Guía para la elaboración...

13
1 Caracterización de la condición de la vegetación usando sensores próximos y remotos Resumen La caracterización de la condición de la vegetación natural y de las tierras agrícolas es esencial en muchas áreas de aplicación. La percepción remota constituye una alternativa rápida y económica para realizar dicha caracterización. Este artículo describe la línea de investigación que el autor dirige a nivel de pregrado y posgrado, la cual se enfoca en la extracción de información sobre el estado y la dinámica de la vegetación utilizando como fuente principal, datos obtenidos mediante sensores próximos y remo- tos. El autor revisa de manera detallada el estado del arte y reflexiona sobre los problemas de investi- gación más importantes. Finalmente, expone las perspectivas de desarrollo de la investigación. Palabras clave: Percepción Remota de la Vegetación, Propiedades ópticas de las hojas, Respuesta es- pectral del dosel, Espectroscopía, Reflectancia, Fluorescencia. Vegetation condition assessment using proximal and re- mote sensors. Abstract Assessment of natural vegetation and agricultural land condition is essential in many application are- as. Remote sensing is a quick and inexpensive alternative to perform such an assessment. This article describes the research line, led by the author at undergraduate and graduate levels, which focuses on extraction of information on the status and dynamics of vegetation using proximal and remote sensors. The author reviews in detail the state of the art and reflects on the most important research problems. Finally, discusses the prospects for research development. Key words: Remote sensing of vegetation, Leaf optical properties, Canopy spectral signature, Spectros- copy, Reflectance, Fluorescence. 1. Introducción Una caracterización apropiada de la condición 1 de la vegetación es importante para una diversidad de fines, tales como el monitoreo de la cantidad y calidad de las zonas agrícolas; la evaluación del impacto de actividades antrópicas desarrolladas en ecosistemas frágiles; y el desarrollo de actividades de preser- vación y/o restauración de la biodiversidad y de protección del medio ambiente. En el caso particular de Colombia, es importante mejorar el conocimiento del estado y de la dinámica de la vegetación natural en los ecosistemas estratégicos. Adicionalmente, considerando que una parte importante del desarrollo económico del país reside en el sector agrícola, es esencial realizar estimaciones confiables sobre el área geográfica destinada a la agricultura y monitorear las condiciones de salud y de productividad de los diferentes cultivos. El desarrollo de una línea de investigación enfocada en la caracterización de la vegetación, constituye una oportunidad para generar conocimiento útil que contribuya a la resolución de problemas importantes de la sociedad, que es lo que se espera de la investigación que se desarrolle a nivel de ingeniería [2]. La caracterización de la vegetación se realiza tradicionalmente mediante la adquisición de datos en el campo y la realización de ensayos de laboratorio. Estas actividades permiten la determinación de pará- metros bioquímicos (p.ej. concentración de clorofila o de carotenos), de parámetros biofísicos (p.ej. ín- 1 El término condición se refiere de manera general a un indicador de la calidad de la vegetación. La condición se expresa a través de medidas que hacen referencia al estado de salud, nutrición y productividad. En el caso de vegetación natural, el término condición incluye indicadores relacionados con composición, estructura a diferentes escalas y función [1]. Espacio Reservado Ivan Lizarazo Universidad Distrital Facultad de Ingeniería [email protected]

Transcript of Guía para la elaboración...

Page 1: Guía para la elaboración decomunidad.udistrital.edu.co/nide/files/2013/11/Articulo-Percepcion... · En Colombia, aunque algunas instituciones públicas y privadas vienen dando pasos

1

Caracterización de la condición de la vegetación usando sensores próximos y remotos

Resumen La caracterización de la condición de la vegetación natural y de las tierras agrícolas es esencial en

muchas áreas de aplicación. La percepción remota constituye una alternativa rápida y económica para

realizar dicha caracterización. Este artículo describe la línea de investigación que el autor dirige a nivel

de pregrado y posgrado, la cual se enfoca en la extracción de información sobre el estado y la dinámica

de la vegetación utilizando como fuente principal, datos obtenidos mediante sensores próximos y remo-

tos. El autor revisa de manera detallada el estado del arte y reflexiona sobre los problemas de investi-

gación más importantes. Finalmente, expone las perspectivas de desarrollo de la investigación.

Palabras clave: Percepción Remota de la Vegetación, Propiedades ópticas de las hojas, Respuesta es-

pectral del dosel, Espectroscopía, Reflectancia, Fluorescencia.

Vegetation condition assessment using proximal and re-mote sensors.

Abstract

Assessment of natural vegetation and agricultural land condition is essential in many application are-

as. Remote sensing is a quick and inexpensive alternative to perform such an assessment. This article

describes the research line, led by the author at undergraduate and graduate levels, which focuses on

extraction of information on the status and dynamics of vegetation using proximal and remote sensors.

The author reviews in detail the state of the art and reflects on the most important research problems.

Finally, discusses the prospects for research development.

Key words: Remote sensing of vegetation, Leaf optical properties, Canopy spectral signature, Spectros-

copy, Reflectance, Fluorescence.

1. Introducción Una caracterización apropiada de la condición

1 de la vegetación es importante para una diversidad de

fines, tales como el monitoreo de la cantidad y calidad de las zonas agrícolas; la evaluación del impacto

de actividades antrópicas desarrolladas en ecosistemas frágiles; y el desarrollo de actividades de preser-

vación y/o restauración de la biodiversidad y de protección del medio ambiente. En el caso particular de

Colombia, es importante mejorar el conocimiento del estado y de la dinámica de la vegetación natural

en los ecosistemas estratégicos. Adicionalmente, considerando que una parte importante del desarrollo

económico del país reside en el sector agrícola, es esencial realizar estimaciones confiables sobre el área

geográfica destinada a la agricultura y monitorear las condiciones de salud y de productividad de los

diferentes cultivos.

El desarrollo de una línea de investigación enfocada en la caracterización de la vegetación, constituye

una oportunidad para generar conocimiento útil que contribuya a la resolución de problemas importantes

de la sociedad, que es lo que se espera de la investigación que se desarrolle a nivel de ingeniería [2].

La caracterización de la vegetación se realiza tradicionalmente mediante la adquisición de datos en el

campo y la realización de ensayos de laboratorio. Estas actividades permiten la determinación de pará-

metros bioquímicos (p.ej. concentración de clorofila o de carotenos), de parámetros biofísicos (p.ej. ín-

1 El término condición se refiere de manera general a un indicador de la calidad de la vegetación. La condición se expresa a

través de medidas que hacen referencia al estado de salud, nutrición y productividad. En el caso de vegetación natural, el término

condición incluye indicadores relacionados con composición, estructura a diferentes escalas y función [1].

Espacio

Reservado

Ivan Lizarazo Universidad Distrital Facultad de Ingeniería

[email protected]

Page 2: Guía para la elaboración decomunidad.udistrital.edu.co/nide/files/2013/11/Articulo-Percepcion... · En Colombia, aunque algunas instituciones públicas y privadas vienen dando pasos

2

dice de área foliar o contenido de biomasa) a nivel de hoja y de dosel, y de parámetros funcionales (p.ej.

rata de fotosíntesis neta). Sin embargo, existe consenso en que los métodos tradicionales para la deter-

minación de dichos parámetros son destructivos, dispendiosos y costosos, lo cual limita su aplicación

[3].

El uso de sensores próximos, ubicados en un rango de unos pocos centímetros hasta unos pocos me-

tros, y de sensores remotos, ubicados a mayor distancia, constituye una alternativa para caracterizar y

monitorear el estado de la vegetación. Una variedad de sensores se viene utilizando desde hace varias

décadas, con diverso éxito, en diferentes países en estudios relacionados con la caracterización de vege-

tación natural y de cultivos de interés estratégico (ver, por ejemplo, [4]).

En Colombia, aunque algunas instituciones públicas y privadas vienen dando pasos en ese sentido, to-

davía existe mucho trecho por recorrer, tanto a nivel de generación de conocimiento como de desarro-

llo de técnicas específicas, apropiadas para nuestras condiciones particulares, como de aplicaciones ope-

racionales. Esta línea de investigación se propone explorar la utilidad de sensores próximos y de senso-

res remotos para extraer o inferir características sobre la condición de la vegetación y producir solucio-

nes técnicas que ayuden a resolver problemas relacionados con la restauración y protección del medio

ambiente y la sostenibilidad de la agricultura.

2. Objetivos El objetivo general de esta línea de investigación es evaluar el potencial de diferentes métodos y téc-

nicas para extraer información sobre la condición de la vegetación a diferentes escalas espaciales y tem-

porales a partir de datos de sensores próximos y de sensores remotos.

Los objetivos específicos son:

OE1: Determinar la correlación existente entre reflectancia y/o fluorescencia clorofílica de las hojas y

diversos parámetros biofísicos, bioquímicos y funcionales utilizando técnicas espectroscópicas

OE2: Evaluar métodos y técnicas que permitan estimar parámetros biofísicos, bioquímicos y funcionales

a partir de imágenes de sensores estacionarios multi-espectrales o hiper- espectrales

OE3: Investigar la utilidad de cámaras digitales, montadas sobre plataformas aéreas no tripuladas, para

el monitoreo y seguimiento de vegetación natural y de cultivos de importancia

OE4: Evaluar métodos y técnicas que permitan determinar la condición de la vegetación a partir de imá-

genes multi-espectrales o hiper-espectrales obtenidas mediante plataformas aéreas o satelitales

OE5: Estudiar la dinámica de la vegetación usando series multitemporales obtenidas mediante sensores

próximos y remotos

La hipótesis subyacente a estos objetivos es que el procesamiento apropiado de datos de sensores pró-

ximos y remotos permite obtener información confiable sobre la condición de la vegetación.

3. Estado del arte

3.1. Caracterización espectral a nivel de hoja Las características espectrales de los componentes bioquímicos de las hojas son conocidas desde hace

varias décadas (ver, por ejemplo, [5]). La reflectancia en la vegetación, para el rango de 0.45 a 2.5 ųm,

depende de las siguientes características [6]: (i) la textura superficial de la hoja y el índice de refracción

de la sustancia cuticular ubicada en la epidermis superior; (ii) la composición, la cantidad y la distribu-

ción de los pigmentos; (iii) la estructura interna de la hoja; y (iv) el contenido de agua. La Figura No. 1

muestra el espectro típico de reflectancia de una hoja sana [6].

Page 3: Guía para la elaboración decomunidad.udistrital.edu.co/nide/files/2013/11/Articulo-Percepcion... · En Colombia, aunque algunas instituciones públicas y privadas vienen dando pasos

3

Figura No. 1. Espectro típico de reflectancia de una hoja sana [6]

La Tabla I resume 42 características de absorción de los principales componentes bioquímicos de la

hoja [7]. La curva de reflectancia espectral de una hoja, adquirida mediante un espectro radiómetro que

es un sensor próximo, hace factible la obtención de información sobre la concentración de los denomi-

nados pigmentos superiores de las hojas [8]. Si la concentración de clorofila se incrementa, el denomi-

nado “borde rojo” de la curva (el valor máximo de la primera derivada del espectro de reflectancia, ubi-

cado entre las longitudes de onda 680 nm y 750 nm) se acerca hacia la zona del rojo [3].

Tabla I

Características de absorción de los bioquímicos de las hojas [7]

La Figura No. 2 ilustra el hecho que las hojas de diferentes tipos de vegetación tienen diferentes ca-

racterísticas espectrales. Aunque a nivel internacional existen librerías espectrales de diferentes tipos de

vegetación (p.ej. las librerías creadas por el Servicio Geológico de los Estados Unidos –USGS-), en Co-

lombia existe un número reducido de librerías espectrales, que se enfocan en catalogar un número limi-

tado de cultivos agrícolas, las cuales han sido adquiridas por centros de investigación especializados, ta-

les como Cenicaña, Cenicafé y Cenipalma. Estas librerías, desafortunadamente, no están disponibles pa-

ra el acceso público.

Figura No. 2. Espectro de reflectancia de hojas de diferentes cultivos [6]

Longitud de onda (μm) Bioquímico Proceso físico

0.43, 0.46, 0.64,0.66 Clorofila Transiciones electrónicas

0.97, 1.20, 1.40, 1.94 Agua Expansión del enlace O-H

1.51, 2.18 (0.91, 1.02, 1.69, 1.94,

1.98,2.06,2.13, 2.24,2.30, 2.35)

Proteína, nitrógeno Expansión y flexión del enlace N-H,

expansión del enlace C-H

2.31 (0.93, 1.02) Aceite Expansión y flexión del enlace C-H

1.69 (1.12, 1.42, 1.94) Lignina Expansión del enlace C-H

1.78 Celulosa y azúcar

Page 4: Guía para la elaboración decomunidad.udistrital.edu.co/nide/files/2013/11/Articulo-Percepcion... · En Colombia, aunque algunas instituciones públicas y privadas vienen dando pasos

4

La reflectancia espectral de una hoja sana es diferente de la reflectancia espectral de una hoja enferma.

La Figura No. 3 ilustra de manera general esas diferencias. La reflectancia espectral de una hoja puede

utilizarse de manera directa para establecer la concentración de bioquímicos. Adicionalmente puede uti-

lizarse de manera indirecta para caracterizar el estado de salud de la vegetación, por ejemplo, para esta-

blecer si existe estrés hídrico, enfermedad, plaga o deficiencia nutricional. Igualmente puede utilizarse

para estimar parámetros biofísicos tales como el índice de área foliar (LAI, por sus siglas en inglés), y el

contenido de biomasa.

Figura No. 3. Espectro de reflectancia de una hoja sana y una hoja estresada [6]

3.2. Caracterización espectral a nivel de dosel

Sin embargo, una cosa es caracterizar la hoja de una planta y otra cosa caracterizar el dosel de la plan-

ta. La respuesta espectral del dosel de la planta no se puede determinar mediante la simple agregación de

la reflectancia de muchas hojas individuales. Incluso en el caso hipotético de considerar que el dosel es-

tá compuesto únicamente por dos niveles de hojas, las interacciones de la radiación con los diferentes

componentes de la planta son bastante complicadas. En la Figura No. 4 se ilustra que la radiación co-

rrespondiente al infrarrojo cercano (NIR) tiene la capacidad de transmitirse a través de las hojas [6].

Figura No. 4. Interacción de la radiación electromagnética y los diferentes componentes de una planta para una planta hipotética

que tiene dos niveles de hojas [6]

La respuesta espectral del dosel de la vegetación está determinada por tres factores: (i) las propiedades

radiativas de cada uno de los componentes de la planta, es decir, las hojas, los frutos, las flores, el tallo,

y el suelo; (ii) la arquitectura o estructura del dosel, es decir la densidad de las hojas y la configuración

espacial específica de las hojas; y (iii) la orientación de la fuente de iluminación y del sensor utilizado

[9].

3.3. Espectroscopía

La espectroscopía es un tipo de percepción próxima, en consideración a su cercanía con el objeto de

Page 5: Guía para la elaboración decomunidad.udistrital.edu.co/nide/files/2013/11/Articulo-Percepcion... · En Colombia, aunque algunas instituciones públicas y privadas vienen dando pasos

5

interés. La técnica espectroscópica más utilizada para realizar la caracterización espectral de la vegeta-

ción se enfoca en la medición de la reflectancia, variable que como se ha indicado, está directamente re-

lacionada con las propiedades bioquímicas. En los últimos años, sin embargo, ha ganado importancia la

medición de la fluorescencia clorofílica [10].

La energía solar que es absorbida por una hoja excita los electrones en las moléculas de clorofila: (a)

Buena parte de dicha energía se puede convertir en energía química para realizar la fotosíntesis; (b) el

exceso de energía se puede liberar en forma de calor; o (c) dicho exceso se puede re-emitir en forma de

fluorescencia. Los tres procesos mencionados compiten permanentemente entre sí, lo cual significa que

la intensidad de la fluorescencia es mayor cuando se ha liberado menos energía calórica o cuando la fo-

tosíntesis utiliza menos energía química. Por consiguiente, la medición de la fluorescencia clorofílica

permite evaluar la eficiencia de los procesos fotoquímicos y no fotoquímicos [10].

La fluorescencia emitida por una hoja tiene una longitud de onda mayor que la de la luz que se absor-

be. En general, la fluorescencia se mide iluminando la hoja en un rango espectral determinado y midien-

do la intensidad de la luz emitida en una longitud de onda mayor. Los autores de ref.[11] establecieron

que existe una relación lineal entre la fluorescencia clorofílica medida en 735 nm y 705 nm y el conte-

nido de clorofila. Estudios más recientes sugieren que existe una correlación significativa entre los va-

lores de fluorescencia y el contenido de nitrógeno, y que esa correlación es más fuerte que la existente

entre reflectancia espectral y nitrógeno [12].

3.4. Imágenes disponibles

La mayoría de las investigaciones usan imágenes adquiridas con sensores ópticos pasivos los cuales

usan la luz solar como fuente de energía y permiten registrar la respuesta espectral en el rango entre

400 y 2500 nm. Una imagen pancromática permite obtener la respuesta espectral del objeto de interés en

una sola banda. Dependiendo del número de bandas y del ancho espectral de cada banda, las imágenes

se pueden clasificar en las categorías multi, super, hiper o ultra espectrales [10] (Ver Tabla II). Entre

menor sea el ancho de cada banda, mejor es la resolución espectral, debido a que se obtienen espectros

de reflectancia que son prácticamente continuos. La Figura No. 5 ilustra la diferencia entre la respuesta

registrada en un sensor multi-espectral (línea en color azul) y la respuesta captada por un sensor hiper-

espectral (líneas en colores verde y rojo) [3].

Tabla II.

Tipos de imágenes en función de la resolución espectral [10].

Figura No. 5. Comparación entre la respuesta espectral captada por un sensor multiespectral (azul) y la respuesta registrada en un

sensor hiper-espectral (líneas en colores verde y rojo) [3].

La Figura No. 6 ilustra el carácter casi continuo de la respuesta espectral registrada en una imagen hiper-

espectral [13].

Multi-espectrales Super-espectrales Hiper-espectrales Ultra-espectrales

1 ≤ N ≤ 10 10 ≤ N ≤ 100 100 ≤ N ≤ 1000 1000 ≤ N ≤ ?

Δλ ≈ 100 nm Δλ ≈ 50 nm Δλ ≈ 10 nm Δλ ≈ 1 nm

Page 6: Guía para la elaboración decomunidad.udistrital.edu.co/nide/files/2013/11/Articulo-Percepcion... · En Colombia, aunque algunas instituciones públicas y privadas vienen dando pasos

6

Figura No. 6. Ilustración de la respuesta captada en una imagen hiper espectral. El perfil espectral es casi continuo [13].

Otra característica importante de una imagen es la relación existente entre el tamaño de cada pixel y el

tamaño de los objetos de interés. La Figura No. 7 ilustra las tres situaciones básicas: (a) el tamaño del

pixel es mayor que el tamaño de los objetos de interés (resolución espacial baja), (b) el tamaño del pixel

es similar al tamaño de los objetos de interés (resolución espacial media), (c) el tamaño del pixel es

menor que el tamaño de los objetos de interés (resolución espacial alta).

Figura No. 7. La resolución espacial de una imagen puede ser: (a) baja; (b) media; (c) alta.

La resolución temporal de una imagen, por otra parte, hace referencia a la frecuencia de adquisición

de una imagen. Esta resolución depende fundamentalmente del tipo de plataforma en la cual se instala el

sensor y, en el caso de satélites, ella puede variar desde 30 minutos hasta un cierto número de meses. La

Tabla III muestra algunos tipos de sensores próximos y remotos que se han utilizado en aplicaciones

agrícolas.

Adicionalmente a las plataformas satelitales y aéreas convencionales, recientemente se han iniciado

estudios para establecer el potencial de utilizar plataformas aéreas no convencionales (UAV) y cámaras

multi-espectrales no métricas para realizar cartografía temática de la vegetación y para estimar algunas

de sus propiedades [3]. Por otra parte, es importante indicar que ya están disponibles en el mercado los

llamados sensores hiper-espectrales de última generación, de alta resolución espectral, algunos de los

cuales registran información en el espectro termal que puede ser muy útil en estudios de vegetación

[10].

Tabla III.

Sensores más utilizados en agricultura [10]

Por otra parte, algunas investigaciones recientes se concentran en evaluar las ventajas de utilizar senso-

Sensor Plataforma Fuente Tipo de datos Resolución No.

Bandas Espectral Espacial Temporal

IKONOS Satélite Pasiva Multi-espectral 400-1100 nm 4m 2-3 días 4 + PAN

QuickBird Satélite Pasiva Multi-espectral 450-900 nm 2.5m 2-5 días 4 + PAN

Landsat Satélite Pasiva Multi-espectral 450-12500 nm 30m 16 días 7 + PAN

Spot Satélite Pasiva Multi-espectral 500-890 nm 10m 26 días 4 + PAN

RapidEye Satélite Pasiva Multi-espectral 440-850 nm 6.5m 1 día 5

Duncan Tech

Camera Avión Pasiva Multi-espectral 400-1100nm

s/n altura

de vuelo N.A. 3-5

E01-

Hyperion Satélite Pasiva Hiper-espectral 400-2400 nm 30m 16 días 220

GreenSeeker Vehículo en

tierra Activa Multi-espectral 656 y 774 nm 0.6m N.A. 2

Crop Circle Vehículo en

tierra Activa

Visible e IR

ajustable 0.6m N.A. 3

Page 7: Guía para la elaboración decomunidad.udistrital.edu.co/nide/files/2013/11/Articulo-Percepcion... · En Colombia, aunque algunas instituciones públicas y privadas vienen dando pasos

7

res activos (p.ej. RADAR o LIDAR), en lugar de sensores pasivos que dependen de la iluminación so-

lar, para caracterizar la estructura de la vegetación. Igualmente, se realizan estudios para establecer el

potencial de fusionar imágenes ópticas con imágenes obtenidas mediante sensores activos (Ver, p. ej.,

[14]).

3.5. Técnicas de análisis de imágenes

El análisis de imágenes de sensores remotos se puede realizar usando tres técnicas básicas dependien-

do de la resolución espacial de la imagen: (a) análisis a nivel sub-pixel, en caso de resolución espacial

baja; (b) análisis basado en pixeles, en caso de resolución espacial media; y (c) análisis basado en gru-

pos de pixeles, en caso de resolución espacial alta.

En la Figura 8, se muestran, en color rojo, los pixeles de tres imágenes hipotéticas para ilustrar la téc-

nica de análisis más apropiada: a) sub-pixel; b) basada en pixeles; y c) basada en grupos de pixeles

(también conocidos como objetos de imagen) [15]. Es importante señalar que la técnica basada en pixe-

les es la más usada. La técnica basada en objetos de imagen es relativamente reciente debido a que solo

en el año 2000 se inició la adquisición de imágenes satelitales de alta resolución espacial con fines civi-

les. La técnica basada en sub-pixeles, por otra parte, es una técnica experimental cuyo uso no es todavía

operacional.

Figura No. 8. La técnica de análisis es función de la resolución espacial de la imagen: (a) sub-pixel; (b) pixeles; (c) grupos de pi-

xeles (objetos de imagen)

Figura No. 9. Efecto de resolución espacial de una imagen en la detección de enfermedad en una hoja usando espectroscopía de

reflectancia [16]

Page 8: Guía para la elaboración decomunidad.udistrital.edu.co/nide/files/2013/11/Articulo-Percepcion... · En Colombia, aunque algunas instituciones públicas y privadas vienen dando pasos

8

La figura No. 9, adaptada de [16], muestra la influencia de la resolución espacial de datos hiper-

espectrales en la detección de una enfermedad en cultivos de remolacha. Es claro que si la resolución

espacial es baja, no es posible dicha detección.

3.6. Métodos de estimación de parámetros de vegetación Los métodos disponibles para extraer parámetros de la vegetación se pueden clasificar en dos catego-

rías generales: empíricos y físicos. Los métodos empíricos establecen un modelo estadístico entre el pa-

rámetro de interés (p.ej. la concentración de bioquímicos (z)) y algunas variables espectrales (x) (por

ejemplo un índice espectral), utilizando datos de referencia obtenidos mediante métodos tradicionales.

Si el valor de x es conocido, se puede usar el modelo para obtener el valor z correspondiente. Los méto-

dos físicos, por otra parte, utilizan modelos de inversión basado en principios físicos bien establecidos

[10]. Utilizando un modelo físico en modo directo es posible simular la curva de reflectancia de la vege-

tación si se conocen ciertos parámetros de entrada, tales como la concentración de bioquímicos. Si lo

que se conoce es la reflectancia de la vegetación, entonces se puede aplicar el modelo en modo inverso

para obtener la concentración de bioquímicos [3].

Los métodos empíricos han permitido determinar la concentración de nitrógeno, lignina y celulosa a

partir de datos espectroscópicos [17]. Otros investigadores han reportado la utilidad de los índices es-

pectrales para estimar la concentración de bioquímicos [18] [19]. Es importante indicar que estos méto-

dos funcionan muy bien en las condiciones controladas en que operan los sensores próximos y, por tan-

to, su utilización con datos de sensores remotos que están sujetos a muchas interferencias, les pueden

hacer perder robustez y portabilidad [3].

Los métodos físicos emplean modelos de transferencia radiativa que describen detalladamente el pro-

ceso de transmisión de energía en los diferentes componentes de las plantas. Los modelos físicos más

empleados son los siguientes [3]: (a) N-capas, (b) Aleatorio, (c) Trazado de rayos, (d) Placa, y (e) LI-

BERTY. El uso de métodos físicos para extraer parámetros bioquímicos solo es exitoso cuando la reso-

lución espectral de las imágenes utilizadas es apropiada, tal como se puede deducir de los datos indica-

dos en la Tabla IV [3].

Tabla IV.

Influencia de resolución espectral en la extracción de parámetros bioquímicos usando modelos físicos [3].

4. Objetos de investigación

4.1. Problemas que aborda la línea de investigación

La revisión del estado del arte muestra que la caracterización de la vegetación a partir de imágenes

cuyos pixeles “captan” la energía solar reflejada por la vegetación no es un ejercicio trivial. Aunque

existe literatura científica que reporta el uso exitoso de diversos métodos y técnicas para realizar dicha

tarea (ver, por ejemplo, [20][21]), existe controversia sobre la validez de los métodos empíricos [22].

Igualmente, es claro que la estimación confiable de parámetros biofísicos y bioquímicos plantea mu-

chos problemas técnicos que no han sido resueltos satisfactoriamente [23].

Esta línea de investigación se propone resolver los siguientes interrogantes:

a) ¿Cuál es la relación existente entre las propiedades espectroscópicas de la vegetación y sus propie-

dades biofísicas y bioquímicas?

b) ¿Cuál es la relación existente entre las propiedades biofísicas y bioquímicas de la vegetación y su

estado funcional y productivo?

c) ¿Cuáles es la resolución espacial y espectral apropiada para caracterizar el estado de la vegetación

(estrés hídrico, enfermedad, deficiencia nutricional, etc.) usando sensores remotos?

d) ¿Cuáles son las ventajas y limitaciones de los métodos empíricos para la extracción de propiedades

de la vegetación?

e) ¿Cuáles son las ventajas y limitaciones de los métodos físicos para la extracción de propiedades de

la vegetación?

Sensor Validez de la estimación

(Error Medio Cuadrático / Clorofila)

Evaluación

AVHRR 0.34987 Inaceptable

TM 0.07553 Deficiente

MODIS 0.04223 Buena

OMIS 0.01912 Buena

Page 9: Guía para la elaboración decomunidad.udistrital.edu.co/nide/files/2013/11/Articulo-Percepcion... · En Colombia, aunque algunas instituciones públicas y privadas vienen dando pasos

9

f) ¿Cuáles son las características de la vegetación que pueden extraerse de manera confiable mediante

el análisis del espectro de reflectancia y del espectro de fluorescencia?

g) ¿Cuáles características de la vegetación se pueden caracterizar y monitorear utilizando series tem-

porales de imágenes de satélite?

4.2. Metodología

4.2.1. Zona de estudio

El proyecto se puede desarrollar en diferentes zonas del país de acuerdo con el interés que demuestren

algunos socios potenciales (por ejemplo, centros de investigación agrícola, entidades relacionadas con la

conservación del medio ambiente, etc.). Sin embargo, se buscará estimular la realización de estudios re-

lacionados con la caracterización de la condición de especies vegetales de ecosistemas de bosque alto-

andino y de páramo dada su importancia estratégica.

4.2.2. Datos

Los insumos principales son:

Datos espectroscópicos obtenidos mediante espectro-radiometría o mediciones de fluorescencia

Imágenes multi-espectrales o hiper-espectrales obtenidas mediante plataformas terrestres, aéreas o sa-

telitales (incluyendo plataformas aéreas no tripuladas)

Opcionalmente, datos hiper-espectrales fusionados con datos LIDAR o RADAR

Datos de referencia sobre parámetros bioquímicos, biofísicos o funcionales de la vegetación obtenidos

en laboratorio o en campo

4.2.3. Métodos

La metodología general que se utilizará en el desarrollo de esta línea de investigación comprende las

siguientes fases (Ver Figura No. 10):

Fase 1:

Incluye la realización de mediciones espectroscópicas puntuales en diferentes escalas: a nivel de hoja,

dosel o lote.

Fase 2:

Medición directa de propiedades de la vegetación a diferentes niveles.

Fase 3:

Obtención, procesamiento y análisis de imágenes de sensores remotos de diferente resolución espa-

cial: alta, media y baja.

Fase 4:

Extracción de parámetros biofísicos y bioquímicos de la vegetación y evaluación de su correlación el

estado de la vegetación.

Figura No. 10. Flujo de procesos que se utilizarán para desarrollar la línea de investigación. Las líneas continuas indican las rutas

de ejecución en el tiempo. Las líneas puntuales indican posibles actividades de agregación espacial.

Page 10: Guía para la elaboración decomunidad.udistrital.edu.co/nide/files/2013/11/Articulo-Percepcion... · En Colombia, aunque algunas instituciones públicas y privadas vienen dando pasos

10

El proceso metodológico de cada proyecto específico se realizará mediante las siguientes fases:

1. Definición de objetivos particulares

2. Definición de especificaciones técnicas

3. Diseño experimental

4. Adquisición de imágenes, datos espectroscópicos y datos de referencia

5. Realización de correcciones geométricas y radiométricas, incluyendo correcciones atmosféricas

si aplican

6. Procesamiento digital de las imágenes (utilizando los métodos y las técnicas que sean relevan-

tes para cada proyecto específico) y de otros datos

7. Modelamiento y análisis de información

8. Obtención de productos

9. Evaluación de calidad de los productos obtenidos

4.3. Resultados esperados El desarrollo de proyectos de investigación relacionados con esta línea permitirá obtener conoci-

miento útil para aplicar tecnología de percepción remota en la caracterización de la condición de la ve-

getación. Este conocimiento apoyará la solución de problemas de biodiversidad de recursos naturales y

de sostenibilidad de la agricultura nacional.

El desarrollo de cada proyecto específico aportará por lo menos 3 productos concretos seleccionados

entre las siguientes opciones:

1. Reportes de evaluación de la utilidad de imágenes de sensores próximos o remotos para extraer

información sobre vegetación natural o cultivos de importancia económica

2. Metodologías específicas de estimación de parámetros de vegetación usando técnicas de per-

cepción remota

3. Modelos empíricos o físicos que permitan extraer información confiable sobre la vegetación

usando sensores remotos

4. Mapas digitales que muestren el estado o la dinámica de la vegetación natural o de cultivos es-

pecíficos, a nivel nacional, regional o local

5. Análisis de los cambios, frecuencias y tendencias de la vegetación natural o de cultivos espe-

cíficos en regiones de interés

6. Un artículo científico a publicar en una revista internacional indexada (por ejemplo Internatio-

nal Journal of Remote Sensing o Remote Sensing Letters)

Impacto científico: contribución al avance de la frontera del conocimiento en la aplicación de percep-

ción remota en vegetación, y a su divulgación en eventos académicos y en revistas de alto impacto. Los

resultados pueden ser aplicados para caracterizar y/o realizar el seguimiento de zonas de vegetación na-

tural y para apoyar el manejo agronómico de cultivos de interés nacional.

Impacto académico: enriquecimiento de la docencia de pregrado de Ingeniería Catastral y Geodesia

(asignatura PDI) y Maestría en CIC con énfasis en Geomática (PDI Avanzado) de la Facultad de Inge-

niería. Consolidación del área de profundización en Geomática del Doctorado en Ingeniería. Avance de

la línea de investigación del Grupo NIDE: Análisis de imágenes orientado a la caracterización y detec-

ción de cambios en objetos y fenómenos geográficos. Avance en la cooperación entre diferentes proyec-

tos curriculares (p.ej. Ingeniería Catastral y Geodesia, Ingeniería Forestal, Licenciatura en Biología).

4.4. Listado de proyectos en desarrollo La siguiente es una lista no exhaustiva de los proyectos en desarrollo:

Doctorado en Ingeniería:

Estimación de parámetros fotosintéticos de algunas especies vegetales usando datos de sensores pró-

ximos y remotos (Orlando Riaño; Objetivos OE1, OE2, OE3, OE4)

Caracterización estructural de vegetación usando datos LIDAR de forma de onda completa (Por defi-

nir; Objetivos OE1, OE2, OE3, OE4)

Modelamiento de propiedades radiativas de la vegetación (Por definir; Objetivos OE1, OE2, OE3,

OE4)

Page 11: Guía para la elaboración decomunidad.udistrital.edu.co/nide/files/2013/11/Articulo-Percepcion... · En Colombia, aunque algunas instituciones públicas y privadas vienen dando pasos

11

Maestría en CIC (Enfasis Geomática) o Especialización en SIG:

Evaluación de la utilidad de imágenes de cámaras digitales montadas en plataformas aéreas no tripu-

ladas para monitorear la vegetación (Jorge Luis Rodríguez; Objetivos OE1, OE2, OE3)

Guía metodológica para caracterizar la dinámica de la deforestación a partir del análisis de series mul-

titemporales de imágenes multiespectrales (Oscar Javier Espejo; Objetivo OE4, OE5)

Diferenciación de variedades de café usando imágenes multiespectrales (Camilo León; Objetivos

OE4, OE5)

Estimación de parámetros biofísicos de la vegetación usando firmas de reflectancia espectral e imáge-

nes de alta resolución espacial (Mauricio Rodríguez; Objetivos OE1, OE2, OE3, OE4)

Caracterización del estado de la vegetación utilizando imágenes hiperespectrales obtenidas mediante

plataformas aéreas o satelitales (Por definir; Objetivo OE4, OE5)

Caracterización del estado de la vegetación utilizando datos de fluorescencia clorofílica (Por definir;

Objetivo OE1)

Pregrado en Ingeniería Catastral e Ingeniería Forestal

Caracterización espectral de especies vegetales de páramo usando espectroscopía de reflectancia e

imágenes multiespectrales (Lizeth Casilimas, Gabriel Castaño y Christian Forero; Objetivos OE1,

OE2)

Guía metodológica para la adquisición y análisis de datos espectroscópicos de reflectancia de vegeta-

ción (Por definir; Objetivo OE1)

Creación de librería de datos espectrales y fotosintéticas de especies nativas e invasoras en el Distrito

Capital (Erich Fajardo, Andrea Girón y Angelica Ojeda; Objetivo OE1)

Utilidad de imágenes multiespectrales en la determinación de zonas afectadas por especies vegetales

invasoras – Caso de estudio: Bogotá, DC (Steven Peñalosa y Daner Castro)

Evaluación de la correlación entre índices espectrales y propiedades biofísicas de la vegetación natural

o de cultivos específicos (Por definir; Objetivo OE4)

5. Conclusiones y perspectivas El desarrollo de actividades de investigación relacionadas con el uso de técnicas de percepción remota

para determinar la condición de la vegetación es esencial para un mejor entendimiento y manejo de los

recursos naturales y agrícolas. A pesar de los continuos avances en los métodos utilizados para estimar

propiedades biofísicas y bioquímicas de la vegetación usando técnicas de percepción remota, existen di-

versas fuentes de error e incertidumbre. Los problemas a resolver representan un reto para la ingeniería

colombiana en la medida que exigen soluciones originales y creativas que puedan aplicarse en las con-

diciones particulares de nuestro país.

Referencias bibliográficas

[1] Bleby, K., Harvey, J., Garkaklis, M., Martin, L. 2008. Resource Condition Monitoring – Native Veg-

etation Integrity Project Literature Review: Vegetation Condition Assessment, Monitoring & Evalua-

tion. Department of Environment and Conservation, Western Australia. 67 pp.

[2] Petroski, H. 2011. The Essential Engineer: Why Science Alone Will Not Solve Our Global Problems.

New York: Vintage. 288 pp.

[3] Liang, S., Li, X., and Wang, J. 2012. Advanced Remote Sensing – Terrestrial information extraction

and applications. Academic Press. Elsevier.

[4] Garkaklis, M. 2010. Remote Sensing Vegetation Condition Assessment: Case Studies in Western

Australia. Astron Environmental Services. Report prepared for Department of Environment and Con-

servation. 14 pp.

Page 12: Guía para la elaboración decomunidad.udistrital.edu.co/nide/files/2013/11/Articulo-Percepcion... · En Colombia, aunque algunas instituciones públicas y privadas vienen dando pasos

12

[5] Thomas, J.R., and Gaussman, H.W. 1977. Leaf reflectance vs. leaf chlorophyll and carotenoid con-

centrations for eight crops. Agronomy Journal, 69: 799-802.

[6] Jensen, J.R. 2000. Remote Sensing of Environ ment – An Earth Resource Perspective. NJ: Prentice

Hall. 544 pp.

[7] Curran, P.J. 1989. Remote sensing of foliar chemistry. Remote Sensing of Environment, 30:271-278.

[8] Merzlyak, M.N., Gitelson A.A., Chivkunova O.B., Solovchenko, A.E., and Pogosyan, S.I. 2003.

Application of Reflectance Spectroscopy for Analysis of Higher Plant Pigments. Russian Journal of

Plant Physiology, 50 (5): 704–710.

[9] Lewis, P. and Disney, M. 2007. Spectral invariants and scattering across multiple scales from with-

in-leaf to canopy. Remote Sensing of Environment, 109(2):196–206.

[10] Jones H.G. and Vaughan R.A., 2010. Remote Sensing of Vegetation: Principles, Techniques and

Applications. NY: Oxford University Press. 353 pp.

[11] Gitelson, A.A., Buschmann, C., Lichtenthaler, H.K. 1999. The Chlorophyll Fluorescence Ratio

F735/F700 as an Accurate Measure of the Chlorophyll Content in Plants. Remote Sensing of Environ-

ment, 69 (3): 296-302.

[12] Agati, G., Foschi, L., Grossi, N., Guglielminetti, L., Cerovic, Z.G., Volterrani, M. 2013. Fluores-

cence-based versus reflectance proximal sensing of nitrogen content in Paspalum vaginatum and Zoysia

matrella turfgrasses. European Journal of Agronomy, 45: 39-51.

[13] Nischan, M.L., Joseph, R.M., Libby, J.C., Kerekes, J.P., 2003. Active Spectral Imaging. Lincoln

Laboratory Journal, 14 (1): 131-144.

[14] Geerling, G.W., Labrador-Garcia, M., Clevers, J.G.P.W., Ragas, A.M.J., Smits, A.J.M. 2007. Clas-

sification of floodplain vegetation by data fusion of spectral (CASI) and LiDAR data. International

Journal of Remote Sensing, 28(19): 4263-4284.

[15] Lizarazo, I. 2013. Meaningful image objects for object-oriented image analysis. Remote Sensing

Letters, 4(5): 419-426.

[16] Mahlein, A.K., Steiner, U., Hillnhütter, C., Dehne, H.W., Oerke, E.C.. 2012. Hyperspectral imag-

ing for small-scale analysis of symptoms caused by different sugar beet diseases. Plant Methods, 8:3.

[17] Kokaly, R.F. 2001. Investigating a physical basis for spectroscopic estimates of leaf nitrogen con-

centration. Remote Sensing of Environment, 75:153–161.

[18] Thenkabail, P.S., Smith, R.B., De Paw, E. 2000. Hyperspectral vegetation indices and their rela-

tionships with agricultural crop characteristics. Remote Sensing of Environment, 71:158-182.

[19] Haboudane, D., Miller, J.R., Temblay, N., Zarco-Tejada, P.J., Dextrase, L. 2002. Integrated nar-

row-band vegetation índices for prediction of crop chlorophyll content for application to accuracy agri-

cultura. Remote Sensing of Environment, 81:416–426.

[20] Pinter, P.J., Hatfield, J.L., Schepers, J.S., Barnes, E.M., Moran, M.S., Daughtry, C.S.T., and Up-

church, D.R. 2003. Photogrammetric Engineering & Remote Sensing, 69(6): 647–664.

[21] Ollinger, S.V. 2011. Sources of variability in canopy reflectance and the convergent properties of

plants. New Phytology, 189(2):375–394.

[22] Knyazikhin, Y., Lewis, P., Disney, M.I., Mõttus, M., Rautiainend, M., Stenberg, P., Kaufmann,

R.K., Marshak, A., Schull, M.A., Latorre Carmona, P., Vanderbilt, V., Davis, A.B., Baret, F.,

Jacquemoud S., Lyapustin, A., Yang, Y., and Myneni, R.B. 2013. Reply to Ollinger et al.: Remote sens-

ing of leaf nitrogen and emergent ecosystem properties. PNAS, 110(27): E2438.

Page 13: Guía para la elaboración decomunidad.udistrital.edu.co/nide/files/2013/11/Articulo-Percepcion... · En Colombia, aunque algunas instituciones públicas y privadas vienen dando pasos

13

[23] Malenovsky, Z., Mishra, K.B, Zemek, F., Rascher, U. and Nedbal, L. 2009. Scientific and technical

challenges in remote sensing of plant canopy reflectance and fluorescence. Journal of Experimental Bo-

tany, 60(11):2987-3004.