Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik",...

38
Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik Sommersemester 2014 Prof. Thomas Pertsch Abbe School of Photonics, Friedrich-Schiller-Universität Jena Table of content 0. Introduction ................................................................................................ 4 1. Ray optics - geometrical optics ................................................................ 15 1.1 Introduction ........................................................................................................... 15 1.2 Postulates ............................................................................................................. 15 1.3 Simple rules for propagation of light ..................................................................... 16 1.4 Simple optical components................................................................................... 16 1.5 Ray tracing in inhomogeneous media (graded-index - GRIN optics) .................. 20 Ray equation .............................................................................................. 20 1.5.1 The eikonal equation.................................................................................. 22 1.5.2 1.6 Matrix optics.......................................................................................................... 22 The ray-transfer-matrix .............................................................................. 23 1.6.1 Matrices of optical elements ...................................................................... 23 1.6.2 Cascaded elements ................................................................................... 24 1.6.3 2. Optical fields in dispersive and isotropic media ....................................... 25 2.1 Maxwell’s equations.......................................................................................... 25 Adaption to optics ...................................................................................... 25 2.1.1 Temporal dependence of the fields ........................................................... 28 2.1.2 Maxwell’s equations in Fourier domain ..................................................... 29 2.1.3 From Maxwell’s equations to the wave equation ....................................... 29 2.1.4 Decoupling of the vectorial wave equation ................................................ 31 2.1.5 2.2 Optical properties of matter .................................................................................. 32 Basics......................................................................................................... 32 2.2.1 Dielectric polarization and susceptibility .................................................... 35 2.2.2 Conductive current and conductivity.......................................................... 37 2.2.3 The generalized complex dielectric function.............................................. 38 2.2.4 Material models in time domain ................................................................. 42 2.2.5 2.3 The Poynting vector and energy balance ............................................................. 44 Time averaged Poynting vector ................................................................. 44 2.3.1 Time averaged energy balance ................................................................. 45 2.3.2 2.4 Normal modes in homogeneous isotropic media ................................................. 49 Transversal waves ..................................................................................... 50 2.4.1 Longitudinal waves .................................................................................... 51 2.4.2 Plane wave solutions in different frequency regimes ................................ 52 2.4.3 Time averaged Poynting vector of plane waves ........................................ 58 2.4.4 2.5 The Kramers-Kronig relation ................................................................................ 58 2.6 Beams and pulses - analogy of diffraction and dispersion................................... 61 2.7 Diffraction of monochromatic beams in homogeneous isotropic media .............. 63 Arbitrarily narrow beams (general case) .................................................... 64 2.7.1 Fresnel- (paraxial) approximation .............................................................. 70 2.7.2 The paraxial wave equation ....................................................................... 75 2.7.3 2.8 Propagation of Gaussian beams .......................................................................... 77 Propagation in paraxial approximation ...................................................... 77 2.8.1 Propagation of Gauss beams with q-parameter formalism ....................... 82 2.8.2 Gaussian optics ......................................................................................... 83 2.8.3 Gaussian modes in a resonator ................................................................. 87 2.8.4 Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 2 2.9 Dispersion of pulses in homogeneous isotropic media ........................................ 92 Pulses with finite transverse width (pulsed beams) ................................... 92 2.9.1 Infinite transverse extension - pulse propagation ...................................... 98 2.9.2 Example 1: Gaussian pulse without chirp.................................................. 99 2.9.3 Example 2: Chirped Gaussian pulse ....................................................... 102 2.9.4 3. Diffraction theory .................................................................................... 106 3.1 Interaction with plane masks ..............................................................................106 3.2 Propagation using different approximations .......................................................107 The general case - small aperture ........................................................... 107 3.2.1 Fresnel approximation (paraxial approximation) ..................................... 107 3.2.2 Paraxial Fraunhofer approximation (far field approximation) .................. 108 3.2.3 Non-paraxial Fraunhofer approximation .................................................. 110 3.2.4 3.3 Fraunhofer diffraction at plane masks (paraxial) ................................................110 Fraunhofer diffraction pattern .................................................................. 110 3.3.1 3.4 Remarks on Fresnel diffraction...........................................................................115 4. Fourier optics - optical filtering ............................................................... 116 4.1 Imaging of arbitrary optical field with thin lens ...................................................116 Transfer function of a thin lens ................................................................ 116 4.1.1 Optical imaging ........................................................................................ 117 4.1.2 4.2 Optical filtering and image processing ...............................................................119 The 4f-setup ............................................................................................. 119 4.2.1 Examples of aperture functions ............................................................... 121 4.2.2 Optical resolution ..................................................................................... 122 4.2.3 5. The polarization of electromagnetic waves ............................................ 125 5.1 Introduction .........................................................................................................125 5.2 Polarization of normal modes in isotropic media................................................125 5.3 Polarization states ..............................................................................................126 6. Principles of optics in crystals ................................................................ 128 6.1 Susceptibility and dielectric tensor .....................................................................128 6.2 The optical classification of crystals ...................................................................130 6.3 The index ellipsoid ..............................................................................................131 6.4 Normal modes in anisotropic media ...................................................................132 Normal modes propagating in principal directions .................................. 133 6.4.1 Normal modes for arbitrary propagation direction ................................... 134 6.4.2 Normal surfaces of normal modes ........................................................... 138 6.4.3 Special case: uniaxial crystals ................................................................. 140 6.4.4 7. Optical fields in isotropic, dispersive and piecewise homogeneous media ............................................................................................................. 143 7.1 Basics .................................................................................................................143 Definition of the problem .......................................................................... 143 7.1.1 Decoupling of the vectorial wave equation .............................................. 144 7.1.2 Interfaces and symmetries ....................................................................... 145 7.1.3 Transition conditions ................................................................................ 145 7.1.4 7.2 Fields in a layer system matrix method .........................................................146 Fields in one homogeneous layer ............................................................ 146 7.2.1 The fields in a system of layers ............................................................... 148 7.2.2 7.3 Reflection – transmission problem for layer systems .........................................150 General layer systems ............................................................................. 150 7.3.1 Single interface ........................................................................................ 156 7.3.2 Periodic multi-layer systems - Bragg-mirrors - 1D photonic crystals....... 163 7.3.3 Fabry-Perot-resonators ............................................................................ 170 7.3.4 7.4 Guided waves in layer systems ..........................................................................176 Field structure of guided waves ............................................................... 176 7.4.1

Transcript of Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik",...

Page 1: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1

Grundkonzepte der Optik Sommersemester 2014

Prof. Thomas Pertsch Abbe School of Photonics, Friedrich-Schiller-Universität Jena

Table of content 0.  Introduction ................................................................................................ 4 1.  Ray optics - geometrical optics ................................................................ 15 

1.1  Introduction ........................................................................................................... 15 1.2  Postulates ............................................................................................................. 15 1.3  Simple rules for propagation of light ..................................................................... 16 1.4  Simple optical components ................................................................................... 16 1.5  Ray tracing in inhomogeneous media (graded-index - GRIN optics) .................. 20 

  Ray equation .............................................................................................. 20 1.5.1  The eikonal equation.................................................................................. 22 1.5.2

1.6  Matrix optics .......................................................................................................... 22   The ray-transfer-matrix .............................................................................. 23 1.6.1  Matrices of optical elements ...................................................................... 23 1.6.2  Cascaded elements ................................................................................... 24 1.6.3

2.  Optical fields in dispersive and isotropic media ....................................... 25 2.1  Maxwell’s equations .......................................................................................... 25 

  Adaption to optics ...................................................................................... 25 2.1.1  Temporal dependence of the fields ........................................................... 28 2.1.2  Maxwell’s equations in Fourier domain ..................................................... 29 2.1.3  From Maxwell’s equations to the wave equation ....................................... 29 2.1.4  Decoupling of the vectorial wave equation ................................................ 31 2.1.5

2.2  Optical properties of matter .................................................................................. 32   Basics ......................................................................................................... 32 2.2.1  Dielectric polarization and susceptibility .................................................... 35 2.2.2  Conductive current and conductivity .......................................................... 37 2.2.3  The generalized complex dielectric function .............................................. 38 2.2.4  Material models in time domain ................................................................. 42 2.2.5

2.3  The Poynting vector and energy balance ............................................................. 44   Time averaged Poynting vector ................................................................. 44 2.3.1  Time averaged energy balance ................................................................. 45 2.3.2

2.4  Normal modes in homogeneous isotropic media ................................................. 49   Transversal waves ..................................................................................... 50 2.4.1  Longitudinal waves .................................................................................... 51 2.4.2  Plane wave solutions in different frequency regimes ................................ 52 2.4.3  Time averaged Poynting vector of plane waves ........................................ 58 2.4.4

2.5  The Kramers-Kronig relation ................................................................................ 58 2.6  Beams and pulses - analogy of diffraction and dispersion ................................... 61 2.7  Diffraction of monochromatic beams in homogeneous isotropic media .............. 63 

  Arbitrarily narrow beams (general case) .................................................... 64 2.7.1  Fresnel- (paraxial) approximation .............................................................. 70 2.7.2  The paraxial wave equation ....................................................................... 75 2.7.3

2.8  Propagation of Gaussian beams .......................................................................... 77   Propagation in paraxial approximation ...................................................... 77 2.8.1  Propagation of Gauss beams with q-parameter formalism ....................... 82 2.8.2  Gaussian optics ......................................................................................... 83 2.8.3  Gaussian modes in a resonator ................................................................. 87 2.8.4

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 2

2.9  Dispersion of pulses in homogeneous isotropic media ........................................ 92   Pulses with finite transverse width (pulsed beams) ................................... 92 2.9.1  Infinite transverse extension - pulse propagation ...................................... 98 2.9.2  Example 1: Gaussian pulse without chirp .................................................. 99 2.9.3  Example 2: Chirped Gaussian pulse ....................................................... 102 2.9.4

3.  Diffraction theory .................................................................................... 106 3.1  Interaction with plane masks .............................................................................. 106 3.2  Propagation using different approximations ....................................................... 107 

  The general case - small aperture ........................................................... 107 3.2.1  Fresnel approximation (paraxial approximation) ..................................... 107 3.2.2  Paraxial Fraunhofer approximation (far field approximation) .................. 108 3.2.3  Non-paraxial Fraunhofer approximation .................................................. 110 3.2.4

3.3  Fraunhofer diffraction at plane masks (paraxial) ................................................ 110   Fraunhofer diffraction pattern .................................................................. 110 3.3.1

3.4  Remarks on Fresnel diffraction........................................................................... 115 4.  Fourier optics - optical filtering ............................................................... 116 

4.1  Imaging of arbitrary optical field with thin lens ................................................... 116   Transfer function of a thin lens ................................................................ 116 4.1.1  Optical imaging ........................................................................................ 117 4.1.2

4.2  Optical filtering and image processing ............................................................... 119   The 4f-setup ............................................................................................. 119 4.2.1  Examples of aperture functions ............................................................... 121 4.2.2  Optical resolution ..................................................................................... 122 4.2.3

5.  The polarization of electromagnetic waves ............................................ 125 5.1  Introduction ......................................................................................................... 125 5.2  Polarization of normal modes in isotropic media ................................................ 125 5.3  Polarization states .............................................................................................. 126 

6.  Principles of optics in crystals ................................................................ 128 6.1  Susceptibility and dielectric tensor ..................................................................... 128 6.2  The optical classification of crystals ................................................................... 130 6.3  The index ellipsoid .............................................................................................. 131 6.4  Normal modes in anisotropic media ................................................................... 132 

  Normal modes propagating in principal directions .................................. 133 6.4.1  Normal modes for arbitrary propagation direction ................................... 134 6.4.2  Normal surfaces of normal modes ........................................................... 138 6.4.3  Special case: uniaxial crystals ................................................................. 140 6.4.4

7.  Optical fields in isotropic, dispersive and piecewise homogeneous media ............................................................................................................. 143 

7.1  Basics ................................................................................................................. 143   Definition of the problem .......................................................................... 143 7.1.1  Decoupling of the vectorial wave equation .............................................. 144 7.1.2  Interfaces and symmetries ....................................................................... 145 7.1.3  Transition conditions ................................................................................ 145 7.1.4

7.2  Fields in a layer system matrix method ......................................................... 146   Fields in one homogeneous layer ............................................................ 146 7.2.1  The fields in a system of layers ............................................................... 148 7.2.2

7.3  Reflection – transmission problem for layer systems ......................................... 150   General layer systems ............................................................................. 150 7.3.1  Single interface ........................................................................................ 156 7.3.2  Periodic multi-layer systems - Bragg-mirrors - 1D photonic crystals ....... 163 7.3.3  Fabry-Perot-resonators ............................................................................ 170 7.3.4

7.4  Guided waves in layer systems .......................................................................... 176   Field structure of guided waves ............................................................... 176 7.4.1

Page 2: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 3

  Dispersion relation for guided waves ....................................................... 177 7.4.2  Guided waves at interface - surface polariton ......................................... 179 7.4.3  Guided waves in a layer – film waveguide .............................................. 181 7.4.4  how to excite guided waves ..................................................................... 185 7.4.5

This script originates from the lecture series “Theoretische Optik” given by Falk Lederer at the FSU Jena for many years between 1990 and 2012. Later the script was adapted by Stefan Skupin and Thomas Pertsch for the international education program of the Abbe School of Photonics.

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 4

0. Introduction 'optique' (Greek) lore of light 'what is light'? Is light a wave or a particle (photon)?

D.J. Lovell, Optical Anecdotes

Light is the origin and requirement for life photosynthesis 90% of information we get is visual

A) What is light? electromagnetic wave ( 83 10 /c m s ) amplitude and phase complex description polarization, coherence

Spectrum of Electromagnetic Radiation

Region Wavelength[nm]

Wavelength [m] (nm=10-9m)

Frequency [Hz] (THz=1012Hz)

Energy [eV]

Radio > 108 > 10-1 < 3 x 109 < 10-5

Microwave 108 - 105 10-1 – 10-4 3 x 109 - 3 x 1012 10-5 - 0.01

Infrared 105 - 700 10-4 - 7 x 10-7 3 x 1012 - 4.3 x 1014 0.01 - 2

Visible 700 - 400 7 x 10-7 - 4 x 10-7 4.3 x 1014 - 7.5 x 1014 2 - 3

Ultraviolet 400 - 1 4 x 10-7 - 10-9 7.5 x 1014 - 3 x 1017 3 - 103

X-Rays 1 - 0.01 10-9 - 10-11 3 x 1017 - 3 x 1019 103 - 105

Gamma Rays < 0.01 < 10-11 > 3 x 1019 > 105

Page 3: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 5

B) Origin of light atomic system determines properties of light (e.g. statistics, frequency,

line width) optical system other properties of light (e.g. intensity, duration, …) invention of laser in 1958 very important development

Schawlow and Townes, Phys. Rev. (1958).

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 6

laser artificial light source with new and unmatched properties (e.g. coherent, directed, focused, monochromatic)

applications of laser: fiber-communication, DVD, surgery, microscopy, material processing, ...

Fiber laser: Limpert, Tünnermann, IAP Jena, ~10kW CW (world record)

C) Propagation of light through matter light-matter interaction (G: Licht-Materie-Wechselwirkung)

dispersion diffraction absorption scattering ↓ ↓ ↓ ↓ frequency spatial center of wavelength spectrum frequency frequency spectrum

matter is the medium of propagation the properties of the medium

(natural or artificial) determine the propagation of light light is the means to study the matter (spectroscopy) measurement

methods (interferometer) design media with desired properties: glasses, polymers, semiconductors,

compounded media (effective media, photonic crystals, meta-materials)

Page 4: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 7

Two-dimensional photonic crystal membrane.

D) Light can modify matter light induces physical, chemical and biological processes used for lithography, material processing, or modification of biological

objects (bio-photonics)

Hole “drilled” with a fs laser at Institute of Applied Physics, FSU Jena.

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 8

E) Optical telecommunication transmitting data (Terabit/s in one fiber) over transatlantic distances

1000 m telecommunication fiber is installed every second.

Page 5: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 9

F) Optics in medicine and life sciences

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 10

G) Light sensors and light sources new light sources to reduce energy consumption

new projection techniques

Deutscher Zukunftspreis 2008 - IOF Jena + OSRAM

Page 6: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 11

H) Micro- and nano-optics ultra small camera

Insect inspired camera system develop at Fraunhofer Institute IOF Jena

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 12

I) Relativistic optics

Page 7: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 13

J) Schematic of optics

geometrical optics

<< size of objects daily experience optical instruments, optical imaging intensity, direction, coherence, phase, polarization, photons

G: Intensität, Richtung, Kohärenz, Phase, Polarisation, Photon

wave optics size of objects interference, diffraction, dispersion, coherence laser, holography, resolution, pulse propagation intensity, direction, coherence, phase, polarization, photons

electromagnetic optics

reflection, transmission, guided waves, resonators laser, integrated optics, photonic crystals, Bragg mirrors ... intensity, direction, coherence, phase, polarization, photons

quantum optics

small number of photons, fluctuations, light-matter interaction intensity, direction, coherence, phase, polarization, photons

in this lecture

electromagnetic optics and wave optics

geometrical optics

wave optics

electromagnetic optics

quantum optics

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 14

no quantum optics advanced lecture

K) Literature Fundamental

1. Saleh, Teich, 'Fundamenals of Photonics', Wiley (1992) in German: "Grundlagen der Photonik" Wiley (2008)

2. Hecht, 'Optic', Addison-Wesley (2001) in German: "Optik", Oldenbourg (2005)

3. Mansuripur, 'Classical Optics and its Applications', Cambridge (2002) 4. Menzel, 'Photonics', Springer (2000) 5. Lipson, Lipson, Tannhäuser, 'Optik'; Springer (1997) 6. Born, Wolf, 'Principles of Optics', Pergamon 7. Sommerfeld, 'Optik'

Advanced 1. W. Silvast, 'Laser Fundamentals', 2. Agrawal, 'Fiber-Optic Communication Systems', Wiley 3. Band, 'Light and Matter', Wiley, 2006 4. Karthe, Müller, 'Integrierte Optik', Teubner 5. Diels, Rudolph, 'Ultrashort Laser Pulse Phenomena', Academic 6. Yariv, 'Optical Electronics in modern Communications', Oxford 7. Snyder, Love, 'Optical Waveguide Theory', Chapman&Hall 8. Römer, 'Theoretical Optics', Wiley,2005.

Page 8: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 15

1. Ray optics - geometrical optics 1.1 Introduction

Ray optics or geometrical optics is the simplest theory for doing optics. In this theory, propagation of light in various optical media can be

described by simple geometrical rules. Ray optics is based on a very rough approximation (0, no wave

phenomena), but we can explain almost all daily life experiences involving light (shadows, mirrors, etc.).

In particular, we can describe optical imaging with ray optics approach. In isotropic media, the direction of rays corresponds to the direction of

energy flow. What is covered in this chapter?

It gives fundamental postulates of the theory. It derives simple rules for propagation of light (rays). It introduces simple optical components. It introduces light propagation in inhomogeneous media (graded-index

(GRIN) optics). It introduces paraxial matrix optics.

1.2 Postulates A) Light propagates as rays. Those rays are emitted by light-sources and

are observable by optical detectors. B) The optical medium is characterized by a function n(r), the so-called

refractive index (n(r) 1 - meta-materials n(r) <0)

cnc

n

cn – speed of light in the medium

C) optical path length delay i) homogeneous media

nl ii) inhomogeneous media

( )B

A

n ds r

D) Fermat’s principle

( ) 0B

A

n ds r

Rays of light choose the optical path with the shortest delay.

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 16

1.3 Simple rules for propagation of light A) Homogeneous media

n = const. minimum delay = minimum distance Rays of light propagate on straight lines.

B) Reflection by a mirror (metal, dielectric coating) The reflected ray lies in the plane of incidence. The angle of reflection equals the angle of incidence.

C) Reflection and refraction by an interface Incident ray reflected ray plus refracted ray The reflected ray obeys b). The refracted ray lies in the plane of incidence.

The angle of refraction 2 depends on the angle of incidence 1 and is

given by Snell’s law: 1 1 2 2sin sinn n

no information about amplitude ratio.

1.4 Simple optical components A) Mirror

i) Planar mirror Rays originating from P1 are reflected and seem to originate from P2.

ii) Parabolic mirror Parallel rays converge in the focal point (focal length f). Applications: Telescope, collimator

Page 9: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 17

iii) Elliptic mirror Rays originating from focal point P1 converge in the second focal point

P2

iv) Spherical mirror Neither imaging like elliptical mirror nor focusing like parabolic mirror parallel rays cross the optical axis at different points connecting line of intersections of rays caustic

parallel, paraxial rays converge to the focal point f = (-R)/2 convention: R < 0 - concave mirror; R > 0 - convex mirror. for paraxial rays the spherical mirror acts as a focusing as well as an

imaging optical element. paraxial rays emitted in point P1 are reflected and converge in point P2

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 18

1 1 2( )1 2z z R

(imaging formula)

paraxial imaging: imaging formula and magnification m = -z2 /z1 (proof given in exercises) B) Planar interface Snell’s law: 1 1 2 2sin sinn n

for paraxial rays: 1 1 2 2n n external reflection ( 1 2n n ): ray refracted away from the interface internal reflection ( 1 2n n ): ray refracted towards the interface total internal reflection (TIR) for:

2 2

2

1

sin sin nn

1 TIR

C) Spherical interface (paraxial)

paraxial imaging

Page 10: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 19

1 2 12 1

2 2

n n n yn n R

(*)

1 2 2 1

1 2

n n n nz z R

(imaging formula)

1 2

2 1

n zmn z

(magnification)

(Proof: exercise) if paraxiality is violated aberration rays coming from one point of the object do not intersect in one point

of the image (caustic) D) Spherical thin lense (paraxial)

two spherical interfaces (R1, R2, ) apply (*) two times and assume

y=const ( small)

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 20

2 1yf

with focal length: 1 2

1 1 11nf R R

1 2

1 1 1z z f (imaging formula) 2

1

zmz

(magnification)

(compare to spherical mirror)

1.5 Ray tracing in inhomogeneous media (graded-index - GRIN optics) ( )n r - continuous function, fabricated by, e.g., doping curved trajectories graded-index layer can act as, e.g., a lens

Ray equation 1.5.1Starting point: we minimize the optical path or the delay (Fermat)

( ) 0B

A

n ds r

computation:

B

A

L n s ds r

variation of the path: ( ) ( )s s r r

Page 11: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 21

2 2

2 2 2

grad

2

1 2

1

B B

A A

L nds n ds

n n

ds d d d

d d d d d

d dds dsds ds

d dds dsds ds

d ddsds ds

r

r r r

r r r r r

r r

r r

r r

grad

grad

B

AB

A

d dL n n dsds ds

d dn n dsds ds

r rr

r r integration by parts and A,B fix

0L for arbitrary variation

grad d dn nds ds

r ray equation

Possible solutions: A) trajectory

x(z) , y(z) and 2 21ds dz dx dz dy dz

solve for x(z) , y(z) paraxial rays (ds dz )

, ,

, ,

d dx dnn x y zdz dz dx

d dy dnn x y zdz dz dy

B) homogeneous media straight lines

C) graded-index layer n(y) - paraxial, SELFOC

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 22

paraxial 1dydz and dz ds

22 2 20

220

1( ) 1 ( ) 12

n y n y n y yn

for 1a

2 2

2 2

1 ( )d dy d dy d y d y dn yn y n y n yds ds dz dz dz dz n y dy

for n(y)-n0<<1: 2

22

d y ydz

00

0 0

( ) cos sin

( ) sin cos

y z z z

dy

y

z y z zdz

The eikonal equation 1.5.2 bridge between geometrical optics and wave eikonal S(r) = constant planes perpendicular to rays from S(r) we can determine direction of rays grad S(r) (like potential)

2 2S n grad r r

Remark: it is possible to derive Fermat’s principle from eikonal equation geometrical optics: Fermat’s or eikonal equation

gradB A

B B

A AS S S ds n ds r r r r

eikonal optical path length phase of the wave

1.6 Matrix optics technique for paraxial ray tracing through optical systems propagation in a single plane only rays are characterized by the distance to the optical axis (y) and their

inclination () two algebraic equation 2 x 2 matrix Advantage: we can trace a ray through an optical system of many elements by multiplication of matrices.

Page 12: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 23

The ray-transfer-matrix 1.6.1

in paraxial approximation:

2 1 1

2 1 1

y Ay B

Cy D

2 1

2 1

y yA B A BC D C D

M

A=0: same 1 same y2 focusing D=0: same 1y same 2 collimation

Matrices of optical elements 1.6.2A) free space

10 1

d

M

B) refraction on planar interface

1 2

1 00 n n

M

C) refraction on spherical interface

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 24

2 1 2 1 2

1 0n n n R n n

M

D) thin lens

1 01 1f

M

E) reflection on planar mirror

1 00 1

M

F) reflection on spherical mirror (compare to lens)

1 02 1R

M

Cascaded elements 1.6.3

1 1

1 1

N

N

y yA B A BC D C D

M M=MN….M2M

Page 13: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 25

2. Optical fields in dispersive and isotropic media 2.1 Maxwell’s equations Our general starting point is the set of Maxwell’s equations. They are the basis of the electromagnetic approach to optics which is developed in this lecture.

Adaption to optics 2.1.1The notation of Maxwell’s equations is different for different disciplines of science and engineering which rely on these equations to describe electromagnet phenomena at different frequency ranges. Even though Maxwell's equations are valid for all frequencies, the physics of light matter interaction is different for different frequencies. Since light matter interaction must be included in the Maxwell's equations to solve them consistently, different ways have been established how to write down Maxwell's equations for different frequency ranges. Here we follow a notation which was established for a convenient notation at frequencies close to visible light.

Maxwell’s equations (macroscopic) In a rigorous way the electromagnetic theory is developed starting from the properties of electromagnetic fields in vacuum. In vacuum one could write down Maxwell's equations in there so-called pure microscopic form, which includes the interaction with any kind of matter based on the consideration of point charges. Obviously this is inadequate for the description of light in condensed matter, since the number of point charges which would need to be taken into account to describe a macroscopic object, would exceed all imaginable computational resources. To solve this problem one uses an averaging procedure, which summarizes to influence of many point charges on the electromagnetic field in a homogeneously distributed response of the solid state on the excitation by the light. In turn, also the electromagnetic fields are averaged over some adequate volume. For optics this procedure is justified, since any kind of available experimental detector could not resolve the very fine spatial details of the fields in between the point charges, e.g. ions or electrons, which are lost by this averaging. These averaged electromagnetic equations have been rigorously derived in a number of fundamental text books on electro-dynamic theory. Here we will not redo this derivation. We will rather start directly from the averaged Maxwell's equations equation.

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 26

( , )rot ( , ) div ( , ) ( , )

( , )rot ( , ) ( , ) div ( , ) 0

tt t tt

tt t tt

B rE r D r r

D rH r j r B r

ext

makr

electric field (G: elektrisches Feld) ( , )tE r [V/m] magnetic flux density (magnetic induction)

(G: magnetische Flussdichte oder magnetische Induktion) ( , )tB r [Vs/m2] or [tesla]

electric flux density (electric displacement field) (G: elektrische Flussdichte oder dielektrische Verschiebung) ( , )tD r [As/m2]

magnetic field (G: magnetisches Feld) ( , )tH r [A/m] external charge density ( , )t rext [As/m3] macroscopic current density ( , )tj rmakr [A/m2]

Auxiliary fields The "cost" of the introduction of macroscopic Maxwell's equations is the occurrence of two additional fields, the dielectric flux density ( , )tD r and the magnetic field ( , )tH r . These two fields are related to the electric field ( , )tE r and magnetic flux density ( , )tB r by two other new fields.

0

0

( , ) ( , ) ( , )1( , ) ( , ) ( , )

t t t

t t t

D r E r P r

H r B r M r

dielectric polarization (G: dielektrische Polarisation) ( , )tP r [As/m2],

magnetic polarization (magnetization) (G: Magnetisierung) ( , )tM r [Vs/m2]

electric constant (vacuum permittivity) (G: Vakuumpermittivität)

120 2

0

1 8.854 10c

As/Vm

magnetic constant (vacuum permeability) (G: Vakuumpermeabilität)

70 4 10 Vs/Am

Light matter interaction In order to solve this set of equations, i.e. Maxwell's equations and auxiliary field equations one needs to connect the dielectric flux density ( , )tD r and the

Page 14: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 27

magnetic field ( , )tH r to the electric field ( , )tE r and the magnetic flux density ( , )tB r . This is achieved by modeling the material properties by introducing

the material equations. The effect of the medium gives rise to polarization ( , )t fP r E and

magnetization ( , )t fM r B . In order to solve Maxwell’s equations we need material models describing these quantities.

In optics, we generally deal with non-magnetizable media ( , ) 0t M r (exceptions are metamaterials with ( , ) 0t M r ).

Furthermore we need to introduce sources of the fields into our model. This is achieved by the so-called source terms which are inhomogeneities and hence they define unique solutions of the equations.

free charge density (G: Dichte freier Ladungsträger) ( , )t rext [As/m3]

macroscopic current density (G: makroskopische Stromdichte) ( , ) ( , ) ( , )t t t j r j r j rmakr cond conv [A/m2]

conductive current density (G: Konduktionsstromdichte) ( , )t fj r Econd

convective current density (G: Konvektionsstromdichte) ( , ) ( , ) ( , )t t t j r r v rconv ext

In optics, we generally have no free charges which change at speeds comparable to the frequency of light:

( , ) 0 ( , ) 0t t r j rext conv

With the above simplifications, we can formulate Maxwell’s equations in the

context of optics:

0 0

0

( , )rot ( , ) div ( , )

( , )rot

div

( , ) div ( , )

( ,

( , )) 0

)

( ,

t

tt

tt tt

tt ttt

H rE r E r

E rH r H

r

r

P

P rj r

In optics, the medium (or more precisely the mathematical material model) determines the dependence of the polarization on the electric field ( )P E and the dependence of the (conductive) current density on the electric field ( )j E .

Once we have specified these relations, we can solve Maxwell’s equations consistently.

Example:

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 28

In vacuum, both polarization and current density are zero, and we can solve Maxwell’s equations directly (most simple material model).

Remark: We can define a bound charge density (G: Dichte gebundener

Ladungsträger) ( , ) ( , )t t r div P rb

and a bound current density (G: Stromdichte gebundener Ladungsträger)

( , )( , ) ttt

P rj rb

This essentially means that we can describe the same physics in two different ways (see generalized complex dielectric function below).

Complex field formalism (G: komplexer Feld-Formalismus): Maxwell’s equations are also valid for complex fields and are easier to

solve This fact can be exploited to simplify calculations, because it is easier

to deal with complex exponential functions (exp( ))ix than with trigonometric functions [cos(x) and sin(x)].

convention in this lecture real physical field: r ( , )tE r

complex mathematical representation: ( , )tE r

They are related by

12( , ) ( , ) ( , ) Re ( , )t t t t E r E r E r E rr

Remark: This relation can be defined differently in different textbooks. This means in general: For calculations we use the complex fields

[ ( , )]tE r and for physical results we go back to real fields by simply omitting the imaginary part. This works because Maxwell’s equations are linear and no multiplications of fields occur.

Therefore, be careful when multiplications of fields are required go back to real quantities before! This is relevant for, e.g., calculation of Poynting vector, see Chapter below.

Temporal dependence of the fields 2.1.2When it comes to time dependence of the electromagnetic field, we can distinguish two different types of light:

A) monochromatic light stationary fields harmonic dependence on temporal coordinate

Page 15: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 29

exp( )t i phase is fixed coherent, infinite wave train e.g.:

( , ) ( )exp( )t t E r E r i

Monochromatic light approximates very well the typical output of a continuous wave (CW) laser. Once we know the frequency we have to compute the spatial dependence of the (stationary) fields only.

B) polychromatic light non-stationary fields finite wave train With the help of Fourier transformation we can decompose the fields

into infinite wave trains and use all the results from case A) (see next section)

( , ) ( , )exp( )

1( , ) ( , )exp( )2

t t d

t t dt

E r E r

E r E r

i

i

Remark: The position of the sign in the exponent and the factor 1 / 2 can be defined differently in different textbooks.

Maxwell’s equations in Fourier domain 2.1.3We want to plug the Fourier decompositions of our fields into Maxwell’s equations in order to get a more simple description. For this purpose, we need to know how a time derivative transforms into Fourier space. Here we used integration by parts:

,1 1exp , exp ( , )2 2

dt i t i dt t i tt it

E r E r E r

rule: FT it

Now we can write Maxwell’s equations in Fourier domain:

0 0

0

rot ( , ) ( , ) div ( , ) div ( , )

rot ( , ) ( , ) ( , ) ( , ) div ( , ) 0

i

i i

E r H r E r P r

H r j r P r E r H r

From Maxwell’s equations to the wave equation 2.1.4Maxwell's equations provide the basis to derive all possible mathematical solutions of electromagnetic problems. However very often we are interested just in the radiation fields which can be described more easily by an adapted equation, which is the so-called wave equation. From Maxwell’s equations it is straight forward to derive the wave equation by using the two curl equations.

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 30

A) Time domain derivation We start from applying the curl operator ( rot ) a second time on rot ( , )t E r and substitute rot H with the other Maxwell equation

00 0( , ) ( , ) ( , ) ( , )( , )tt t

t t ttt t

H r P rrotrot E rr Erot j r

And find the wave equation for the electric field

2

2

2

0 22 01 ( , ) ( , )( , ) ( , ) t t

t tt t

c t

E rrotrot E rr j r P

The blue terms require knowledge of the material model. Additionally, we have to make sure that all other Maxwell’s equations are fulfilled, in particular:

0 ( , ) ( , ) 0t tdiv E r P r

Once we have solved the wave equation, we know the electric field. From that we can easily compute the magnetic field:

0

( , ) 1 ( , )t tt

H r rot E r

Remarks: An analog procedure is possible for H , i.e., we can derive a wave

equation for the magnetic field. Generally, the wave equation for E is more convenient, because the

material model defines ( )P E . However, for inhomogeneous media H can be the better choice for

the numerical solution of the partial differential equation since it forms a hermitian operator.

analog procedure possible for H E generally, wave equation for E is more convenient, because ( )P E

given for inhomogeneous media H can be better choice

B) Frequency domain derivation We can do the same procedure in the Fourier domain and find

2

20 02( , ) ( , ) ( , ) ( , )

c

rotrot E r E r j r P ri

and

0 ( , ) ( , ) 0 div E r P r

magnetic field:

Page 16: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 31

0

( , ) ( , )

H r rot E ri

transferring the results from the Fourier domain to the time domain for stationary fields: take solution and multiply by -i te . for non-stationary fields and linear media inverse Fourier

transformation

( , ) ( , )exp( )t t dE r E r

i

Decoupling of the vectorial wave equation 2.1.5So far we have seen that for the general problem of electromagnetic waves all 3 field components of the electric or the magnetic field are coupled. Hence we have to solve a vectorial wave equation for the general problem. However, it would be desirable to express problems also by scalar equation since they are much easier to solve. For problems with translational invariance in at least one direction, as e.g. for homogeneous infinite media, layers or inter-faces, this can be achieved since the vectorial components of the fields can be decoupled. Let’s assume invariance in the y-direction and propagation only in the x-z-plane. Then all spatial derivatives along the y-direction disappear ( / 0y ) and the operators in the wave equation simplify.

(2)

(2)

(2)

0

x z

x z

E Exx x z

y

E E zz x z

E

E

E

rot rot E grad div E E

The decoupling becomes visible when the three components of the general vectorial field are decomposed in the following way. decomposition of electric field

E E E

0

, 00

x

y

z

EE

E

E E

with Nabla operator (2) 0x

z

, and Laplace 2 2

(2)2 2x z

Hence we obtain two wave equations for the E and E fields. gives two decoupled wave equations

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 32

2(2) 2

0 02

2(2) (2) (2) 2

0 02

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

c

c

E r E r j r P r

E r E r grad div E j r P r

i

i

These two wave equations are independent as long as the material response, which is expressed by j and P , does not couple the respective field components by some anisotropic response.

Properties propagation of perpendicularly polarized fields E and E can be

treated separately propagation of E is described by scalar equation similarly the other field components can be described by a scalar

equation for H alternative notations: s TE (transversal electric) p TM (transversal magnetic)

2.2 Optical properties of matter In this chapter we will derive a simple material model for the polarization and the current density. The basic idea is to write down an equation of motion for a single exemplary charged particle and assume that all other particles of the same type behave similarly. More precisely, we will use a driven harmonic oscillator model to describe the motion of bound charges giving rise to a polarization of the medium. For free charges we will use the same model but without restoring force, leading eventually to a current density. In the literature, this simple approach is often called the Drude-Lorentz model (named after Paul Drude and Hendrik Antoon Lorentz).

Basics 2.2.1We are looking for ( )P E and ( )j E . In general, this leads to a many body problem in solid state theory which is rather complex. However, in many cases phenomenological models are sufficient to describe the necessary phenomena. As already pointed out above, we use the simplest approach, the so-called Drude-Lorentz model for free or bound charge carriers (electrons).

assume an ensemble of non-coupling, driven, and damped harmonic oscillators

free charge carriers: metals and excited semiconductors (intraband) bound charge carriers: dielectric media and semiconductors

(interband)

Page 17: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 33

The Drude-Lorentz model creates a link between cause (electric field) and effect (induced polarization or current). Because the resulting relations ( )P E and ( )j E are linear (no 2E etc.), we can use linear response theory.

For the polarization ( )P E (for ( )j E very similar):

description in both time and frequency domain possible In time domain: we introduce the response function

(G: Responsfunktion) ( , )tE r medium (response function) ( , )tP r

0( , ) ( , ) ( , )

t

i ij jj

P t R t t E t dt

r r r

with R̂ being a 2nd rank tensor , ,i x y z and summing over , ,j x y z

In frequency domain: we introduce the susceptibility (G: Suszeptibilität)

( , )E r medium (susceptibility) ( , )P r

0( , ) ( , ) ( , )i ij jj

P E r r r

response function and susceptibility are linked via Fourier transform (convolution theorem)

( ) ( )exp(12

)ij ijR t t d

i

Obviously, things look friendlier in frequency domain. Using the wave equation from before and assuming that there are no currents ( 0)j we find

22

02

22

02

( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

c

c

rotrot E r E r P r

E r E r graddivE r P r

or

and for auxiliary fields

0( , ) ( , ) ( , ) D r E r P r

The general response function and the respective susceptibility given above simplifies for certain properties of the medium:

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 34

Simplification of the wave equation for different types of media A) linear, homogenous, isotropic, non-dispersive media (most simple but

very unphysical case) homogenous ( , ) ( )ij ij r

isotropic ( , ) ( , )ij ij r r

non-dispersive ( , ) ( )ij ij r r instantaneous: ( , ) ( ) ( )ij ijR t t r r (Attention: This is unphysical!)

( , )ij r is a scalar constant

frequency domain time domain description

0 0( , ) ( , ) ( , ) ( , )t t P r E r P r E r (unphysical!)

0 0( , ) ( , ) ( , ) ( , ) 1t t D r E r D r E r

Maxwell: 0divD ( , ) 0 div E r for ( ) 0

2

2( , ) ( , ) 0c

E r E r 2

2 2( , ) ( , ) 0t tc t

E r E r

approximation is valid only for a certain frequency range, because all media are dispersive

based on an unphysical material model B) linear, homogeneous, isotropic, dispersive media ( )

0

0

( , ) ( ) ( , )( , ) ( ) ( , )

( , ) 0 ( , ) 0 ( ) 0

P r E rD r E r

div D r div E r for

2

2( , ) ( , ) 0c

E r E r Helmholtz equation

This description is sufficient for many materials. C) linear, inhomogeneous, isotropic, dispersive media ( , ) r

0

0

( , ) ( , ) ( , ),( , ) ( , ) ( , ).

P r r E rD r r E r

0 0

div ( , ) 0div ( , ) ( , ) ( , ) ( , ) ( , ) 0,

( , )div ( , ) ( , ).( , )

D rD r r div E r E r grad r

grad rE r E rr

Page 18: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 35

2

2

( , )( , ) , ( , ) ( , )( , )c

grad rE r r E r grad E rr

All field components couple. D) linear, homogeneous, anisotropic, dispersive media ( )ij

0

0

( , ) ( ) ( , )

( , ) ( ) ( , ).

i ij jj

i ij jj

P E

D E

r r

r r see chapter on crystal optics

This is the worst case for a medium with linear response. Before we start writing down the actual material model equations, let us summarize what we want to do:

What kind of light-matter interaction do we want to consider?

I) Interaction of light with bound electrons and the lattice The contributions of bound electrons and lattice vibrations in dielectrics and semiconductors give rise to the polarization P . The lattice vibrations (phonons) are the ionic part of the material model. Because of the large mass of the ions ( 310 mass of electron) the resulting oscillation frequencies will be small. Generally speaking, phonons are responsible for thermal properties of the medium. However, some phonon modes may contribute to optical pro-perties, but they have small dispersion (weak dependence on frequency ). Fully understanding the electronic transitions of bound electrons requires quantum theoretical treatment, which allows an accurate computation of the transition frequencies. However, a (phenomenological) classical treatment of the oscillation of bound electrons is possible and useful.

II) Interaction of light with free electrons The contribution of free electrons in metals and excited semiconductors gives rise to a current density j. We assume a so-called (interaction-)free electron gas, where the electron charges are neutralized by the background ions. Only collisions with ions and related damping of the electron motion will be considered. We will look at the contributions from I) and II) separately, and join the results later.

Dielectric polarization and susceptibility 2.2.2Let us first focus on bound charges (ions, electrons). In the so-called Drude model, the electric field ( , )tE r gives rise to a displacement ( , )ts r of charged

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 36

particles from their equilibrium positions. In the easiest approach this can be modeled by a driven harmonic oscillator:

2

202 ( , ) ( , ) ( , ) ( , )qt g t t t

t t ms r s r s r E r

resonance frequency (electronic transition) 0 damping g charge q mass m

The induced electric dipole moment due to the displacement of charged particles is given by ( , ) ( , ),t q tp r s r

We further assume that all bound charges of the same type behave identical, i.e., we treat an ensemble of non-coupled, driven, and damped harmonic oscillators. Then, the dipole density (polarization) is given by

( , ) ( , ) ( , )tqN t Nt P r p r s r Hence, the governing equation for the polarization ( , )tP r reads as

2

20 02

2

( , ) ( , ) ( , ) ( , ) ( , )q Nm

t g t t f tt t

P r P r P r t E r E r

with oscillator strength 2

0

1 e Nfm

, for q=-e (electrons)

This equation is easy to solve in Fourier domain:

2 20 0( , ) ( , ) ( , ) ( , )g f P r P r P r E ri

0

2 20

( , ) ( , )g

f

P r E r

i

with 0( , ) ( , ) P r ( )E r 2 20

( ) fg

i

In general we have several different types of oscillators in a medium, i.e., several different resonance frequencies. Nevertheless, since in a good approximation they do not influence each other, all these different oscillators contribute individually to the polarization. Hence the model can be constructed by simply summing up all contributions.

several resonance frequencies

0 02 20

( , ) ( , ) ( , )j

j j j

fg

P r E r E ri

Page 19: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 37

2 20

j

j j j

fg

i

is the complex, frequency dependent susceptibility

0 0 0( , ) ( , ) ( , ) ( , ) D r E r E r E r is the complex frequency dependent dielectric function

Example: (plotted for eta and kappa with 2i )

Conductive current and conductivity 2.2.3Let us now describe the response of a free electron gas with positively charged background (no interaction). Again we use the model of a driven harmonic oscillator, but this time with resonance frequency 0 0 . This corresponds to the case of zero restoring force.

2

2 ( , ) ( , ) ( , ),et g t tt t m

s r s r E r

The resulting induced current density is given by

( , ) ( , )Net tt

j r s r

and the governing dynamic equation reads as

2

20( , ) ( , ) ( , ) ( , )e Nt g t t t

m

j r j r E r E rt p

with plasma frequency 2

2

0

1 e Nfm

p

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 38

Again we solve this equation in Fourier domain:

20( , ) ( , ) ( , )g j r j r E rpi

2

0( , ) ( , ) ( , ).g

j r E r E rp

i

Here we introduced the complex frequency dependent conductivity

2

2 20 0 .

g g

p piii

Remarks on plasma frequency We consider a cloud of electrons and positive ions described by the total charge density in their self-consistent field E . Then we find according to Maxwell:

0 ( , ) ( , )t t divE r r For cold electrons, and because the total charge is zero, we can use our damped oscillator model from before to describe the current density (only electrons move):

20 ( , )g t

tj j E r

p

Now we apply divergence operator and plug in from above (red terms):

2 20 ( , ) ( , )tg t

t

ddiv j div ivE r rj p p

With the continuity equation for the charge density (from Maxwell's equations)

,t

divj 0

We can substitute the divergence of the current density and find:

22

2 gt t

p

2

2p2 0g

t t

harmonic oscillator equation

Hence, the plasma frequency p is the eigen-frequency of such a charge density.

The generalized complex dielectric function 2.2.4In the sections above we have derived expressions for both polarization (bound charges) and conductive current density (free charges). Let us now plug our ( , )j r and ( , )P r into the wave equation (in Fourier domain)

Page 20: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 39

22

0 02

20 0 0

( , ) ( , ) ( , ) ( , )

( ) ( , )

c

rotrot E r E r P r j r

E r

i

i

Hence we can collect all terms proportional to ( , )E r and write

0

2

2 1 ( )( , ) ( , )c

rotrot E r E ri

2

2 ( ()( , ) , )c

rotrot E r E r

Here, we introduced the generalized complex dielectric function

0

( ) 1 () ( )( )

ii

So, in general we have

2

20

22( ) 1 ,j

j j jg gf

p

ii

because (from before)

2 20

j

j j j

fg

i,

202 .

g

pii

( ) contains contributions from vacuum, phonons (lattice vibrations), bound and free electrons.

Some special cases for materials in the infrared and visible spectral range:

A) Dielectrics (insulators) in the infrared (IR) spectral range near phonon resonance If we are interested in dielectrics (insulators) near phonon resonance in the infrared spectral range we can simplify the dielectric function as follows:

2 20

2 20

1( ) j

j j j

f fgg

ii

with 00 j and 0

2 20

( ) fg

i

The contribution from electronic transitions shows almost no frequency dependence (dispersion) in this frequency range far away from the electronic

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 40

resonances. hence it can be expressed together with the vacuum contribution as a constant . Let us study the real and the imaginary part of the resulting ( ) separately: vacuum and electronic transitions

( ) ( ) ( ) ( ) ( ) i i

2 20

22 2 2 20

( ) ,f

g

22 2 2 2

0

( ) .gf

g

Lorentz curve

properties:

resonance frequency: 0 width of resonance peak: g

static dielectric constant in the limit 0 : 020

f

so called longitudinal frequency L : ( ) 0 L ( ) 0 : absorption and dispersion appear always together near resonance we find ( ) 0 (damping, i.e. decay of field, without

absorption if '' 0 ) frequency range with normal dispersion: ( ) / 0 frequency range with anomalous dispersion: ( ) / 0

Simplified example: sharp resonance for undamped oscillator 0g

-4

0

4

8

12

ε′ε′′

ω0 ωLω

ε∞

ε0

Page 21: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 41

relation between resonance frequency 0 and longitudinal frequency

L (Lyddane-Sachs-Teller relation)

2 20

( ) 0f

LL

, 0 20f (from above)

0

0 .

L

B) Dielectrics in the visible (VIS) spectral range Dielectric media in visible (VIS) spectral range can be described by a so-called double resonance model, where a phonon resonance exists in the infrared (IR) and an electronic transition exists in the ultraviolet (UV).

2 2 2 20 0

( ) ,f f

g g

p e

p p e ei i with 0 0p e

contribution of vacuum and other (far away) resonances

The generalization of this approach in the transparent spectral range leads to the so-called Sellmeier formula.

-8

-4

0

4

8

12

ω0 ωL ωε∞

ε0

ε

0 2 4 6 81.4

1 .6

1 .8

2

2.2

V IS

ε'

ω in 1015s -1

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 42

2

20

20( ) 1 ,j

j

j

j

f

with j being the number of resonances taken into account describes many media very well (dispersion of absorption is neglected) oscillator strengths and resonance frequencies are often fit parameters

to match experimental data

C) Metals in the visible spectral range If we want to describe metals in the visible spectral range we find

2

2( ) 1g

p

i with p

2 2

2 2 2 2( ) 1 , ( ) .

gg g

p p

Metals show a large negative real part of the dielectric function ( ) which gives rise to decay of the fields. Eventually this results in reflection of light at metallic surfaces.

Material models in time domain 2.2.5Let us now transform our results of the material models back to time domain. In Fourier domain we found for homogeneous and isotropic media:

0

0

( )( )

( , ) ( , )( , ) ( , ).

D r E rP r E r

The response function (or Green's function) ( )R t in the time domain is then given by

1( ) ( )exp2

R t t d

i ( ) ( )expR t t dt

i

5 10 15 20 25

-20

0

20 ε′ε′′

ω in 10 15s -1

V IS

ωP2-g2

Page 22: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 43

To prove this, we can use the convolution theorem

0

0

( , ) ( , )exp ( , )exp

1 (

( )

( ) , )exp exp2

t t d t d

t t dt t d

P r P r E r

E r

-i -i

i -i

Now we switch the order of integration, and identify the response function R (red terms):

( )

0

0

( , )

( ,

1 ( )exp ( )2

( ) )

R t t

t t d t dt

t dtR t t

E r

E r

-i

For a “delta” excitation in the electric field we find the response or Greens function as the polarization: 0( , ) ( )t t t E r e 0 0( , ) ( )t R t t P r e Green's function

Examples A) instantaneous media (unphysical simplification)

For instantaneous (or non-dispersive) media, which cannot not really exist in nature, we would find:

0( ) ( ) , ,R t t t t P r E r (unphysical!)

B) dielectrics

2 20

1 1( ) exp exp ,2 2P

fR t t d t dg

i ii

Using the residual theorem we find:

exp sin 0

( ) 20 0

f g t t tR t

t

with 2

20 4

g

( , ) exp ( ) sin ( ) ( , )2

tf gt t t t t t dt

P r E r

C) metals

2

01 1( ) exp exp ,2 2jR t t d t d

g

pi ii

Using again the residual theorem we find:

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 44

exp 0( )

0 0

gt tR t g

t

2p

0( , ) exp ( ) ( , )t

t g t t t dt

j r E r2p

2.3 The Poynting vector and energy balance Time averaged Poynting vector 2.3.1

The energy flux of the electromagnetic field is given by the Poynting vector S . In practice, we always measure the energy flux through a surface (detector), S n , where n is the normal vector of surface. To be more precise, the Poynting vector ( , ) ( , ) ( , )t t t S r E r H rr r gives the momentary energy flux. Note that we have to use the real electric and magnetic fields, because a product of fields occurs. In optics we have to consider the following time scales:

optical cycle: 140 02 / 10T s

pulse duration: Tp in general 0T Tp

duration of measurement: Tm in general 0T Tm

Hence, in general the detector does not recognize the fast oscillations of the optical field 0i te (optical cycles) and delivers a time averaged value. For the situation described above, the electro-magnetic fields factorize in slowly varying envelopes and fast carrier oscillations:

01 ( , )exp . . ( , )2

t t c c t E r E rri

For such pulses, the momentary Poynting vector reads:

× →

Page 23: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 45

0 0

0

( , ) ( , ) ( , )1 ( , ) ( , ) ( , ) ( , )4

1 ( , ) ( , )exp 2 ( , ) ( ,

1 ( , ) ( , ) cos 22

1 ( , ) ( , )

1 ( , ) ( , )2

)exp 2

i

4

s2

t t t

t t t t

t t t t t

t t t t t

t t

t

S r E r H r

E r H r E r H r

E r H r E r H

E r H r

E r H r

E H

r

r r

r r

i i

0n 2 .t

We find that the momentary Poynting vector has some slow contributions which change over time scales of the pulse envelope Tp, and some fast contributions 0 0cos 2 , sin 2t t changing over time scales of the optical cycle T0. Now, a measurement of the Poynting vector over a time interval Tm leads to a time average of ( , )tS r .

/2

/2

1( , ) ( , ') 't T

t Tt t dt

T

S r S rm

mm The fast oscillating terms 0~ cos 2 t and 0~ sin 2 t cancel by the integration since the pulse envelope does not change much over one optical cycle. Hence we get only a contribution from the slow term.

/2

/2

1( , 1 ( , ') ')) ( , '2

t T

t Ttt dt t

T

E r H rS r m

mm Let us now have a look at the special (but important) case of stationary (monochromatic) fields. Then, the pulse envelope does not depend on time at all (infinitely long pulses).

( , ') ( ), ( , ') ( )t t E r E r H r H r

1( , ) ( ) ( ) .2

t S r E r H r

This is the definition for the optical intensity ( , )I t S r . We see that an intensity measurement destroys information on the phase.

( , )I t S r measurement destroys phase information

Time averaged energy balance 2.3.2Let us motivate a little bit further the concept of the Poynting vector. Some interesting insight on the energy flow of light and hence also on the transport of information can be obtained from the Poynting theorem, which is the equation for the energy balance of the electromagnetic field. The Poynting

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 46

theorem can be derived directly from Maxwell’s equations. We multiply the two curl equations by rH resp. rE (note that we use real fields):

0

0

0

( )

t

t t

r r

r r

r

r

r

r r r r

rotE H

E rot jEH

H

E P

H

E

Next, we subtract the two equations and get

0 0 ( ).

t t t

r r r r r r r r r r rH rotE E rotH E E H H E j P

This equation can be simplified by using the following vector identity:

r r r r r rdiv E H H rotE E rotH Finally, with 21

2t t

r r rE E E we find Poynting's theorem

2 20 0

1 12 2t t t

r r r r r r rE H div E H E j P (*)

This equation has the general form of a balance equation. Here it represents the energy balance. Apart from the appearance of the Poynting vector (energy flux), we can identify the vacuum energy density

2 21 1

0 02 2u r rE H . The right-hand-side of the Poynting's theorem contains the so-called source terms.

where 2 20 0

1 12 2

u r rE H vacuum energy density

In the case of stationary fields and isotropic media (simple but important)

0

0

1( , ) ( )exp . .21( , ) ( )exp . .2

t t c c

t t c c

E r E r

H r H r

r

r

i

i

Time averaging of the left hand side of Poynting’s theorem (*) yields:

2 20 0

1 1 1( , ) ( , ) ( , ) ( , ) ( ) ( )2 2 2

( , ) .

t t t tt t

t

E r H r div E r H r div E r H r

div S r

r r r r

Note that the time derivative removes stationary terms in 2 ( , )tE rr and 2 ( , )tH rr . Time averaging of the right hand side of Poynting’s theorem yields (source terms):

Page 24: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 47

0 000 0 00

( , ) ( , )

1 . . . .

( , )

( ) ) ( )4

) (i t i i tt

tt

e

t

c c e c

t

ce

E r

E(r

P r

E rr )

j r

E(

rr r

i

Now we use our generalized dielectric function:

00

0 0

0

0 0 0 0

0 0

1 exp . . exp . .4

1 . .4

1

t c c t c c

c c

E(r) E(r)

E(r)E(r)

ii i i

i

Again, all fast oscillating terms 0exp 2 t i cancel due to the time average. Finally, splitting 0 into real and imaginary part yields

0 0 0 0 0 0 01 11 . . ( ) ( ).4 2

c c E(r)E(r) E r E ri i

Hence, the divergence of the time averaged Poynting vector is related to the imaginary part of the generalized dielectric function:

0 0 01 ( ) ( ).2

div S E r E r

This shows that a nonzero imaginary part of epsilon ( 0 ) causes a drain of energy flux. In particular, we always have 0 , otherwise there would be gain of energy. In particular near resonances we have 0 and therefore absorption. Further insight into the meaning of div S gives the so-called divergence theorem. If the energy of the electro-magnetic field is flowing through some volume, and we wish to know how much energy flows out of a certain region within that volume, then we need to add up the sources inside the region and subtract the sinks. The energy flux is represented by the (time averaged) Poynting vector, and the Poynting vector's divergence at a given point describes the strength of the source or sink there. So, integrating the Poynting vector's divergence over the interior of the region equals the integral of the Poynting vector over the region's boundary.

V A

dV dA div S S n

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 48

Page 25: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 49

2.4 Normal modes in homogeneous isotropic media Using the linear material models which we discussed in the previous chapters we can now look for self-consistent solutions to the wave equation include the material response. It is convenient to use the generalized complex dielectric function for the derivative of the solution of the wave equation

0

( ) 1 ( ) ( ) ( ) i

i

We will do our analysis in Fourier domain. In particular, we will focus on the most simple solution to the wave equation in Fourier domain, the so-called normal modes. We will see later that it is possible to construct general solutions from the normal modes. The wave equation in Fourier domain reads

2

2( , ) ( ) ( , )c

rotrot E r E r

According to Maxwell the solutions have to fulfill additionally the divergence equation: 0 1 ( ) ( , ) 0 div E r

In general, this additional condition implies that the electric field is free of divergence:

1 ( ) 0 ( , ) 0 div E r (normal case)

Let us for a moment assume that we already know that we can find plane wave solutions of the following form in the frequency domain: ( , ) ( )exp , E r E kri

k = unknown complex wave-vector

The corresponding stationary field in time domain is given by:

( , ) expt t E r E kr i

monochromatic plane wave normal mode

This is a monochromatic plane wave, the simplest solution we can expect, a so-called normal mode. Then, the divergence condition implies that those waves are transversal

( )k E transverse wave

If we split the complex wave vector into real and imaginary part k k' k'',iwe can define:

o planes of constant phase ' .k r const

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 50

o planes of constant amplitude .k''r const In the following we will call the solutions A) if those planes are identical homogeneous waves B) if those planes are perpendicular evanescent waves C) otherwise inhomogeneous waves We will see that in dielectrics 0 we can find a second, exotic type of wave solutions: At ( ) 0, L L so-called longitudinal waves ( )k E appear.

Transversal waves 2.4.1As pointed out above, for L the electric field becomes free of divergence:

0 ( )div ( , ) 0 E r div ( , ) 0 E r

Then, the wave equation reduces to the Helmholtz equation:

2

2( , ) ( ) ( , ) 0.c

E r E r

Hence, we have three scalar equations for ( , )E r (from Helmholtz), and together with the divergence condition we are left with two independent field components. We will now construct solutions using the plane wave ansatz: ( , ) ( )exp E r E kri

Immediately we see that the wave is transversal:

0 ( , ) ( , ) divE r k E ri ( ).k E

Hence, we have to solve

2

22 ( ) ( ) 0

c

k E and ( ) 0. k E

which leads to the following dispersion relation

2

2 2 2 2 22 ( )k k k k

c

k x y z

We see that the so-called wave-number ( ) ( )ck is a function of the frequency. We can conclude that transversal plane waves are solutions to Maxwell's equations in homogeneous, isotropic media, only if the dispersion relation ( )k is fulfilled. In general, k = k ki is complex. Alternatively it is sometimes useful to introduce the complex refractive index (if k k ):

ˆ( ) ( ) ( ) ( ) ( )k n n

c c c

i

Page 26: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 51

However, instead of assuming that ˆ( )n and ( ) are just the same, one should clearly distinguish between the two. While ( ) is a property of the medium, ˆ( )n is a property of a particular type of the electromagnetic field in the medium, i.e. a property of the infinitely extended monochromatic plane wave.

( , ) ( )exp E r E kri

With the knowledge of the electric field we can compute the magnetic field if desired:

0 0

0

1( , ) ( , ) ( ) exp

1 ( , ) ( )exp , ( ) ( )

H r rot E r k E kr

H r H kr H k Ewith

ii

i

Longitudinal waves 2.4.2Let us now have a look at the rather exotic case of longitudinal waves. Those waves can only exist for ( ) 0 in dielectrics at the longitudinal frequency L . In this case, we cannot conclude that ( , ) 0 div E r , and the wave equation reads (the l.h.s. vanishes because ( ) 0 ):

( , ) 0 rotrot E r L

As for the transversal waves we try the plane wave ansatz and assume k to be real.

( , ) ( )exp E r E kri

With ( )exp ( )exp rot E kr k E kri i i we get from the wave equation:

( , ) 0 k k E r L

Now we decompose the electric field into transversal and longitudinal compo-nents with respect to the wave vector: ( , ) ( )exp ( )exp ( )exp E r E kr E kr E kri i i

with, ( ) E k and ( )E k

This decomposed field is inserted into the wave equation:

0

exp 0

exp exp 0

k k E E kr

k k E kr k krk E

i

i i

Since the cross product of k with the longitudinal field ( )E is trivially zero the remaining wave equation is:

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 52

2 0k E

Hence the transversal field E must vanish and the only remaining field component is the longitudinal field ( )E :

( , ) ( )exp E r E krL L i

Plane wave solutions in different frequency regimes 2.4.3The dispersion relation for plane wave solutions 2

22 2 2 2 2 ( )

ck k k k k x y z

dictates the (complex) wavenumber k only. Thus, different solutions for the complex wave vector k = k ki are possible. In addition, the generalized dielectric function ( ) is complex. In this chapter we will discuss possible scenarios and resulting plane wave solutions.

A) Positive real valued epsilon ' 0

This is the regime favorable for optics. We have transparency, and the frequency is far from resonances. The dispersion relation gives

2 2

2 2 2 22 22 ' ( ) ( ) ' 0k n

c c k' k'' k k'' k k''i

There are two possibilities to fulfill this condition, either 0k'' or k' k'' .

A.1) Real valued wave-vector 0k'' In this case the wave vector is real and we find the dispersion relation

2( ) ( ) ( )k n nc c

n

Because 0k'' these waves are homogeneous, i.e. planes of constant phase are parallel to the planes of constant amplitude. This is trivial, because the amplitude is constant.

Example 1: single resonance in dielectric material for lattice vibrations (phonons)

Page 27: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 53

Now the imaginary part of ( ) is neglected, which mathematically

corresponds to an undamped resonance

2 20

( ) ( ) f

We can invert the dispersion relation ( ) ( )kc

( )k :

Example 2: free electrons

for plasma and metal Again the imaginary part of ( ) is neglected

2

2( ) ( ) 1

p

We again invert the dispersion relation ( ) ( )kc

( )k :

������������������

������������������������������������

ε′ε′′

ω

ckω

ε∞

=

ω

k

0

ckω

ε=

20

fωε ∞

+

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 54

A.2) Complex valued wave-vector k' k'' The second possibility to fulfill the dispersion relation leads to a complex

wave-vector and so-called evanescent waves. We find

2

2 2 22 ( )k

c

k' k'' and therefore 2 2 2k k'' k'

This means that

2 0k'' and 2 2k'k

We will discuss the importance of evanescent waves in the next chapter, where we will study the propagation of arbitrary initial field distributions. What is interesting to note here is that evanescent waves can have arbitrary large 2 2k'k , whereas the homogeneous waves of case A.1) (

0k'' ) obey 2 2k'k . If we plug our findings into the plane wave ansatz we get: for the evanescent waves:

ex( , ) ( ex p) p E r E k''r rk (' )i

The planes defined by the equation k''( )r = const. are the so-called planes of constant amplitude, those defined by k'( )r = const. are the planes of constant phase. Because of k' k'' these planes are perpendicular to each other.

The factor exp k''( )r leads to exponential growth of evanescent waves in homogeneous space. Therefore, evanescent waves can't be physically justified normal modes of homogeneous space and can only exist in inhomogeneous space, where the exponential growth is suppressed, e.g. at interfaces.

B) Negative real valued epsilon ( ) ( ) 0 This situation (negative but real ( ) can occur near resonances in dielectrics ( 0 L ) or below the plasma frequency ( p ) in metals. Then the dispersion relation gives

ckω =

ω

k

Page 28: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 55

2

2 2 222 ( ) 0k

c k' k'' k' k''i

As in the previous case A), the imaginary term has to vanish and ' 0 k k'' . Again this can be achieved by two possibilities.

B.1) 0k'

2

22 ( )

c k'' ( , ) exp E r k''r strong damping

B.2) 0 k' k'' k' k'' evanescent waves

22 2 2

2 ( )kc k' k''

22 2

2 ( ) .c k'' k'

As above, these evanescent waves exist only at interfaces (like for

( ) ( ) 0 ). The interesting point is that here we find evanescent waves for all values of 2.k' In particular, case B.1) ( 0k' ) is included. Hence, we can conclude that for ( ) ( ) 0 we find only evanescent waves!

C) Complex valued epsilon ( ) This is the general case, which is relevant particularly near resonances. From our (optical) point of view only weak absorption is interesting. Therefore, in the following we will always assume ( ) ( ) . As we can see in the following sketch, we can have ( ) 0, ( ) 0, or ( ) 0, ( ) 0.

������

ε′ε′′

ω

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 56

Let us further consider only the important special case of quasi-homogeneous plane waves, i.e., k' and k'' are almost parallel. Then, it is convenient to use the complex refractive index

2 2 2

2 22 22 2 2ˆ( ) ( ) ( ) ( ) ( )i k n n

c c c k k i

Since k' and k'' are almost parallel:

( ), ( )nc c

k' k''

The dispersion relation in terms of the complex refractive index gives

2 222 2

2 2( ) ( ) ( )k nc c

k i

Here we have

2 2( ) ( ) ( ) ( ) ( ) 2 ( ) ( ),n n i i

and therefore 2 2( ) ( ) ( )

( ) 2 ( ) ( )n

n

22 ( ) sgn 1 / 1 ,2

n

22 ( ) sgn 1 / 1 .2

Two important limiting cases of quasi-homogeneous plane waves:

C.1) , 0, , (dielectric media)

1 ( )( ) ( ), ( )2 ( )

n

��������������������������������������������������������������������������������������������������������� �����������

�����������

ε′ε′′

ω

1 2

Page 29: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 57

In this regime propagation dominates ( ( ) ( )n ), and we have weak absorption:

2 2

2 22 2( ), 2 ( ).

c c k' k'' k' k''

1 ( )( ) ( ), ( )2 ( )

nc c c c

k' k''

, k' k'' k' k''

k' and k'' almost parallel homogeneous waves in homogeneous, isotropic media, next to resonances, we find damped, homogeneous plane waves, kk' k e with ke being the unit vector along k

( , ) ( )exp ( )exp exp .nc c

k kE r E kr E e r e ri i

C.2) 0, 0, , (metals and dielectric media in so-called Reststrahl domain)

1 ( )( ) , ( ) ( ) ,2 ( )

n

In this regime damping dominates ( ( ) ( )n ) and we find a very small refractive index. Interestingly, propagation (nonzero n) is only possible due to absorption (see time averaged Poynting vector below).

Summary of normal modes

a) undamped homogeneous waves and evanescent waves b) evanescent waves c) weakly damped quasi-homogeneous waves d) strongly damped quasi-homogeneous waves

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 58

Time averaged Poynting vector of plane waves 2.4.4

/2

/2

1 1( , ) ( , ) ( , ) ,2

t T

t Tt t t dt

T

S r E r H r m

mm

For plane waves we find:

0

( , ) exp exp1( , ) ( , )

t t t

t t

E r E kr E k r k r

H r k E r

i i i i

assuming a stationary case ( ) ( )exp( i t)t E E

2 20

0 0

1 1( , ) exp 2 exp 22 2

ntc

S r r Ek k e e r E k' k"

with k'e being the unit vector along k and k''e being the unit vector along k .

2.5 The Kramers-Kronig relation In the previous sections we have assumed a very simple model for the des-cription of the material's response to the excitation by the electromagnetic field. This model was based on quite strong assumptions, like a single charge which is attached to a rigid lattice etc. Hence, one could imagine that more complex matter could give rise to arbitrarily complex response functions if adequate models would be used for its description. However we can show from basic laws of physics, that several properties are common to all possible response functions, as long as a linear response to the excitation is assumed. These fundamental properties of the response function are formulated mathematically by the Kramers-Kronig relation. It is a general relation between ( ) (dispersion) and ( ) (absorption). This means in practice that we can compute ( ) from ( ) and vice versa. For example, if we have access to the absorption spectrum of a medium, we can calculate the dis-persion. The Kramers-Kronig relation follows from reality and causality of the response function R of a linear system. That the response function is real valued is a direct consequence from Maxwell's equations which are real valued as well. Causality is also a very fundamental property, since the polarization must not depend on some future electric field. As we have seen in the previous sections, in time-domain the polarization and the electric field are related as:

0 0 0( , ) ( ) ( , ) ( , ) ( ) ( , )

tt R t t t dt t R t d

P r E r P r E rr r r r

Reality of the response function implies:

Page 30: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 59

- *1 1e e2 2

i iR d d

Causality of the response function implies:

R y with

1 for 01 for 020 for 0

Heaviside distribution

In the following, we will make use of the Fourier transform of Heaviside distribution:

2 e Pi t idt t

defined as integral only

In Fourier space, the Heaviside distribution consists of the Dirac delta distri-bution

0 0( )d f f

Dirac delta distribution

and the expression P(i/ ) involving a Cauchy principal value:

0

P ( ) lim ( ) ( )i i id f d f d f

Cauchy principle value

As we have seen above, causality implies that the response function has to contain a multiplicative Heaviside function. Hence, in Fourier space (suscepti-bility) we expect a convolution:

e ei iyRd d

d y

1 1P

2 2i

1 P ( )2 2

y yd

i

In order to derive the Kramers-Kronig relation we can use a small trick (this trick saves us using complex integration in the derivation). Because of the Heaviside function, we can choose the function y for < 0 arbitrarily without altering the susceptibility! In particular, we can choose:

a) y y even function

b) y y odd function

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 60

a) y y

In this case y y is a real valued and even function. We can exploit this property and show that

1 1e e2 2

i id y dy yy

is real as well

Hence, we can conclude from equation (*) above that

1 P2 2

i y yd

Here P is a so called principal value integral (G: Hauptwertintegral). Now we have expressions for *, and can compute real and imaginary part of the susceptibility:

* 1 1P P2 2 2 2

i y y i y yd d y

1 Pi

dy

Plugging the last two equations together we find the first Kramers-Kronig relation:

1 P d

1. K-K relation

Knowledge of the real part of the susceptibility (dispersion) allows us to compute the imaginary part (absorption). b) y y

The second K-K relation can be found by a similar procedure when we assume that y y is a real odd function. We can show that in this case

1 1e e2 2

i id y dy y y

is purely imaginary

With equation (*) we then find that

1 P2 2

i y yd

(see (*)) and

Again we can then compute real and imaginary part of the susceptibility

Page 31: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 61

1 1P P2 2 2 2

i y y i y yd yd

* 1 Pi y

d

and finally obtain

1 P d

2. K-K relation

The second Kramers-Kronig relation allows us to compute the real part of the susceptibility (dispersion) when we know its imaginary part (absorption). The Kramers-Kronig relation can also be rewritten in terms of the dielectric function, where one applies also the symmetry relation for : K-K relation for :

( ) ( ) ( ) ( ) and ( ) ( ) 1 ( ) 1 ( ) i

2 20

2 20

2 ( )( ) 1 P ,

( ) 12( ) P .

d

d

dispersion and absorption are linked, e.g., we can measure absorption and compute dispersion

Example:

0( ) ( ) 02 20

( ) 1

Drude-Lorentz model

2.6 Beams and pulses - analogy of diffraction and dispersion

In this chapter we will analyze the propagation of light. In particular, we will answer the question how an arbitrary beam (spatial) or pulse (temporal) will change during propagation in isotropic, homogeneous, dispersive media. Relevant (linear) physical effects are diffraction and dispersion. Both pheno-mena can be understood very easily in the Fourier domain. Temporal effects, i.e. the dispersion of pulses, will be treated in temporal Fourier domain (temporal frequency domain). Spatial effects, i.e. the diffraction of beams, will be treated in the spatial Fourier domain (spatial frequency domain). We will see that:

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 62

Pulses with finite spatial width (i.e. pulsed beams) are superposition of normal modes (in frequency- and spatial frequency domain).

Spatio-temporally localized optical excitations delocalize during propagation because of different phase evolution for different frequencies and spatial frequencies (different propagation directions of normal modes).

Let us have a look at the different possibilities (beam, pulse, pulsed beam)

A) beam finite transverse width diffraction

plane wave (normal mode) beam

A beam is a continuous superposition of stationary plane waves (normal modes) with different wave vectors (propagation directions).

3( , ) ( )exp dt kt

k kr E rE i

B) pulse finite duration dispersion

stationary wave (normal mode) pulse

A pulse is a continuous superposition of stationary plane waves (normal modes) with different frequencies.

2w

p2T

k

k1 k2 k3 k4 k5

Page 32: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 63

( , ) ( )exp .dt t

E r E k ri

C) pulsed beams finite transverse width and finite duration diffraction and dispersion A pulsed beam is a continuous superposition of stationary plane waves (normal modes) with different frequency and different propagation direction

3( , ) ( )exp, d kt dt

k kE r E ri

2.7 Diffraction of monochromatic beams in homogeneous isotropic media

Let us have a look at the propagation of monochromatic beams first. In this situation, we have to deal with diffraction only. We will see later that pulses and their dispersion can be treated in a very similar way. Treating diffraction in the framework of wave-optical theory (or even Maxwell) allows us to treat rigorously many important optical systems and effects, i.e., optical imaging and resolution, filtering, microscopy, gratings, ... In this chapter, we assume stationary fields and therefore .const For technical convenience and because it is sufficient for many important problems, we will make the following assumptions and approximations: ( ) ( ) 0, optical transparent regime normal modes are

stationary homogeneous and evanescent plane waves scalar approximation y y y( , ) ( , ) ( , ) ( , ).E E u E r r e r r

exact for one-dimensional beams and linear polarization approximation in two-dimensional case

In homogeneous isotropic media we have to solve the Helmholtz equation

2

2( , ) ( , ) 0.c

E r E r

In scalar approximation and for fixed frequency it reads

1 2 3

...

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 64

2

2

2

( , ) ( , ) 0,

( , ) ( , ) 0.

u u

uc

uk

r r

r r

scalar Helmholtz equation

In the last step we inserted the dispersion relation (wave number ( )k ). In the following we often even omit the argument of the fixed frequency .

Arbitrarily narrow beams (general case) 2.7.1Let us consider the following fundamental problem. We want to compute from a given field distribution ( , ,0)u x y in the plane 0z the complete field

( , , )u x y z in the half-space 0z , where z is our “propagation direction”.

The governing equation is the scalar Helmholtz equation

2( , ) ( , ) 0u k u r r

To solve this equation and to calculate the dynamics of the fields, we can switch again to the Fourier domain. We take the Fourier transform

3( , ) ( , )exp ( )u U d k

r k k ri

which can be interpreted as a superposition of normal modes with different propagation directions and wavenumbers ( )k (here the absolute value of the wave-vector k ). Naively, we could expect that we just constructed a general solution to our problem, but the solution is not correct because of the dispersion relation:

2

2 2 2 2 22k k k k

c

k x y z

only two components of k are independent, e.g., , .k kx y

Our naming convention is in the following: , , .k k k x y z

Page 33: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 65

Then, the dispersion relation reads:

Thus, to solve our problem we need only a two-dimensional Fourier trans-form, with respect to transverse directions to the “propagation direction z ”:

( ) ( , )exp; .u U x y d dz

r i

In analogy to the frequency we call spatial frequencies. Now we plug this expression into the scalar Helmholtz equation

2( ) ( ) 0u k u r r

This way we can transfer the Helmholtz equation in two spatial dimensions into Fourier space

22 2 2

2

22

2

( , ; ) 0,

( , ; ) 0.

d k U zdz

d U zdz

This equation is easily solved and yields the general solution 1 2( , ; ) ( , )exp ( , ) ( , )exp ( , ) ,U z U z U z i -i

depending on 2 2 2( , ) ( )k . We can identify two types of solutions:

A) Homogeneous waves 2 0, 2 2 2k , i.e., k real homogeneous waves

B) Evanescent waves 2 0, 2 2 2k , i.e., k complex, because k z imaginary. Then,

we have k = k ki , with x y k = e e and z k = e .

k' k'' evanescent waves

2 2 2 2k

k

γ

α

β

k

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 66

We see immediately that in the half-space 0z the solution exp z i grows exponentially. Because this does not make sense, this component of the solution must vanish 2 ( , ) 0U . In fact, we will see later that 2 ( , )U corresponds to backward running waves, i.e., light propagating in the opposite direction. We therefore find the solution:

1

0

( , ; ) ( , )exp ( , )

( , ;0)exp ( , )

( , )exp ( , )

U z U z

U z

U z

i

i

i

Furthermore the following boundary condition holds: 0( , ;0) ( , ).U U

In spatial space, we can find the optical field for 0z by inverse Fourier transform:

( ) ( , )exp; .u U x y d dz

r i

0( ) ( , )exp xp, e .u U x y d dz

r ii

For homogeneous waves (real ) the red term above causes a certain phase shift for the respective plane wave during propagation. Hence, we can formulate the following result: Diffraction is due to different phase shifts in propagation direction for the different normal modes according to their different spatial frequencies , .

The initial spatial frequency spectrum or angular spectrum at 0z forms the initial condition of the initial value problem and follows from 0 ( , ) ( , ,0)u x y u x y by Fourier transform:

2

0 01( , ) ( , )exp ,

2U u x y x y dxdy

i

As mentioned above the wave-vector components , are the so-called spatial frequencies. Another common terminology is “direction cosine” for the quantities / ,k / k , because of the direct link to the angle of the respective

k

α

β

k²² ²α + β >

γ

Page 34: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 67

pane wave. For example / cos xk gives the angle of the plane wave's propagation direction with the x -axis.

Scheme for calculation of beam diffraction We can formulate a general scheme to describe the diffraction of beams: 1. initial field: 0 ( , )u x y 2. initial spectrum: 0 ( , )U by Fourier transform

3. propagation: by multiplication with exp , z i

4. new spectrum: 0( , ; ) ( , )exp ,U z U z i

5. new field distribution: ( , , )u x y z by Fourier back transform This scheme allows for two interpretations: 1) The resulting field distribution is the Fourier transform of the propagated

spectrum

( ) exp .( , ; )u x y d dU z

r i

2) The resulting field distribution is a superposition of homogeneous and evanescent plane waves ('plane-wave spectrum') which obey the dispersion relation

0 ( , )exp) .,(u dU x y z d

r i

Let us now discuss the complex transfer function ( , ; ) exp[ ( , ) ]H z z i , which describes the beam propagation in Fourier space. For z = const. (finite propagation distance) it looks like:

amplitude phase

Obviously, ( , ; ) exp ,H z z i acts differently on homogeneous and evanescent waves:

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 68

A) homogeneous waves 2 2 2k

exp , 1, arg exp , 0z z i i

Upon propagation the homogeneous waves are multiplied by the phase factor

2 2 2exp k z i

B) evanescent waves 2 2 2k

2 2 2exp , exp , arg exp , 0z k z z i i

Upon propagation the evanescent waves are multiplied by an amplitude factor <1

2 2 2exp 1k z

This means that their contribution gets damped with increasing propagation distance z .

Now the question is: When do we get evanescent waves? Obviously, the answer lies in the boundary condition: Whenever 0 ( , )u x y yields an angular spectrum 0 ( , ) 0U for 2 2 2k we get evanescent waves.

Example: Slit Let us consider the following one-dimensional initial condition which corres-ponds to an aperture of a slit:

0

1( ) .2

0

axu x

for

otherwise

0 0

sin2( ) FT ( ) sinc

22

aaU u x

a

-a/2 a/2 x

u0(x)

Page 35: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 69

All spatial frequencies (- ) are excited. Important spectral information is contained in the interval 2 / a . Largest important spectral frequency for a structure with width a is

2 / 2 . Evanescent waves appear for k .

To represent the relevant information by homogeneous waves the

following condition must be fulfilled: 2 2k na

a

n

General result We have seen in the example above that evanescent waves appear for structures < wavelength in the initial condition. Information about those small structures gets lost for z .

Conclusion In homogeneous media, only information about structural details having length scales of , /x y n are transmitted over macroscopic distances. Homogeneous media act like a low-pass filter for light.

Summary of beam propagation scheme

1

0 0 0( , ) ( , ) ( , ; ) ( , ; ) ( , ) ( , , )u x y U U z H z U u x y z

FT FT

with the transfer function ( , ; ) exp ,H z z i

Remark: diffraction free beams With our understanding of diffraction it is straight forward to construct so-called diffraction free beams, i.e., beams that do not change their amplitude distribution during propagation. Translated to Fourier space this means that all spatial frequency components have to get the same phase shift during the propagation

0 0( , ; ) ( , )exp , ( , )expU z U z U Cz i i

���������������������������������������������������������������������������������������������������������������������������������������

-10 0 10

-0 .25

0

0.25

0.5

0 .75

1

2

a αππ−

U0()

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 70

0( , , ) exp ( , )u x y z Cz u x y i

Since in general ( , ) const the excitation 0 ( , )u x y must have a shape such that its Fourier transform has only components where the transfer function is of equivalent value

0 ( , ) 0U only for 2 2 2, k C

It is straightforward to see that the excited spatial frequencies must lie on a circular ring in the , plane.

2 2 20

For constant spectral amplitude on this ring the Fourier back-transform yields (see exercises): 0 0( , ) ( )u x y J r

Bessel-beam (profile) Bessel-beam

Fresnel- (paraxial) approximation 2.7.2The beam propagation formalism developed in the previous chapter can be simplified for the important special case of a narrowband angular spectrum

2 2 20 ( , ) 0U k for

In this situation the beam consists of plane waves having only small inclination with respect to the optical z -axis (paraxial (Fresnel) approxi-mation). Then, we can simplify the expression for ( , ) by a Taylor expansion to:

2 2 2 2

2 2 22( , ) 1

2 2k k k

k k

The resulting expression for the transfer function in Fresnel approximation reads:

Page 36: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 71

2 2

exp ( , ) exp exp ( , ; )2

H z kz z H zk

Fi i i

Amplitude Phase

We can see that this ( , ; )H z F is always real valued. Hence it does not account for the physics of evanescent waves. However, if we remember that for the derivation of the ( , ; )H z F as an approximation of ( , ; )H z we had assumed that the spatial frequency spectrum is narrow (paraxial waves) which had excluded the excitation of evanescent waves already from the beginning to justify the paraxial approximation. The assumption of a narrow frequency spectrum corresponds to the require-ment that all structural details ,x y of the field distribution in the excitation plane (at 0z ) must be much larger than the wavelength: , 10 / /x y n n

This requirement applies also to the phase of the excitation. Hence it is not sufficient that only the structural details of the intensity have a large scale. The underlying phase of the excitation field must fulfill this condition as well. The propagation of the spectrum in Fresnel approximation works in complete analogy to the general case. We just use the modified transfer function to describe the propagation:

0( , ; ) ( , ; ) ( , )U z H z U F F

Summary of Fresnel approximation For a coarse initial field distribution 0 ( , , )u x y z the angular spectrum 0 ( , )U is nonzero for 2 2 2k only. Then, only paraxial plane waves are relevant for transmitting information and the transfer function of homogeneous space can be approximated by ( , ; )H z F .

Description in real space It is also possible to formulate beam propagation in Fresnel (paraxial) approximation in position space:

|H|

βα

k

1

β

arg H

kz

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 72

0

0

( , , ) ( , ; )exp

( , ; ) ( , )exp

( , ; ) ( , )

u x y z U z x y d d

H z U x y d d

h x x y y z u x y dx dy

F F

F

F

i

i

The spatial response function F( , ; )h x y z follows from the convolution theorem and is the Fourier transform of ( , ; )H z F :

2

2 2 2

1( , ; ) ( , ; )exp2

1 exp exp exp .2 2

h x y z H z x y d d

kz z x y d dk

F F i

i i i

This Fourier integral can be solved and we find:

2 22 2

2( , ; ) exp exp exp ,2 2

122

k k kh x y z kz x y kzz z

x yz z

F

i ii i i

The response function corresponds to a spherical wave in paraxial approxi-mation. Similar to Huygens principle, where from each point in the object plane a spherical wave is emitted towards the image plane, here paraxial approximations of spherical waves are emitted. To sum up, in position space paraxial beam propagation is given by:

2 20( , , ) exp ( , )exp .

2 2k ku x y z kz u x y x x y y dx dyz z

F

ii i

Of course, the two descriptions in position space and in the spatial Fourier domain are completely equivalent.

Page 37: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 73

The correspondence between real and frequency space

Relation between transfer and response function:

2

1 e( xp(2

;, )) ,)

( ; x y d dh x y H zz

i

Transfer functions for homogeneous space

2 2 2( , ; ) exp , expH z z i k z i exact solution

2 2

( , ; ) exp exp2

H z kz i zk

F i Fresnel approximation

with 0( ) ( ) ( )k k k n nc

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 74

Remark on the validity of the scalar approximation

ˆ( , ) , , ei x y z d d E r E

ˆ ˆ ˆ( , ) 0 0x y zE E E divE r

A) One-dimensional beams translational invariance in y-direction: =0

and linear polarization in y-direction: ˆyE U

scalar approximation is exact since divergence condition is strictly fulfilled

B) Two-dimensional beams Finite beam which is localized in the x,y-plane: , 0

and linear polarization, w.l.o.g. in y-direction: ˆ 0xE , ˆyE U

divergence condition: ˆ ˆ 0y zE E

2 2 2

ˆ ˆ ˆ, , , , , , 0z y yE E Ek

Page 38: Grundkonzepte der Optik - Friedrich-Schiller-Universität Jena...Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 1 Grundkonzepte der Optik

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 75

In paraxial approximation ( 2 2 2k ) the scalar approximation is automatically justified.

The paraxial wave equation 2.7.3In paraxial approximation the propagated spectrum is given by

0

2 2

0

( , ; ) ( , ; ) ( , )

exp exp ( , )2

z

U z H z U

kz Uk

F F

i i

Let us introduce the slowly varying spectrum ( , ; )V z :

( , ; ) exp ( , ; )U z kz V z F i 2 2

0( , ; ) exp ( , ).2

V z z Vk

i

Differentiation of V with respect to z gives:

2 21( , ; ) ( , ; )

2V z V z

z k

i

Fourier transformation back to position space leads to the so-called paraxial wave equation:

2 21 ( , ; )exp2

( , ; )expV z xz

V z x y

y

d

d

k

d

d

i

i

i

2 2

2 2

1 ( , ; )ex) p( ,2

, V zx y

x y d dz

x y zk

v

i i

(2)1( , , ) ( , , ) 02

v x y z v x y zz k

i paraxial wave equation

The slowly varying envelope ( , , )v x y z (Fourier transform of the slowly varying spectrum) relates to the scalar field as ( , , ) ( , , )exp .u x y z v x y z kzF i

Extension of the wave equation to weakly inhomogeneous media (slowly varying envelope approximation - SVEA) There is an alternative, more general way to derive the paraxial wave equa-tion, the so-called slowly varying envelope approximation. This approximation even allows us to treat inhomogeneous media. We will include inhomo-geneous media in this derivation even though the current chapter of this lecture is devoted to inhomogeneous media. We start from the scalar Helmholtz equation. However, we should mention that extrapolating the discussion on the scalar approximation above towards

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-05-12s.docx 76

inhomogeneous media this is already an approximation assuming weak spatial fluctuations in ( , ) r .

2( , , ) ( , ) ( , , ) 0u x y z k u x y z r with 2

22( , ) ( , )k

c

rr

We use the ansatz 0( , , ) ( , ex, ) pu x y z v x y z k z i with k k being the average wavenumber. With the SVEA condition

/vkv z

we can simplify the scalar Helmholtz equation as follows: 2

(2) 2 202

0

( , , ) 2 ( , , ) ( , , ) ( , ) ( , , ) 0,v x y z k v x y z v x y z k k v x y zz z

r

i

2 2

(2)

0

1 ( , )( , , ) ( , , ) ( , , ) 02 2

k kv x y z v x y z v x y zz k k

r i

This is the paraxial wave equation for inhomogeneous media (weak index contrast).