Guía de Seguridad en Protocolos Industriales Smart Grid · 3.2. Capas de actuación de los...

24
CERT DE SEGURIDAD E INDUSTRIA MINISTERIO DEL INTERIOR GOBIERNO DE ESPAÑA MINISTERIO DE ENERGÍA, TURISMO Y AGENDA DIGITAL GOBIERNO DE ESPAÑA Guía de Seguridad en Protocolos Industriales Smart Grid

Transcript of Guía de Seguridad en Protocolos Industriales Smart Grid · 3.2. Capas de actuación de los...

Page 1: Guía de Seguridad en Protocolos Industriales Smart Grid · 3.2. Capas de actuación de los protocolos Los protocolos de las redes industriales son de nueva generación en su mayoría,

CERT DE SEGURIDADE INDUSTRIA

MINISTERIODEL INTERIOR

GOBIERNODE ESPAÑA

MINISTERIODE ENERGÍA, TURISMOY AGENDA DIGITAL

GOBIERNODE ESPAÑA

Guía de Seguridad en Protocolos IndustrialesSmart Grid

Page 2: Guía de Seguridad en Protocolos Industriales Smart Grid · 3.2. Capas de actuación de los protocolos Los protocolos de las redes industriales son de nueva generación en su mayoría,

Guía de Seguridad en Protocolos Industriales Página 2 de 24

Smart Grid

Febrero 2017

CERTSI_GUIA_SCI_002_ProtocolosSmartGrid_2017_v1

La presente publicación pertenece a INCIBE (Instituto Nacional de Ciberseguridad) y está bajo una licencia Reconocimiento-No

comercial 3.0 España de Creative Commons. Por esta razón está permitido copiar, distribuir y comunicar públicamente esta obra

bajo las condiciones siguientes:

• Reconocimiento. El contenido de este informe se puede reproducir total o parcialmente por terceros, citando su

procedencia y haciendo referencia expresa tanto a INCIBE o CERTSI como a su sitio web: http://www.incibe.es. Dicho

reconocimiento no podrá en ningún caso sugerir que INCIBE presta apoyo a dicho tercero o apoya el uso que hace de su obra.

• Uso No Comercial. El material original y los trabajos derivados pueden ser distribuidos, copiados y exhibidos mientras su

uso no tenga fines comerciales.

Al reutilizar o distribuir la obra, tiene que dejar bien claro los términos de la licencia de esta obra. Alguna de estas condiciones

puede no aplicarse si se obtiene el permiso de CERTSI como titular de los derechos de autor. Texto completo de la licencia:

http://creativecommons.org/licenses/by-nc-sa/3.0/es/

Page 3: Guía de Seguridad en Protocolos Industriales Smart Grid · 3.2. Capas de actuación de los protocolos Los protocolos de las redes industriales son de nueva generación en su mayoría,

Guía de Seguridad en Protocolos Industriales Página 3 de 24

Smart Grid

ÍNDICE

1. SOBRE ESTA GUÍA ....................................................................................... 5

2. INTRODUCCIÓN Y SITUACIÓN ACTUAL ..................................................... 6 3. PROTOCOLOS Y PUNTOS DE ANÁLISIS .................................................... 7

3.1. Protocolos a analizar ................................................................................. 7 3.2. Capas de actuación de los protocolos....................................................... 7 3.3. Elementos de seguridad y recomendaciones ............................................ 7

4. ANÁLISIS DE LOS PROTOCOLOS DE COMUNICACIÓN EN LAS REDES INTELIGENTES ..................................................................................................... 8

4.1. PRIME ....................................................................................................... 8

4.1.1. Descripción ................................................................................................................. 8

4.1.2. Seguridad ................................................................................................................... 9

4.1.3. Recomendaciones de seguridad .............................................................................. 10

4.2. Meters and More ..................................................................................... 10

4.2.1. Descripción ............................................................................................................... 10

4.2.2. Seguridad ................................................................................................................. 11

4.2.3. Recomendaciones de seguridad .............................................................................. 12

4.3. G3-PLC ................................................................................................... 12

4.3.1. Descripción ............................................................................................................... 12

4.3.2. Seguridad ................................................................................................................. 15

4.3.3. Recomendaciones de seguridad .............................................................................. 16

4.4. OSGP ...................................................................................................... 17

4.4.1. Descripción ............................................................................................................... 17

4.4.2. Seguridad ................................................................................................................. 18

4.4.3. Recomendaciones de seguridad .............................................................................. 18

4.5. DLMS/COSEM ........................................................................................ 18

4.5.1. Descripción ............................................................................................................... 18

4.5.2. Seguridad ................................................................................................................. 20

4.5.3. Recomendaciones de seguridad .............................................................................. 22

5. CUADRO COMPARATIVO RESUMEN ........................................................ 23

ÍNDICE DE FIGURAS

Figura 1 Componentes principales de la infraestructura de medida avanzada (AMI). Fuente:

http://www.metersandmore.com/technology/ ..................................................................................... 6 Figura 2. Topología PRIME ................................................................................................................ 9 Figura 3. Área de uso del protocolo PRIME. Fuente http://www.prime-alliance.org .......................... 9 Figura 4. Arquitectura Meters and More. Fuente: http://www.eic.cat/gfe/docs/15586.pdf ............... 11 Figura 5. Bandas de frecuencia definidas por CENELEC. .............................................................. 13 Figura 6. Muestra del protocolo G3-PLC y el modelo OSI ............................................................... 14

Page 4: Guía de Seguridad en Protocolos Industriales Smart Grid · 3.2. Capas de actuación de los protocolos Los protocolos de las redes industriales son de nueva generación en su mayoría,

Guía de Seguridad en Protocolos Industriales Página 4 de 24

Smart Grid

Figura 7. Viaje de los datos en el protocolo 3G-PLC. ...................................................................... 14 Figura 8. Zonas donde se utiliza el protocolo G3-PLC. Fuente: www.g3-plc.com .......................... 15 Figura 9. Confidencialidad y seguridad gracias a la comunicación cifrada en G3-PLC. Fuente:

www.erdf.fr ....................................................................................................................................... 16 Figura 10. Intensidades a las que trabajan los dispositivos que usan el protocolo OSGP. Fuente:

www.esna.org (www.osgp.org) ........................................................................................................ 17 Figura 11. Modelo de capas de DLMS/COSEM .............................................................................. 19 Figura 12. Arquitectura DLMS/COSEM. Fuente: www.dlms.com .................................................... 20 Figura 13. Autenticación en DLMS/COSEM .................................................................................... 21 Figura 14. Seguridad en los paquetes DLMS/COSEM. Fuente: www.dlms.com ............................ 22

ÍNDICE DE TABLAS

Tabla 1: Cuadro resumen de protocolos de las redes inteligentes. ................................................. 23

Page 5: Guía de Seguridad en Protocolos Industriales Smart Grid · 3.2. Capas de actuación de los protocolos Los protocolos de las redes industriales son de nueva generación en su mayoría,

Guía de Seguridad en Protocolos Industriales Página 5 de 24

Smart Grid

1. SOBRE ESTA GUÍA

Siguiendo con la línea del estudio publicado por INCIBE “Protocolos y Seguridad de red en

infraestructuras SCI”1, donde se ofrece una visión de los protocolos más representativos

en sistemas de control, se presenta este documento que pretende profundizar en los

protocolos utilizados en las redes inteligentes.

Este estudio, de carácter técnico, se centra en las comunicaciones de las redes

inteligentes, y pretende ofrecer una visión sobre los protocolos más utilizados en España y

Europa, mostrando sus funcionalidades, medidas de seguridad ofrecidas y problemas a los

que se enfrentan. Así mismo, se indican una serie de recomendaciones en cada uno de

ellos con el fin de mejorar la seguridad de las instalaciones que los tengan implementados.

1 https://www.incibe.es/extfrontinteco/img/File/intecocert/ManualesGuias/incibe_protocolos_seguridad_red_sci.pdf

Page 6: Guía de Seguridad en Protocolos Industriales Smart Grid · 3.2. Capas de actuación de los protocolos Los protocolos de las redes industriales son de nueva generación en su mayoría,

Guía de Seguridad en Protocolos Industriales Página 6 de 24

Smart Grid

2. INTRODUCCIÓN Y SITUACIÓN ACTUAL

Desde hace unos años la red eléctrica está sufriendo una gran transformación promovida

sobre todo a nivel europeo por el “objetivo 20-20-20”2. La base de la modificación de la red

eléctrica surge con la comunicación COM (2006) 786 “On a European Programme for

Critical Infrastructure Protection”3 de la Comisión Europea, donde se definen los aspectos

principales del programa europeo de protección de infraestructuras críticas (EPCIP,

European Programme for Critical Infrastructures Protection); y tiene su punto álgido con la

publicación por parte de Comisión Europea de la comunicación COM (2011) 202, “Smart

Grids: from innovation to deployment”4.

Este hecho también ha afectado a las comunicaciones, creando nuevas redes y

apareciendo nuevos protocolos específicos para este sector. Ciertas tareas, ahora

demandadas, requieren del uso de comunicaciones bidireccionales entre el tramo final de

la distribución eléctrica, también llamado última milla, la cual abarca desde los centros de

transformación hasta el contador situado en la casa/comunidad del cliente; y los centros de

control, bien para pasarle información al cliente final, bien para gestionar la producción y

demanda de energía, tal y como se puede ver en el esquema de la Figura 1.

Figura 1 Componentes principales de la infraestructura de medida avanzada (AMI). Fuente: http://www.metersandmore.com/technology/

2 http://ec.europa.eu/clima/policies/strategies/2020/index_es.htm

3 http://www.iserd.org.il/_Uploads/dbsAttachedFiles/com2006_0786en01.pdf

4 http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0202:FIN:EN:PDF

Page 7: Guía de Seguridad en Protocolos Industriales Smart Grid · 3.2. Capas de actuación de los protocolos Los protocolos de las redes industriales son de nueva generación en su mayoría,

Guía de Seguridad en Protocolos Industriales Página 7 de 24

Smart Grid

3. PROTOCOLOS Y PUNTOS DE ANÁLISIS

3.1. Protocolos a analizar

Gracias la unión y estandarización establecida entre distribuidores de energía, fabricantes

y desarrolladores, la existencia de protocolos relacionados con las redes inteligentes no es

tan profusa como en otros entornos de la industria. De entre los protocolos salidos de esta

unión y estandarización se analizan aquellos cuyo uso es más común en el territorio

español y aquellos que son usados ampliamente a lo largo del territorio europeo.

Los protocolos seleccionados son los siguientes:

PRIME

Meters and More

DLMS/COSEM

G3-PLC

OSGP

3.2. Capas de actuación de los protocolos

Los protocolos de las redes industriales son de nueva generación en su mayoría, lo que

implica una separación de funciones en su especificación que se ajustan con los niveles

del esquema OSI, a diferencia de los antiguos protocolos de los sistemas de control que

presentaban fronteras difusas.

A lo largo de este estudio se va a referenciar en varias ocasiones el modelo de capas

definido en OSI para explicar con cuales de ellas interactúa cada protocolo. Los protocolos

utilizados para el control de la distribución y el consumo eléctrico suelen tener más de una

definición de la capa 1 o física, debido a la variedad de comunicaciones disponibles en los

dispositivos.

3.3. Elementos de seguridad y recomendaciones

Para cada uno de los protocolos seleccionados se hace una descripción del mismo,

indicando sus fortalezas y debilidades a nivel de seguridad. Para terminad, se exponen una

serie de recomendaciones a aplicar para utilizar las mejores características de seguridad

en cada uso del protocolo.

Page 8: Guía de Seguridad en Protocolos Industriales Smart Grid · 3.2. Capas de actuación de los protocolos Los protocolos de las redes industriales son de nueva generación en su mayoría,

Guía de Seguridad en Protocolos Industriales Página 8 de 24

Smart Grid

4. ANÁLISIS DE LOS PROTOCOLOS DE COMUNICACIÓN

EN LAS REDES INTELIGENTES

4.1. PRIME

4.1.1. Descripción

PRIME (PoweRline Intelligent Metering Evolution) es un protocolo de nueva generación

regido por la PRIME Alliance5, que implementa los dos primeros niveles del modelo OSI,

la capa física y la capa de enlace.

A nivel físico, PRIME utiliza la tecnología PLC (Power Line Communications)6,

originalmente en la banda CENELEN-A (3-95 KHz) pero se extiende a los 500 KHz en la

última versión del estándar (PRIME Versión 1.47), siempre utilizando una modulación

OFDM (Multiplexación por División de Frecuencias Ortogonales)8.

A nivel de enlace define una capa de acceso al medio donde conforma una estructura de

red en árbol con dos tipos diferentes de nodos para la red, tal como muestra la Figura 2:

Nodo base: Elemento correspondiente con la raíz del árbol y actúa como maestro

de la comunicación. Solamente existe un nodo base en cada subred. Inicialmente

él conforma toda la subred hasta que diferentes nodos de servicio se van asociando

a la misma.

Nodo de servicio: Elemento que se encuentra inicialmente en estado desconectado

y necesita pasar un proceso de registro para unirse a la red. Los nodos de servicio

tienen dos funciones: mantener la conexión en la subred para la capa de aplicación

y hacer de enrutador de la conexión para los datos de otros nodos de servicio.

Existen tres diferentes estados para un nodo de servicio:

Desconectado: El nodo no se encuentra conectado a la subred. Terminal: El nodo se encuentra conectado a la subred pero no ejerce tareas

de enrutamiento. Se comporta como un nodo hoja del árbol. Switch: El nodo de servicio se encuentra conectado a la red y además

realiza funciones de enrutamiento de la subred. Se comporta como un nodo rama del árbol.

5 http://www.prime-alliance.org/

6 http://es.wikipedia.org/wiki/Power_Line_Communications

7 http://www.prime-alliance.org/wp-content/uploads/2014/10/PRIME-Spec_v1.4-20141031.pdf

8 http://es.wikipedia.org/wiki/Acceso_m%C3%BAltiple_por_divisi%C3%B3n_de_frecuencias_ortogonales

Page 9: Guía de Seguridad en Protocolos Industriales Smart Grid · 3.2. Capas de actuación de los protocolos Los protocolos de las redes industriales son de nueva generación en su mayoría,

Guía de Seguridad en Protocolos Industriales Página 9 de 24

Smart Grid

Figura 2. Topología PRIME

PRIME se utiliza principalmente en Europa, siendo España uno de los países con mayor

implantación gracias a las compañías Iberdrola (principal fundador e impulsor de la alianza)

y Gas Natural Fenosa, aunque su uso también se ha expandido a otras partes del mundo

como puede verse en la Figura 3.

Figura 3. Área de uso del protocolo PRIME. Fuente http://www.prime-alliance.org

El despliegue de dispositivos con tecnología PRIME supera los 10 millones de equipos

alrededor del mundo.

4.1.2. Seguridad

A nivel de seguridad, PRIME define 3 perfiles diferentes, a nivel de capa MAC o capa de

nivel 2:

Page 10: Guía de Seguridad en Protocolos Industriales Smart Grid · 3.2. Capas de actuación de los protocolos Los protocolos de las redes industriales son de nueva generación en su mayoría,

Guía de Seguridad en Protocolos Industriales Página 10 de 24

Smart Grid

Perfil de seguridad 0: no aporta cifrado y la protección queda relegada al nivel de

seguridad que aporten las capas superiores.

Perfil de seguridad 1 y 2: Aportan cifrado. El perfil 2 aparece con en la especificación

1.4 del protocolo y se diferencia del perfil 1 en que cifra más tipos de paquetes,

basándose para ello en primitivas criptográficas y utilizando AES128.

Las ventajas que aporta el cifrado son:

Confidencialidad, autenticidad e integridad de paquetes garantizada por el uso de un algoritmo de cifrado a nivel de capa de enlace.

Autenticación garantizada porque cada nodo posee su propia clave única, conocida solo por el propio nodo y el nodo base, y que se establece en la fabricación del dispositivo.

Prevención de ataques por repetición mediante el uso de un campo de 4 bytes para el contador de paquetes.

Los mecanismos de seguridad propuestos en los perfiles de seguridad no protegen frente

a ataques al medio (ataques temporizados, ataques eléctricos o electromagnéticos, ruido

en el canal, etc.).

4.1.3. Recomendaciones de seguridad

Las comunicaciones PRIME son accesibles a cualquier usuario con acceso a la red

eléctrica en la que se encuentran los dispositivos que utilizan este protocolo.

Para proteger las comunicaciones usando el protocolo PRIME es aconsejable utilizar el

perfil de seguridad 1 o 2, ya que aportan cifrado. Hay que tener en cuenta que PRIME solo

actúa en los niveles inferiores del modelo OSI y el protocolo que se utilice en los niveles

superiores puede ya aportar seguridad a los mensajes, pudiendo en estos casos utilizar el

perfil 0, asumiendo que la comunicación PRIME puede ser observada al no llevar cifrado

aplicado.

El perfil de seguridad 0 sólo debería utilizarse en entornos totalmente controlados y donde

no exista la posibilidad de acceso no autorizado; o donde los datos transmitidos sean de

uso público y por lo tanto no sean críticos para sistema.

4.2. Meters and More

4.2.1. Descripción

Meters and More9 es la evolución del protocolo propietario de telegestión de la compañía

energética italiana ENEL, que se ha desplegado en España gracias a su compra de la

compañía ENDESA. Actualmente se ha creado una alianza para promocionar el uso del

protocolo de forma abierta con otros competidores y fabricantes.

El protocolo Meters and More cubre la pila completa del modelo OSI, desde el nivel físico

hasta el de aplicación, permitiendo su utilización sobre diversos medios de transmisión:

Perfil PLC. Para la comunicación entre los contadores inteligentes y los

concentradores.

9 http://www.metersandmore.com/

Page 11: Guía de Seguridad en Protocolos Industriales Smart Grid · 3.2. Capas de actuación de los protocolos Los protocolos de las redes industriales son de nueva generación en su mayoría,

Guía de Seguridad en Protocolos Industriales Página 11 de 24

Smart Grid

Perfil IP. Para las comunicaciones a través de redes públicas entre el sistema

central y el concentrador.

Perfil IEC62056-2110. Para el acceso local a través del puerto óptico de

comunicaciones.

Perfil DLMS/COSEM (ver apartado 4.5). Para comunicaciones PLC realizando un

intercambio de objetos COSEM, como alternativa al perfil PLC.

La Figura 4 muestra el diagrama de capas de cada una de las variantes del protocolo.

Figura 4. Arquitectura Meters and More. Fuente: http://www.eic.cat/gfe/docs/15586.pdf

En Italia ya existen más de 35 millones de dispositivos desplegados utilizando este

protocolo y se espera que en España se instalen otros 15 millones antes de 2018 sólo en

el ámbito de ENEL – ENDESA.

4.2.2. Seguridad

10 http://en.wikipedia.org/wiki/IEC_62056

Page 12: Guía de Seguridad en Protocolos Industriales Smart Grid · 3.2. Capas de actuación de los protocolos Los protocolos de las redes industriales son de nueva generación en su mayoría,

Guía de Seguridad en Protocolos Industriales Página 12 de 24

Smart Grid

A nivel de seguridad, el protocolo Meters and More presenta las siguientes características

dentro de la capa de acceso al medio o capa 2 del modelo OSI:

Cifrado mediante claves AES de 128 bits.

Autenticación en base a claves simétricas.

Protección frente a ataques de retransmisión.

Comprobación de integridad de mensaje.

Claves individuales para cada contador, con control de acceso (lectura/escritura).

Protección extremo-extremo.

Los mensajes se cifran y autentican mediante la misma clave.

4.2.3. Recomendaciones de seguridad

El protocolo Meters and More incorpora características de seguridad en su diseño, por lo

que su utilización es recomendable siempre y cuando se utilicen dichas características de

forma adecuada.

Centrándonos en la utilización conjunta de Meters and More con DLMS/COSEM, no se

debe dejar toda la seguridad sobre este segundo protocolo y deben aplicarse también las

medias de seguridad propias de Meters and More.

En entornos mixtos donde se utilicen de forma conjunta los protocolos comentados, es

recomendable aplicar todas las medidas de seguridad propias de Meters and More a

aquellas características de seguridad adicionales aportadas por DLMS/COSEM (ver

apartado 4.5.2 y apartado 4.5.3).

4.3. G3-PLC

4.3.1. Descripción

G3-PLC11 es un protocolo estándar internacional abierto desarrollado específicamente para

las redes inteligentes por Sagem12, ERDF13 y Maxim14; que trabaja a baja frecuencia, por

debajo de los 500 kHz, promoviendo la interoperabilidad entre los 10 kHz y los 490 kHz en

su comunicación. Soporta diferentes modulaciones de OFDM y se trata de un protocolo

con comunicación bidireccional, de gran fiabilidad. La especificación G3-PLC incluye las

capas física y de enlace (MAC), donde se apoya en OFDM, y una capa de adaptación

6LoWPAN15 para transmitir paquetes IPv6 por la red. Estas características hacen que este

protocolo esté pensado para infraestructuras que poseen multitud de nodos a gran escala.

El protocolo está impulsado por el gestor de redes de distribución francés (ERDF).

Algunas de las características que posee este protocolo son las siguientes:

11 http://www.g3-plc.com/

12 http://www.sagem.com/

13 http://www.erdf.fr/

14 http://www.maximintegrated.com/

15 https://es.wikipedia.org/wiki/6LoWPAN

Page 13: Guía de Seguridad en Protocolos Industriales Smart Grid · 3.2. Capas de actuación de los protocolos Los protocolos de las redes industriales son de nueva generación en su mayoría,

Guía de Seguridad en Protocolos Industriales Página 13 de 24

Smart Grid

Robustez y amplio rango de frecuencias de comunicación que proporcionan una

gran ventaja a la hora de instalar dispositivos inteligentes que envíen datos a los

concentradores.

Diseño que permite la comunicación punto a punto mediante IPv6.

Utiliza las bandas definidas por CENELEC16, FCC17 y ARIB18:

La sección 15 de FCC define que la frecuencia de la banda para PLC en Norte América ha de estar entre 10 y 490 kHz.

ARIB define que la frecuencia de la banda para PLC en Asia ha de estar entre 10 y 450 kHz.

CENELEC EN50065-1 define el rango para bandas de baja frecuencia para PLC en Europa:

Figura 5. Bandas de frecuencia definidas por CENELEC.

Banda A (3-95 kHz): Las frecuencias en esta banda sólo se utilizan

para la monitorización o control de la parte de baja tensión de la red

de distribución, incluyendo la información de consumos energéticos

de los equipos e instalaciones conectados.

Banda B (95-125 kHz): Puede usarse para todo tipo de aplicaciones.

Banda C (125-140 kHz): Para los sistemas de redes domésticas.

Banda D (140-148.5 kHz): específico para alarmas y sistemas de

seguridad.

Se trata de una tecnología nueva, pero comprometida con los ajustes y objetivos

finales que marca el “objetivo 20-20-20” a las redes inteligentes.

Para poder entender el funcionamiento del protocolo G3-PLC en profundidad, es necesario

ver una descripción detallada de las capas donde se encuentra presente.

16 http://www.cenelec.eu/

17 https://www.fcc.gov/

18 http://www.arib.or.jp/english/index.html

Page 14: Guía de Seguridad en Protocolos Industriales Smart Grid · 3.2. Capas de actuación de los protocolos Los protocolos de las redes industriales son de nueva generación en su mayoría,

Guía de Seguridad en Protocolos Industriales Página 14 de 24

Smart Grid

Figura 6. Muestra del protocolo G3-PLC y el modelo OSI

El encapsulamiento de los datos del protocolo G3-PLC a través de las diferentes capas en

las que posee presencia este protocolo, se resume en la Figura 7.

Figura 7. Viaje de los datos en el protocolo 3G-PLC.

El mapa de la Figura 8, muestra los países que usan actualmente el protocolo G3-PLC y

los órganos que regulan las frecuencias a las que pueden trabajar los dispositivos que

Page 15: Guía de Seguridad en Protocolos Industriales Smart Grid · 3.2. Capas de actuación de los protocolos Los protocolos de las redes industriales son de nueva generación en su mayoría,

Guía de Seguridad en Protocolos Industriales Página 15 de 24

Smart Grid

implementen este protocolo en cada zona. Se espera que para el año 2018 están

implantados 35 millones de dispositivos usando este protocolo sólo en Francia.

Figura 8. Zonas donde se utiliza el protocolo G3-PLC. Fuente: www.g3-plc.com

4.3.2. Seguridad

El método G3-PLC adoptado para la implementación de la seguridad a nivel físico por G3-

PLC consiste en un cifrado AES-128 a nivel de capa de control de acceso al medio (MAC),

correspondiente con la capa 2 del modelo OSI, que posee las siguientes características:

Simplicidad: Se basa en una sola credencial (una clave de 128 bits pre-compartida)

y un único algoritmo de cifrado (AES-128).

Seguridad: Tiene un diseño bien conocido y mejorado de esquemas criptográficos.

Extensibilidad: En el caso de OFDM sobre PLC, se puede ampliar fácilmente para

apoyar la distribución de la clave de grupo.

La confidencialidad e integridad están asegurados a nivel de MAC. Como se define en

IEEE 802.15.4, un tipo de cifrado CCM19 se entrega a cada trama transmitida entre los

nodos de la red. El modo de cifrado CCM es utilizado en la capa MAC, y previene de

accesos indebidos de dispositivos a la red que realizan acciones maliciosas en la misma y

en otros procesos de capas inferiores. Las tramas MAC se cifran y descifran en cada salto.

Las únicas excepciones son algunas tramas en las primeras etapas del proceso de

arranque20. Para apoyar este servicio, todos los nodos de la red reciben la misma clave de

19 El cifrado CCM proporciona cifrado de datos mediante clave de 128 bits y un código de autenticación de mensaje (MAC)

a modo de firma del paquete.

20 https://es.wikipedia.org/wiki/Bootstrapping_(inform%C3%A1tica)

Page 16: Guía de Seguridad en Protocolos Industriales Smart Grid · 3.2. Capas de actuación de los protocolos Los protocolos de las redes industriales son de nueva generación en su mayoría,

Guía de Seguridad en Protocolos Industriales Página 16 de 24

Smart Grid

sesión de grupo (GMK). Esta GMK se distribuye de forma individual y de forma segura a

cada nodo mediante el canal seguro EAP-PSK.

Por otra parte, G3-PLC presenta dos arquitecturas de autenticación diferentes:

La función de servidor de autenticación esta soportada directamente por un LBS

(LoWPAN BootStrapping Server)21. En este caso todo el material de autenticación

(credenciales, listas de acceso, etc.) se debe cargar en los LBS. El LBS contiene

toda la información base de cada uno de los dispositivos activos.

El servidor de autenticación está soportado por un servidor AAA (autenticación,

autorización y contabilización) remoto. En este caso, el LBS sólo es responsable de

la transmisión de los mensajes EAP al servidor AAA través de un protocolo AAA

estándar como es RADIUS22.

Figura 9. Confidencialidad y seguridad gracias a la comunicación cifrada en G3-PLC. Fuente: www.erdf.fr

4.3.3. Recomendaciones de seguridad

Como protocolo de comunicaciones, G3-PLC no dispone de opciones de seguridad que

puedan ser habilitadas/deshabilitadas o configuradas según las necesidades. Todas las

medidas están siempre activadas para su uso. La única opción parametrizable es la

21 https://tools.ietf.org/html/draft-daniel-6lowpan-commissioning-02

22 https://tools.ietf.org/html/rfc2865

Page 17: Guía de Seguridad en Protocolos Industriales Smart Grid · 3.2. Capas de actuación de los protocolos Los protocolos de las redes industriales son de nueva generación en su mayoría,

Guía de Seguridad en Protocolos Industriales Página 17 de 24

Smart Grid

autenticación, donde se recomienda usar el protocolo RADIUS para establecer la

autenticación entre el cliente y el servidor AAA.

Fuera del propio protocolo se recomienda realizar un correcto filtrado de la información que

llega a través de las redes PLC.

Como G3-PLC solo implementa los niveles bajos del modelo OSI se debe utilizar algún otro

protocolo en los niveles superiores. Estos protocolos de niveles superiores también deben

tener habilitadas las características de seguridad que tengan disponible.

4.4. OSGP

4.4.1. Descripción

El protocolo abierto de Smart Grid (OSGP) se aplica actualmente en varios países en

proyectos de Smart Metering a gran escala. Fue desarrollado por OSGP Alliance23 y

publicado como un estándar por el Instituto Europeo de Estándares y Telecomunicaciones

(ETSI). Es uno de los protocolos más utilizados y probados en el campo de los contadores

y redes inteligentes y en la actualidad existen más de 100 millones de dispositivos que lo

soportan desplegados por todo el mundo.

OSGP sigue un enfoque moderno basado en el modelo OSI y la frecuencia a la que

trabajan los dispositivos que lo utilizan se encuentra en un rango entre 9 kHz y 95 kHz.

OSGP especifica una capa de control independiente del medio para la comunicación

segura entre medidores y nodos de control.

Figura 10. Intensidades a las que trabajan los dispositivos que usan el protocolo OSGP. Fuente: www.esna.org

OSGP se basa en los siguientes estándares abiertos:

ETSI GS OSG 001 (Capa de aplicación).

ISO/IEC 14908-1 (Capa de transporte).

23 http://www.osgp.org/

Page 18: Guía de Seguridad en Protocolos Industriales Smart Grid · 3.2. Capas de actuación de los protocolos Los protocolos de las redes industriales son de nueva generación en su mayoría,

Guía de Seguridad en Protocolos Industriales Página 18 de 24

Smart Grid

ETSI TS 103 908 (Capa física).

4.4.2. Seguridad

Las medidas de seguridad se incluyen para proteger la privacidad de los consumidores al

restringir el acceso a los datos, utilizándose el cifrado de estos datos para evitar el acceso

no autorizado. Las medidas de seguridad también se incluyen para detectar intentos de

eludir otras funciones, como por ejemplo no realizar de forma correcta la medición y evitar

que se envíen los datos de las lecturas al concentrador.

A continuación se detallan las cuatro características de seguridad del protocolo:

Algoritmo RC4: Sistema de cifrado de flujo entre puntos que convierte el texto plano

en texto cifrado bit a bit. La implementación del algoritmo RC4 en OSGP es similar

a la utilizada en WEP y con similares debilidades.

Función de respuesta: OSGP implementa una función de respuesta para usar con

el mensaje de autenticación.

Secure Broadcast: Es un mecanismo que se utiliza para enviar actualizaciones de

firmware.

Claves: El protocolo usa claves de sesión para cifrar los mensajes y una clave

maestra para la autenticación.

4.4.3. Recomendaciones de seguridad

Las características de seguridad que incorpora el protocolo OSGP no proporcionan toda la

seguridad que se las presupone.

La implementación del algoritmo RC4 en el protocolo OSGP mantiene las

debilidades detectadas en el protocolo WEP y es considerado un algoritmo de

cifrado inseguro.

La función resumen (digest) produce una salida de 8 bytes de longitud que se

genera mediante un proceso byte a byte de forma lineal, reutilizando parte de la

clave limitando la entropía del proceso. La debilidad de este proceso permite

realizar una manipulación de las respuestas generadas.

La distribución de firmware mediante “Secure Broadcast” se realiza sin ninguna

medida especificada para autenticar el origen.

La clave maestra usada para la autenticación también es usada para proporcionar

las claves de sesión.

Debido a estas carencias de las medidas de seguridad propias del protocolo, es

recomendable utilizar medidas de seguridad externas para poder asegurar las

comunicaciones realizadas mediante OSGP, tales como la utilización de herramientas

adicionales, como pueden ser el uso de dispositivos de cifrado con el fin cifrar de forma

robusta las comunicaciones PLC punto a punto o el uso de filtrado en la comunicación PLC

entre los contadores y el concentrador.

4.5. DLMS/COSEM

4.5.1. Descripción

Page 19: Guía de Seguridad en Protocolos Industriales Smart Grid · 3.2. Capas de actuación de los protocolos Los protocolos de las redes industriales son de nueva generación en su mayoría,

Guía de Seguridad en Protocolos Industriales Página 19 de 24

Smart Grid

DLMS/COSEM24 es un protocolo de nivel de aplicación que define desde la capa 4 hasta

la capa 7 del modelo OSI. El significado de las siglas que dan nombre al protocolo es el

siguiente

DLMS: “Device Language Message Specification”, un concepto generalizado para

un modelo abstracto de entidades de comunicación.

COSEM: “COmpanion Specification for Energy Metering”, fija las reglas, basadas

en estándares, para el intercambio de información con los contadores de energía.

Este protocolo está regulado por la norma IEC 6205625.

Figura 11. Modelo de capas de DLMS/COSEM

El protocolo DLMS/COSEM se desarrolló para ser utilizado conjuntamente al protocolo

PRIME, el cual actúa en los niveles inferiores del modelo OSI, o a protocolos de nivel de

red (IPv4/IPv6). De esta forma se permiten comunicaciones con dispositivos de bajo nivel,

como los contadores inteligentes, y las comunicaciones con sistemas con más recursos,

como los equipos de los centros de control. También es posible utilizar este protocolo

conjuntamente con el protocolo “Meters and More”.

24 http://www.dlms.com/

25 http://www.dlms.com/documentation/dlmscosemspecification/iecstandardsforelectricitymetering.html

Page 20: Guía de Seguridad en Protocolos Industriales Smart Grid · 3.2. Capas de actuación de los protocolos Los protocolos de las redes industriales son de nueva generación en su mayoría,

Guía de Seguridad en Protocolos Industriales Página 20 de 24

Smart Grid

Figura 12. Arquitectura DLMS/COSEM. Fuente: www.dlms.com

4.5.2. Seguridad

La seguridad en el protocolo DLMS/COSEM se clasifica en tres niveles de seguridad

diferentes:

Lowest level security: Este nivel no aporta ningún tipo de seguridad a la

comunicación DLMS/COSEM.

Low Level security: La seguridad de la comunicación DLMS/COSEM está basada

en el uso de credenciales. El cliente ha de disponer de una contraseña para poder

realizar la comunicación.

High Level security: Es el máximo nivel de seguridad permitido. El cliente y el

servidor han de realizar un método de autenticación mutua utilizando un proceso

de cuatro pasos.

Page 21: Guía de Seguridad en Protocolos Industriales Smart Grid · 3.2. Capas de actuación de los protocolos Los protocolos de las redes industriales son de nueva generación en su mayoría,

Guía de Seguridad en Protocolos Industriales Página 21 de 24

Smart Grid

Figura 13. Autenticación en DLMS/COSEM

El contexto de seguridad define atributos de seguridad relevantes para transformaciones

criptográficas e incluye los siguientes elementos:

Suite de seguridad: Determina el algoritmo de seguridad utilizado y el uso de cifrado

(AES 128).

Política de seguridad: Determina el tipo de protección que es aplicado a los

paquetes del protocolo.

Material de seguridad: Es información relevante para el algoritmo de seguridad,

incluye claves de seguridad, vectores de inicialización, certificados de clave pública,

etc. El material de seguridad es específico para cada algoritmo.

Page 22: Guía de Seguridad en Protocolos Industriales Smart Grid · 3.2. Capas de actuación de los protocolos Los protocolos de las redes industriales son de nueva generación en su mayoría,

Guía de Seguridad en Protocolos Industriales Página 22 de 24

Smart Grid

Figura 14. Seguridad en los paquetes DLMS/COSEM. Fuente: www.dlms.com

4.5.3. Recomendaciones de seguridad

El protocolo DLMS/COSEM es un protocolo de alto nivel con presencia en la capa de

aplicación. Este hecho permite el uso de otros protocolos para reforzar la seguridad en

capas inferiores donde existe un transporte de datos (cifrado), lo que a su vez aporta un

nivel extra de seguridad no presente en otros protocolos. Además, al poder utilizar

diferentes protocolos en los niveles inferiores, que pueden o no tener activadas algunas

funciones de seguridad, para proteger el envío de información entre cliente y servidor

independientemente del medio utilizado.

Siempre que sea posible es recomendable utilizar el perfil “High Level security”, el nivel

más alto de seguridad que proporciona el protocolo. Además, para añadir mayor nivel de

seguridad se recomienda la utilización de certificados digitales junto a una infraestructura

de PKI para realizar la autenticación de los dispositivos en la comunicación.

Cuando se utiliza DLMS/COSEM sobre TCP/IP es posible utilizar herramientas de

comunicaciones de seguridad como cortafuegos y dispositivos IDS/IPS. El puerto utilizado

por defecto es el 4059, por lo que es recomendable monitorizar el tráfico asociado con

dicho puerto.

Page 23: Guía de Seguridad en Protocolos Industriales Smart Grid · 3.2. Capas de actuación de los protocolos Los protocolos de las redes industriales son de nueva generación en su mayoría,

Guía de Seguridad en Protocolos Industriales Página 23 de 24

Smart Grid

5. CUADRO COMPARATIVO RESUMEN

Protocolo PRIME DLMS/COSEM Meters and More G3-PLC OSGP

Aspectos generales

Tipo de estándar

Abierto Abierto Propietario Abierto Abierto

Medio de transmisión

PLC Ethernet PLC

Ethernet Serie

PLC Ethernet

PLC Ethernet

Región de uso España España Italia

España Francia Norte de Europa

Compatibilidad DLMS/COSEM

PRIME M&M

G3-PLC OSGP

DLMS/COSEM DLMS/COSEM DLMS/COSEM

G3-PLC

Seguridad Cifrado Perfiles 1 y 2 Niveles Low y High SI SI SI

Autenticación Perfiles 1 y 2 Niveles Low y High SI SI SI

Capas implementadas

por el protocolo (nivel OSI)

1 X X X X

2 X X X X

3 X X X

4 X X X X

5 X X X

6 X X X

7 X X X X

Recomendaciones de seguridad

Utilizar el perfil de seguridad 1

o 2

Utilizar High Level security

Sobre TCP/IP realizar filtrado en el

puerto 4059

En despliegues conjuntos con DLMS/COSEM

aplicar la seguridad en ambos protocolos

Utilizar autenticación vía RADIUS

Utilizar medidas de cifrado

adicionales

Tabla 1: Cuadro resumen de protocolos de las redes inteligentes.

Page 24: Guía de Seguridad en Protocolos Industriales Smart Grid · 3.2. Capas de actuación de los protocolos Los protocolos de las redes industriales son de nueva generación en su mayoría,

Guía de Seguridad en Protocolos Industriales Página 24 de 24

Smart Grid