Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez...

72
Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de la materia se mantienen unidas entre si debido a la acción de unas fuerzas llamadas fuerzas intermoleculares que tienen su origen en la acción electrostática que ejercen los núcleos atómicos sobre los electrones de los átomos próximos y viceversa. El valor de estas fuerzas varia con la distancia llegando incluso a ser repulsivas si los átomos están tan próximos que se repelen sus respectivas capas electrónicas.

Transcript of Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez...

Page 1: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Estados de agregación de la materiaLa materia esta constituida por moléculas y estas a su

vez integradas por átomos. Las partículas constituyentes de la materia se mantienen unidas entre si debido a la acción de unas fuerzas llamadas fuerzas

intermoleculares que tienen su origen en la acción electrostática que ejercen los núcleos atómicos sobre los electrones de los átomos próximos y viceversa. El valor de estas fuerzas varia con la distancia llegando

incluso a ser repulsivas si los átomos están tan próximos que se repelen sus respectivas capas electrónicas.

Page 2: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Cuando las fuerzas de atracción se ejercen entre partículas de una misma sustancia se denominan

fuerzas de cohesión y si se ejercen entre partículas de distintas sustancias se llaman fuerzas de adhesión.

La materia se presenta en la naturaleza en tres estados distintos de agregación: sólido, liquido y gaseoso,

caracterizados por las fuerzas de cohesión que actúan en cada caso sobre las partículas del cuerpo.

Page 3: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Estados de la materia La materia se presenta en tres estados o formas de

agregación: sólido, líquido y gaseoso.Dadas las condiciones existentes en la superficie

terrestre, sólo algunas sustancias pueden hallarse de modo natural en los tres estados, tal es el caso del agua.

La mayoría de sustancias se presentan en un estado concreto. Así, los metales o las sustancias que

constituyen los minerales se encuentran en estado sólido y el oxígeno o el CO2 en estado gaseoso: Los

sólidos: Tienen forma y volumen constantes. Se caracterizan por la rigidez y regularidad de sus

estructuras.

Page 4: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Los sólidos se caracterizan por tener forma y volumen constantes. Esto se debe a que las partículas que los forman están unidas por unas fuerzas de atracción grandes de modo que ocupan posiciones casi fijas.En el estado sólido las partículas solamente pueden

moverse vibrando u oscilando alrededor de posiciones fijas, pero no pueden moverse trasladándose libremente

a lo largo del sólido.Las partículas en el estado sólido propiamente dicho, se

disponen de forma ordenada, con una regularidad espacial geométrica, que da lugar a diversas estructuras

cristalinas.Al aumentar la temperatura aumenta la vibración de las

partículas:

Page 5: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Los líquidos: No tienen forma fija pero sí volumen. La variabilidad de forma y el presentar unas propiedades

muy específicas son características de los líquidos. Los gases: No tienen forma ni volumen fijos. En ellos es

muy característica la gran variación de volumen que experimentan al cambiar las condiciones de

temperatura y presión.

Page 6: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Estado líquido Los líquidos, al igual que los sólidos, tienen volumen

constante. En los líquidos las partículas están unidas por unas fuerzas de atracción menores que en los sólidos, por esta razón las partículas de un líquido pueden trasladarse

con libertad. El número de partículas por unidad de volumen es muy alto, por ello son muy frecuentes las

colisiones y fricciones entre ellas.Así se explica que los líquidos no tengan forma fija y

adopten la forma del recipiente que los contiene. También se explican propiedades como la fluidez o la viscosidad.

En los líquidos el movimiento es desordenado, pero existen asociaciones de varias partículas que, como si fueran una, se mueven al unísono. Al aumentar la temperatura aumenta la

movilidad de las partículas (su energía).

Page 7: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Estado gaseoso Los gases, igual que los líquidos, no tienen forma fija pero, a

diferencia de éstos, su volumen tampoco es fijo. También son fluidos, como los líquidos.

En los gases, las fuerzas que mantienen unidas las partículas son muy pequeñas. En un gas el número de partículas por unidad de

volumen es también muy pequeño.Las partículas se mueven de forma desordenada, con choques

entre ellas y con las paredes del recipiente que los contiene. Esto explica las propiedades de expansibilidad y compresibilidad que

presentan los gases: sus partículas se mueven libremente, de modo que ocupan todo el espacio disponible. La compresibilidad

tiene un límite, si se reduce mucho el volumen en que se encuentra confinado un gas éste pasará a estado líquido.

Al aumentar la temperatura las partículas se mueven más deprisa y chocan con más energía contra las paredes del recipiente, por lo

que aumenta la presión

Page 8: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Cambios de estado Cuando un cuerpo, por acción del calor o del frío pasa de un estado a otro, decimos que ha cambiado de estado.

En el caso del agua: cuando hace calor, el hielo se derrite y si calentamos agua líquida vemos que se evapora. El

resto de las sustancias también puede cambiar de estado si se modifican las condiciones en que se encuentran.

Además de la temperatura, también la presión influye en el estado en que se encuentran las sustancias.

Page 9: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Si se calienta un sólido, llega un momento en que se transforma en líquido. Este proceso recibe el nombre de fusión. El punto de fusión es la temperatura que

debe alcanzar una sustancia sólida para fundirse. Cada sustancia posee un punto de fusión característico. Por ejemplo, el punto de fusión del agua pura es 0 °C a la

presión atmosférica normal.

Page 10: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Si calentamos un líquido, se transforma en gas. Este proceso recibe el nombre de vaporización. Cuando la vaporización tiene lugar en toda la masa de líquido,

formándose burbujas de vapor en su interior, se denomina ebullición. También la temperatura de ebullición es característica de cada sustancia y se

denomina punto de ebullición. El punto de ebullición del agua es 100 °C a la presión atmosférica normal.

Page 11: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Teoría cinético-molecular de los gases. (T.C.M.) explica los cambios físicos suponiendo que las moléculas se mueven más o menos rápidamente y se

acercan o se alejan unas de otras; pero estas moléculas no cambian, ya que las sustancias siguen siendo las

mismas. Por ejemplo son cambios físicos los ocurridos en el azúcar cuando se disuelve en agua, o en el estaño al

fundirse, el agua al hervir etc.En las reacciones químicas las sustancias sí cambian; hay

sustancias que desaparecen y otras nuevas que aparecen. Por lo tanto también cambian las moléculas.

Page 12: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

La T.C.M. se debe ampliar y modificar para que se puedan explicar los cambios químicos y una nueva teoría debe dar explicación a otros hechos que hemos observado: ¿Cómo es posible que de una sustancia como el agua aparezcan

dos sustancias tan diferentes como el hidrógeno y el oxígeno?

¿Cómo es posible qué del óxido de mercurio obtengamos dos sustancias como el oxígeno y el mercurio?

¿Qué clase de cambios se producen en las moléculas de las sustancias cuando desaparecen y se forman nuevas

sustancias? La Teoría Atómica de Dalton (enunciada a principios del

siglo XIX) puede explicar qué cambios ocurren a las moléculas cuando unas sustancias desaparecen, y aparecen

en su lugar otras distintas. Esta teoría supone que:

Page 13: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Los elementos son sustancias formadas por un sólo tipo de átomos. Existen 92 diferentes en la naturaleza como se

muestra en el sistema periódico. Los átomos de un elemento son iguales entre sí, pero distintos de los otros

elementos. Los átomos no se crean ni se destruyen, no se alteran en la

reacción química. Las moléculas de las sustancias están formadas, a su vez,

por otras partículas más pequeñas llamadas átomos. La teoría cinético-molecular ha resultado muy útil para

explicar el comportamiento de los gases, los cambios de estado y otros fenómenos importantes. Las ideas

principales de esta teoría son las siguientes:Los gases están formados por un número muy grande de

partículas extremadamente pequeñas llamadas moléculas.

Page 14: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Las distancias entre las moléculas son muy grandes comparadas con el tamaño de las moléculas en si y con

las dimensiones del recipiente que las contiene. Las moléculas están en movimiento continuo rectilíneo

en todas las direcciones y sentidos. Las fuerzas de atracción o repulsión que ejercen las moléculas entre si

son despreciables.Durante su movimiento al azar las moléculas chocan

entre si y con las paredes del recipiente, este continuo bombardeo de las paredes se conoce como presión del

gas.Los choques de las moléculas entre si y con las paredes

del recipiente que los contiene son perfectamente elásticos, es decir, sin perdida alguna de energía.

Page 15: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Leyes generales de los gases ideales.Se han desarrollado leyes empíricas que relacionan las

variables P (presión), V (volumen) y T (temperatura absoluta) con la cantidad de gas en base a experiencias en el laboratorio. Estas variables no son independientes entre si, sino que cada una de ellas es siempre función de las otras. Para que un gas se pueda considerar ideal

ha de cumplir las dos condiciones siguientes:Que el volumen de sus partículas sea nulo.

Que no existan fuerzas atractivas entre ellas.

Page 16: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Ley de Boyle-Mariotte.La ley de Boyle-Mariotte tiene el siguiente enunciado:

Para una cierta cantidad de gas a una temperatura constante, el volumen

del gas es inversamente proporcional a la presión de dicho gas.

Donde k es constante si la temperatura y la masa del gas permanecen constantes.

Page 17: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Cuando aumenta la presión, el volumen disminuye, mientras que si la presión disminuye el volumen aumenta. El valor exacto de la constante k no es

necesario conocerlo para poder hacer uso de la Ley; si consideramos las dos situaciones de la figura que se

muestra, manteniendo constante la cantidad de gas y la temperatura, deberá cumplirse la relación:

P1V1 = P2V2

Page 18: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Experimento de BoylePara poder comprobar su teoría, Boyle hizo el

experimento el cual ayudo a comprobar su teoría, es el siguiente: Introdujo un gas en un cilindro con un

émbolo y comprobó las distintas presiones al bajar el émbolo. A continuación hay una tabla que muestra

algunos de los resultados que obtuvo:

Page 19: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Si se observan los datos de la tabla se puede comprobar que al disminuir el volumen, la presión P, aumenta y que al multiplicar P

y V se obtiene PV = 30

Page 20: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.
Page 21: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Ley de Charles-Gay Lussac.Esta ley manifiesta que:

Para una cierta cantidad de gas a una presión constante, el volumen del gas es directamente

proporcional a la temperatura de dicho gas.Para una cierta cantidad de gas a un volumen constante, la presión del gas es directamente

proporcional a su temperatura.

Page 22: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Una expresión más general, que muestra como peden variar algunos experimentos que pueden demostrar

esta ley y que son los siguientes:En un tubo de ensayo se deposita un poco de agua y se tapa el tubo con un corcho, luego se empieza a calentar

el tubo con un mechero, el gas que había dentro del tubo (el vapor generado por el agua y el aire) empezará a expandirse, tanto que necesita una vía de escape, así

que el corcho saldrá volando y el gas ya podrá salir tranquilamente. Será:

Page 23: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.
Page 24: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Ecuación general de los gases perfectos o ideales.Los volúmenes ocupados por una misma masa gaseosa

son directamente proporcionales a las temperaturas correspondientes e inversamente proporcionales a las

presiones soportables.

Page 25: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

La ecuación de estadoLa ecuación que describe normalmente la relación entre la presión, el volumen, la temperatura y la

cantidad (en moles) de un gas ideal es:

Page 26: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

La ecuación de estado para gases reales.Valores de R Haciendo una corrección a la ecuación de estado de un gas ideal, es decir, tomando en cuenta las fuerzas intermoleculares y volúmenes intermoleculares

finitos, se obtiene la ecuación para gases reales, también llamada ecuación de Van der waals:

Page 27: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Ley de las Presiones Parciales de Dalton:Cuando Dalton formuló por primera vez su teoría atómica poco había elaborado la teoría acerca de la vaporización

del agua y el comportamiento de mezclas gaseosas. A partir de sus mediciones dedujo que dos gases es una

mezcla actuaban de manera mutuamente independiente.Por ejemplo si se colocan tres gases en un recipiente de determinado volumen, V, se puede considerar que cada

uno de los gases ocupa todo el volumen. Es decir, si el gas está cerrado, las moléculas del gas debido a su rápido movimiento azar y ase tamaño tan pequeño, ocuparán

todo el recipiente. Luego, cada uno de los tres gases que forman todo el recipiente.

Page 28: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Si estudiamos cada uno de estos gases en forma separada, la contribución a la presión de cada

componente está directamente relacionada con el número de moles del componente y con la razón a la

que las partículas chocan con las paredes del recipiente. Dado que cada componente tiene el mismo volumen y

temperatura, las diferencias entre las presiones que ejercen se deberá a los distintos números de moles.

Page 29: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

La presión que ejerce un componente determinado de la mezcla de gases si éste ocupara por sí solo el

recipiente, se llama presión parcial del componente. Las presiones parciales se calculan aplicando la ley de los

gases ideales a cada componente. Así la presión parcial, Pc, para una componente consistente en nc moles está

dada por la expresión:

Page 30: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Se puede calcular la presión parcial de cada componente, si se conoce el número de moles de cada

uno en la mezcla encerrada en un volumen determinado, a una temperatura dada. Debido a que las

partículas de cada gas componente se conducen en forma independiente, la presión total que ejerza la

mezcla será un resultado de todas las partículas.Establece que la presión total de una mezcla de gases es

igual a la suma de las presiones parciales de los gases individuales.

Pt = pa + pb + pc + ...

Page 31: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Está relación se conoce como Ley de las Presiones Parciales de Dalton e indica que la presión total de

una mezcla de gases es igual a la suma de las presiones parciales de los componentes de la mezcla.

Page 32: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.
Page 33: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Disoluciones.En el universo la materia se presenta bajo diferentes

formas, las cuales llamamos materiales y los mismos se clasifican en:

Page 34: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Las sustancias son materiales de composición química definida como el agua (H2O), la glucosa (C6H12 O6 ),etc.Las mezclas constituyen sistemas formados por dos o más especies que no reaccionan químicamente entre sí. Estos materiales pueden ser homogéneos, cuando

óptimamente presentan una sola fase, y una distribución regular de sus propiedades físicas y

químicas y heterogéneos cuando presentan dos o más fases y una distribución irregular de sus propiedades.

Page 35: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

La fase de un sistema, es la porción homogénea que se puede separarse mecánicamente, es decir, mediante el

uso del algunos de los procesos que se mencionan a continuación: tamización, decantación, imantación,

filtración, centrifugación. Son mezclas homogéneas, agua con azúcar;

cloroformo con éter etílico, alcohol etílico con bencina, etc.

Son mezclas heterogéneas: azufre con agua, almidón con alcohol, kerosene y agua.

Page 36: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Las disoluciones son materiales homogéneos formados por dos o más especies químicas que no reaccionan

entre sí; cuyos componentes se encuentran en proporción que varía entre ciertos limites.

Toda disolución está formada por una fase dispersa llamada soluto y un medio dispersante

denominado disolvente. Una disolución puede estar formada por uno o más soluto y uno o más disolventes.

Pero en este tema nos referiremos a las soluciones binarias, es decir, aquellas que están constituidas solo

por un soluto y un disolvente.

Page 37: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

CARACTERISTICAS DE LAS DISOLUCIONES1.- Son mezclas homogéneas, es decir, que las sustancias que la conforman ocupan una sola fase, y presentan una

distribución regular de sus propiedades físicas y químicas, por lo tanto al dividir la disolución en n partes iguales o distintas, cada una de las porciones arrojará las mismas propiedades físicas y químicas.

Page 38: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

2.- La cantidad de soluto y la cantidad de disolvente se encuentran en proporciones que varían entre ciertos

limites. Por ejemplo, 100 g de agua a 0 ºC es capaz de disolver hasta 37,5 g de NaCl, pero si mezclamos 40 g de NaCl con 100 g de agua a la temperatura señalada,

quedará un exceso de soluto sin disolver.3. Sus propiedades físicas dependen de su

concentración.Ej. disol. HCl 12 mol/L Densidad = 1,18

g/cm3 disol. HCl 6 mol/L Densidad = 1,10

g/cm3

Page 39: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

4.- Sus componentes se separan por cambios de fases, como la fusión, evaporación, condensación, etc.

Ej: Para separar los componentes de una disolución acuosa de NaCl, se realiza por evaporación, es decir la

disolución es sometida a calentamiento, al alcanzarse la temperatura de ebullición del solvente éste se separa en

forma de gas, quedando la sal como residuo.5. Tienen ausencia de sedimentación, es decir al someter

una disolución a un proceso de centrifugación las partículas del soluto no sedimentan debido a que el

tamaño de las mismas son inferiores a 10 Angstrom ( ºA ).Angstrom: unidad de longitud que equivale a 10-8 cm.

Page 40: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.
Page 41: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Por la relación que existe entre el soluto y la disolución, algunos autores clasifican las disoluciones en diluidas y

concentradas, y las concentradas se subdividen en saturadas y sobre saturadas. Las diluidas, se refieren a

aquellas que poseen poca cantidad de soluto en relación a la cantidad de disolución; y las concentradas

cuando poseen gran cantidad de soluto. Esta clasificación es inconveniente su utilización, debido a que no todas las sustancias se disuelven en la misma

proporción en un determinada cantidad de disolvente a una temperatura dada.

Page 42: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Ej: a 25 ºC en 100 g de agua se disuelven a) 0,000246 g de BaSO4

b) 50 g Na2S2O3.La disolución de sulfato de Bario es concentrada

(saturada) por que ella no admite más sal, aunque por la poca cantidad de soluto disuelto debería clasificarse como diluida. Por ello es más conveniente clasificar a las soluciones como no saturadas, saturadas y sobre

saturadas.

Page 43: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

SOLUBILIDAD: la solubilidad expresa la cantidad de gramos de soluto disueltos por cada 100g de disolvente

a una determinada temperatura. Para calcularla, se utiliza la siguiente relación.

Para que una sustancia se disuelva en otra debe

existir semejanza en las polaridades de sus moléculas. Por ejemplo el agua es un compuesto polar, por ello

disuelve con facilidad a las sustancias polares como son los ácidos, hidróxidos y sales inorgánicas y a los

compuestos orgánicos polares.

Page 44: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Esta regla no es totalitaria, ya que existen compuestos inorgánicos altamente polares que son insolubles en

agua como son los carbonatos, fosfatos (exceptuando a los del grupo IA y del NH4

+), los hidróxidos (exceptuando los del grupo IA y el Ba(OH)2) y los sulfuros

(exceptuando a los del grupo IA, IIA, del NH4+) esta

situación está relacionada con el tamaño de la molécula y las fuerzas interiónicas.

Las sustancias se consideran insolubles cuando la solubilidad es menor a 0,1 mg de soluto por cada 100g disolvente. Y cuando un líquido no se disuelve en otro

líquido se dice que no son miscibles.

Page 45: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

FACTORES QUE AFECTAN LA SOLUBILIDAD: La naturaleza del soluto y del solvente, la temperatura y la

presión.LA NATURALEZA DEL SOLUTO Y DEL SOLVENTE:

no existe una regla fija que permite establecer una generalización en cuanto al fenómeno de la disolución. Cuando un soluto es agregado en un solvente se da un proceso de difusión de las moléculas del soluto hacia el seno de las moléculas del soluto y del solvente, lo cual ocurre solo y cuando entre las moléculas del soluto y

del solvente se establezcan fuerzas interactivas capaces de vencer las fuerzas intermoleculares existentes en el

cuerpo a dispersar

Page 46: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

. Es por ello que los solventes polares tienden a disolver a las sustancias de polaridad semejante, aunque este proceso puede ser interferido por la existen de moléculas más voluminosas que las del

solvente y por ende, la existencias de fuerzas intermoleculares superiores a las que podrían

establecerse entre el soluto y el solvente.

Page 47: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

EFECTO DE LA TEMPERATURA: generalmente un aumento de temperatura facilita el proceso de disolución de un soluto. Lo

que se explica por los siguientes hechos:El calor suministrado al sistema aumenta la velocidad de

difusión de las partículas del soluto en el seno del solvente.El calor suministrado es absorbido por las moléculas del soluto,

debilitándose las fuerzas intermoleculares y facilitándose el proceso de solvatación.

Si embargo, existen casos en donde un aumento de temperatura disminuye la solubilidad, como el caso del

Ce2(SO4)3 el cual su solubilidad en agua a O ºC es de 39,5 % mientras que a 100 C es de 2,5 %.

Solvatación: proceso mediante el cual moléculas del solvente rodean a las del soluto disgregándolas homogéneamente por

todo el sistema.

Page 48: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

EFECTO DE LA PRESION: este es un factor que tiene efecto apreciable en la solubilidad de gases.

Experimentalmente se ha comprobado que la solubilidad del gas es directamente proporcional a las presiones

aplicadas.MECANISMO DE LAS DESOLUCIONES :para entender el proceso de formación de una disolución se debe tomar en cuenta el tipo de fuerzas intermoleculares existentes

tanto en el soluto como en el solvente. Estas fuerzas pueden ser:

Fuerzas de Van Der Waals.Interaciones dipolo - dipolo.

Fuerzas interiónicas.Puentes de hidrógeno.

Page 49: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Las fuerzas de Van Der Waals la presentan los compuestos no polares. Por eso, si el soluto es no polar

y el solvente también se cumple el principio que lo “ semejante disuelve a lo semejante “. Esta interacción se

establece generalmente entre sustancias orgánicas.La interacciones dipolo - dipolo la presentan las

moléculas polares. Las fuerzas dipolo - dipolo pueden ser:

Dipolo permanente - dipolo permanente ( fuerzas de Keeson ).

Dipolo permanente - dipolo inducido ( fuerzas de Debye ).

Dipolo inducido - dipolo inducido ( Fuerzas London ).

Page 50: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Un solvente polar disuelve a compuestos polares, y a los compuestos iónicos.

Las sustancias no polares al entrar en contacto con las moléculas de un solvente no polar, si el choque

de las moléculas es lo suficientemente fuerte para vencer las fuerzas intermoleculares ( fuerzas de Van

Der Waals ), loa sustancias se disuelve, de lo contrario no ocurre la disolución. La estabilidad del sistema se alcanza debido a que las fuerzas de Van Der Waals se establecerá entre moléculas del soluto y del solvente.

Ej. Cuando el Yodo; I2 (compuesto no polar) se disuelve en tetracloruro de carbono (CCl4).

Page 51: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Cuando el solvente es polar y el soluto es polar o iónico se establece una atracción electrostática entre las

moléculas del soluto y del solvente, orientándose el polo positivo de la molécula del solvente hacia el

negativo de la molécula del soluto.Ej: metanol en agua

Page 52: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Si un soluto tiene una presión de vapor medible, la presión de vapor de su disolución siempre es menor que la del disolvente puro. De esta forma la relación entre la presión de vapor de la disolución y la presión de vapor del disolvente depende de la concentración del soluto en la disolución. Esta relación entre

ambos se formula mediante la Ley de Raoult mediante la cual: la presión parcial de un disolvente sobre una disolución P1 está dada por la presión de vapor del disolvente puro Po

1, multiplicada por la fracción molar del disolvente en la

disolución X1.

Page 53: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Es decir que la presión de vapor del soluto crece linealmente con su fracción molar. En una solución que sólo contenga soluto, se tiene que X1=1-X2, donde X2 es

la fracción molar del soluto, pudiendo escribir la formulación de la ley como:

Se puede ver de esta forma que una disminución en la presión de vapor, ΔP es directamente proporcional a la

concentración del soluto presente

Page 54: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

CaracterísticasUna vez que los componentes de la solución han

alcanzado el equilibrio químico, la presión total del vapor es:

y la presión individual de los componentes gaseosos es:

donde(Pi)puro es la presión de vapor del componente puro Xi es la fracción molar del componente en solución

Page 55: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Consecuentemente a medida que el número de componentes gaseosos va creciendo en la solución, la presión de los componentes individuales decrece, así como la fracción molar de cada uno de ellos que va decreciendo igualmente con la adición de nuevos

componentes. Si se tuviera un soluto puro, se alcanzaría el valor nulo de presión de vapor (es decir el

cuerpo no se evaporaría). En este caso la presión de vapor de la disolución sería igual a la suma de las presiones parciales de cada componente (Ley de

Dalton).

Page 56: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

AplicaciónSe cumple sólo para disoluciones ideales no obstante es

una buena aproximación cualitativa.Disoluciones ideales

Para que se cumpla al 100% la ley de Raoult es necesario que el líquido sea una disolución ideal, el vapor una

mezcla de gases ideales y que la fugacidad del líquido no varíe significativamente con la presión, esta última condición a veces se expresa como que el factor de

corrección de poynting sea de valor 1.

Page 57: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

En equilibrio Liquido - Vapor, la relación que se comporta según la idealidad de la Ley de Raoult seria la

siguiente:

DondePT = La presión total del sistema en equilibrio

Y1 = Composición en la fase vapor, compuesto 1X1 = Composición en la fase Liquida, compuesto 1

= Presión de vapor compuesto 1Empleo

La ley de Raoult suele emplearse en la teoría de la destilación.

Page 58: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Propiedades coligativas En química, se llaman propiedades coligativas aquellas

propiedades de una solución que dependen únicamente de la concentración molal, es decir, de la cantidad de partículas de soluto por partículas totales, y no de la

naturaleza o tipo de soluto. Están estrechamente relacionadas con la presión de vapor, que es la presión

que ejerce la fase de vapor sobre la fase líquida, cuando el líquido se encuentra en un recipiente cerrado.

Page 59: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

La presión de vapor depende del solvente y de la temperatura a la cual sea medida (a mayor

temperatura, mayor presión de vapor). Se mide cuando el sistema llega al equilibrio dinámico, es decir, cuando la cantidad de moléculas de vapor que vuelven a la fase líquida es igual a las moléculas que se transforman en

vapor.

Page 60: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Propiedades Coligativas más comunes.Descenso de la presión de vapor

Cuando se prepara una solución con un solvente y un soluto no volátil (que se transformará en gas) y se mide su presión, al

compararla con la presión de vapor de su solvente puro (medidas a la misma temperatura), se observa que la de la

solución es menor que la del solvente. Esto es consecuencia de la presencia del soluto no volátil.

A su vez, cuando se comparan las presiones de vapor de dos soluciones de igual composición y diferente concentración, aquella solución más concentrada tiene menor presión de vapor. El descenso de ésta se produce por dos razones: por

probabilidad, pues es menos probable que existan moléculas de disolvente en el límite de cambio, y por cohesión, pues las

moléculas de soluto atraen a las de disolvente por lo que cuesta más el cambio.

Page 61: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

La presión de vapor de un disolvente desciende cuando se le añade un soluto no volátil.

Este efecto es el resultado de dos factores:1. la disminución del número de moléculas del

disolvente en la superficie libre.2. la aparición de fuerzas atractivas entre las moléculas del soluto y las moléculas del disolvente, dificultando

su paso a vapor.

Page 62: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Descenso crioscópicoEl soluto obstaculiza la formación de cristales sólidos, por

ejemplo el líquido refrigerante de los motores de los automóviles tiene una base de agua pura a presión

atmosférica se congelaría a 0 °C dentro de las tuberías y no resultaría útil en lugares fríos. Para evitarlo se le agregan

ciertas sustancias químicas que hacen descender su punto de congelación.ΔTf = Kf · m

m es la molalidad. Se expresa en moles de soluto por kilogramo de disolvente (mol/kg).

ΔTf es el descenso del punto de congelación y es igual a Tf - T donde T es el punto de congelación de la solución y Tf es el

punto de congelación del disolvente puro. Kf es una constante de congelación del disolvente. Su valor,

cuando el solvente es agua es 1,86 °C kg/mol

Page 63: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

AplicaciónPara enfriar algo rápidamente se hace una mezcla de

hielo con sal o, si tiene precaución, alcohol. El punto de congelación bajará y el hielo se derretirá rápidamente.

Pese a aparentar haberse perdido el frío, la mezcla formada estará en realidad a unos cuantos grados bajo

cero y será mucho más efectiva para enfriar que los cubos de hielo sólidos. Es una consecuencia del

descenso de la presión de vapor.El agua se congela a partir de los 0 °C, mientras que una solución formada por agua y sal se congelará a menor temperatura (de ahí que se utilice sal para fundir nieve

o hielo con mayor facilidad).

Page 64: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Aumento ebulloscópicoAl agregar moléculas o iones a un solvente puro la

temperatura en el que éste entra en ebullición es más alta. Por ejemplo, el agua pura a presión atmosférica

ebulle a 100°C, pero si se disuelve algo en ella el punto de ebullición sube algunos grados centígrados.

ΔTb = Kb · m m es la molalidad. Se expresa en moles de soluto por

kilogramo de disolvente (mol/kg). ΔTb es el aumento del punto de ebullición y es igual a T - Tb donde T es el punto de ebullición de la solución y Tb

el del disolvente puro. Kb es una constante de ebullición del disolvente. Su valor cuando el solvente es agua es 0,52 °C kg/mol.

Page 65: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

AplicaciónCuando un mol de una sal se disuelve en solución, el

efecto del aumento del punto de ebullición es aún mayor, pues la sal hará un efecto tal que será el total de

las partes que se disuelven. Por ejemplo, el NaCl será disuelto en un mol de sodio y un mol de cloro, un total

de dos moles en solución.El punto de ebullición es la temperatura a la cual la presión de vapor de un solvente o solución iguala la

presión externa y comienza a observarse las moléculas de líquido transformarse en gas.

Page 66: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Por ejemplo, a presión externa de 1 atm, el agua hierve a 100 °C, mientras que para una solución acuosa de algo

a 100 °C las presiones externas y de vapor no se han igualado y por ende no se observa el cambio a estado gaseoso. Cuando la presión de vapor iguale la presión externa la temperatura de la solución será mayor que

100 °C y, consecuentemente, se comprueba que su punto de ebullición es, efectivamente, mayor que el

punto de ebullición de su solvente puro (agua) medido a una misma presión externa.

Page 67: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Presión osmóticaLa ósmosis es la tendencia que tienen los solventes a ir

desde zonas de menor concentración hacia zonas de mayor concentración de partículas. El efecto puede

pensarse como una tendencia de los solventes a "diluir". Es el pasaje espontáneo de solvente desde una

solución más diluida hacia una solución más concentrada, cuando se hallan separadas por una

membrana semipermeable (también: π = (nRT) / V)

n es el número de moles de partículas en la solución. R es la constante universal de los gases, donde R =

8.314472 J · K-1 · mol-1. T es la temperatura en Kelvin.

Page 68: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Teniendo en cuenta que n/V representa la molaridad (M) de la solución obtenemos:

Al igual que en la ley de los gases ideales, la presión osmótica no depende de la carga de las partículas.

Observación: Se utiliza la unidad de Molaridad (M) para expresar la concentración ya que el fenómeno de

ósmosis ocurre a temperatura constante (de esto se deduce que las unidades de concentración para el

ascenso ebulloscópico y el descenso crioscópico estén dadas en molalidad (m), ya que este tipo de expresión

no varía con la temperatura).

Page 69: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

AplicaciónEl experimento más típico para observar el fenómeno

de ósmosis es el siguiente:Se colocan dos soluciones con distinta concentración

(por ejemplo, una consta de agua con sal común o azúcar y la otra de agua sola).

Ambas soluciones se ponen en contacto a través de una membrana semipermeable que permite el movimiento del agua a través de ella, es decir, que permite que el

solvente pase y las partículas no. El papel celofán suele funcionar, pero debe ser verdadero papel celofán y no

sus sustitutos.

Page 70: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Al cabo de un tiempo se podrá observar que el solvente ha pasado de la solución diluida hacia la solución

concentrada y los niveles de líquido han cambiado. Las membranas celulares son semipermeables. La

observación al microscopio de células que previamente han estado sumergidas en soluciones de sal común o azúcar, permite constatar el efecto de la entrada de

agua (turgencia) o la pérdida de agua (plasmólisis) en función de que el medio exterior sea hipertónico o

hipotónico respecto al medio interno celular.

Page 71: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

La Ley de Henry fue formulada en 1803 por William Henry. Enuncia que a una temperatura constante, la

cantidad de gas disuelta en un líqido es directamente proporcional a la presión parcial que ejerce ese gas sobre el líquido. Matemáticamente se formula del

siguiente modo:P = k * CDonde:

p es la presión parcial del gas. c es la concentración del gas.

k es la constante de Henry, que depende de la naturaleza del gas, la temperatura y el líquido.

Page 72: Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes de.

Un ejemplo de la aplicación de esta Ley está dado por las precauciones que deben tomarse al volver a un

buzo a la superficie. Al disminuir la presión parcial de los distintos gases, disminuye la solubilidad de los

mismos en la sangre, con el consiguiente riesgo de una eventual formación de burbujas. Para evitarlo, esta

descompresión debe efectuarse lentamente.