Funcionesfib

86

Transcript of Funcionesfib

Conjunto de seres humanos

Conjunto de seres humanos

Conjunto de seres humanos

A cada ser humano se le asocia su padre biológico

Conjunto de seres humanos

Conjunto de seres humanos

A cada ser humano se le asocia su padre biológico

•Todo elemento del dominio tiene asociado un único elemento del contradominio. Todo ser humano tiene un único padre biológico•No todo elemento del contradominio tiene asociado un elemento del dominio. No todo ser humano es un padre biológico

Conjunto de seres humanos

ab

cd

e

ab

cd

e

Dominio

ab

cd

e

Dominio

Codominio

ab

cde

DominioCodominio

Rango

A la calabaza se le asocian dos elementos en el contradominio

A

parcial

nabla

raiz

existe

B

¿ Cuál es Función ?

A B

B

A B

A BA

¿ Cuál es Función ?

Menú

De manera intuitiva podemos decir que una función es una relación entre dos magnitudes, de tal manera que a cada valor de la primera le corresponde un único valor de la segunda.

Función

• Conceptos Fundamentales:

– Si tenemos una relación f entre dos conjuntos A y B, f se dirá función si a cada valor del conjunto de partida A le corresponde uno y sólo un valor en el conjunto de llegada B.

f(x)

A Bf

a

x

b = f(a)

f(x)

• Conceptos Fundamentales:– La variable x corresponde a la variable independiente y la variable

cuyo valor viene determinado por el que toma x, se llama variable independiente. Se designa generalmente por y o f(x) [se lee “f de x”]. Decir que “y” es función de “x” equivale a decir que “y” depende de “x”.

A Bf

a

x

b = f(a)

f(x)

Función

Toda función es relación, pero no toda relación es función.

– Rango o Recorrido de f:Es aquel subconjunto del codominio en el cual todos sus elementos son imagen de alguna preimagen del dominio o conjunto de partida. Se denota por Rec f.

1234567

Se puede ver que para todo elemento de A, existe sólo una imagen en B.

abcde

1234567

A Bf

Función

• Luego para la función f denotada:

– Dominio de f = Dom f = A = {a, b, c, d, e}– Codominio = B = {1, 2, 3, 4, 5, 6, 7}– Rango o Recorrido de f = Rec f = {1, 2, 3, 4, 7}

abcde

1234567

A Bf

Los elementos {5, 6} no son imagen de ninguna preimagen en A, luego no pertenecen al rango de f .

Función

La Respuesta correcta es B

Función

La Respuesta correcta es D

Representación Grafica

Plano CartesianoMétodo de Óvalos

A IR

B IR

y f x

x

;P x f x

Menú

FUNCIONES ELEMENTALES

FUNCIÓN LINEAL

Euler - Matemáticas ITema:

14 26Funciones elementales

X

Y

Final

Funciones lineales

Las funciones de la forma y = ax + b, donde a, b R se llaman funciones lineales.

X

Y

• (0, b): ordenadaen el origen

• (0, b): ordenadaen el origen

f(x) = ax + b, a > 0 f(x) = ax + b, a < 0

Dominio: R Dominio: R

Recorrido: R

Una función lineal queda determinada cuando se conocen las imágenes de dos valores distintos de la variable independiente

Recorrido: R

@ Angel Prieto Benito Apuntes de Matemáticas 3º ESO 27

FUNCIÓN LINEAL

• Sea la FUNCIÓN IDENTIDAD y = x• Sea la FUNCIÓN DOBLE y = 2.x• Sea la FUNCIÓN TRIPLE y = 3.x• Sea la FUNCIÓN MITAD y = x / 2 , etc...

• Englobando todas las funciones anteriores: y = m.x• donde m es un número real y se llama pendiente.

• Todas las funciones que se pueden expresar de la forma• f(x) = m.x

• Reciben el nombre de FUNCIONES LINEALES.• Su gráfica es una línea recta.

• Si la pendiente, m, es positiva la función es creciente.• Si la pendiente, m, es negativa la función es decreciente.

@ Angel Prieto Benito Apuntes de Matemáticas 3º ESO 28

GRÁFICAS FUNCIONES LINEALES

• Sea f(x) = x

• Sea f(x) = 2x• Sea f(x) = x/2

• Sea f(x) = - x• Sea f(x) = - x/2• Sea f(x) = - 3x

• Todas ellas son funciones lineales.

• Importante: Todas ellas pasan por el origen de coordenadas (0, 0)

y=x/2

y=xy=2x

y= -3x

y= -x

y= -x/2

Otra notación de Función Lineal

• Es de la forma f(x) = mx + ncon m : Pendiente

n : Ordenada del punto de intersección entre la recta y el eje Y (coeficiente de posición).

Ejemplo:La función f(x) = 5x – 3, tiene pendiente 5 e intersecta al eje Y en la ordenada -3.

I. Función Lineal• Análisis de la Pendiente

Para saber con qué tipo de función se está trabajando, se debe analizar el signo de la pendiente.

• Si m < 0, entonces la función es decreciente.• Si m = 0, entonces la función es constante.• Si m > 0, entonces la función es creciente.

I. Función Lineal

I) II)

X

Y

n

m > 0n > 0

X

Y

n m < 0n > 0

X

Y

n

m > 0n < 0

X

Y

n

m < 0n < 0

III) IV)

FUNCIÓN CUADRÁTICA

Euler - Matemáticas ITema:

14 33Funciones elementales

Final

Funciones cuadráticasSon funciones de la forma y = ax2 + bx + c, donde a 0, b, c R

Funciones y = ax2 para diferentes valores de a• Son parábolas• Dominio: R• Si a > 0: Recorrido = [0, )• Si a < 0: Recorrido = (–, 0]

a =2

a =1

a = 0,5

a = – 2

a = – 1

a = – 0,5

Euler - Matemáticas ITema:

14 34Funciones elementales

Representación gráfica de funciones cuadráticas

El vértice está en V =

– b2a, c –

b2

4a . Además Si a > 0 abierta hacia arribaSi a < 0 abierta hacia abajo

f(x) = ax2 + bx + c, a0 es una parábola

X

Y

V•

• V

a > 0

a < 0

Recordatorio

• Función Cuadrática: Una función cuadrática es aquella que tiene la forma, o puede ser llevada a la forma:

Propiedades•El gráfico de una función cuadrática es una parábola.

•La gráfica de intercepta al eje Y en (0,c)

•El vértice está definido por el punto

•Si a>0 la parábola se abre hacia arriba, y si a<0 se abre hacia abajo

Recordatorio• Función Cuadrática:

FUNCIONES CUADRÁTICAS

• Todas las funciones que se pueden expresar de la forma

• f(x) = a.x2 + b.x + c

• Reciben el nombre de FUNCIONES CUADRÁTICAS. Su gráfica es una parábola.

• Para dibujar una parábola necesitamos conocer:

• 1.- Coordenadas del vértice.• 2.- Corte con el eje de abscisas y

el eje de ordenadas.• 3.- El eje de simetría.• 4.- Una tabla de valores.

-3 -2 -1 0 1 2 3 x

y5

-3

-5

f(x) = x2 – 2x – 3

PROPIEDADES • DOMINIO

• El dominio de f(x), como cualquier función polinómica será R. • Dom f(x) = R

• RECORRIDO

• La imagen de una función cuadrática sólo existe del vértice a +oo o del –oo al vértice, según sea cóncava o convexa.

• Img f(x) = (yv , + oo) en las funciones cuadráticas CÓNCAVAS.• Img f(x) = (- oo, yv ) en las funciones cuadráticas CONVEXAS.

• SIMETRÍA

• Como su gráfica es una parábola, sólo puede tener simetría PAR: • f(x) = f(-x) cuando el eje de la parábola sea el eje de ordenadas.

Ejemplo 1

• Sea f (x) = x2 - 3• a=1>0 Cóncava• Dom f(x) = R• Vértice:• xv = - b / 2.a = -0/2.1 = 0• yv= 02

- 3 = - 3• V(0, - 3)• Img f(x) = [ - 3, +oo)

• Sea f (x) = - x2 + x• a=-1<0 Convexa• Dom f(x) = R• Vértice:• xv = - b / 2.a = - 1 / 2.(-1) = 1 / 2• yv= - (1/2)2

+ 1 / 2 = - 0,25 + 0,5 = 0,25• V(0’5 , 0´25)• Img f(x) = (- oo, 0,25]

V

V

-3

0,25

Ejemplo 2

• LA FUNCIÓN CUADRÁTICA O FUNCIONES POLINÓMICAS DE SEGUNDO GRADO

• Si tenemos una ecuación de la forma• y = a.x2 , y = a.x2 + b , y = a.x2 + b.x , y = a.x2 + b.x + c• Podemos decir que es una función cuadrática. • En ella x es la variable independiente e y es la variable dependiente. • Las letras a, b y c son los llamados parámetros.

• La señalaremos así:• f(x) = a.x2 ,• f(x) = a.x2 + c , • f(x) = a.x2 + b.x , • f(x) = a.x2 + b.x + c

• Al ir dando valores a x , obtenemos diferentes valores de y , que llevados a un sistema de coordenadas cartesianas nos resulta siempre una curva llamada PARÁBOLA.

La función f(x)= a.x2 , a > 0

• Sea y = x2

• Tabla de valores

• x y

• -3 9• -2 4• -1 1• 0 0• 1 1• 2 4• 3 9

-3 -2 -1 0 1 2 3 x

y9

1

4

La función f(x)= a.x2 , a < 0

• Sea y = - 2.x2

• Tabla de valores

• x y

• -3 - 18• -2 - 8• -1 - 2• 0 0• 1 - 2• 2 - 8• 3 - 18

-3 -2 -1 0 1 2 3 x

y

- 8

- 2

- 18

La función f(x)= a.x2 + c , a > 0 , c > 0

• Sea y = x2 - 2

• Tabla de valores

• x y

• -3 7• -2 2• -1 - 1• 0 - 2• 1 - 1• 2 2• 3 7

-3 -2 -1 0 1 2 3 x

y7

- 1

2

- 2

La función f(x)= a.x2 + c , a < 0 , c > 0

• Sea y = - 3.x2 + 5

• Tabla de valores

• x y

• -3 - 22• -2 - 7• -1 2• 0 5• 1 2• 2 - 7• 3 - 22

-3 -2 -1 0 1 2 3 x

y

- 7

5

- 22

2

La función f(x)= a.x2 + b.x , a > 0 , b < 0

• Sea y = x2 - 2.x

• Tabla de valores

• x y

• -3 15• -2 8• -1 3• 0 0• 1 - 1• 2 0• 3 3

-3 -2 -1 0 1 2 3 x

y15

3

8

- 1

La función f(x)= a.x2 + b.x , a < 0 , b > 0

• Sea y = - x2 + 5.x

• Tabla de valores

• x y

• -3 - 24• -2 - 14• -1 - 6• 0 0• 1 4• 2 6• 3 6

-2 -1 0 1 2 3 x

y

- 6

6

- 14

4

La función f(x)= a.x2 + b.x + c , a > 0 , b < 0 y c > 0

• Sea y = x2 - 2.x + 3

• Tabla de valores

• x y

• -3 18• -2 11• -1 6• 0 3• 1 2• 2 3• 3 6

-3 -2 -1 0 1 2 3 x

y

18

3

11

6

2

y

f(x) = - 0’5.x2

f(x) = - 2.x2

f(x) = x2

Ejemplos de dilatación

- 3 - 2 - 1 0 1 2 3

y

f(x) = 0’5.x2

f(x) = 2.x2

f(x) = x2

Ejemplos de dilatación • Sea f(x) = x2 Si debemos representar: f(x) = r.x2

• El efecto es que la parábola se deforma.

• Si r > 0 Conserva la concavidad Si r < 0 Se invierte.• Si |r| > 1 Se estrecha. Si |r| < 1 Se ensancha.

- 3 - 2 - 1 0 1 2 3

FUNCIÓN VALOR ABSOLUTO

El valor absoluto ó modulo es el “valor ó magnitud” de un número, independientemente de su signo.Si tenemos un número real x su valor absoluto se escribe │x│.

• El valor absoluto de 7 es 7• El valor absoluto de –π es π• El valor absoluto de -3 es 3

El numero real -20 y el 20, tienen el mismo valor absoluto, 20

Si es un número real distinto de cero, entonces

o o es positivo.

Aquél de los dos que es positivo es llamado

valor absoluto de .

El valor absoluto de un número real ,

denotado por , se define por

a

a a

a

a

a

la regla

si 0

y

si 0

a a a

a a a

mayor que

< menor que

mayor o igual que

menor o igual que

: R R y x

IV. Función Valor Absoluto• El valor absoluto de un número x € IR, denotado por |x|, es siempre un

número real no negativo que se define:

Ejemplo:

|-3| = 3 |12| = 12|-18| = 18 |-5,3| = 5,3

f(x) = |x| =

x si x ≥ 0

-x si x < 0

Si los números reales están representados geométricamente en el eje real, el número |x| se llama distancia de x al origen.

IV. Función Valor Absoluto– a indica el punto de traslación en el eje de las coordenadas.

IV. Función Valor Absoluto– b indica el punto de traslación en el eje de las abscisas.

IV. Función Valor Absoluto• Propiedades:

– a. Si |x| ≤ a entonces -a ≤ x a; con a ≥ 0

– b. Si |x| ≥ a entonces x ≥ a ó -x ≥ a

– c. |xy| = |x| · |y|

– d. |x + y| ≤ |x| + |y| (Desigualdad Triangular)

IV. Función Valor Absoluto• La última propiedad se llama desigualdad triangular, pues, cuando, se

generaliza a vectores indica que la longitud de cada lado de un triangulo es menor o igual a la suma de las longitudes de los otros dos.

IV. Función Valor Absoluto• Ejercicios:

– Determinar el intervalo solución de las siguiente inecuación:

• a. |x – 3| ≤ 2

Aplicando la primera propiedad:

-2 ≤ x – 3 ≤ 2 -2 + 3 ≤ x ≤ 2 + 3

1 ≤ x ≤ 5 x € [1, 5]

IV. Función Valor Absoluto

La Respuesta correcta es B

IV. Función Valor Absoluto

La Respuesta correcta es D

FUNCIÓN IDENTIDAD

f(x) = x

Ejemplo:

Función Identidad

@ Angel Prieto Benito Apuntes de Matemáticas 3º ESO 65

FUNCIÓN IDENTIDAD

• Sea f(x) = x

• La ordenada (y) toma los mismos valores que la abscisa (x).

• Tabla de valores:

• x y

• -2 -2• -1 -1• 0 0• 1 1• 2 2

-2 -1 0 1 2 x

y=f(x)

1

2

-1

-2

FUNCIÓN COSNSTANTE

f(x) = c

-2 -1 0 1 2

4

3

c2

1

Ejemplo:

Función Constante

FUNCIÓN RAÍZ CUADRADA

IntroducciónUna industria está caracterizada por la siguiente función de producción: f (x) = x0.5, donde x es el único factor que utiliza en la producción de cierto artículo.

En tal sentido, f(x) es el número de unidades producidas cuando se utiliza x factores. xxf

f(x)

x

Objetivos

Identificar la función raíz cuadrada, su dominio y rango.

Graficar la función raíz cuadrada en el plano.Aplicaciones.Resolver ecuaciones con radicales.

Función Raíz Cuadrada

Ecuación General:

hxaky

khxaxf )(

Expresando y = f(x):

(h, k) es el vértice o inicio de la gráfica. “a” indicará la extensión y dirección de la gráfica.

Función Raíz Cuadrada

Por ejemplo: 11 xxf 11 xy

-1

1

x

f(x)

2

3

3

Dom (f) = [-1, ∞)

Ran (f) = [1, ∞)

101

101

yy

xx

Función Raíz Cuadrada

Por ejemplo: 23 xxf 32 xy

3

2

x

f(x)

Dom (f) = [3, ∞)

Ran (f) = (-∞, 2]

202

303

yy

xx

EjerciciosGrafique las siguientes funciones, determinando su dominio y rango:

5 )3

11 )2

21 )1

rrf

xxf

xxf

Otra forma de graficar: Traslaciones y Reflexiones

Conocemos la gráfica de Si queremos obtener la gráfica de

Desplazamos (trasladamos) 2 unidades hacia arriba (por el eje de f(x))

xxf 2 xxf

f(x)

x

2

Otra forma de graficar: Traslaciones y Reflexiones

Si queremos obtener la gráfica de Desplazamos (trasladamos) 3

unidades hacia la derecha (por el eje de x)

23 xxf

f(x)

x

2

3

Otra forma de graficar: Traslaciones y Reflexiones

Si queremos obtener la gráfica de Obtenemos el reflejo con relación al

eje x.

23 xxf

f(x)

x

2

3

Ecuaciones con Radicales

Una ecuación radical es una ecuación en la cual la variable aparece dentro del signo radical.

Por ejemplo:

Para resolver estas ecuaciones, utilizaremos la siguiente propiedad:

Si a = b → a2 = b2

65 .

92 .

x

x

La solución final debe verificarse en la ecuación Inicial.

Ecuaciones con Radicales: Ejercicios

Resuelva las siguientes ecuaciones:

423 .1 x

3235 .2 xx

343 .3 xx

123 .4 xxx

414 .5 xxx

@ Angel Prieto Benito Apuntes 1º Bachillerato CT 80

FUNCIÓN RADICAL• Una función f se llama radical o irracional si la variable independiente aparece

bajo un signo radical.• Sea f(x) = √x• Asigna a cada imagen la raíz cuadrada del valor del origen. • Dom f(x) = R+• Img f(x) = R+• Simetría: No hay S. PAR ni S. IMPAR• Mínimo y Máximos: No hay.• Monotonía: Extrictamente creciente en R • si x2>x1 f(x2)>f(x1 )• • Tabla de valores:

2

1

x - 2 - 1 0 1 4 9 16 25

y --- --- 0 1 2 3 4 5

3

0 1 4 9

@ Angel Prieto Benito Apuntes 1º Bachillerato CT 81

FUNCIONES RADICALES

• n• Sea g(x) = √f(x)• Asigna a cada imagen la raíz de índice n del valor de f(x)• Se puede decir que es función de función o función compuesta.

• Dom g(x) = R si n es impar.• Dom g(x) = {V x / f(x) ≥ 0 } si n es par.• Img f(x) = R si n es impar• Img f(x) = R+ si n es par• Simetría: Puede haber simetría PAR si n es par.• Puede haber simetría IMPAR si n es impar.• Creciente en un entorno de xi, si para x2 > x1 f(x2) > f(x1)• Decreciente en un entorno de xi, si para x2 > x1 f(x2) < f(x1)• • Tabla de valores: Es imprescindible.

@ Angel Prieto Benito Apuntes 1º Bachillerato CT 82

• EJEMPLO 1

• Sea f(x) = √ (4 – x)

• Dom f(x) = 4 – x ≥ 0 , 4 ≥ x• Dom f(x) = (-oo, 4]• Img f(x) = R+

• Simetría: No hay

• Es decreciente en (-oo,4)• pues si x2 > x1 • f(x2) < f(x1 )

• Corte con el eje Y: x = 0 • y = 2 Pc(0,2)• Corte con el eje X: y = 0 • x = 4 Pc(4,0)• • Tabla de valores:

-5 0 1 2 3 4 5 x

2

1

x - 12 - 5 0 3 4 5 6y 4 3 2 1 0 --- ---

3

f(x)

@ Angel Prieto Benito Apuntes 1º Bachillerato CT 83

• EJEMPLO 2

• Sea f(x) = √ x2 - 4

• Dom f(x) = x2 - 4 ≥ 0 , x2 ≥ 4• Dom f(x) = { Vx c (-oo, -2] U [2, +oo) }• Img f(x) = R+

• Simetría: f(x) = f(-x) Hay S. PAR

• Es decreciente en (-oo,-2) pues si• x2 > x1 f(x2) < f(x1 )• Es creciente en (2, +oo) pues si• x2 > x1 f(x2) > f(x1 )

• Corte con el eje Y: x = 0 y = NO• Corte con el eje X: y = 0 • x = -2 , x = 2 Pc(-2,0) , Pc(2,0)• • Tabla de valores:

-4 -3 -2 -1 0 1 2 3 4

2

1

x - 4 - 3 -2 2 3 4

y 2√3 √ 5 0 0 √5 2√3

3

f(x)

x

@ Angel Prieto Benito Apuntes 1º Bachillerato CT 84

• EJEMPLO 3• • 3• Sea f(x) = √ (x – 8)

• Dom f(x) = R , al ser n impar• Img f(x) = R+

• Simetría: f(x) = f(-x) No hay S. PAR• Simetría: f(x) = -f(-x) No hay S. IMPAR

• Es creciente en R, pues si• x2 > x1 f(x2) > f(x1 )

• Corte con el eje Y: x = 0 y = - 2 • Pc(0, - 2)• Corte con el eje X: y = 0 • x = 8 Pc(8, 0)• • Tabla de valores:

-19 -16 - 8 0 8 9 16 x

2

x - 19 0 7 8 9 16

y - 3 - 2 - 1 0 1 2

1

- 2

f(x)

@ Angel Prieto Benito Apuntes 1º Bachillerato CT 85

• EJEMPLO 4

• Sea f(x) = √ x4 / (4 – x2)

• Dominio

• x4 ≥ 0• 4 – x2 >0 x =R ,, x2 < 4 x =R ,, -2 < x < 2• Solución 1: - 2 < x < 2

• x4 ≤ 0• 4 – x2 <0 x = 0 ,, x2 > 4 x = 0 ,, (-oo,-2]U[2,+oo) • Solución 2: No hay• Dom f(x) = { x c R: (- 2, 2) }

• Img f(x) = R+

• Es creciente en (0, 2) pues si x2 > x1 f(x2) > f(x1 )• 1 > 0 f(1) > f(0 ) , pues √(1/3) > 0

@ Angel Prieto Benito Apuntes 1º Bachillerato CT 86

• … EJEMPLO 4

• Sea f(x) = √ x4 / (4 – x2)

• Asíntotas Verticales:• x = - 2 y x = 2• Horizontales:• y = lim f(x)= √ oo = oo No hay• xoo• Oblicuas:• m = lim f(x) / x = lim √ x4 / (4 – x2) : x• xoo xoo • m = lim √ x4 / (4x2 – x4) = √ – 1 No hay• xoo

• Img f(x) = R+

• Simetría: f(x)=f(-x) Presenta simetría Par.

• Tabla de valores:

-2 -1 -0,5 0 0,5 1 2

0,13

x - 2 -1 0 1 2

y -- √1/3 0 √1/3 ---

0,17

f(x)

x