Fluido No Newtoniano

20

Click here to load reader

Transcript of Fluido No Newtoniano

Page 2: Fluido No Newtoniano

FLUIDOS NO NEWTONIANOS.

Profesor: Alumno 6toSemestre de Ing. Mecánica León Franklin 8593556Sección: “A”

Puerto Cabello; Octubre del 2010

Índice

Pag.

Introducción 2

Fluido 4

Fluidos Newtoniano 4

Fluidos no Newtonianos 4

Viscosidad 8

Viscosidad de los Líquidos 9

Influencia de la Temperatura 9

Page 3: Fluido No Newtoniano

Método para medir la Viscosidad 10

Densidad 11

¿Cómo medir la Densidad? 11

Compresión y Expansión 13

Difusión 13

Forma y Volumen 13

Conclusión 14

Bibliografía 15

INTRODUCCIÓN

Un fluido son sustancia que se deforma continuamente bajo la acción de un esfuerzo de corte, esto pueden ser Newtonianos y no Newtonianos.

Un líquido está formado por moléculas que están en movimiento constante y desordenado, y cada una de ellas choca miles de millones de veces en un lapso muy pequeño. Pero, las intensas fuerzas de atracción entre cada molécula, o enlaces de hidrogeno llamados dipolo-dipolo, eluden el movimiento libre, además de producir una cercanía menor que en la que existe en un gas entre sus moléculas. Además de esto, los líquidos presentan características que los colocan entre el estado gaseoso completamente caótico y desordenado, y por otra parte al estado sólido de un liquido

Page 4: Fluido No Newtoniano

(congelado) se le llama ordenado. Por lo tanto podemos mencionar los tres estados del agua (liquido universal), sólido, gaseoso y liquido.

La viscosidad es muy importante en el sentido industrial debido a que esta se fundamenta mucho en leyes físicas y químicas que nos permite entender porque tal compuesto es más espeso que otro, o porque un compuesto es utilizado como lubricante, etc.

El saber cuan viscoso es una solución nos permite saber por ejemplo su peso molecular, es decir podemos determinar el peso molecular de una solución desconocida gracias al método de viscosidad. El poder estudiar la viscosidad de una sustancia nos ayuda a concluir cuanto varía con respecto a la temperatura, si es más viscoso o menos viscoso, etc.

El conocimiento de la viscosidad de un líquido nos ayuda en el área de mecánica de fluidos ya que podemos saber que tipo de líquido es importante y porque usarlo en tal maquina para que esta funcione en óptimas condiciones. O porque usar tal lubricante para carro a tal temperatura y porque no usar otro. O tal vez en las bebidas como las cervezas, ya que la viscosidad influye mucho en el gusto de la persona, etc. En fin el conocimiento de la viscosidad trae consigo muchas conclusiones que pueden llevar al éxito de una empresa.

Fluido

Un fluido se define como una sustancia que se deforma continuamente bajo la acción de un esfuerzo de corte, por tanto, en ausencia de este, no habrá deformación.  Los fluidos pueden clasificarse de manera general de acuerdo con la relación entre el esfuerzo de corte aplicado y la relación de deformación.

Fluidos Newtonianos

Page 5: Fluido No Newtoniano

La distinción entre fluidos newtonianos y fluidos no-newtonianos se basa en la diferente relación que existe en unos y otros entre la aplicación de un esfuerzo tangencial y la velocidad con que se deforman.

Un fluido Newtoniano, también llamado fluido verdadero es aquel que, sometido a un esfuerzo tangencial o cortante, se deforma con una velocidad que es proporcional directamente al esfuerzo aplicado.

Dicho de otra forma: si se aplica un esfuerzo tangencial a un fluido newtoniano, este se pondrá en movimiento sin importar cuán pequeño sea el esfuerzo tangencial y se generará una cierta distribución de velocidad en el fluido. Ese esfuerzo tangencial y el gradiente de velocidad que se produce serán directamente proporcionales, a la constante de proporcionalidad se la define como viscosidad.

Los fluidos más comunes tales como el agua, el aire y la gasolina son newtonianos en condiciones normales.

Fluido no-newtoniano

Un fluido no newtoniano es aquél cuya viscosidad (resistencia a fluir) varía con el gradiente de tensión que se le aplica, es decir, se deforma en la dirección de la fuerza aplicada. Como resultado, un fluido no-newtoniano no tiene un valor de viscosidad definido y constante, a diferencia de un fluido newtoniano.

Los fluidos en los cuales el esfuerzo de corte no es directamente proporcional a la relación de deformación son no newtonianos.  Estrictamente hablando la definición de un fluido es válida solo para materiales que tienen un esfuerzo de deformación cero.   Por lo común, los fluidos no newtonianos se clasifican con respecto a su comportamiento en el tiempo, es decir, pueden ser dependientes del tiempo o independientes del mismo.

Aunque el concepto de viscosidad se usa habitualmente para caracterizar un material, puede resultar inadecuado para describir el comportamiento mecánico de algunas sustancias, en concreto, los fluidos no newtonianos. Estos fluidos se pueden caracterizar mejor mediante otras propiedades reológicas, propiedades que tienen que ver con la relación entre el esfuerzo y los tensores de tensiones bajo diferentes condiciones de flujo, tales como condiciones de esfuerzo cortante oscilatorio.

Un gran número de ecuaciones empíricas se han propuesto para modelar las relaciones observadas entre tyx y du/dy para fluidos independientes del tiempo.  Pueden representarse de manera adecuada para muchas aplicaciones de la ingeniería mediante un modelo de la ley de potencia, el cual se convierte para un flujo unidimensional en

tyx = k·(du/dy)n

donde el exponente n se llama índice de comportamiento del flujo y k el índice de consistencia.  Esta ecuación se reduce a la ley de viscosidad de newton para n = 1  y  k = m , para un fluido newtoniano.

Page 6: Fluido No Newtoniano

Los fluidos en los cuales la viscosidad aparente disminuye con el aumento de la relación de deformación  (n < 1) se llaman seudoplásticos. Es decir con un incremento en la tasa de corte el líquido se adelgaza. Casi todos los fluidos no newtonianos entran en este grupo; los ejemplos incluyen soluciones poliméricas, suspensiones coloidales y pulpa de papel en agua.  Si la viscosidad aparente aumenta con el incremento de la relación de deformación (n > 1) el fluido se nombra dilatante; aquí el fluido se engruesa con un aumento en la tasa de corte.

Además, existen los llamados materiales lineales de Bingham, donde se presenta un desplazamiento finito para un esfuerzo cortante menor que un valor t1 y para el cual existe un comportamiento viscoso newtoniano cuando el esfuerzo es menor que t1. Para este comportamiento la ecuación correspondiente es:

t=t1+mB du/dy

El estudio de fluidos no newtonianos es aún más complicado por el hecho de que la viscosidad aparente puede depender del tiempo.  Los fluidos tixotrópicos como tintas de impresor, tiene una viscosidad que depende de la deformación angular inmediatamente anterior de la sustancia y tiende a solidificarse cuando se encuentra en reposo, estos fluidos muestran una reducción de n con el tiempo ante la aplicación de un esfuerzo de corte constante.  Los fluidos reopécticos muestran un aumento de n con el tiempo.  Después de la deformación, algunos regresan parcialmente a su forma original cuando se libera el esfuerzo aplicado.   A tales fluidos se les llama visco elástico.

Esfuerzo cortante

du/dy

Al modelo de Bingham, que representa aceptablemente bien a las pinturas, barnices y algunos productos alimenticios, corresponde, en el supuesto de flujo dentro de una tubería el desarrollo de un perfil de velocidad "normal" en cercanías de las paredes, donde el esfuerzo cortante es mayor y un perfil completamente plano en cercanía del eje de la tubería donde el esfuerzo cortante se encontraría por debajo de un valor crítico.

El modelo pseudoplástico que representa adecuadamente el comportamiento de algunas suspensiones como pulpa de papel, napalm en kerosene, etc. corresponde el desarrollo de un perfil de velocidad aplanado en el centro, semejante a la representación

Page 7: Fluido No Newtoniano

de los perfiles turbulentos. El modelo dilatante que represente el comportamiento de algunas pastas corresponde al desarrollo de un perfil de velocidad cónico.

Algunos tipos de fluidos no newtonianos son: algunos tipos de barros como los de arcilla, algunas variedades de mieles, algunos metales (en su estado fundido), algunos plásticos como la plastilina, el cemento o yeso con agua, etc.…

Un ejemplo barato y no tóxico de fluido no newtoniano puede hacerse fácilmente añadiendo almidón de maíz en una taza de agua. Se añade el almidón en pequeñas proporciones y se revuelve lentamente. Cuando la suspensión se acerca a la concentración crítica es cuando las propiedades de este fluido no newtoniano se hacen evidentes. La aplicación de una fuerza con la cucharilla hace que el fluido se comporte de forma más parecida a un sólido que a un líquido. Si se deja en reposo recupera su comportamiento como líquido. Se investiga con este tipo de fluidos para la fabricación de chalecos antibalas, debido a su capacidad para absorber la energía del impacto de un proyectil a alta velocidad, pero permaneciendo flexibles si el impacto se produce a baja velocidad.

Un ejemplo familiar de un fluido con el comportamiento contrario es la pintura. Se desea que fluya fácilmente cuando se aplica con el pincel y se le aplica una presión, pero una vez depositada sobre el lienzo se desea que no gotee.

Dentro de los principales tipos de fluidos no newtonianos se incluyen los siguientes:

Tipo de fluido Comportamiento Características Ejemplos

Plásticos

Plástico perfecto

La aplicación de una deformación no conlleva un esfuerzo de resistencia en sentido contrario

Metales dúctiles una vez superado el límite elástico

Plástico de Bingham

Relación lineal, o no lineal en algunos casos, entre el esfuerzo cortante y el gradiente de deformación una vez se ha superado un determinado valor del esfuerzo cortante

Barro, algunos coloides

Limite seudoplastico

Fluidos que se comportan como seudoplásticos a partir de un determinado valor del esfuerzo cortante

Page 8: Fluido No Newtoniano

Limite dilatante

Fluidos que se comportan como dilatantes a partir de un determinado valor del esfuerzo cortante

Fluidos que siguen la Ley de la Potencia

seudoplásticoLa viscosidad aparente se reduce con el gradiente del esfuerzo cortante

Algunos coloides, arcilla, leche, gelatina, sangre.

Dilatante

La viscodidad aparente se incrementa con el gradiente del esfuerzo cortante

Soluciones concentradas de azúcar en agua, suspensiones de almidón de maíz o de arroz.

Fluidos Viscoelásticos

Material de Maxwell

Combinación lineal "serie" de efectos elásticos y viscosos

Metales, Materiales compuestos

Fluido Oldroyd-B

Combinación lineal de comportamiento como fludio Newtoniano y como material de Maxwel

Betún, Masa panadera, nailon, Plastilina

Material de Kelvin

Combinación lineal "paralela" de efectos elásticos y viscosos

PlásticoEstos materiales siempre vuelven a un estado de reposo predefinido

Fluidos cuya viscosidad depende del

ReopécticoLa viscosidad aparente se incrementa con la duración del esfuerzo aplicado

Algunos lubricantes

Page 9: Fluido No Newtoniano

tiempo TixotrópicoLa viscosidad aparente decrece con la duración de esfuerzo aplicado

Algunas variedades de mieles, kétchup, algunas pinturas antigoteo.

Viscosidad

Los gases y los líquidos tienen una propiedad conocida como la viscosidad, la cual se puede definir como la resistencia a fluir ofrecida por un líquido, resultante de los efectos combinados de la cohesión y la adherencia. La viscosidad se produce por el efecto de corte o deslizamiento resultante del movimiento de una capa de fluido con respecto a otro y es completamente distinta de la atracción molecular. Se puede considerar como causada por la fricción interna de las moléculas y se presenta tanto en gases ideales como en líquidos y gases reales.

Algunos líquidos, literalmente fluyen lentamente, mientras que otros fluyen con facilidad, la resistencia a fluir se conoce con el nombre de viscosidad. Si existe una mayor viscosidad, el líquido fluye más lentamente. Los líquidos como la maleza y el aceite de los motores son relativamente viscosos; el agua y los líquidos orgánicos como el tetracloruro de carbono lo son. La viscosidad puede medirse tomando en cuenta el tiempo que transcurre cuando cierta cantidad de un líquido fluye a través de un delgado tubo, bajo la fuerza de la gravedad. En otro método, se utilizan esferas de acero que caen a través de un líquido y se mide la velocidad de caída. Las esferas más lentamente en los líquidos más viscosos. Si deseamos determinar la viscosidad con respecto al tiempo, es decir el volumen del líquido que fluye con respecto al tiempo tenemos:

........................ecuación 1

Donde:

= Velocidad de flujo del líquido a lo largo de un tubo. r = Radio del tubo. L = Longitud (P1 - P2) = Diferencia de presión

A pesar de esto la determinación de las variables L y res complicado, para esto empleamos un método de comparación entre un liquido de viscosidad desconocida y el agua como un liquido base, pero si consideramos que D P es en proporción a la densidad r tenemos el siguiente análisis.

.........................ecuación 2

Donde:

m 1= Viscosidad del liquido desconocido. m Viscosidad del agua.

Viscosidad de los Líquidos

Page 10: Fluido No Newtoniano

Los líquidos presentan mucha mayor tendencia al flujo que los gases y, en consecuencia, tienen coeficientes de viscosidad mucho más altos. Los coeficientes de viscosidad de los gases aumentan con la temperatura, en tanto que los de la mayoría de líquidos, disminuyen. Asimismo se ha visto que los coeficientes de viscosidad de gases a presiones moderadas son esencialmente independientes de la presión, pero en el caso de los líquidos el aumento en la presión produce un incremento de viscosidad. Estas diferencias en el comportamiento de gases y líquidos provienen de que en los líquidos el factor dominante para determinar la viscosidad en la interacción molecular y no la transferencia de impulso.

La mayoría de los métodos empleados para la medición de la viscosidad de los líquidos se basa en las ecuaciones de Poiseuille o de Stokes. La ecuación de Poiseuille para el coeficiente de viscosidad de líquidos es:

donde V es el volumen del liquido de viscosidad que fluye en el tiempo t a través de un tubo capilar de radio r y la longitud L bajo una presión de Pdinas por centímetro cuadrado. Se mide el tiempo de flujo de los líquidos, y puesto que las presiones son proporcionales a las densidades de los líquidos, se puede escribir como:

Las cantidades t1 y t2 se miden más adecuadamente con un viscosímetro de Ostwald. Una cantidad definida de liquido se introduce en el viscosímetro sumergido en un termostato y luego se hace pasar por succión al bulbo B hasta que el nivel del liquido este sobre una marca a. Se deja escurrir el liquido el tiempo necesario para que su nivel descienda hasta una marca b y se mide con un cronometro. El viscosímetro se limpia, luego se añade el líquido de referencia y se repite la operación. Con este procedimiento se obtienen t1 y t2 y la viscosidad del líquido se calcula con la ecuación anterior.

Influencia de la temperatura

El efecto de la temperatura sobre la viscosidad de un líquido es notablemente diferente del efecto sobre un gas; mientras en este ultimo caso el coeficiente aumenta con la temperatura, las viscosidades de los líquidos disminuyen invariablemente de manera marcada al elevarse la temperatura. Se han propuesto numerosas ecuaciones que relacionan viscosidad y temperatura como por ejemplo:

donde A y B son constantes para el liquido dado; se deduce que el diagrama de log( ) frente a 1/T seta una línea recta. Se pensó en otro tiempo que la variación de la fluidez con la temperatura resultaría más fundamental que la del coeficiente de viscosidad; pero el uso de una expresión exponencial hace que la opción carezca de importancia.

Métodos para Medir la Viscosidad

Los experimentos sobre viscosidad que constan en el Laboratorio de Ciencias, en Viscosidad y Temperatura y en Viscosidad de Líquidos, ambos, están basados en cuánto tiempo demora para que caiga un objeto a través de una cantidad dada de

Page 11: Fluido No Newtoniano

líquido. Cuanto más tarda, más viscoso es el líquido.

Otra manera consiste en colocar el líquido en un embudo con un grifo estrecho en el fondo, abrir el grifo y registrar la cantidad de tiempo que transcurre para que fluya por él una cantidad específica del líquido.

Para la medición más formal de la viscosidad se utilizan instrumentos conocidos como viscosímetros. Pueden funcionar midiendo el flujo del líquido a través de un orificio de tamaño conocido, de manera similar a la descrita arriba. Algunos viscosímetros producen la rotación de un disco sumergido en el líquido. El arrastre, o resistencia al giro, puede ser medido.

Densidad

Se define como el cociente entre la masa de un cuerpo y el volumen que ocupa. La densidad de un cuerpo esta relacionado con su flotabilidad, una sustancia flotara sobre otra si su densidad es menor.

La densidad de un cuerpo está relacionada con su flotabilidad, una sustancia flotará sobre otra si su densidad es menor. Por eso la madera flota sobre el agua y el plomo se hunde en ella, porque el plomo posee mayor densidad que el agua mientras que la densidad de la madera es menor, pero ambas sustancias se hundirán en la gasolina, de densidad más baja.

La densidad es una característica de cada sustancia. Nos vamos a referir a líquidos y sólidos homogéneos. Su densidad, prácticamente, no cambia con la presión y la temperatura; mientras que los gases son muy sensibles a las variaciones de estas magnitudes.

La gravedad específica o densidad relativa esta definida como el peso unitario del material dividido por el peso unitario del agua destilada a 4 °C. Se representa la gravedad específica (Ge) y también se puede calcular utilizando cualquier relación de peso de la sustancia a peso del agua.

¿Cómo podemos determinar la densidad?

La densidad puede obtenerse de forma indirecta y de forma directa. Para la obtención indirecta de la densidad, se miden la masa y el volumen por separado y posteriormente se calcula la densidad. La masa se mide habitualmente con una balanza, mientras que el volumen puede medirse determinando la forma del objeto y midiendo las dimensiones apropiadas o mediante el desplazamiento de un líquido, entre otros métodos.

Entre los instrumentos más comunes para la medida de densidades tenemos:

El densímetro, que permite la medida directa de la densidad de un líquido El picnómetro, es un aparato que permite la medida precisa de la densidad de sólidos,

Page 12: Fluido No Newtoniano

líquidos y gases picnómetro de gas. La balanza de Mohr es una variante de balanza hidrostática que permite la medida

precisa de la densidad de líquidos.

Otra posibilidad para determinar las densidades de líquidos y gases es utilizar un instrumento digital basado en el principio del tubo en U oscilante

Para determinar la densidad de una sustancia se pueden tomar varias muestras de ésta y luego medir en cada muestra tanto la masa como el volumen correspondiente, para así calcular la relación masa/volumen o densidad. Los valores pueden resultar con mínima diferencia, porque pueden cometerse errores al realizar las medidas, pero los valores deben ser muy próximos entre sí. Pero también podemos analizar y determinar la densidad mediante una gráfica de masa en función del volumen en la cual, al unir los puntos correspondientes, resulta una línea recta cuya pendiente es la densidad.

D = 8,1g/3cc D = 24,3g/9cc D = 48 ,6g/18cc

Ejemplo: Calcular la densidad de una muestra de oro de 120 g. que ocupa un volumen de 3 cm 3. D = m / v ; D = 120 g / 3 cm 3 = 40 g/cm 3

Picnómetro

Es un aparato que se utiliza para determinar las densidades de distintas sustancia. También se conoce como frasco de densidades. Consiste en un pequeño frasco de vidrio de cuello estrecho cerrado con un tapón esmerilado, hueco y que termina por su parte superior en un tubo capilar con graduaciones.

Compresión y Expansión

A los líquidos se les considera incomprensibles debido que dentro de ellos existen fuerzas extremas que entre sus moléculas las cuales se atraen, por otra parte cuando a un liquido se le aplica una presión su volumen no se ve afectado en gran cantidad, ya que sus moléculas tienen poco espacio entre si; por otra parte si aplicamos un cambio de temperatura a un líquido su volumen no sufrirá cambios considerables. Cabe señalar que cuando las moléculas de un líquido están en continuo aumento de movimiento es por causa del aumento de alguna temperatura que esté experimentando el mismo lo cual inclina al liquido a aumentar la distancia de sus moléculas, a pesar de esto las fuerzas de atracción que existen en el líquido se oponen a ese distanciamiento de sus moléculas.

Difusión

Page 13: Fluido No Newtoniano

Al realizar la mezcla de dos líquidos, las moléculas de uno de ellos se difunde en todas las moléculas del otro líquido a mucho menor velocidad, cosa que en los gases no sucede. Sí deseamos ver la difusión de dos líquidos, se puede observar dejando caer una pequeña cantidad de tinta ( china) en un poco de agua. Debido a que las moléculas en ambos líquidos están muy cerca, cada molécula conlleva una inmensidad de choques antes de alejarse, puede decirse que millones de choques. La distancia promedio que se genera en los choques se le llama trayectoria libre media y, en los gases es más grande que en los líquidos, cabe señalar que esto sucede cuando las moléculas están bastantemente separadas. A pesar de lo que se menciona anteriormente hay constantes interrupciones en sus trayectorias moleculares, por lo que los líquidos se difunden mucho más lentamente que los gases.

Forma y Volumen

En un liquido, las fuerzas de atracción son suficientemente agudas para limitar a las moléculas en su movimiento dentro de un volumen definido, a pesar de esto las moléculas no pueden guardar un estado fijo, es decir que las moléculas del líquido no permanecen en una sola posición. De tal forma que las moléculas, dentro de los límites del volumen del líquido, tienen la libertad de moverse unas alrededor de otras, a causa de esto, permiten que fluyan los líquidos. Aún cuando, los líquidos poseen un volumen definido, pero, debido a su capacidad para fluir, su forma depende del contorno del recipiente que los contiene.

Conclusión

Luego de la realización de este trabajo he aprendido que debido al comportamiento que tienen algunos fluidos, se hace interesante su estudio, sobre todo a nivel experimental, teniendo en cuenta que dicha sustancia posee ciertas propiedades tales como viscosidad y densidad, las cuales juegan papeles principales en flujos de canales abiertos y cerrados y en flujos alrededor de objetos sumergidos.

Este interés en el estudio de los fluidos es a consecuencia de que en la vida diaria no existe un fluido ideal, es decir, una sustancia en la cual se esté aplicando un esfuerzo, el cual puede ser muy pequeño, para que se resista a fluir con absoluta facilidad.

Page 14: Fluido No Newtoniano

Conociendo las propiedades de un fluido podemos hacer un mejor uso del mismo y esto se ha demostrado en la práctica.

Hemos visto también como la magnitud de la viscosidad del fluido depende de la rapidez de la caída de la masa colgada al viscosímetro, puesto que al caer rápidamente nos indica que el fluido tiene poca resistencia al efecto cortante y por lo tanto su viscosidad es baja; lo contrario ocurre cuando la velocidad es lenta, es decir, una viscosidad alta.

Bibliografía

html.rincondelvago.com/mecanica-de-fluidos

es.wikipedia.org/wiki/Fluido_no-newtoniano

www.cienciapopular.com/.../Fluidos_No_Newtonianos/Fluidos_No_Newtonianos.php

fluidos.eia.edu.co/.../conceptosbasicosmfluidos/nonewtonianos/nonewtonianos.html

www.monografias.com › Tecnologia

www.widman.biz/Seleccion/viscosidad.html

es.wikipedia.org/wiki/Densidad