Enlace quimico

19
ENLACE QUÍMICO EN LA FORMACIÓN DE COMPUESTOS Mientras que sólo hay alrededor de 118 elementos catalogados en la tabla periódica, obviamente hay más substancias en la naturaleza que los 118 elementos puros. Esto es porque los átomos pueden reaccionar unos con otros para formar nuevas substancias denominadas compuestos. Un compuesto se forma cuando dos o más átomos se enlazan químicamente. El compuesto que resulta de este enlace es químicamente y físicamente único y diferente de sus átomos originarios. Miremos un ejemplo. El elemento sodio es un metal de color plateado que reacciona tan violentamente con el agua que produce llamas cuando el sodio se moja. El elemento cloro es un gas de color verdoso que es tan venenoso que fue usado como un arma en la Primera Guerra Mundial. Cuando estos químicos se enlazan, estas dos peligrosas substancias forman un compuesto, el cloruro de sodio. Este es un compuesto tan inofensivo que nos los comemos todos los días. Es la sal común. En 1916, el químico americano Gilbert Newton Lewis propuso que los enlaces químicos se formaban entre los átomos porque los electrones de los átomos interactuaban entre ellos. Lewis había observado que muchos elementos eran más estables cuando ellos contenían ocho electrones en su envoltura de valencia. El sugirió que los átomos con menos de ocho valencias de

Transcript of Enlace quimico

Page 1: Enlace quimico

ENLACE QUÍMICO EN LA FORMACIÓN DE COMPUESTOS

Mientras que sólo hay alrededor de 118 elementos catalogados en la tabla

periódica, obviamente hay más substancias en la naturaleza que los 118

elementos puros. Esto es porque los átomos pueden reaccionar unos con otros

para formar nuevas substancias denominadas compuestos. Un compuesto se

forma cuando dos o más átomos se enlazan químicamente. El compuesto que

resulta de este enlace es químicamente y físicamente único y diferente de sus

átomos originarios.

Miremos un ejemplo. El elemento sodio es un metal de color plateado que

reacciona tan violentamente con el agua que produce llamas cuando el sodio se

moja. El elemento cloro es un gas de color verdoso que es tan venenoso que fue

usado como un arma en la Primera Guerra Mundial. Cuando estos químicos se

enlazan, estas dos peligrosas substancias forman un compuesto, el cloruro de

sodio. Este es un compuesto tan inofensivo que nos los comemos todos los días.

Es la sal común.

En 1916, el químico americano Gilbert Newton Lewis propuso que los enlaces

químicos se formaban entre los átomos porque los electrones de los átomos

interactuaban entre ellos. Lewis había observado que muchos elementos eran

más estables cuando ellos contenían ocho electrones en su envoltura de valencia.

El sugirió que los átomos con menos de ocho valencias de electrones se

enlazaban para compartir electrones y completar sus envolturas de valencia.

Mientras que algunas de las predicciones de Lewis han sido desde entonces

probadas como incorrectas (el sugirió que los electrones ocupaban orbitas en

forma de cubos), su trabajo estableció la base de lo que se conoce hoy en día

sobre los enlaces químicos. Sabemos que hay dos principales tipos de enlaces

químicos, iónicos y - enlaces covalentes.

Page 2: Enlace quimico

Estructuras De Lewis, Regla Del Octeto

Lewis fue uno de los primeros en intentar proponer una teoría para explicar el

enlace covalente, por ello creo notaciones abreviadas para una descripción mas

fácil de las uniones atómicas, que fueron las estructuras de Lewis. Para dibujar las

estructuras de Lewis se puede seguir el siguiente método:

1. Se colocan los átomos de la molécula de la forma mes simétrica posible.

2. Se determina el Nº de electrones disponibles en la capa externa de los

átomos de la molécula A

3. Se calcula la capacidad total de electrones de las capas externas de todos

los tomos de la molécula N

4. El Nº total de electrones compartidos es S=N-A

5. Se colocan los electrones S como pares compartidos entre los átomos que

forman enlaces.

6. El resto de los electrones A-S se colocan como pares no compartidos para

completar el octeto de todos los átomos.

Así lograríamos que todos los átomos unidos por enlaces covalentes tiendan a

adquirir la estructura de los gases nobles, esta es la regla de Octeto.

Las estructuras de puntos de Lewis son una taquigrafía para representar los

electrones de valencia de un átomo. Las estructuras están escritas como el

elemento del símbolo con puntos que representan los electrones de valencia.

Abajo están las estructuras de Lewis para los elementos en los dos primeros

períodos de la Tabla Periódica.

Las Estructuras de Puntos de Lewis

Las estructuras de Lewis también pueden ser usadas para mostrar el enlace entre

átomos. Los electrones que se enlazan se colocan entre los átomos y pueden ser

Page 3: Enlace quimico

representados por un par de puntos, o un guión (cada guión representa un par de

electrones, o un enlace). Abajo están las estructuras de Lewis para el H2 y el O2.

H2 H:H

o

H-H

O2

Propiedades De Los Enlaces

A. Propiedades de las sustancias iónicas:

Las sustancias iónicas se encuentran en la naturaleza formando

redes cristalinas, por tanto son sólidas.

Su dureza es bastante grande, y tienen por lo tanto puntos de fusión

y ebullición altos.

Son solubles en disolventes polares como el agua.

Cuando se tratan de sustancias disueltas tienen una conductividad

alta.

B. Propiedades de los compuestos covalentes.

Los compuestos covalentes suelen presentarse en estado liquido o

gaseoso aunque también pueden ser sólidos. Por lo tanto sus puntos

de fusión y ebullición no son elevados.

La solubilidad de estos compuestos es elevada en disolventes

polares, y nula su capacidad conductora.

Los sólidos covalentes macromoleculares, tienen altos puntos de

fusión y ebullición, son duros, malos conductores y en general

insolubles.

C. Los enlaces metálicos:

Suelen ser sólidos a temperatura ambiente, excepto el mercurio, y

sus puntos de fusión y ebullición barman notablemente.

Las conductividades térmicas y eléctricas son muy elevadas.

Presentan brillo metálico.

Son dúctiles y maleables.

Page 4: Enlace quimico

Pueden emitir electrones cuando reciben energía en forma de calor.

Enlaces iónicos

En los enlaces iónicos, los electrones se transfieren completamente de un átomo a

otro. Durante este proceso de perder o ganar electrones cargados negativamente,

los átomos que reaccionan forman iones. Lo iones cargados de manera opuesta

se atraen entre ellos a través de fuerzas electroestáticas que son la base del

enlace iónico.

Por ejemplo, durante la reacción del sodio con el cloro:

Sodio (en la izquierda) pierde su única valencia de electrones al cloro (a la

derecha),

Resultando en un ión de sodio cargado positivamente (izquierda) y un ión de cloro

cargado negativamente (derecha).

Note que cuando el sodio pierde su electrón de valencia, se hace más pequeño,

mientras que el cloro se hace más grande cuando gana una valencia de electrón

adicional. Esto es típico de los tamaños relativos de iones a átomos. Después que

la reacción tiene lugar, los iones cargado Na+ y Cl- se sujetan gracias a las fuerzas

electroestáticas, formando así un enlace iónico. Los compuestos iónicos

comparten muchas características en común:

Los enlaces iónicos se forman entre metales y no metales,

Page 5: Enlace quimico

Al nombrar compuestos iónicos simples, el metal siempre viene primero, el

no metal segundo (por ejemplo, el cloruro de sodio),

Los compuestos iónicos se disuelven fácilmente en el agua y otros

solventes polares,

En una solución, los compuestos iónicos fácilmente conducen electricidad,

Los compuestos iónicos tienden a formar sólidos cristalinos con

temperaturas muy altas.

Esta última característica es un resultado de las fuerzas intermoleculares (fuerzas

entre las moléculas) en los sólidos iónicos. Si consideramos un cristal sólido de

cloruro de sodio, el sólido está hecho de muchos iones de sodio cargados

positivamente (dibujados a debajo como pequeñas esferas grises) y un número

igual de iones de cloro cargados negativamente (esferas verdes). Debido a la

interacción de los iones cargados, los iones de sodio y de cloro están organizados

alternadamente como demuestra el esquema a la derecha. Cada ión de sodio es

atraído igualmente por todos sus iones de cloro vecinos, y de la misma manera

por la atracción del cloruro de sodio. El concepto de una molécula sola se vuelve

borroso en cristales iónicos ya que el sólido existe como un sistema continuo. Las

fuerzas entre las moléculas son comparables a las fuerzas dentro de la molécula,

y los compuestos iónicos tienden a formar como resultado cristales sólidos con

altos puntos de fusión.

Enlace Covalentes

El segundo mayor tipo de enlace atómico ocurre cuando los átomos comparten

electrones. Al contrario de los enlaces iónicos en los cuales ocurre una

transferencia completa de electrones, el enlace covalente ocurre cuando dos (o

más) elementos comparten electrones. El enlace covalente ocurre porque los

átomos en el compuesto tienen una tendencia similar hacia los electrones

(generalmente para ganar electrones). Esto ocurre comúnmente cuando dos no

metales se enlazan. Ya que ninguno de los no elementos que participan en el

enlace querrá ganar electrones, estos elementos compartirán electrones para

Page 6: Enlace quimico

poder llenar sus envolturas de valencia. Un buen ejemplo de un enlace covalente

es ese que ocurre entre dos átomos de hidrógeno. Los átomos de hidrógeno (H)

tienen un electrón de valencia en su primera envoltura. Puesto que la capacidad

de esta envoltura es de dos electrones, cada átomo hidrógeno 'querrá' recoger un

segundo electrón. En un esfuerzo por recoger un segundo electrón, el átomo de

hidrógeno reaccionará con átomos H vecinos para formar el compuesto H2. Ya que

el compuesto de hidrógeno es una combinación de átomos igualados, los átomos

compartirán cada uno de sus electrones individuales, formando así un enlace

covalente. De esta manera, ambos átomos comparten la estabilidad de una

envoltura de valencia.

Ya que los electrones están compartidos en molécula covalentes, no se forman

cargas iónicas. Por consiguiente, no hay fuerzas intermoleculares fuertes en los

compuestos covalentes tal como las hay en las moléculas iónicas. Como

resultado, muchos compuestos iónicos son gases o líquidos a temperatura

ambiente en vez de sólidos como los compuestos iónicos en las moléculas

covalentes que tienden a tener una atracción intermolecular más débil.

Igualmente, al contrario de los compuestos iónicos, los compuestos covalentes

existen como verdaderas moléculas.

Enlaces Múltiples: Para cada par de electrones compartidos entre dos átomos,

se forma un enlace covalente único. Algunos átomos pueden compartir múltiples

pares de electrones, formando enlaces covalentes múltiples. De acuerdo con esta

teoría veamos los tipos de enlace covalentes que pueden formarse.

1. Enlace covalente simple o de dos electrones. En el caso del átomo de cloro

que tiene siete electrones en su capa mas externa formando tres pares

electrónicos y un electrón sin aparear (a cada uno de los átomos le falta un

electrón para cumplir la regla del octeto) los dos electrones sin aparear, uno de

cada átomo, se aproximarán para compartir el par de electrones de modo que ese

par será común a los átomos, originando un enlace covalente simple.

Ejemplo:

Page 7: Enlace quimico

2. Enlace covalente doble o de cuatro electrones. A un átomo de oxigeno y uno

de azufre le hacen falta dos electrones en su capa exterior para cumplir la regla

del octeto (o estructura de un gas noble mas próximo). Para llegar a esa

configuración, dos átomos de oxigeno y azufre comparten dos pares de

electrones de valencia, con lo cual se forma la molécula; los átomos se unen por

un enlace covalente doble.

Ejemplo:

3. Enlace covalente triple o de seis electrones. En el caso del átomo de

nitrógeno que en su capa mas externa tiene cinco electrones, al unirse dos átomos

forman la molécula compartiendo tres pares de electrones para adquirir la

configuración del gas noble: este enlace se denomina covalente triple.

Ejemplo:

4. Enlace covalente coordinado Hemos visto que el par o pares de electrones

compartidos para formar el enlace son aportados por el 50 % de cada uno de los

átomos que lo constituyen. Pero hay casos en los cuales el par de electrones

compartidos, para constituir el enlace, son aportados por uno de los átomos en

tanto que el otro átomo no comparte alguno. Y se puede definir como aquel tipo

de enlace en que el par de electrones compartidos son aportados por uno de los

átomos que constituyen el enlace.

Page 8: Enlace quimico

Ejemplo:

Enlace metálico. Los electrones que participan en él se mueven libremente, a

causa de la poca fuerza de atracción del núcleo sobre los electrones de su

periferia.

Enlaces Polares y No-Polares. En realidad, hay dos sub-tipos de enlaces

covalente. La molécula H2 es un buen ejemplo del primer tipo de enlace covalente

el enlace no polar. Ya que ambos átomos en la molécula H2 tienen una igual

atracción (o afinidad) hacia los electrones, los electrones que se enlazan son

igualmente compartidos por los dos átomos, y se forma un enlace covalente no

polar. Siempre que dos átomos del mismo elemento se enlazan, se forma un

enlace no polar.

Un enlace polar se forma cuando los electrones son desigualmente compartidos

entre dos átomos. Los enlaces polares covalentes ocurren porque un átomo tiene

una mayor afinidad hacia los electrones que el otro (sin embargo, no tanta como

para empujar completamente los electrones y formar un ión). En un enlace polar

covalente, los electrones que se enlazan pasarán un mayor tiempo alrededor del

átomo que tiene la mayor afinidad hacia los electrones. Un buen ejemplo del

enlace polar covalente es el enlace hidrógeno - oxígeno en la molécula de agua.

Las moléculas de agua contienen dos átomos de hidrógeno (dibujados en rojo)

enlazados a un átomo de oxígeno (en azul). El oxígeno, con seis electrones de

valencia, necesita dos electrones adicionales para completar su envoltura de

valencia. Cada hidrógeno contiene un electrón. Por consiguiente el oxígeno

comparte los electrones de dos átomos de hidrógeno para completar su propia

Page 9: Enlace quimico

envoltura de valencia, y en cambio, comparte dos de sus propios electrones con

cada hidrógeno, completando la envoltura de valencia H.

La principal diferencia entre el enlace H-O en el agua y el enlace H-H, es el grado

de los electrones compartidos. El gran átomo de oxígeno tiene una mayor afinidad

hacia los electrones que los pequeños átomos de hidrógeno. Ya que el oxígeno

tiene una atracción más fuerte en los electrones que se enlazan, el electrón

ocupado anteriormente conduce a una desigual participación.

Los Dipolos

Ya que los electrones de valencia en las moléculas de agua ocupan más tiempo

alrededor del átomo de oxígeno que los átomos de hidrógeno, la parte de oxígeno

de la molécula desarrolla una carga parcial negativa (debido a la carga negativa

en los electrones). Por la misma razón, la parte de hidrógeno de la molécula

desarrolla una carga parcial positiva. Los iones no se forman, a pesar de que la

molécula desarrolla en su interior una carga eléctrica parcial llamada un dipolar. El

dipolo de agua está representado por una flecha en la animación (ver más arriba)

en la cual la cabeza de la flecha apunta hacia la parte densa final (negativa) del

electrón del dipolo y el otro electrón se encuentra cerca de la parte delgada final

(positiva) al otro lado de la molécula.

Basado en la diferencia de electronegatividad entre los átomos que forman el

enlace puede predecirse el tipo de enlace que se formará:

Si la diferencia de electronegatividades es mayor que 1.7 = se formará un enlace iónico

Si la diferencia de electronegatividades es mayor que 0.5 y menor a 1.7 = el enlace formado será

covalente polar

 Si la diferencia de electronegatividades es menor a 0.5 = el enlace será covalente puro

(o no polar).

EJEMPLOS:

Page 10: Enlace quimico

¿Qué tipo de enlace se formará entre H y O?

Según la Tabla de Electronegatividades de Pauli, el Hidrógeno tiene una

Electronegatividad de 2.2  y el Oxígeno 3.44, por lo tanto la diferencia de

electronegatividades será:

- 2.2 = 1.24

1.24 es menor que 2.0 y mayor que 0.5.

Por lo tanto, el enlace será Covalente Polar

Decidir si se puede aplicar o no la regla del octeto a las moléculas de:

(a) BeCl2, (b) BCl3.

Como la regla del octeto se basa en el hecho de que todos los gases raros tienen una estructura de ocho electrones, basta con ver si el átomo central completa ocho electrones en la capa de valencia.

(a) Los electrones de valencia

asociados con Be (2s2) son: 

 y con Cl (3s2

3p5) son:

la estructura de lewis

será:

El berilio está rodeado únicamente de cuatro electrones, luego es una excepción a

la regla del octeto.

(b) Los electrones de valencia

asociados con B (2s2 2p1) son:

 y con Cl

(3s2 3p5)

son:

la estructura electrónica o

de Lewis será:

Page 11: Enlace quimico

El boro esta rodeado únicamente de seis electrones, luego no cumple la regla del

octeto

Explicar la formación del enlace covalente en la molécula de cloruro de

hidrogeno gaseoso, HCl.

Usamos los diagramas de Lewis para representar los electrones de valencia:

El átomo de cloro completa el octeto compartiendo el electrón del átomo de H; así,

el cloro alcanza la configuración del gas noble y el hidrogeno alcanza la

configuración del gas noble.

EJERCITACION DE CONCEPTOS

ACTIVIDAD 3

1. Valiéndose de la lista de electronegatividades que aparece en la tabla:

a) Ordene los siguientes enlaces según aumenta su polaridad

Be – Cl , C – I, Ba – F, Al – Br, S – O, P – Cl, y C – O

b) ¿son iónicos algunos de estos enlaces? Por que.

2. Con base en los datos que aparecen en la tabla resuelva:

a) Ordene los siguientes enlaces según aumenta su polaridad:

P – S ; P – Cl ; Si – Cl ; Si – F; k – F ; Na – Br ; Ge – O ; Li – S ; C – I

b) Marque los extremos positivos y negativos con los símbolos d+ y d- .

c) De acuerdo con los datos de electronegatividad, ¿Cuáles enlaces son iónicos?

d) ¿son no – polares algunos de estos enlaces?

3. Realiza la estructura de lewis de para los elementos representativos.

Page 12: Enlace quimico

4. Compare las diferencias de electronegatividad: a) entre los átomos que forman enlaces iónicos; b) entre los que forman enlace covalente polar y c) entre los que forman enlaces covalentes con carácter no iónico.

5. Represente la estructura de lewis de los siguientes compuestos y los elementos representativos:

O2 , Cl2 , SO2 , SO3 , HNO3 , H2 SO4 , H3PO4

6. Ordena los siguientes elementos según su electronegatividad de mayor a menor.

Fósforo, Magnesio, Azufre, Bromo, aluminio, Hierro, Litio, Cesio, Neón, Fluor y Oxigeno.

7. ¿Qué porcentaje de enlace iónico y de enlace covalente encuentra para los siguientes compuestos:

CO2 , NaCl, SO2 , KBr, KMnO4 , H2SO3 , F2 , Ca3(PO4)2 , Cu3(SO4)2

8. Teniendo en cuenta que el enlace iónico o electrovalente se forma se forma con elementos muy electronegativos y elementos muy electropositivos, indica si es posible este tipo de enlace entre los siguientes pares de elementos:

a. Magnesio y Oxigeno b. Cloro y Bromo c. Potasio y Oxigeno d. K y Ca

9. De acuerdo con la representación hecha para el enlace entre sodio y el cloro, haz un esquema para el enlace entre el potasio y el bromo. Explica el tipo de enlace.

10. Esquematiza el enlace entre el cloro y el magnesio (MgCl2). ¿A que clase de pertenece?

11. Con base en la tabla de electronegatividades, escriba los tres elementos más electronegativos y los tres menos electronegativos.

12. Elabore un esquema que represente la clasificación de los enlaces químicos, teniendo en cuenta la diferencia de electronegatividades. ¿En qué casos se presenta la mayor diferencia de electronegatividades?

13. Organice, en orden creciente, los siguientes átomos, teniendo en cuenta su electronegatividad: H, Zn, Sn, Po, F, Pt, Co, Sb, Sr.

14. Organice, en forma creciente, los siguientes enlaces, de acuerdo con su polaridad: N - N, Hg - Cl, Cd - O, K - I, O - O, V - O, Cd - Cl, Al – I, Bi - O, H - H.

Page 13: Enlace quimico

15. Escriba las estructuras de Lewis para los átomos de los elementos correspondientes a los grupos principales del período 6.

16. De acuerdo con la regla del octeto, determine, para los siguientes átomos, cuántos electrones podrían ganar o perder cada uno. Especifique cuáles tienden a ganar y cuáles a perder electrones: Ra, Bi, Se, C, Ga, I, Br, S. Rb y O.

17. Escriba los aniones o cationes, con su respectiva carga, de los iones presentes en los siguientes compuestos: KBr, CaCI2, GaF3, FeS, K20, LiBr, Ca3P2.

18. ¿Qué diferencias fundamentales se presentan entre un enlace iónico y uno covalente?a. ¿Por qué hay transferencia de electrones entre átomos con gran

diferencia en su electronegatividad?

19. Escriba la configuración electrónica de los siguientes iones: Na+, F-, O-2

20. De los siguientes compuestos, establezca cuáles son iónicos y cuáles covalentes: BaF2, KF, Li2S, SrS, PbS, CH4. Explique por qué.

21. ¿Qué diferenciaexiste entre un enlace covalente coordinado y el normalmente llamado enlace covalente?

22. ¿Qué se entiende por regla del octeto? Dé un ejemplo.

23. Explique la formación del iòn PH4 + a partir del PH3, el H+ y el concepto de

enlace dativo.

24. En las siguientes fórmulas, algunos átomos no cumplen con la regla del octeto. Mediante la fórmula de Lewis, establezca cuáles átomos cumplen con el octeto y cuáles no: SiCl4, NO, NO2, Cl2O, PF5.

25. Explique por qué el calcio, al perder dos electrones, forma el catión Ca+2. De la misma manera, explique por qué el azufre, al ganar dos electrones, forma el anión S-2.

26. Explique por qué el enlace en la molécula de BaCl2 es no polar, a pesar de que el enlace BaCl lo es.

27. Entre los compuestos iónicos o covalentes, ¿cuáles presentan mayor energía de enlace y por qué?

28. De los compuestos NaF, NaCl, HCI, ICl, NaH, ¿cuáles presentan mayor energía de enlace y por qué? B. ¿Qué se entiende por momento dipolar?

Page 14: Enlace quimico

29. Explique la formación del enlace de hidrógeno en los siguientes compuestos: H2O, NH3, HF.

30. Responda las siguientes preguntas: a. ¿por qué la regla del octeto no es suficiente para explicar los enlaces

químicos? b. ¿Cuáles son las teorías cuánticas del enlace`? c. ¿Cómo explica la teoría de los orbitales moleculares la formación de un

enlace químico? d. Según la teoría de electrones de valencia, ¿cómo se explica la formación de

los enlaces químicos?