FLUJOS EN ACRECIÓN -...

36
CLASE II – 17 MAYO 2012 FLUJOS EN ACRECIÓN

Transcript of FLUJOS EN ACRECIÓN -...

C L A S E I I – 1 7 M A Y O 2 0 1 2

FLUJOS EN ACRECIÓN

ACRECIÓN

Proceso de caída de materia hacia un cuerpo debido a la atracción gravitatoria del mismo

• Trabajos teóricos fundacionales:

Hoyle & Lyttleton (1939), Bondi & Hoyle (1944), Bondi (1952)

• Renovado interés en la década de 1960:

1. Descubrimiento de los quasares

2. Descubrimiento de fuentes galácticas de rayos X muy luminosas (Sco X-1)

Se propone que su fuente de energía es la acreción de materia

Salpeter (1964), Zel’dovich (1964), Shklovsky (1967), Lynden-Bell (1969)

Núcleos galácticos activosBinarias de rayos X / Microquasares

Gamma-raybursts

Agujeros negros aislados

CUATRO REGÍMENES BÁSICOS:

1. Acreción esférica: vrel << as y J ª 0

2. Acreción cilíndrica: vrel ≥ as y J ª 0

3. Disco de acreción: J ≠ 0

4. Disco de acreción + acreción ~ esférica

vrel , J, as

M

vrel = velocidad relativa materia-acretor

J = momento angular materia respecto de acretor

as = velocidad del sonido en el medio

ACRECIÓN: LAS ECUACIONES - 1

Dos posibles descripciones: 1. No colisional (partículas) >> L

2. Fluido << L

L = escala espacial característica del sistema

= camino libre medio de las partículas

Veremos que la escala espacial relevante en un sistema acretante es el

radio de captura o radio de acreción Raccr

(Ojo, también hay que tener en cuenta el tamaño del acretor)

ACRECIÓN: LAS ECUACIONES - 2

Si la descripción hidrodinámica es apropiada, las ecuaciones que describen

un flujo en acreción son:

1. Conservación de la masa

2. Conservación de la cantidadde movimiento

ij Tensor de esfuerzos

viscosidad dinámica

= / viscosidad cinemática

ACRECIÓN: LAS ECUACIONES - 3

Vamos a despreciar la auto-gravedad del fluido. Entonces…

Siempre que sea válido trabajar en régimen

Newtoniano para la gravedad. En régimen de

campo fuerte se pueden usar potenciales efectivos.

3. Ecuación de estado

Una ec. de estado común es P ∂ , con = cp/cV

ACRECIÓN: LAS ECUACIONES - 4

4. Conservación de la energía

e = energía interna por unidad de masa

Q = calor neto intercambiado por unidad de masa por unidad de tiempo

Potencia disipada por unidad de volumen

debido al trabajo de las “fuerzas viscosas”

ACRECIÓN: LAS ECUACIONES - 4

4. Conservación de la energía

e = energía interna por unidad de masa

Q = calor neto intercambiado por unidad de masa por unidad de tiempo

Potencia disipada por unidad de volumen

debido al trabajo de las “fuerzas viscosas”

TASA DE ACRECIÓN

Masa acretada por unidad de tiempo

A veces es un parámetro libre de la teoría, a veces podemos predecirla.

Es un parámetro fundamental desde el punto de vista observacional.

CLASE PASADA: ACRECIÓN ESFÉRICA

v¶ Mv

12

3

4

56

= 7/5

ACRECIÓN CILÍNDRICA - 1

vrel

M vrel M

Sistema con simetría axial; eje de simetría definido por la dirección de la

velocidad relativa entre el acretor y el medio.

Primeros trabajos de Hoyle & Lyttleton (1939) y Bondi & Hoyle (1944).

Se suele hablar de acreción de Bondi-Hoyle o Bondi-Hoyle-Lyttleton.

Las ecuaciones hidrodinámicas son de difícil solución analítica. Se utilizan

aproximaciones o directamente simulaciones numéricas.

ACRECIÓN CILÍNDRICA – 2

Modelo de Hoyle & Lyttleton:

Supongamos que M está en reposo y la velocidad del medio lejos es v¶ .

Trabajamos en coordenadas cilíndricas (r, , z).

• M es puntual

• La presión del gas puede despreciarse ï podemos estudiar su

movimiento como si fueran partículas.

b = parámetro de impacto

ACRECIÓN CILÍNDRICA – 3

Las ecs. que describen el movimiento de cada partícula son las ecs. de

Newton en el potencial gravitatorio (newtoniano) de M.

En coord. Cilíndricas:

ACRECIÓN CILÍNDRICA – 4

Cuando una partícula llega al eje = 0, su velocidad y su posición valen

Problema: aunque la aproximación balística sea buena lejos de M, la

densidad sobre el eje = 0 va a ser muy grande (infinita).

No se puede ignorar la presión.

Idea de Hoyle & Lyttleton: v se anula en el eje = 0 por colisiones.

E < 0

ACRECIÓN CILÍNDRICA – 5

Entonces la energía de una partícula

sobre el eje = 0 será…

Todas las partículas con b < RHL serán acretadas, así que…

ACRECIÓN CILÍNDRICA – 6

Modelo de Bondi & Hoyle:

• Detrás del acretor se forma una “estela”, donde la aproximación balística

deja de valer. El tamaño de la estela está determinado por la presión adentro.

• Cuando la densidad es muy grande, la superficie de separación es una

superficie de discontinuidad (se forma un frente de choque).

ACRECIÓN CILÍNDRICA – 7

Modelo de Bondi & Hoyle:

• Al entrar a la estela v = v¶• Dentro de la estela la velocidad

es paralela al eje de simetría

• Se desprecia gradiente de presiones

en la dirección del eje

Materia por u. de tiempo que entra a la estela por u. de longitud

Ecuaciones hidrodinámicas simplificadas en 1D

Bondi (1952)

ACRECIÓN CILÍNDRICA – 8

Para acreción esférica…

ACRECIÓN CILÍNDRICA – 9

Algunos resultados de simulaciones numéricas

~ 1 = 4/3Ruffert (1994, 1996)

• Si M¶ < 1, no hay shocks para ningún valor de

ACRECIÓN CILÍNDRICA – 10

• Si M¶ > 1, se desarrollan shocks. Para 4/3 5/3 es un “bow shock”.

Para 1 el frente de choque se “pega” al acretor; es un “tail shock”.

~ 1 = 4/3Ruffert (1994, 1996)

ACRECIÓN CILÍNDRICA – 11

Inestabilidad

“flip-flop”

¿Discos?

Dependencia

con el tamaño

del acretor

0.05RHL 0.01RHL

Blondin & Pope (2009)

Blondin & Raymer (2012)

ACRECIÓN CILÍNDRICA – 12

Aplicación: acreción por vientos en binarias (estrella O/B + objeto compacto)

vw 1000 km/s

as 100 km/s

Se puede aplicar el

modelo de

Hoyle & Lyttleton

¿Es eficiente?

10-2 – 10-4

ACRECIÓN CILÍNDRICA – 13

ACRECIÓN CILÍNDRICA – 14

Simulación numérica de acreción por vientos en la binaria de rayos X LS 5039.Okazaki, Romero, Owocki (2008)

ACRECIÓN CILÍNDRICA – 15

Simulación numérica de acreción por vientos en la binaria de rayos X LS 5039.Okazaki, Romero, Owocki (2008)

Teórico

Simulación

La tasa de acreción obtenida numéricamente está en buen acuerdo con el valor predicho por elmodelo sencillo de Hoyle & Lyttleton.

DISCOS DE ACRECIÓN - 1

En una situación realista, la materia en acreción tendrá un momento

angular no despreciable.

¿Cuándo se formará un disco de acreción? Primera condición:

Sea J el momento angular por unidad de masa de un elemento de fluido

cuando es “atrapado” en el campo gravitatorio de M.

Asumiendo que pierde energía más rápido que momento angular, caerá

hasta la órbita de más baja energía compatible con J, una órbita circular de

radio

radio de circularización

Para que se forme un disco….

DISCOS DE ACRECIÓN - 2

Pero el fluido comienza a calentarse a expensas de perder energía cinética

y potencial.

También pierde momento angular, que transfiere hacia afuera.

???Cuál es el mecanismo de disipación¿¿¿Principal incerteza del modelo… Lo llamamos “viscosidad”.

Candidato: inestabilidad magneto-rotacional (Balbus & Hawley 1991)

DISCOS DE ACRECIÓN - 3

• Simetría azimutal:

• Auto-gravedad despreciable

• Potencial Newtoniano

• Equilibrio hidrostático en z

• Disco delgado: H << R

DISCOS DE ACRECIÓN - 4

La hipótesis de disco delgado simplifica mucho las cosas:

• se ignora la dependencia en z de todas las variables menos la densidad,

• todas las ecuaciones se “promedian” o integran en z,

• en lugar de con la densidad se trabaja con la densidad superficial

1. Ecuación de continuidad

DISCOS DE ACRECIÓN - 5

2. Ecuación de Navier-Stokes

• Componente z: equilibrio hidrostático

H<<R

Aproximando z H y usando que P as2

DISCOS DE ACRECIÓN - 6

• Componente R

Esperamos que vR << v, así que vamos a despreciar todas las componentes

del tensor de esfuerzos menos TR

También el gradiente de presiones radial.

DISCOS DE ACRECIÓN - 7

• Componente

¿Cuál es la expresión del tensor de esfuerzos?

no muy realista…

< 0

DISCOS DE ACRECIÓN - 8

Y entonces aparecieron Shakura (1972) y Shakura & Sunyaev (1973)…

N. Shakura

R. Sunyaev

DISCOS DE ACRECIÓN - 9

Las unidades del tensor de esfuerzos son [ TR] = [ P ] x [ L ]

Shakura (1972) propuso entonces una expresión general de la forma

“prescripción ”

Es posible asociar a una viscosidad efectiva en la aprox. de disco delgado

DISCOS DE ACRECIÓN - 10

¿Cuánto vale ?

e.g. Landau & Lifshitz (1987)

En un flujo turbulento

lturb = tamaño máximo de las celdas turbulentas

vturb = su velocidad relativa al fluido

Esperamos que lturb << H y que vturb << as, entonces

vturb lturb