.

    Neurophysiological studies showed, however, that there

    is a second aspect of the mirror neuron organization based

    not on the activity of single neurons, but on the organiza-

    tion of cortical motor system. The neural basis of this orga-

    nization consists of chains of motor acts. These chains are

    formed by populations of neurons, each coding speciWc,

    Fig. 5 Absence of EEG desynchronization during the observation of

    movements done by others. The charts show desynchronization of the

    rhythm in controls (a) and patients with autism spectrum disorder

    (b). Observation of movement of an inanimate object (pale green),

    movements made with the hand (green), and active hand movements

    (red). The bars represent the amount of activity in central scalp

    locations; C3, Cz,and C4refer to scalp coordinates of the 10/20 EEG

    system. SigniWcant activity, indicated by asterisks, is present for the

    hand observation condition only in controls, showing that patients with

    autism spectrum disorder fail to react to the observation of other

    peoples actions in the standard way (modiWed from Oberman et al.

    2005)

  • 5/26/2018 Gua_Nuestros marcos tericos + Neuronas espejo + Neurognesis

    35/49

    232 Exp Brain Res (2010) 200:223237

    1 3

    serially connected motor acts (e.g., reach-grasp-bring to the

    mouth; or reach-grasp-move away). During voluntary

    movements the agent recruits one of these chains according

    to his/her motor intention. These chains also contain

    action constrained mirror neurons, that is neurons that

    Wre only if the motor act they code is part of a motor chain

    (e.g., grasping for placing, but not grasping for eating, or

    viceversa). During the observation of actions done by oth-

    ers, action constrained mirror neurons Wre when the

    observed behavior matches the speciWc action coded by the

    chain in which those neurons are embedded. Their Wring

    activates an entire action chain providing the observer with

    a motor representation of the action that the agent is ready

    to do. In virtue of this mechanism the observer understands

    the agents intention (Fogassi et al. 2005).

    Recently, it has been shown that the chained motor act

    organization is impaired in autism (Cattaneo et al. 2007).

    TD children and children with autism were asked to per-

    form the two actions: grasping an object to eat it or grasp-

    ing to place it into a container (Fig. 6). The EMG activity of

    the mylohyoid muscle (MH), a muscle involved in opening

    of the mouth, was recorded. In TD children the muscle

    became active as soon they moved the arm to reach the

    food. In contrast, no MH muscle activation was observed

    during food reaching and grasping in autistic children. MH

    muscle activation appeared only when the children brought

    the food to their mouth. These data indicate that ASD chil-

    dren are unable to organize their motor acts into a unitary

    action characterized by a speciWc intention.

    In a further experiment TD children and children with

    autism were tested while they observed an experimenter

    either grasping a piece of food for eating or grasping a

    piece of paper for placing it into a container (Fig. 6). The