Elkadig Slide

download Elkadig Slide

of 98

Transcript of Elkadig Slide

  • 7/31/2019 Elkadig Slide

    1/98

    ELE 312

    Digital Electronics

    DeMassa and Ciccone,Digital Integrated

    Circuits, John Wiley & Sons.

    Taub and Schilling,Digital Integrated

    Electronics, McGraw-Hill

    Textbooks

  • 7/31/2019 Elkadig Slide

    2/98

    Contents Basic Properties of Digital Integrated Circuits

    Diode Digital Circuits

    BJT Digital Circuits Ebers & Moll equations

    Transistor modelling

    State of transistor in a circuit

    Resistor-Transistor Logic (RTL)

    Diode-Transistor Logic (DTL)

    Transistor-Transistor Logic (TTL)

    Schottky Transistor Transistor Logic (STTL)

    Different TTL Gates

    Emitter-Coupled Logic (ECL)

    MOS Digital Circuits NMOS Gates

    CMOS Gates

    Properties of Digital Integrated

    Circuits

  • 7/31/2019 Elkadig Slide

    3/98

    Most important elements: Inverter and Noninverter

    Idealized Inverter and Voltage Transfer Characteristics( VTCs)

  • 7/31/2019 Elkadig Slide

    4/98

    Propagation Delays

    Rise and fall times and turn-on and turn-off times

  • 7/31/2019 Elkadig Slide

    5/98

    Power dissipation

    Logic Element Equivalent Circuit and Fan-out

  • 7/31/2019 Elkadig Slide

    6/98

    Speed-power product = (Average Power Diss) x (Propagation Delay)

    Power - Delay Product:

    PD = PDISS(avg) x tP(avg)

    Diode Digital Circuits

  • 7/31/2019 Elkadig Slide

    7/98

    Diodes

    )1(eII TD/VV

    SD=

    Shockleys Eq

    VD V0 = 0.7 V

    for Forward Bias

  • 7/31/2019 Elkadig Slide

    8/98

    IV Characteristics

    for MN Schottky diodesfor PN Junction diodes

    SPICE model

    )1(eII TD/VV

    SD =

  • 7/31/2019 Elkadig Slide

    9/98

    Basic Logic Gates: AND

    Basic Logic Gates: OR

  • 7/31/2019 Elkadig Slide

    10/98

    Clamping Diodes

    Level shifting diodes

    Level Shifting Diode AND Gate

    Level Shifting Diode OR Gate

  • 7/31/2019 Elkadig Slide

    11/98

    BJT Transistors

    BJT Fabrication Example

  • 7/31/2019 Elkadig Slide

    12/98

    Multi-Emitter Fabrication Examples

    NPN BJT

  • 7/31/2019 Elkadig Slide

    13/98

    Ebers-Moll NPN BJT Model

    )1e(II TBEV/V

    ESBE,D =

    )1e(II TBCV/V

    CSBC,D =

    BC,DRBE,DE

    III =

    BC,DBE,DFC III =

    CEBIII =

    CSRESF

    II ==S

    I

    Reciprocity theorem

    transport saturation current

    Reverse active (RA)ForwardReverse

    Saturation (SAT)ForwardForward

    Forward active (FA)ReverseForward

    Cutoff (OFF)ReverseReverse

    ModeBC junctionBE junction

    BJT Modes of Operation

  • 7/31/2019 Elkadig Slide

    14/98

    Reduced models of the operation modes

    (a) Cutoff (b) Forward active

    (c) Saturation (d) Reverse active

    F

    FF1

    =

    R

    R

    R1

    =

    1

    II BFC

    =

    IV Characteristics

  • 7/31/2019 Elkadig Slide

    15/98

    Modes of Operation

    Examples

    F = 65IC, IB = ?

    Base and emitter voltages = ?

  • 7/31/2019 Elkadig Slide

    16/98

    TTL Circuit Design

    Output-High Pull-up Driver

    Output-Low Pull-down Driver

    Discharge path and Base-Driving circuitry

  • 7/31/2019 Elkadig Slide

    17/98

    Power Dissipation Example

    Resistor-Transistor Logic

    (RTL)

  • 7/31/2019 Elkadig Slide

    18/98

    INVERTERVoltage Transfer Characteritics

    (VTC)

    )FA(BEIL VV =

    B

    CF

    )SAT(CECC

    )SAT(BEIHR

    R

    VVVV

    +=

    NOR

    NAND

  • 7/31/2019 Elkadig Slide

    19/98

    RTL Fan-out

    RTL fan-out analysis

  • 7/31/2019 Elkadig Slide

    20/98

    RTL fan-out analysis

    Maximum fan-out?

    =

    IN

    OUT

    I

    IN

    C

    OUTCC

    OUTR

    VVI

    =

    B

    )SAT(BEOUT

    INR

    VVI

    =

    IHOUTVV =

    B

    CF

    )SAT(CECC

    )SAT(BEIHR

    R

    VVVV

    +=

  • 7/31/2019 Elkadig Slide

    21/98

    RTL NONINVERTER

  • 7/31/2019 Elkadig Slide

    22/98

    AND

    OR

  • 7/31/2019 Elkadig Slide

    23/98

    RTL with Active Pull-up

    Fan-out of RTL with Active Pull-up

    Determined by the output

    high state as QS is cut-off

    for low-inputs

    Simplified output high state Simplified input high state

  • 7/31/2019 Elkadig Slide

    24/98

    Simplified output-high fan-out configuration

    = IHOH

    I

    IN

    CP

    OUT)SAT(CECC

    EPOUTR

    VVVII

    =

    2/R

    VVI

    B

    )SAT(BEOUT

    IN

    =

    IH(min)OUT VV =

    B

    CF

    )SAT(CECC

    )SAT(BEIHR

    R

    VVVV

    +=

  • 7/31/2019 Elkadig Slide

    25/98

    Diode-Transistor Logic

    (DTL)

    Basic DTL Inverter

    Basic DTL NAND Gate

  • 7/31/2019 Elkadig Slide

    26/98

    Diode Modified DTL Inverter

    Transistor Modified DTL Inverter

  • 7/31/2019 Elkadig Slide

    27/98

    VTC of Transistor Modified DTL Inverter

    VOH = VCC

    VOL = VCE,O(SAT) VIH = VBE,O(SAT) + VBE,L(FA)

    VIL = VBE,O(FA) + VBE,L(FA)

    DTL Fan-out

    Determined by the output

    low state as DI is off for

    high-inputs

  • 7/31/2019 Elkadig Slide

    28/98

    Cascaded DTL

    =

    IL

    OL

    I

    IN

    RC)SAT(O,COL III =

    C

    )SAT(O,CECC

    RCR

    VVI

    = Path 2

    )SAT(O,BF)SAT(O,C II =

    RDL,EO,B III =

    D

    )SAT(O,BE

    RD R

    VI =

    B

    )SAT(O,BE)ON(L,D)FA(L,BECC

    L,ER

    VVVVI

    1=For maximum fan-outB

    )SAT(O,CE)ON(I,DCC

    ILR

    VVVI

    = Path 3

    Example: Calculate the DTL fan-out for F = 49 and = 0.85.

    Power Dissipation

    Example: Calculate the average power dissipation for the

    above example?

  • 7/31/2019 Elkadig Slide

    29/98

    Tansistor-Transistor Logic

    (TTL)

    Basic TTL Inverter

    Basic TTL NAND GateBasic DTL Inverter (compare)

  • 7/31/2019 Elkadig Slide

    30/98

    Actual TTL NAND Gate with Totem Pole Output

    VTC of an actual TTL Inverter

    VOH = VCC VBE,P(FA) VD,L(ON)

    VOL = VCE,O(SAT) VIH = VBE,O(SAT) + VBE,S(SAT) VCE,I(SAT)

    VIL = VBE,S(FA) VCE,I(SAT))

    VIB = VBE,O(FA) + VBE,S(FA) VCE,I(SAT)VOB = VCC IRCRC VBE,P(FA) VD,L(ON)

    D

    )FA(O,BE

    RDRCR

    VII ==

  • 7/31/2019 Elkadig Slide

    31/98

    States of diodes and BJTs

    EOC: Edge of conduction

    TTL Fan-out

    Determined by the output

    low state as QI is cut-off

    for high-inputs

  • 7/31/2019 Elkadig Slide

    32/98

    Cascaded TTL

    =

    IL

    OL

    I

    IN

    )SAT(O,BF)SAT(O,COL III ==C

    )SAT(O,BE)SAT(S,CECC

    S,C

    R

    VVVI

    =

    Path 2RD)SAT(S,E)SAT(O,BIII =

    D

    )SAT(O,BE

    RDR

    VI =

    B

    )SAT(O,BE)SAT(S,BE)RA(I,BCCC

    I,BR

    VVVVI

    =

    1=For maximum fan-out

    S,CS,B)SAT(S,EIII +=

    B

    )SAT(O,CE)SAT(I,BECC

    ILR

    VVV

    I

    =

    Path 1

    I,BR)RA(I,CS,B I)1(II +==

    Example: Calculate the TTL fan-out for F = 25, =0.85 and R = 0.1

    Example (Power Dissipation)

    Example: Calculate the average power dissipation for theabove example?

    PCC(avg) = 10.4 mW

    IRB(OL) = 675 A

    IRC(OL) = 2.5 mA

    IIL= IRB(OH) = 1 mA

    IOL= 51.9 mA51

    I

    IN

    IL

    OL =

    =

    Example (TTL Fan-out)

  • 7/31/2019 Elkadig Slide

    33/98

    Open-Collector TTL

    Mostly used in data busses where multiple gate outputs

    must be ANDed. This can be accomplished by using a single pull-up resistor

    with open-collector TTL gates

    This type of connection is referred to as wired-AND.

    Low Power TTL (LTTL)

    Accomplished simply by increasing the resistance values.

    However this results in Decreased fan-out

    Longer transient-response times

  • 7/31/2019 Elkadig Slide

    34/98

    LTTL Example

    Compare the power dissipation of the LTTL and TTL gates.

    IRB(OL) = 67.5 A

    IRC(OL) = 200 A

    IRB(OH) = 100 A PCC(avg) = 919 W

    TTL vs LTTL power dissipation ratio = 10.4 / 0.919 = 11.3

    High Speed TTL (HTTL)

    Accomplished simply by decreasing the resistance values.

    However this results in Increased power dissipation

  • 7/31/2019 Elkadig Slide

    35/98

    Schottky Tansistor-Transistor Logic

    (STTL)

    Schottky Barrier MN diode

    Schottky-clamped BJT (Schottky Transistor)

  • 7/31/2019 Elkadig Slide

    36/98

    Multi-Emitter Fabrication Examples

    Modes of Operation for SBJT

    1. OFF2. FA3. On Hard4. Reverse Schottky

  • 7/31/2019 Elkadig Slide

    37/98

    Example (SBJT)

    Example: Draw the VTC graph of the SBJT inverter shown below

    STTL NAND Gate

  • 7/31/2019 Elkadig Slide

    38/98

    STTL NAND Gate (VTC)

    VOH = VCC VBE,P(FA) VBE,P2(FA)

    VOL = VCE,O(HARD) VIH = VBE,O(HARD) + VBE,S(HARD) VCE,I(HARD)

    VIL = VBE,O(FA) + VBE,S(FA) VCE,I(HARD)

    STTL NAND Gate (Device states)

    Device state table

  • 7/31/2019 Elkadig Slide

    39/98

    STTL Fan-out

    Determined by the output

    low state as QI is cut-off

    for high-inputs

    Cascaded STTL

    =

    IL

    OL

    I

    IN

    )HARD(O,BF)HARD(O,COL III ==C

    )HARD(O,BE)HARD(S,CECC

    S,CR

    VVVI

    =

    Path 2, 3)HARD(D,C)HARD(S,E)HARD(O,B

    III =

    CD

    )HARD(D,CE)HARD(O,BE

    )HARD(D,CR

    VVI

    =

    B

    )HARD(O,BE)HARD(S,BE)RS(I,BCCC

    SBDR

    VVVVI

    =

    S,CS,B)HARD(S,EIII +=

    B

    )HARD(O,CE)HARD(I,BECC

    ILR

    VVVI

    =

    Path 1

    SBD)RS(I,CS,BIII ==

  • 7/31/2019 Elkadig Slide

    40/98

    Example: Calculate the STTL maximum fan-out for F = 49.

    Example (Power Dissipation)

    Example: Calculate the average power dissipation for the

    above example?

    PCC(avg) = 20.05 mW

    IRB(OL) = 1.11 mA

    IRC(OL) = 4.11 mAIIL= IRB(OH) = 1.32 mA

    IOL= 197 mA

    149I

    IN

    IL

    OL =

    =

    Example (TTL Fan-out)

    IRCD(OL) = 1.20 mA

    IR,O(OL) = 4.02 mA

    IE,S(OL) = 4.22 mA

    IE,P(OL) = 0.182 mA

    IE,P(OH) = 1.3 mA

    Low Power STTL (LSTTL)

    Accomplished by

    1. Increasing the resistance value

    2. Diode input section

    3. Pull-down enhancements

  • 7/31/2019 Elkadig Slide

    41/98

    Low Power STTL (LSTTL)

    LSTTL Example

    Compare the power dissipation of the LSTTL and STTL gates.

    IRB(OL) = 170 A

    IRC(OL) = 463 A

    IRB(OH) = 210 A PCC(avg) = 2.11 mW

    STTL vs LSTTL power dissipation ratio = 20.05 / 2.11 = 9.5

  • 7/31/2019 Elkadig Slide

    42/98

    Advanced Schottky Tansistor-

    Transistor Logic

    (ASTTL)

    Advanced Schottky TransistorLogic

    Advanced Low-Power Schottky TTL (ALSTTL)

    Fairchild Advanced Schottky TTL (FAST)

    Advanced Schottky TTL (ASTTL)

  • 7/31/2019 Elkadig Slide

    43/98

    ALSTTL

    ALSTTL VTC

    VOH = VCC VBE,P(FA)

    VOL = VCE,O(HARD)

    VIH = VBE,O(HARD) + VBE,S(HARD) + VBE,SB(HARD) VBE,IPA(FA)

    VIL = VBE,O(FA) + VEB,IPA(FA)

  • 7/31/2019 Elkadig Slide

    44/98

    ALSTTL VTC

    FAST

  • 7/31/2019 Elkadig Slide

    45/98

    FAST VTC

    VOH = VCC VBE,P(FA)

    VOL = VCE,O(HARD)

    VIH = VBE,O(HARD) + VBE,S(HARD) + VBE,SB(HARD) VD,IA(ON)

    VIL = VBE,O(FA) + VBE,S(FA)+ VBE,SB(FA) VD,IA(ON)

    ASTTL

  • 7/31/2019 Elkadig Slide

    46/98

    ASTTL

  • 7/31/2019 Elkadig Slide

    47/98

    Other TTL Gates

    Other TTL Gates

    AND gates

    NOR gates

    OR gates

    AND-OR-INVERT (AOI) gates

    XOR gates

    Schmitt Trigger Inverters and NAND gates

    Tri-State buffers

  • 7/31/2019 Elkadig Slide

    48/98

    TTL AND gate

    TTL AND gate - VTC

  • 7/31/2019 Elkadig Slide

    49/98

    TTL NOR gate

    Power Dissipation Example

    ICC(LL) = 2 mA

    ICC(HL) = 4.175 mA

    ICC(LH) = 4.175 mA

    PCC(avg) = 17.75 mWICC(HH) = 3.85 mA

    IRB(IL) = 1 mA IRB(IH) = 675 A IRC(OL) = 2.5 mA

    TTL NAND gate

    TTL OR gate

    TTL AND gate

    Example: Noise margins VNMH , VNML?

  • 7/31/2019 Elkadig Slide

    50/98

    Complex Logic TTL Gate Design

    1. ANDing of signals

    Multi-emitter input BJT sections

    2. ORing of signals

    Multiple input sections (QI and RB)

    Multiple drive splitting BJTs (QS)

    3. If non-inverting ORing is desired

    Addional logic inversion circuitry

    4. Totem-pole output branch

    AND-OR-INVERT (AOI) gate

  • 7/31/2019 Elkadig Slide

    51/98

    Example

    Design a complex logic TTL gate that VOUT = VAVB + VC + VDVEVF

    Example

    Design a complex logic TTL gate that VOUT = VAVB + VC + VDVEVF

  • 7/31/2019 Elkadig Slide

    52/98

    TTL XOR gate

    Hysteresis and Schmitt Trigger Gates

  • 7/31/2019 Elkadig Slide

    53/98

    Hysteresis

    Base-Emitter coupled Schmitt Trigger Non-inverting circuit

    Hysteresis

    CCOHS VV =

    )SAT(CEeq

    2CS

    )SAT(CECC

    1CS

    )SAT(BECC

    OLS VRR

    VV

    R

    VVV +

    =

    E2CS1CSeq R||R||RR =

    )FA(1S,BEeq

    2CS

    )SAT(CECC

    1CS

    )SAT(BECC

    IUS VRR

    VV

    R

    VVV +

    =

    VVVV

    )FA(2S,BE)SAT(1S,BECC

    IDS

    +=

    1R

    R

    E

    1CS +=

  • 7/31/2019 Elkadig Slide

    54/98

    Example

    Find the VOHS, VOLS, VIUS and VIDS points where RCS1 = 4k, RCS2 = 2.5k, and RES = 1k.

    VOHS = 5VV

    OLS= 2V VIUS = 2.5V

    VIDS = 1.66V

    Req = 606

    ICS1 = 1.05mA

    ICS1 = 1.92mA

    TTL Schmitt Trigger NAND gate

  • 7/31/2019 Elkadig Slide

    55/98

    Example

    Find the VOH, VOL, VIU and VID points where RCS1 = 4k, RCS2 = 2.5k, and RES = 1k.

    VOH = 3.6V

    VOL = 0.2V

    VIUS = 2.5V

    VIDS = 1.66V

    VIU = 1.8V

    VID = 0.96V

    TTL Tri-state Buffers

  • 7/31/2019 Elkadig Slide

    56/98

    TTL Tri-state Buffers

    Connecting TTL Tri-state buffers to a Bus

  • 7/31/2019 Elkadig Slide

    57/98

  • 7/31/2019 Elkadig Slide

    58/98

    Emitter-Coupled Logic

    (ECL)

    Basic ECL Inverter/Non-inverter

    (ECL Current Switch)

  • 7/31/2019 Elkadig Slide

    59/98

    Basic ECL Inverter/Non-inverter VTC

    VOH = VCC

    According to inverting output: VINV

    CI

    E

    EE)ECL(BEIH

    CCOL RR

    VVVVV

    +=

    VIL = VBB 0.05 VIH = VBB + 0.05

    E

    CI

    EE)SAT(BE

    E

    CI)SAT(BCCC

    S

    R

    R1

    )VV(R

    RVV

    V

    +

    ++=

    Example

    Calculate the critical VTC points for the ECL current switch

    VCC = 5V, VEE = 0V, VBB = 2.6V, RCI = RCR = RE = 1k,

    VBE(ECL) = 0.75V, VBE(SAT) = 0.8V, VBC(SAT) = 0.6V

    VOH = 5V

    VOL = 3.10V

    VIL = 2.55V

    VIH = 2.65V

    VS = 3.2V

    VINV (VIN = VS) = 2.6V

  • 7/31/2019 Elkadig Slide

    60/98

    Basic ECL NOR/OR Gate

  • 7/31/2019 Elkadig Slide

    61/98

    MECL I NOR/OR Gate

    )ECL(BECIDNFCI

    )ECL(BEEE

    OH VRR)1(R

    VV

    V ++

    =

    )ECL(BECI

    E

    EE)ECL(BEIH

    OL VRR

    VVVV

    +=

    Example

    Find the logical swing, noise margins and noise immunities for the MECL I

    circuit above.

    F = 49, VBE(ECL) = 0.75V, VBE(FA) = 0.75V, VBE(SAT) = 0.8V, VBC(SAT) = 0.6V

    VOH = 0.76V

    VOL = 1.55V

    VIL = 1.225V

    VIH = 1.125V

    VS = 0.29V

    VLS = 0.79V

    VNMH = 0.365V

    VNML = 0.325V

    VNIH = 0.53V

    VNIL = 0.475V

  • 7/31/2019 Elkadig Slide

    62/98

    MECL I Fanout

    =

    IH

    OH

    I

    IN

    RDN)FA(BN,EOH III =

    DN

    EEOHRDN

    R

    VVI +=

    BN,BF)FA(BN,E I)1(I +=

    CI

    )ECL(BN,BEOH

    BN,BR

    VVI

    =

    1

    II

    F

    REIH

    +

    =

    E

    EEERE

    R

    VVI

    +=

    )ECL(BEOHE VVV =

    Fan-out Example

    Find the maximum fan-out for the MECL I circuit above

    F = 49, VBE(ECL) = 0.75V, VBE(FA) = 0.75V, VBE(SAT) = 0.8V, VBC(SAT) = 0.6V

    Assume load gates reduce VOH by 0.03 volts.

    VOH = 0.79V IRDN = 2.205 mA

    IB,BN = 148 A

    IE,BN = 7.4 mA

    IOH = 5.2 mA

    VE = -1.54 V

    IRE = 2.95 mA

    IIH = 59 A

    87I

    IN

    IH

    OH =

    =

  • 7/31/2019 Elkadig Slide

    63/98

    Power Dissipation Example

    Find the average power dissipated in the MECL I circuit above

    IRE(NOH) = 2.64 mA

    IRDN(NOH) = 2.22 mA

    IEE(NOH) = 6.685 mA

    IRDO(NOH) = 1.825 mA

    IRE(NOL) = 2.98 mA

    IRDN(NOL) = 1.825 mA

    IEE(NOL) = 7.035 mA

    IRDO(NOL) = 2.22 mA

    PEE(avg) = 35.6 mW

    Other ECL Gates

  • 7/31/2019 Elkadig Slide

    64/98

    DeMorgans Theorems

    NOR and OR using ANDs and NANDs

    NOR:

    OR:

    NAND and AND using ORs and NORs

    NAND:

    AND:

    BABA =+

    BABA =+

    BABA +=

    BABA +=

    Example

    Implement the following logic using only ECL gates

    )DC)(BA( ++

    Solution:

    )DC()BA()DC)(BA( +++++

  • 7/31/2019 Elkadig Slide

    65/98

    Collector Dotting Wired-AND Gates

    Complex Logic Gates with Collector Dotting

  • 7/31/2019 Elkadig Slide

    66/98

    Example

    Series Gating Basic ECL NAND/AND Current Switch

  • 7/31/2019 Elkadig Slide

    67/98

    Series Gating NAND/AND Gate

    Complex Logic Gates with Series Gating

  • 7/31/2019 Elkadig Slide

    68/98

    Example

    ECL XOR/XNOR Gates

  • 7/31/2019 Elkadig Slide

    69/98

    ECL Decoding Tree

  • 7/31/2019 Elkadig Slide

    70/98

    MOS Logic

    MOS Logic

    NMOS gates

    Fabrication

    Modes of operation

    NMOS Inverters and Analysis

    General NMOS Inverter

    Resistor Loaded NMOS Inverter

    E-MOSFET loaded NMOS Inverter

    D-MOSFET loaded NMOS Inverter

  • 7/31/2019 Elkadig Slide

    71/98

    NMOS (n-channel E-MOSFET) Fabrication Examples

    CMOS Fabrication Example

  • 7/31/2019 Elkadig Slide

    72/98

    IV Characteristics

    NMOS modes of operation

    (a) Cutoff mode (b) Linear mode

    (c) Saturation mode (d) body-bias effect

    on threshold voltage

  • 7/31/2019 Elkadig Slide

    73/98

    General NMOS Inverter

    Graphical analysis when load is a resistor

  • 7/31/2019 Elkadig Slide

    74/98

    Load capacitance

    Power dissipation

    PDD = VDD (IDD(OH) + IDD(OL)) / 2

    VDD IDD(OL)/ 2

    (a) Static power dissipation

    (b) Transient power dissipation

    PD = CL V2DD

    : frequency at which the gate is switched

    PTOTAL = PDD + PD

  • 7/31/2019 Elkadig Slide

    75/98

    Resistor Loaded NMOS

    Resistor Loaded NMOS Inverter

  • 7/31/2019 Elkadig Slide

    76/98

    Propagation Delay

    Fall time

  • 7/31/2019 Elkadig Slide

    77/98

    E-MOSFET Loaded NMOS

    E-MOSFET Loaded NMOS Inverter

  • 7/31/2019 Elkadig Slide

    78/98

    D-MOSFET Loaded NMOS

    D-MOSFET Loaded NMOS Inverter

  • 7/31/2019 Elkadig Slide

    79/98

    NMOS Gates

    Symbol Shorthands

  • 7/31/2019 Elkadig Slide

    80/98

    NOR Gate

    NOR Gates

  • 7/31/2019 Elkadig Slide

    81/98

    NAND Gate

    +=

    BA

    O

    OLL

    Wk

    )Inverter(V)NAND(V OLOL >

    OR Gates

  • 7/31/2019 Elkadig Slide

    82/98

    AND Gates

    Example

  • 7/31/2019 Elkadig Slide

    83/98

    AOI (AND-OR-INVERT) Gates

    Examples

  • 7/31/2019 Elkadig Slide

    84/98

    XOR/XNOR Gates

    Hysteresis

  • 7/31/2019 Elkadig Slide

    85/98

    Schmitt Trigger

    Transmission Gate

  • 7/31/2019 Elkadig Slide

    86/98

    Transmission Gate Array

    CMOS Logic

  • 7/31/2019 Elkadig Slide

    87/98

    CMOS Inverter

    CMOS Inverter

  • 7/31/2019 Elkadig Slide

    88/98

    Symmetric CMOS Inverter

    Capacitance Effect on Transition - 1

  • 7/31/2019 Elkadig Slide

    89/98

    Capacitance Effect on Transition - 2

    Electrostatic Discharge (ESD) Protection

  • 7/31/2019 Elkadig Slide

    90/98

    CMOS Gates

    Symbol Shorthands

  • 7/31/2019 Elkadig Slide

    91/98

    CMOS NAND Gate

    CMOS NAND Gates

  • 7/31/2019 Elkadig Slide

    92/98

    CMOS NOR Gate

    CMOS NOR Gates

  • 7/31/2019 Elkadig Slide

    93/98

    CMOS AND/NAND Gate

    CMOS OR/NOR Gate

  • 7/31/2019 Elkadig Slide

    94/98

    CMOS AOI Gates

    CMOS AOI Gates

  • 7/31/2019 Elkadig Slide

    95/98

    CMOS AND-OR Gate

    CMOS OAI Gates

  • 7/31/2019 Elkadig Slide

    96/98

    CMOS AOI Gates

    Example

  • 7/31/2019 Elkadig Slide

    97/98

    Example

  • 7/31/2019 Elkadig Slide

    98/98

    XOR Gate