Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna...

62
Genética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1 o Ano) E-mail: [email protected] Blog: http://marilandabellini.wordpress.com

Transcript of Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna...

Page 1: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Genética Moderna (Pós-Mendeliana)

Disciplina: Fundamentos de Genética e Biologia Molecular

Turma: Fisioterapia (1o Ano)

E-mail: [email protected]

Blog: http://marilandabellini.wordpress.com

Page 2: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Primeira Geração – F1

EXPERIMENTOS DE MENDEL

Cruzamento Recíproco

Primeira Geração – F1

Parental ♀Parental ♂

F1

Parental ♀Parental ♂

F1

Aula 03

Page 3: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

EXPERIMENTOS DE MENDEL

Segunda Geração – F2

Autopolinização

Proporção 3:1

Indivíduo F1

Aula 03

Page 4: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

2ª. LEI DE MENDEL

A proporção de 9:3:3:1 é simplesmente a combinação aleatória de duas proporções independentes de 3:1, assim:

� 315+108=423 lisas 3:

� 101+32=133 rugosas 1� 101+32=133 rugosas 1

� 315+101=416 amarelas 3:

� 108+32=140 verdes 1 F2: 315 lisas, amarelas 9:108 lisas, verdes 3:101 rugosas, amarelas 3:32 rugosas, verdes 1= =

556 16Aula 03

Page 5: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Genética Moderna

“ Quando vários genes determinam o mesmocaráter e interagem entre si de várias

formas”formas”

Vários fenótipos são gerados

Page 6: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Genética Moderna

• Heranças que se afastam dos processos descritos por Mendel em seus trabalhos.

• As proporções fenotípicas ≠ proporções clássicas da genética mendeliana.

• Interação Gênica (não-Alélica), Epistasia, Pleiotropia e Herança Multifatorial (Quantitaiva).

Page 7: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Interação Gênica (Não-alélica)

Quando vários pares de genes não-alelosgenes não-alelospodem interagir na determinação de um caráter hereditário.

Page 8: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

CONCEITOS BÁSICOS:

Alelos:Formas alternativasFormas alternativasde um mesmo gene. Ex. A e a

Aula 03

Page 9: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Interação Gênica (Não-alélica)

Simples (Herança complementar)

• Ocorre quando dois ou mais pares de genes não-• Ocorre quando dois ou mais pares de genes não-alelos se associam (interagem) determinando um dada característica.

• Os genes tem segregação independente, porém não se manifestam independentemente.

Page 10: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Interação-Gênica (Não-alélica)Simples (Herança Complementar)

Exemplos Clássico

• Crista rosa: presença do gene R,

Tipo de Crista de Galo

• Crista rosa: presença do gene R, ausência do gene E.

• Crista ervilha: presença do gene E, ausência do gene R.

• Crista simples: ausência dos genes E e R.

• Crista noz: presença dos gene E e R.

Page 11: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Interação-Gênica (Não-alélica)Simples (Herança Complementar)

Exemplos Clássico

X =

F1P

Tipo de Crista de Galo

F2

Noz: RREE Simples: rree Noz: RrEe

Page 12: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Interação-Gênica (Não-alélica)Simples (Herança Complementar) (9:6:1)

Exemplos Clássico Formato da Abóbora

• Esférico: presença do gene A, ou do gene B.ou do gene B.

A_bb

aaB_

• Alongada: ausência dos genes Ae B.

aabb

• Discóide: presença dos gene A e B.

A_B_

Page 13: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Interação-Gênica (Não-alélica)Simples (Herança Complementar) (9:6:1)

Exemplos Clássico Formato da Abóbora

Page 14: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Interação-Gênica (Não-alélica)Simples (Herança Complementar) (9:7)

Exemplos Clássico Surdez

Page 15: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Interação-Gênica (Não-alélica)Simples (Herança Complementar) (9:7)

Exemplos Clássico Surdez

♂♂

♀♀EDED EdEd eDeD eded

• Recessiva

• presença do par gênico

EeDd x EeDd

♀♀EDED EdEd eDeD eded

EDED EEDDEEDD EEDdEEDd EeDDEeDD EeDdEeDd

EdEd EEDdEEDd EEddEEdd EeDdEeDd EeddEedd

eDeD EeDDEeDD EeDdEeDd eeDDeeDD eeDdeeDd

eded EeDdEeDd EeddEedd eeDdeeDd eeddeedd

• presença do par gênico dd� Não forma Cóclea.

• presença do par gênico ee�Não forma nervo auditivo.

E_dd

eeD_

eedd

• Proporção: 9:7

Page 16: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Epistasia

• Ocorre quando um gene ou par de genes impede (ou mascara) a manifestação de outro gene (s) não alelo (s) e independente.outro gene (s) não alelo (s) e independente.

• A epistasia pode ser dominante ou recessiva.

Epistático � impede

Hipostático � impedido

Page 17: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

HERANÇA MONOGÊNICA

CONCEITOS BÁSICOS

� Herança Monogênica: É o tipo de herança determinada por um único gene

� Alelo Dominante

� Quando seu efeito se faz notar, mesmo que ocorra em dose simples.

� Alelo Recessivo

� Quando para manifestar seu efeito deve estar em dose dupla.

� Alelos Codominantes� Quando dois alelos influem de maneira detectável sobre o

fenótipo ( Ex: sistema ABO)

Aula 03

Page 18: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

EpistasiaDominante (13:3)

Exemplos Clássico Cor da plumagem de galináceos

• Gene I� epistático sobre gene C.

• Gene C�Hipostático em relação à I• Gene C�Hipostático em relação à I� penas coloridas.

C_ii

• Gene c � penas brancas.cc__C_I_

Apenas um I inibe a pigmentação �Dominante

Page 19: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

EpistasiaDominante (13:3)

Exemplos Clássico Cor da plumagem de galináceos

Page 20: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

EpistasiaDominante (12:3:1)

Exemplos Clássico Cor da pelagem em cães

• Gene I� epistático sobre genes B e b.

� Pelagem caramelo

B_I_B_I_

bbI_

• Gene B�Hipostático em relação à I

� Pelagem preta.

B_ii

• Gene b �Hipostático em relação à I � Pelagem chocolate

bbii

Apenas um I inibe a pigmentação �Dominante

Page 21: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

EpistasiaDominante (12:3:1)

Exemplos Clássico Cor da pelagem em cães

X

Page 22: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

EpistasiaDominante (12:3:1)

Exemplos Clássico Cor de abóboras

• Gene I� Epistático sobre genes V e v.

� coloração branca

V_I_V_I_

vvI_

• Gene V�Hipostático em relação à I

� Coloração amarela.

V_ii

• Gene v �Hipostático em relação à I � coloração verde.

vvii

Apenas um I inibe a pigmentação �Dominante

Page 23: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

EpistasiaDominante (12:3:1)

Exemplos Clássico Cor do fruto de abóboras

branco X verdes

VVII vvii

F 1 : 100% branco

VvIi

F1 X F1

F2:

branco 12/16 __I_

amarelo 3/16 V_ii

verde 1/16 vvii

Page 24: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

EpistasiaRecessiva (9:3:4)

Exemplos Clássico Cor da pelagem de Ratos

• Par Gênico cc� Epistático sobre genes B e b.� Pelagem branca

B_ccB_ccbbcc

• Gene B�Hipostático em relação ao par ii� Pelagem aguti (parda)

B_C_

• Gene b�Hipostático em relação ao par ii � Pelagem preta

bbC_

i precisa estar em homozigose para inibir a pigmentação �Recessivo

Page 25: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

EpistasiaRecessiva (9:3:4)

Exemplos Clássico Cor da Pelagem de Ratos

Page 26: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Epistasia em HumanosFenótipo Bombaim

•Presença dos Alelos do sistema ABO (IA e IB), mas não produção dos antígenos (anti-A e anti-B)•Presença do gene h em homozigose� falso O

• hh� Epistáticoem relação à IA e IB

h precisa estar em homozigose para inibir produção de antígenos� Recessivo

Page 27: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Pleiotropia

• do grego, pleion = mais numeroso e tropos = afinidade.

• Um gene (ou par gênico) pleiotrópico�

mais do que uma característica fenotípica que aparentemente não estão relacionadas.

• Efeito múltiplo de um gene.

Page 28: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Pleiotropia

Humanos

• Síndrome de Laurence-Moon-Biedl-Bardet :

• Herança Autossômica recessiva

• Diversas mutações• Diversas mutações

• 1:17.500 a 1:160.000

▫ obesidade,

▫ problemas renais,

▫ hipogonadismo,

▫ dificuldade de aprendizado,

▫ dificuldade no desenvolvimento emocional,

▫ polidactilia.

1 gene

sistemas diferentes

pleiotropia.

Page 29: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Pleiotropia

Humanos

• Síndrome de Marfan:

• 15q2.1 � Dominante

• Expressividade Variável

• 1/10.000• 1/10.000

▫ estatura elevada,

▫ escoliose,

▫ braços e mãos alongadas,

▫ deformidade torácica,

▫ prolapso de válvula mitral,

▫ dilatação da aorta,

▫ miopia,

▫ luxação do cristalino.

1 gene

sistemas diferentes

pleiotropia.

Page 30: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Pleiotropia

Humanos

• Fenilcetonúria:

• 12q24.1 � Recessiva

• Erro Inato do Metabolismo

▫ Retardo mental ,▫ Retardo mental ,

▫ Microcefalia,

▫ Hipopigmentação da pele, cabelos e olhos,

▫ Irritabilidade,

▫ Epilepsia,

▫ Déficit do crescimento somático pós-natal,

▫ Distúrbios do comportamento,

▫ Outras alterações neurológicas (tremores, hipertonia, hiper-refelixa tendinosaprofunda.

1 gene

sistemas diferentes

pleiotropia.

Page 31: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Pleiotropia Humanos

• Anemia Falciforme

• 16q24.3 � recessiva

1 gene

sistemas diferentes

pleiotropia.

Page 32: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Herança Quantitativa (multifatorial, poligênica ou cumulativa)• Dois ou mais pares de genes independentes (não alelos) � a mesma característica

• Somatória de efeitos

• Determinar diversas intensidades fenotípicas intermediárias.

• Características que variam quantitativamente (peso, altura, coloração).

• Os fenótipos variam de modo contínuo e não contrastante. Herança sem dominância, onde AaBB é diferente de AABB.

• Para se saber o número de fenótipos ou quantos pares de genes estão envolvidos são utilizados modelos matemáticos

número de poligenes = número de fenótipos - 1

número de fenótipos = número de poligenes + 1

Page 33: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Herança Quantitativa multifatorial, poligênica ou cumulativa)

Cor da Pele

• s ou t = produção mínima de melaninaS ou T = intensificam a produção de melanina

• sstt� branco (quantidade mínima de melanina)

• Sstt / ssTt�mulato claro (efeito acrescentador de + 1 gene)

• SsTt / SStt / ssTT�mulato médio (efeito acrescentador de 2 genes)

• SSTt / SsTT�mulato escuro (efeito acrescentador de + 3 genes)

• SSTT � negro (efeito acrescentador de + 4 (todos) genes)

Page 34: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Herança Quantitativa multifatorial, poligênica ou cumulativa)

Cor da Pele

• Cálculos:

• número de fenótipos = número de genes + 1• número de fenótipos = número de genes + 1

5 = no Genes + 1

no Genes = 4 (ou dois pares)

• no de classes genotípicas = 3n ,

n = no de pares de genes.

no classes genotípicas. = 32

• no Classes genotípicas = 9 classes

(sstt, Sstt, ssTt, SsTt, SStt, ssTT, SSTt, SsTT e SSTT).

Page 35: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Herança Quantitativa multifatorial, poligênica ou cumulativa)

Triângulo de Pascal

1

1 1

1 2 1

Linha =

Número de fenótipos :

Cor da Pele (1:4:6:4:1)

Triângulo de Pascal1 2 1

1 3 3 1

1 4 6 4 15ª linha = 5 fenótipos

Negro

Mulato escuro

Mulato médio

Mulato claro

branco

Page 36: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Herança Quantitativa multifatorial, poligênica ou cumulativa)

Cor da Pele

• Quando cruzamos dois indivíduos com fenótipos extremos, 100% da prole será composta por indivíduos com fenótipo intermediário. Quando cruzamos indivíduos heterozigotos, aparecem na geração subseqüente cruzamos indivíduos heterozigotos, aparecem na geração subseqüente todos os genótipos possíveis, obedecendo a uma distribuição normal.

• Exemplo: SsTt (mulato médio) x SsTt (mulato médio)

na descendência tem-se:

• 1 branco,

• 4 mulatos claros,

• 6 mulatos médios,

• 4 mulatos escuros,

• 1 negro.

1

2

3

2

1

Negro

Mulato Escuro

Mulato Médio

Mulato Claro

Branco

Page 37: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

4

5

6

7

8

mulato escuro

mulato médio

mulato claro

prop

orçã

o fe

notíp

ica

0

1

2

3

negroBranco

prop

orçã

o fe

notíp

ica

Classes fenotípicas

Page 38: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Exercício

• Em certa espécie vegetal, a altura dos indivíduos determinada é por dois pares de alelos de efeito aditivo e segregação independente: cada alelo Pe R determina 20cm de altura e cada alelo p e rdetermina 10cm. Assim, os indivíduos PPRRdetermina 10cm. Assim, os indivíduos PPRRtêm 80cm e os indivíduos pprr, 40cm. Esquematize o cruzamento entre heterozigotos PpRr, indicando as alturas dos progenitores e dos descendentes.

Page 39: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

PpRr = (20cm + 10cm + 20cm + 10cm) = 60 cm

P

P

RR PPRR (20cmx4) 80 cm

r PPRr (20cm x 3) +10cm) 70 cm

rR PPRr (20cm x 3) +10cm) 70 cm

r PPrr (20cm x2) + (10cmx2) 60 cm

p

RR PpRR (20cm x 3) +10cm) 70 cm

r PpRr (20cm x2) + (10cmx2) 60 cm

Ex: Método da Linha Bifurcada.

Outra possibilidade é o Quadro de Punet

rR PpRr (20cm x2) + (10cmx2) 60 cm

r Pprr 20cm + (10cm x 3) 50 cm

p

P

RR PpRR (20cm x 3) +10cm) 70 cm

r PpRr (20cm x2) + (10cmx2) 60 cm

rR PpRr (20cm x2) + (10cmx2) 60 cm

r Pprr 20cm + (10cm x 3) 50 cm

p

RR ppRR (20cm x2) + (10cmx2) 60 cm

r ppRr 20cm + (10cm x 3) 50 cm

rR ppRr 20cm + (10cm x 3) 50 cm

r pprr (10cmx4) 40 cm

Ex: Método da Linha Bifurcada.

Outra possibilidade é o Quadro de

Page 40: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Genética de Populações

• Estuda, matematicamente, as freqüências dos genes em uma população e as forças evolutivas que as modificam.

• Pool Gênico: genes comuns a uma mesma população, acervo genético ou gene pool.

Page 41: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Genética de Populações

• Uma população estará em equilíbrio genético quando seu pool gênico se mantiver inalterado por gerações sucessivas.por gerações sucessivas.

• Havendo alterações no acervo gênico, se diz que a população está evoluindo.

Page 42: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Genética de Populações

Teorema de Hardy-Weinberg

• 1908

• matemático inglês Godfrey H. Hardy

• médico alemão WilhemWeinberg

• Em duas gerações a população atingiu um estadode equilíbrio, chamado deHardy-Weinberg

Page 43: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Genética de Populações

Teorema de Hardy-Weinberg

• Em populações infinitamente grandes, comcruzamentos ao acaso, que não estiverem sofrendocruzamentos ao acaso, que não estiverem sofrendoinfluência dos fatores evolutivos (mutações,seleção natural, migrações, etc...), não haveráalteração do pool gênico, isto é, as freqüênciasgênicas e genotípicas se manterão constantes.

Page 44: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Genética de Populações

Teorema de Hardy-Weinberg

• As frequências de alelos e genótipos serãoconstantes ao longo das gerações quando umaconstantes ao longo das gerações quando umapopulação apresentar:

▫ Uma grande número de indivíduos;

▫ Reprodução aleatória;

▫ Nenhuma seleção;

▫ Nenhuma mutação;

▫ Não apresentar migração entre populações.

Page 45: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Genética de Populações

Teorema de Hardy-Weinberg

• A reprodução sexuada, em si, não traz mudançasevolutivas;evolutivas;

• Mudanças nas frequências dos alelos surgemsomente de forças externas atuando no pool gênicode uma população

• A maioria das populações naturais foge aoequilíbrio de Hardy-Weinberg

Page 46: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Genética de Populações

Equilíbrio de Hardy-Weinberg

• Numa população em equilíbrio, para uma determinada característica existem dois genes, o dominante (A) e o recessivo (a).

• A soma das freqüências dos dois genes (freqüência gênica) na população é 100%.

f(A) + f(a) = 100%

• Sendo, f(A) = p e f(a) = q, então:

p + q = 1

Page 47: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Genética de Populações

Equilibrio de Hardy-Weinberg

• Na mesma população existem 3 genótipos possíveis: homozigoto dominante (AA), heterozigoto (Aa) e homozigoto recessivo (aa).

• A soma das freqüências do 3 genótipos (freqüência genotípica) na população é 100%.

f(AA) + f(Aa) + f(aa) = 100%

• Sendo, f(AA) = p2, f(Aa) = 2pq e f(aa) = q2, então:

p2 + 2pq + q2 = 1

Page 48: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Como saber se a população está em Equilíbrio de Hardy-Weinberg?

Modelo Matemático

(a+b)n

(A+a)2

p2 + 2pq + q2 = 1

Frequências Genotípicas

p2 = Frequência (AA)

f (A) f (a)

f (A) AA Aa

f (a) Aa aa

(A+a)2

(p+q)2

p= Frequência alelo (A)

q= Frequência alelo (a)

p2 = Frequência (AA)2pq = Frequência (Aa)q2 = Freqüência (aa)

Page 49: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Genética de Populações

Equilíbrio de Hardy-Weinberg

Aplicações

• Uma população em equilíbrio está assim distribuída para um determinado par de alelos:

• Quais as freqüências gênicas e genotípicas?

AA 640 indivíduos

Aa 320 indivíduos

aa 40 indivíduos

Total 1.000 indivíduos

Page 50: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Genética de Populações

Equilíbrio de Hardy-Weinberg

Aplicações

• Freqüências Gênicas:

• Número total de genes (A+a) = 2.000

• Número de genes A = (640x2) + 320 � 1.280 + 320 = 1.600

• Número de genes a = (40x2) + 320 � 80 + 320 = 400

• f(A) = p = 1.600/2.000 = 0,8 ou 80%

• f(a) = q = 400/2.000 = 0,2 ou 20%

AA 640 indivíduos

Aa 320 indivíduos

aa 40 indivíduos

Total 1.000 indivíduos

Page 51: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Genética de Populações

Equilíbrio de Hardy-Weinberg

Aplicações

• f(A) = p = 0,8

• f(a) = q = 0,2

• f(AA) = p2 = (0,8)2 = 0,64 ou 64%

• f(Aa) = 2pq = 2(0,8x0,2) = 0,32 ou 32%

• f(aa) = q2 = (0,2)2 = 0,04 ou 4%

AA 640 indivíduos

Aa 320 indivíduos

aa 40 indivíduos

Total 1.000 indivíduos

Page 52: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Genética de PopulaçõesEquilíbrio de Hardy-Weinberg

Teste do Qui-Quadrado

Page 53: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Genética de PopulaçõesEquilíbrio de Hardy-Weinberg

Teste do Qui-Quadrado

Teste χ2

Frequência Frequência Esperada χ2FrequênciaObservada (FO)

Frequência Esperada(FE = frequencia genotípica x Total)

χ2(FO-FE)2/FE

AA 640 p2x1000 = (0,64x1000)= 640 0

Aa 320 2pqx1000 (0,32x1000)= 320 0

aa 40 q2x1000( 0,04x1000)= 40 0

Total 1000 1000 0

Page 54: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

No Genótipos -1

Nível de Significância (%)

Page 55: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Genética de PopulaçõesEquilíbrio de Hardy-Weinberg

Teste do Qui-QuadradoTeste χ2

FrequênciaObservada (FO)

Frequência Esperada(FE = frequencia genotípica x Total)

χ2(FO-FE)2/FE

AA 640 p2x1000 = (0,64x1000)= 640 0

Aa 320 2pqx1000 (0,32x1000)= 320 0

aa 40 q2x1000 (0,04x1000)= 40 0

Total 1000 1000 0

Como Qui2 obs (0,000) < Qui2 Tab (0,020) = População em equilíbrio

Page 56: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Determinação das frequências alélicas e genotípicasHerança Codominante

Ex: Grupo sanguíneo MNMM = 355 indivíduos; MN = 473 indivíduos; NN = 172 indivíduos

Cálculo as freqüências alélicas

M = pp= [2 x (no indivíduos MM)] + (no indivíduos MN)

2 x (somatório no indivíduos)

Cálculo das frequênciasgenotípicas

2 x (somatório no indivíduos)

p= (2x355) + 473� p=0,5915 � f (M)=0,59152 x 1000

N = qq= [2 x (no indivíduos NN)] + (no indivíduos MN)

2 x (somatório no indivíduos)

q= (2x172) + 473� q=0,4085 � f (N)=0,40852 x 1000

Ou, (p+q)=1 � (0,5915+q)=1 � q = 0,4085

MM = p2

0,59152 = 0,3499

MN = 2pq 2 x 0,5915 x 0,4085 = 0,4832

NN = q2

0,40852 = 0,1669

∑= 1, 0000

Page 57: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Essa população está em Equilíbrio de Hardy-Weinberg?Herança CodominanteTeste χ2

FrequênciaObservada (FO)

Frequência Esperada(FE) *

χ2 **

MM 355 (0,3499x1000)= 350 0,071

MN 473 (0,4832x1000)= 483 0,207

NM 172 (0,1669x1000)= 167 0,150

Total 1000 1000 0,428

0,75 < P < 0,90 � População em Equilíbrio

*Frequência Esperada = Frequência genotípica x somatório no indivíduos

**χ

2

= (FO – FE)

2

FE

Page 58: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Determinação das frequências alélicas e genotípicas - Herança Dominante

Ex: Sensibilidade ao PTCSensíveis (II ou Ii) = 46 indivíduos; Insensíveis (ii) = 11 indivíduos

Cálculo as freqüências alélicas Cálculo das frequências genotípicas

i = q

q2 = 11 � q = V0,1929 �q = 0,4392

57

I = pp= (1 – q) �p = (1-0,4392) � p= 0,5608

II = p2

0,56082 = 0,3158

Ii = 2pq2 x 0,5608 x 0,4392 = 0,4913

ii = q2

0,43922 = 0,1929

Page 59: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Determinação das frequências alélicas e genotípicas - Alelos Múltiplos

Ex: Sistema Sanguíneo ABOA (IA IA ou IAi) = 4791 indivíduos; B (IBIB ou IBi) = 1032 indivíduos; O

(ii) = 5150 indivíduos; AB (IA IB) = 362 indivíduos

(a+b+c)Frequências Genotípicas

p2 = (IA IA) = 0,2622 = 0,067

IA = p

IB = q

Frequências Alélicas

(IA+IB+i)

(p+q+r) = 1

p2 = (IA IA) = 0,2622 = 0,067q2= (IBIB) = 0,0642 = 0,005r2= (ii) = 0,6742 = 0,4542pq = (IA IB) = 2x 0,262 x 0,064 = 0,0342pr = (IAi) = 2 x 0,262 x 0,674 = 0,3532qr = (IBi) = 2 x 0,064 x 0,674 = 0,087

IB = q

i = r

O = r2 = ii = 5150r = 5150 � 0,674V 11335

(A + O) = (p + r)2

p+r = V (A+O)p = V (A+O) – rp = V 4791+5150 – 0,674

11335p = 0,262

p+q+r = 1 � q = 1 – (p+r)q = 1 – (0,674 + 0,262) � q = 0,064

Page 60: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Determinação das frequências alélicas e genotípicas - Herança Ligada ao SexoEx: Gene recessivo Ligado ao X40% mulheres, 60% homens

Homens Mulheres40% = XaY 16% = XaXa

60% = XAY 84% = XA

X-

Cálculo das frequênciasgenotípicas femininas

XaXa = q2

Cálculo as freqüências alélicas

XA = pp= f (XAY) = 0,6

Xa = qq= f (XaY) = 0,4

X- XaXa = q2

0,42 = 0,16

XA Xa = 2pq2 x 0,6 x 0,4 = 0,48

XA XA = q2

0,62 = 0,36

∑= 1, 0000

Page 61: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

*PLEIOTROPIA

Característica 1Característica 2Característica 3Característica n

QUANTITATIVA

Genes diferentes adicionam valores ao

fenótipo, que apresenta

variação na intensidade.

Page 62: Genética Moderna (Pós-Mendeliana) · PDF fileGenética Moderna (Pós-Mendeliana) Disciplina: Fundamentos de Genética e Biologia Molecular Turma: Fisioterapia (1o Ano) E-mail: marilanda_bellini@yahoo.com

Referências

�NUSSBAUM, R.L.; MCINNES, R.R. & WILLARD, H.F. Thompson e Thompson WILLARD, H.F. Thompson e Thompson Genética Médica. 7ª ed.,Elsevier, 2008.

�SNUSTAD, P.; SIMMONS, M.J. Fundamentos de Genética. 4ª ed., Rio de Janeiro, Guanabara Koogan, 2008.