Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos...

39
Fenómenos de Transporte Tema 2 — p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente Flujo por el interior de un tubo circular Flujo reptante alrededor de una esfera sólida Nomenclatura Ecuación de continuidad La ecuación de continuidad en los distintos sistemas coordenados Ecuación de movimiento La ecuación de movimiento en los distintos sistemas coordenados Software de modelado de procesos Condiciones límite Ecuación de energía mecánica Forma adimensional de las ecuaciones de variación Capa límite y flujo potencial Capa límite Flujo potencial

Transcript of Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos...

Page 1: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 1

TEMA 2

Ecuaciones de variación para sistemas isotérmicos

Balances envolventes de cantidad de movimientoPelícula descendenteFlujo por el interior de un tubo circularFlujo reptante alrededor de una esfera sólida

NomenclaturaEcuación de continuidad

La ecuación de continuidad en los distintos sistemas coordenadosEcuación de movimiento

La ecuación de movimiento en los distintos sistemas coordenadosSoftware de modelado de procesosCondiciones límite

Ecuación de energía mecánicaForma adimensional de las ecuaciones de variaciónCapa límite y flujo potencial

Capa límite Flujo potencial

Page 2: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 2

xxxx uuSudt

dm

xxx uSdt

dxS

dt

dV

dt

dm

dVdm Balance de materia

xudm·

Balance de cantidad de movimiento

Fuerzat

ML

t

L

t

LL

L

M

22

3

Page 3: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 3

Balances envolventes de cantidad de movimiento: condiciones límite

1. Película descendente

Balance de materia

z zz z LxW v xW v

0

v z(x) L

Δx

z

x

x = 0

x = δ

β

z zz z Lv v

0zv

z

0

• Régimen estacionario• Fluido incompresible

Page 4: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 4

Balance de c.d.m.

velocidad neta develocidad de velocidad neta de

entrada de c.d.m. fuerza deacumulación = entrada de c.d.m. + +

por transporte gravedadde c.d.m. por convección

viscoso

0

Límite cuando Δx tiende a cero: cosxzdg

dx

Integrando: cosxz xzx gx 0 0

Ley de Newton:z

xz

dv

dx

Integrando:cos

z

g xv

22

12zx v 0

xz xzx x xLW

cosLW x g z z z zz z L

xW v v v v

0

Page 5: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 5

Magnitudes derivadas

Velocidad máxima:cos

z máx

gv

2

2

Velocidad media:cos

W

zoz zW

o

v dx dyQ gv v dx

A dx dy

20

0

0

1

3

Flujo volumétrico:cosW

z zo

gWQ v dx dy W v

3

0 3

Fuerza sobre la superficie: cosL W

z xzoF dy dz g LW 0

cosz

g xv

22

12

Page 6: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 6

2. Flujo por el interior de un tubo circular

r

z

vz(r)

z zz z Lr r v r r v

02 2 zv

z

0

Balance de materia

Balance de c.d.m.

presión

de fuerza

gravedad

de fuerza

viscoso

transporte por

c.d.m. de entrada

de neta velocidad

convección por

c.d.m. de entrada

de neta velocidad

c.d.m. de

nacumulació

de velocidad

( )

z z rz rzr r r r rz z L

o L

r r v v L r r

r r L g r r P P

2 2

00 2 2

2 2

,Lrzdrr P gh

dr L

0

Integrando: rzr 0 0L

rz rL

0

2

0

zrz

z

dv

drr R v

( )Lz

R rv

L R

220 1

4

En el límite (Δr→0):

P0

PL

• Régimen estacionario• Fluido incompresible

Page 7: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 7

Magnitudes derivadas

( )Lz

R rv

L R

220 1

4

Velocidad máxima:

Velocidad media:

Flujo volumétrico:

Fuerza sobre la superficie:

( )Lz máx

Rr v

L

200

4

( )R

zo Lz R

o

v r dr d RQv

A Lr dr d

22

0 02

0

8

( )RL

zo

RQ v r dr d

L

4

20

0 8

( )

( )

z rz Lr R

L

F RL R

R P P R L g

20

2 20

2

Page 8: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 8

v

3. Flujo reptante alrededor de una esfera sólida

z

x

z

(x,y,z)

( , , )r

Flujo reptante

Re .p

Dv

0 1

Solución analítica

r

v Rsen

R r

43

2

coso

mv Rp p gz

R r

23

2

cosr

R Rv v

r r

33 1

12 2

R Rv v sen

r r

33 1

14 4

Magnitudes derivadas

Fuerza normal: cos sennz r RF p R d d R g Rv

2 2 3

0 0

42

3

Fuerza tangencial: sen sentz r r RF R d d Rv

2 2

0 04

Fuerza total:(Ley de Stokes)

3 34 42 4 6

3 3(flotacion) (resistencia de forma) (fricción)

zF R g Rv Rv R g Rv

Ft

Fn

F

Page 9: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 9

Nomenclatura:

Magnitudes

Productos

Producto diádico:

x x x y x z

y x y y y z

z x z y z z

u v u v u v

uv u v u v u v

u v u v u v

Orden Magnitud Libro Notas de clase 0 1 2

escalar ( ) vector [ ] tensor { }

p

v

p

v

Producto Orden uv

u v ·u v :u v

ou+ov

ou+ov -1 ou+ov -2 ou+ov -4

Page 10: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 10

Rotacional de un campo vectorial: [ ]

x y z

x y z

vx y z

v v v

Laplaciana de un campo escalar: 2 2 2

22 2 2

( · )s s s

s sx y z

Laplaciana de un campo vectorial: 2 2 2 2x x y y z zv v v v

Operadores diferenciales

Operador nabla: x y zx y z

Gradiente de un campo escalar: x y zs s s

sx y z

Divergencia de un campo vectorial: ( · ) yx zvv v

vx y z

Page 11: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 11

Derivadas con respecto al tiempo

Derivada parcial: c

t

Derivada total: dc c c dx c dy c dz

dt t x dt y dt z dt

Derivada substancial: x y z

Dc c c c cv v v

Dt t x y z

Page 12: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 12

z

xy

x xv x x x

v

z zv

z z zv

y y

v

y y yv

Ecuación de continuidad

velocidad de velocidad de velocidad de

acumulación = entrada salida

de materia de materia de materia

CARA ENTRADA SALIDA

x x xv y z x x x

v y z

y y yv x z y y y

v x z

z z zv x y z z z

v x y

x xx x x

y yy y y

z zz z z

x y z y z v vt

x z v v

x y v v

yx zvv v

t x y z

Page 13: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 13

Forma vectorial:

· vt

Transformación:

· ·

·

v vt

Dv

Dt t

·D

vDt

Fluidos incompresibles (ρ=constante):

· 0v

Page 14: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 14

( ) ( ) ( ) 0x y zv v vt x y z

1 1( ) ( ) ( ) 0r zrv v v

t r r r z

22

1 1 1( ) ( ) ( ) 0rr v v sen v

t r r sen r senr

Coordenadas rectangulares (x, y, z):

Coordenadas cilíndricas (r, θ, z):

Coordenadas esféricas (r, θ, Φ):

La ecuación de continuidad en los diferentes sistemas de coordenadas

Page 15: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 15

z

xy

xx x xx x x

zx z

zx z z

yx y

yx y y

Ecuación de movimiento

Transporte convectivo: CARA ENTRADA SALIDA

x x x xv v y z x x x x

v v y z

y y x yv v x z y x y y

v v x z

z z x zv v x y z x z z

v v x y

velocidad de velocidad de velocidad de suma de

acumulación = entrada + salida + fuerzas sobre

de c.d.m. de c.d.m. de c.d.m. el sistema

Balance:

Transporte viscoso: CARA ENTRADA SALIDA

x xx xy z xx x x

y z

y yx yx z yx y y

x z

z zx zx y zx x z

x y

Balance a la componente x:

Page 16: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 16

Balance de fuerzas: xx x xy z p p g x y z

Término de acumulación: xvx y z

t

Substituyendo en el balance:

y x yxx x x z x xx zxx

v vv v v v v pg

t x y z x y z x

· ·v

vv p gt

·Dv

p gDt

Haciendo uso de la ecuación de continuidad:

Page 17: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 17

Ley de Newton

22 ·

3

22 ·

3

22 ·

3

yx xxx yx xy

y yzyy yz zy

z z xzz xz zx

vv vv

x y x

v vvv

y y z

v v vv

z x z

22 ·

3yx x x z x

x

vDv v v v vpv g

Dt x x x y y x z x z

22 ·

3yz z x z z

z

vDv v v v vpv g

Dt z x x z y y z z z

22 ·

3y y y yx z

y

Dv v v vv vpv g

Dt y x x y y y z y z

La ecuación de movimiento, para un fluido newtoniano:

Page 18: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 18

Fluido de densidad y viscosidad constantes. (Ec. Navier-Stokes)

2Dv

v p gDt

Sistemas de flujo sin efectos viscosos. (Ec. Euler)

Dvp g

Dt

Fluido en reposo.

0 p g

Formas simplificadas de la ecuación de movimiento

·Dv

p gDt

Page 19: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 19

La ecuación de movimiento en coordenadas rectangulares(en función de τ)

yxx x x x xx zxx y z x

v v v v pv v v g

t x y z x x y z

y y y y xy yy zyx y z y

v v v v pv v v g

t x y z y x y z

yzz z z z xz zzx y z z

v v v v pv v v g

t x y z z x y z

componente x:

componente y:

componente z:

Page 20: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 20

La ecuación de movimiento en coordenadas rectangulares(para fluidos newtonianos de ρ y μ constantes)

componente x:

componente y:

componente z:

2 2 2

2 2 2x x x x x x x

x y z xv v v v v v vp

v v v gt x y z x x y z

2 2 2

2 2 2y y y y y y y

x y z y

v v v v v v vpv v v g

t x y z y x y z

2 2 2

2 2 2z z z z z z z

x y z zv v v v v v vp

v v v gt x y z z x y z

Page 21: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 21

La ecuación de movimiento en coordenadas cilíndricas(en función de τ)

componente r:

componente θ:

componente z:

2

1 1( )

r r r rr z

r rzrr r

v vv v v v pv v

t r r r z r

r gr r r r z

22

1

1 1( )

rr z

zr

v v v v v v v pv v

t r r r z r

r gr r zr

1 1( )

z z z zr z

z zzrz z

vv v v v pv v

t r r z z

r gr r r z

Page 22: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 22

La ecuación de movimiento en coordenadas cilíndricas(para fluidos newtonianos de ρ y μ constantes)

componente r:

componente θ:

componente z:

2

2 2

2 2 2 2

1 1 2

r r r rr z

r rr r

v vv v v v pv v

t r r r z r

vv vrv g

r r r r r z

2 2

2 2 2 2

1

1 1 2

rr z

r

v v v v v v v pv v

t r r r z r

v vvrv g

r r r r r z

2 2

2 2 2

1 1

z z z zr z

z z zz

vv v v v pv v

t r r z z

v v vr g

r r r r z

Page 23: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 23

La ecuación de movimiento en coordenadas esféricas(en función de τ)

componente r:

componente θ:

componente Φ:

2 2

22

sen

1 1 1( ) sen

sen sen

r r r rr

rrr r r

v v vvv v v v pv

t r r r r r

r gr r r rr

2

22

cot 1

sen

1 1 1 cot( ) sen

sen sen

rr

rr

v vv v v v v v v pv

t r r r r r r

r gr r r r rr

22

1cot

sen sen

1 1 1 2cot( )

sen

rr

rr

v v v v v v v v vv pv

t r r r r r r

r gr r r r rr

Page 24: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 24

La ecuación de movimiento en coordenadas esféricas(para fluidos newtonianos de ρ y μ constantes)

componente r:

componente θ:

componente Φ:

2 2

22 2 2 2

sen

2 2 2 2cot

sen

r r r rr

r r r

v v vvv v v v pv

t r r r r r

vvv v v g

r r r r

2

22 2 2 2 2

cot 1

sen

2 2cos

sen sen

rr

r

v vv v v v v v v pv

t r r r r r r

vvvv g

r r r

22 2 2 2 2

cotsen

1 2 2cos

sen sen sen sen

rr

r

v v v v v v v v vvv

t r r r r r

v vvpv g

r r r r

En estas ecuaciones:2

2 22 2 2 2 2

1 1 1sen

sen senr

r rr r r

Page 25: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 25

Componentes del tensor esfuerzo cortante en coordenadas rectangulares

22 ( · )

3

22 ( · )

3

22 ( · )

3

xxx

yyy

zzz

vv

x

vv

y

vv

z

yxxy yx

y zyz zy

z xzx xz

vv

y x

v v

z y

v v

x z

.yx z

vv vv

x y z

Page 26: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 26

Componentes del tensor esfuerzo cortante en coordenadas cilíndricas

22 ( · )

3

1 22 ( · )

3

22 ( · )

3

rrr

r

zzz

vv

r

v vv

r r

vv

z

1

1

rr r

zz z

z rzr rz

v vr

r r r

v v

z r

v v

r z

1 1· z

rv v

v rvr r r z

Page 27: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 27

Componentes del tensor esfuerzo cortante en coordenadas esféricas

22 ( · )

3

1 22 ( · )

3

cot1 22 ( · )

sen 3

rrr

r

r

vv

r

v vv

r r

v vvv

r r r

1

sen 1

sen sen

1

sen

rr r

rr r

v vr

r r r

v v

r r

vvr

r r r

22

1 1 1. sen

sen senr

vv r v v

r r rr

Page 28: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 28

Software de modelado de procesos

Profiled contours of axial velocity

Pressure Driven Flow in a Jet Pump

Pump Efficiency

http://www.fluent.com

Page 29: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 29

The transient behavior of the tracer dispersion through the multistage reactor is captured.

Residence Time Distribution in CSTR’s

Product plume forming as a result of reactant injection through the dip tube.

Liquid-phase Reaction

Page 30: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 30

Blending Time Prediction

Concentration of the tracer can be monitored at a number of locations in the vessel and plotted as uniformity of concentration, U, as a function of time.

Page 31: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 31

Pressure contours on an aneurysm created from a Spiral CT scan

Cerebral Aneurysm Risk Assessment

Pathlines around the Opel Astra, Courtesy of Opel AG

Automotive industry: Aerodynamics

Page 32: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 32

Condiciones límite (interfase)

VELOCIDAD:

int intI IIv v

TRANSPORTE DE C.D.M.:

FASE II FASE I

SÓLIDO LÍQUIDO GAS int 0 int 0

LIQUIDO int 0 int intI II

Page 33: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 33

Ecuación de energía mecánica

Ecuación de movimiento:

·Dv

p gDt

212 · · · ·

Dv v p v v g

Dt

2 21 12 2· · · · · : ·v v v pv p v v v v g

t

, multiplicándola escalarmente por :v

Page 34: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 34

SISTEMA

Compresión/Expansión

·p v

Disipación viscosa

: v

EnergíaInterna

U

EnergíaMecánica

212

v

ALREDEDORES

TrabajoCalor

(conducción)

· ·

· ·

v g pv

v

·q

E. Interna

· vU

E. Mecánica

212· v v

2 21 12 2· · · · · : ·v v v pv p v v v v g

t

Page 35: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 35

Forma adimensional de las ecuaciones de variación

Propiedades físicas constantes:

Magnitudes características: L, V, p0

* * * * * *02

** * *

2 2 2*2 2 2

*2 *2 *2

*

, , , , ,

x y z

p pv tV x y zv p t x y z

V L L L LV

Lx y z

Lx y z

D L D

V DtDt

Ecuación de continuidad: * *. 0v

Ecuación de movimiento:*

* * *2 ** 2

Dv gL gp v

LV gDt V

Grupos adimensionales característicos: Número de Reynolds: ReLV

Número de Froude:2V

FrgL

Page 36: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 36

Capa límite y flujo potencial

Flujo potencial

Fluido ideal:

constante0 ,

Velocidad originada por un campo potencial ():

x yv vx y

Ecuación de continuidad ( = constante):

0yxvv

x y

Ec. Laplace

2 2

2 20

x y

Carácter irrotacional:

2

20

x

yx

y

vvy x y v

y xv

x x y

0v

Page 37: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 37

Función de corriente ():

x

y

vy

vx

2 2

0 02 2

v vp gz p gz

constante2

2

v Pz

g g

Page 38: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 38

Capa límite

Page 39: Fenómenos de Transporte Tema 2 p. 1 TEMA 2 Ecuaciones de variación para sistemas isotérmicos Balances envolventes de cantidad de movimiento Película descendente.

Fen

óm

eno

s d

e T

ran

spo

rte

Tema 2 — p. 39

“Despegue” de la capa límite