ELECTROOBTENCION

25
www.intermetperu.com ELECTRORECUPERACION DE ORO A PARTIR DE SOLUCIONES DILUIDAS 1. INTRODUCCION La cianuración ha sido el principal proceso para la extracción de oro desde finales del siglo pasado. A partir de la lixiviación con cianuro, el proceso de recuperación de oro implica dos operaciones unitarias básicas que marcan la etapa de pre-concentración de la solución: (1) adsorción en carbón activado del oro contenido en cloro y (2) la desorción de oro por el uso de una solución de cianuro, en la concentración y el pH apropiados, dando como resultado soluciones de metal que luego, se envían al proceso de recuperación convencional del oro (Figura 1). La regeneración del carbón, para la reutilización con lavado con ácido y calor, también es necesaria, ya que sus propiedades son alteradas por la formación de carbonatos, generados mediante la absorción de dióxido de carbono de la atmósfera, con el resultante bloqueo de sitios activos. La extracción del metal de interés de carbón activado se realiza a temperaturas de orden de 90 ° C, por lo general bajo presión, produciendo soluciones resultantes aurocianidricas donde una concentración de oro puede alcanzar hasta 5,0 x 10 -3 mol L -1 (1000 ppm). El oro se extrae de soluciones cianídricas por el proceso tradicional de electroobtención en lana de acero. Alternativamente, las soluciones generadas en el tratamiento de minerales auríferos, de pequeños depósitos, pueden ser tratados mediante el uso de la precipitación de metales de interés con polvo de zinc (método Merrill-Crowe). La escasez, cada vez más creciente, de los minerales de alto contenido de oro han modificado, significativamente, la importancia del método convencional extracción del metal. La electroobtención de oro de disoluciones cianídricas fue desarrollada a finales de los 50 años en la U.S. Bureau of Mines, por J. B. Zadra, para obtener este metal y plata, utilizando una célula desarrollada por él. Como en el procedimiento desarrollado por Zadra, se utilizan soluciones diluidas, lixiviación in situ (heap leaching), con soluciones de cianuro de sodio, a mediados de los 60, se convirtió en un proceso muy atractivo que producía licores que contienen 0,5 a 10,0 ppm de oro. Durante la primera mitad de los años 70, se han desarrollado procesos innovadores para una extracción y recuperación de oro, destinado a la concentración de las soluciones diluidas. El

Transcript of ELECTROOBTENCION

Page 1: ELECTROOBTENCION

www.intermetperu.com

ELECTRORECUPERACION DE ORO A PARTIR DE

SOLUCIONES DILUIDAS

1. INTRODUCCION

La cianuración ha sido el principal proceso para la extracción de oro desde finales del siglo pasado.

A partir de la lixiviación con cianuro, el proceso de recuperación de oro implica

dos operaciones unitarias básicas que marcan la etapa de pre-concentración de la solución:

(1) adsorción en carbón activado del oro contenido en cloro y (2) la desorción de oro por

el uso de una solución de cianuro, en la concentración y el pH apropiados, dando como resultado

soluciones de metal que luego, se envían al proceso de recuperación convencional del

oro (Figura 1).

La regeneración del carbón, para la reutilización con lavado con ácido y calor, también es

necesaria, ya que sus propiedades son alteradas por la formación de carbonatos, generados

mediante la absorción de dióxido de carbono de la atmósfera, con el resultante bloqueo de sitios

activos. La extracción del metal de interés de carbón activado se realiza a temperaturas de

orden de 90 ° C, por lo general bajo presión, produciendo soluciones resultantes aurocianidricas

donde una concentración de oro puede alcanzar hasta 5,0 x 10-3 mol L-1 (1000 ppm). El oro se

extrae de soluciones cianídricas por el proceso tradicional de electroobtención en lana de acero.

Alternativamente, las soluciones generadas en el tratamiento de minerales auríferos, de pequeños

depósitos, pueden ser tratados mediante el uso de la precipitación de metales de interés con

polvo de zinc (método Merrill-Crowe). La escasez, cada vez más creciente, de los minerales de alto

contenido de oro han modificado, significativamente, la importancia del método convencional

extracción del metal.

La electroobtención de oro de disoluciones cianídricas fue desarrollada a finales de los

50 años en la U.S. Bureau of Mines, por J. B. Zadra, para obtener este metal y

plata, utilizando una célula desarrollada por él. Como en el procedimiento desarrollado por

Zadra, se utilizan soluciones diluidas, lixiviación in situ (heap leaching), con soluciones de cianuro

de sodio, a mediados de los 60, se convirtió en un proceso muy atractivo que producía licores que

contienen 0,5 a 10,0 ppm de oro.

Durante la primera mitad de los años 70, se han desarrollado procesos innovadores para

una extracción y recuperación de oro, destinado a la concentración de las soluciones diluidas. El

Page 2: ELECTROOBTENCION

www.intermetperu.com

más exitoso fue la de carbón en pulpa (CIP), que también fue pionero en la U.S. Bureau of Mines.

Este proceso fue rápidamente aceptado por las industrias, y las centrales eléctricas, con

un proceso CIP se construyeron en varios países, incluyendo Brasil, EE.UU., etc.

Otra de las novedades en la metalurgia extractiva del oro, fue el uso de resinas aniónicas de

adsorción de oro provenientes de las pulpas de cianuración. Este es el proceso de resina en pulpa

(RIP), probado en 1984 a escala piloto en Sudáfrica.

LIXIVIACION EN PILAS

ADSORCION DE ORO EN

CARBÓN ACTIVADO

DESORCION DE ORO EN

CARBON ACTIVADO

RECUPERACION

ELECTROLÍTICA

REFINO ELECTROLÍTICO

ORO

PURO

REACTIVACION

TERMICA

Sol. NaCN

CARBON

PROCESO DIRECTO

AJUSTE DE LA

SOLUCIÓN

(NaCN, NaOH)

LINGOTES

DE ORO

Figura 1.- Proceso Convencional de Recuperación de oro a partir de procesos de lixiviación por cianuración.

2. ELECTRORECUPERACION DIRECTA DEL ORO EN SOLUCIONES DILUIDAS

Desde un punto de vista económico, se observa que las soluciones que contienen oro en

concentraciones muy bajas y son susceptibles a la extracción electroquímica directa (línea

punteada en la Figura 1). El oro puede ser eletrorrecuperado directamente de soluciones diluidas,

provenientes del proceso de lixiviación in situ, eliminando así los procesos de pre-concentración

mencionados anteriormente, por lo que es posible obtener una forma comercial del metal en un

solo paso, sin generar residuos adicionales.

Page 3: ELECTROOBTENCION

www.intermetperu.com

Para la electrodeposición directa de metales económicamente viables, es necesario

que el proceso se lleve a cabo en sistemas de reacción que son adecuados y que se concentran en

una atención mayor en, al menos, dos aspectos: (1) el proceso de lixiviación, que típicamente

la antecede debe esforzarse para maximizar el contenido de oro en el licor, (2) la eliminación

electrolítica requiere el uso de electrodos de metal con gran área de superficie y (3) una célula

debe funcionar eficientemente a temperatura ambiente. En cuanto a este último punto, es

importante el desarrollo de las células electroquímicas con modificaciones apropiadas

para mejorar las características de transporte de las especies electroactivas.

3. TRANSFERENCIA DE MASA EN SOLUCIONES DILUIDAS

En la electrodeposición de metales en general, la velocidad de deposición es proporcional al área A

del electrodo y el gradiente de concentración. En el caso de soluciones diluidas

puede considerarse una Ecuación 1, donde δ es el espesor de la difusivo y D, el coeficiente de

difusión del ión metálico de interés. El perfil de concentración se muestra en la Figura 2

donde C es la concentración de iones de interés dentro de la solución, Ce es la concentración de

iones metálicos sobre la superficie del electrodo, Vmax la velocidad máxima de flujo hidrodinámico

y W es el punto de inflexión.

El perfil de velocidad de la película de electrolito, adyacente al cátodo vertical, bajo condiciones

convección natural, asociado a diferencias de peso específicas de la solución dentro del capa de

difusión también se muestra en la Figura 2.

En soluciones diluidas, la diferencia de gravedad específica entre el grueso de la solución y la

solución dentro de la capa límite es extremadamente pequeña y por lo tanto la transferencia de

masa por convección natural puede despreciarse. El espesor de la capa de difusión δ aumenta,

en condiciones potencio-estáticas, con una raíz cuadrada del tiempo t de deposición electrolítica

metálica, de acuerdo con la Ecuación 2:

creando así una disminución continua de transferencia de masa. El factor de K1 es definido por

el coeficiente de difusión. Sin embargo, bajo condiciones galvano-estáticas, la concentración de Ce

de los iones, en el proceso de reducción, una superficie del cátodo se reduce a cero dentro del

denominado tiempo de transición τ, de acuerdo con la Ecuación 3:

Page 4: ELECTROOBTENCION

www.intermetperu.com

El tiempo de transición puede reducirse disminuyendo la solución y aumentando una densidad

de corriente catódica. El factor de K2 se establece por el coeficiente de difusión y la valencia del

reducido de iones. La transferencia de masa asociada a la deposición electrolítica de metal

también se expresa por la ecuación 4:

donde I es la densidad de corriente y ε, la eficacia de la corriente. El factor de K3 se define por

el equivalente electroquímico del ion que será reducido. Si la transferencia de masa

del proceso electrolito es controlada principalmente por difusión, las Ecuaciones 1 y 4 se pueden

combinar produciendo la Ecuación 5:

Dando una Ecuación 6 por corriente, lo que demuestra que el aumento en la corriente sólo puede

conseguirse aumentando un área superficial del cátodo o disminuyendo el espesor de la capa

difusiva catódica. Esto se produce porque, en el caso de soluciones diluidas, una

concentración de metal de interés C siempre será comparativamente pequeña.

Page 5: ELECTROOBTENCION

www.intermetperu.com

LIXIVIACION EN PILAS

ADSORCION DE ORO EN

CARBÓN ACTIVADO

DESORCION DE ORO EN

CARBON ACTIVADO

RECUPERACION

ELECTROLÍTICA

REFINO ELECTROLÍTICO

ORO

PURO

REACTIVACION

TERMICA

Sol. NaCN

CARBON

PROCESO DIRECTO

AJUSTE DE LA

SOLUCIÓN

(NaCN, NaOH)

LINGOTES

DE ORO

Figura2.- Perfil de concentración en velocidad de las especies electroactivas en la capa difusiva (Enriquez-

Granados et al., 1982).

4. CELULAS Y ELECTRODOS PARA LA ELECTRORECUPERACION DE METALES EN

SOLUCIONES DILUIDAS

Para el tratamiento específico de soluciones diluidas, varios tipos de electrodos no convencionales

han sido y están siendo desarrolladas, tales como cilindros rotatorios en lechos fijos y fluidizados,

etc. El aumento de la tasa de transferencia de masa se puede realizar por convección forzada

como por aumento de la superficie efectiva del electrodo, tal como es el caso de los electrodos

tridimensionales. Las posibilidades de aplicación de electrodos tridimensionales son numerosas y

van desde el almacenamiento de energía eléctrica y síntesis químico-orgánica a la deposición y la

recuperación metales preciosos con fines económicos, así como los metales pesados por razones

ambientales.

En las últimas décadas se ha creado un gran número de diseños de celdas electrolíticas para

el tratamiento de las soluciones diluidas. Sin embargo, pocos se introdujeron

Page 6: ELECTROOBTENCION

www.intermetperu.com

industrialmente, mientras que otros permanecieron sin ser utilizados o nunca han sido probados,

aunque a escala de laboratorio. Los diversos modelos se clasifican como células concentradoras y

células para la recuperación directa. Las células concentradoras producen soluciones concentradas

en un depósito metálico, a partir del cual el metal es recuperado pirometalúrgicamente o por

disolución química para producir una solución concentrada. Las células de recuperación directa

producen metales en una forma ya adecuada para su comercialización. En un sistema de reacción

adecuado o metálico, previamente depositado en el cátodo de la celda de electro-recuperación,

puede ser recuperado por inversión de la polaridad de la celda electroquímica original.

Las células de lecho poroso se pueden clasificar, de acuerdo a su modelo, en dos grandes grupos.

Las células del primer grupo operan con una dirección del flujo del electrolito perpendicular a la

dirección del flujo de corriente (Figura 3-a). El segundo grupo opera con el flujo de electrolito y la

corriente en paralelo (Figura 3-b).

(a) (b)

Figura 3.- Representación esquemática de electrodos porosos comprimidos con las direcciones de los flujos de

solución (U) y corriente (I) perpendiculares (a) y paralelos (b).

El contra-electrodo, en la mayoría de los casos prácticos, es estacionario y bidimensional, lo que

simplifica enormemente el diseño y funcionamiento. Aunque las celdas de lecho fijo pueden fijarse

construirse en una escala de laboratorio, los problemas asociados a un eventual aumento en

escala son tales que pocos satisfacen los requisitos para el proyecto a una escala industrial.

Para el electrodo de trabajo los términos de flow-by y flow-through se utilizan ampliamente

para caracterizar, respectivamente, las configuraciones de los primeros y segundos grupos antes

mencionados. La configuración perpendicular es generalmente preferida para los estudios

fundamentales, debido a la distribución de corriente más uniforme. Estos estudios también

muestran que esta configuración permite una mejor distribución de potencial, y la obtención de

una mayor tasa de conversión de las especies electroactivas, lo que permite el funcionamiento

bajo condiciones hidrodinámicas, de tal manera que el tiempo de residencia de estas especies en

el reactor es suficientemente largo. Estas condiciones también permiten una valoración teórica y

Page 7: ELECTROOBTENCION

www.intermetperu.com

experimental de la influencia de los parámetros físico-químicos, geométricos e hidrodinámicos

sobre las tasas de transferencia de masa y sobre la distribución de corriente. La celda electrolítica

de Zadra, que incorpora un electrodo cilíndrico rodeado por un ánodo simple, esconsiderado

como el primer grupo (a). Las celdas Mintek y Custom Engineering son del segundo grupo (b).

La mayor dificultad en la construcción de una celda electrolítica, con los flujos de corriente y de

solución perpendiculares, es la eliminación de cualquier ruta preferencial para la solución.

Esto puede minimizarse mediante el bombeo de la solución a través de un tubo de alimentación

situado dentro del cuerpo del electrodo y permitiendo que el electrólito sea distribuido a través

del lecho de la celda mediante los orificios situados a lo largo del tubo. Aunque el

tiempo medio de residencia no se ve afectado por la recirculación del electrolito, la introducción

de uno flujo turbulento causa la compresión de la capa límite, disminuyendo entonces, la

polarización por concentración, y aumentando una tasa de deposición. Una mejora adicional

puede obtenerse mediante la separación de los compartimientos anódicos y catódicos con una

membrana catiónica. La membrana restringe el flujo del anolito en el compartimiento catódico.

Sin embargo, la incorporación de una membrana aumenta la complejidad del proyecto con el

consiguiente aumento de los costes, tanto de implementación como operativo de la celda.

5. PERFIL DEL POTENCIAL EN LOS ELECTRODOS CILÍNDRICOS TRIDIMENSIONALES

La resistividad finita (R) del electrolito causa una caída significativa en el potencial de electrodo

dentro del lecho poroso. El potencial alcanza el valor más bajo en el centro del cátodo. La

deposición de oro de una solución alcalina de cianuro no se produce hasta que un potencial

alcanza valores del orden de -0,76 V frente a S.H.E. (Electrodo de hidrógeno estándar), aunque el

valor exacto del potencial depende de las condiciones de la solución, como la concentración de

especies iónicas presentes, temperatura, etc. Entre -0,70 y -0,90 V (S.H.E.), la tasa de deposición

está determinada por el potencial de electrodo (es decir, control cinético). En potenciales más

catódicos de -0,90 V (SHE) la tasa de deposición de oro, de una solución alcalina de cianuro, es

controlada por el transporte de iones aurocianídricos para la superficie cátodica.

En la distribución típica de potencial a través de un cátodo poroso (en este caso, con la

alimentación de corriente a través de su centro), que se muestra en la Figura 4, se observa que en

ambos lados del cátodo (d = 0 y D = L), el potencial alcanza su valor máximo (puntos A y F). A

través de las distancias AB y EF una tasa de deposición de oro es controlada a penas por la

limitación de transporte masivo. La deposición de oro es controlada cinéticamente a través de la

distancias BC y DE, mientras que entre C y D la deposición no ocurre.

Page 8: ELECTROOBTENCION

www.intermetperu.com

Figura 4.- Distribución esquemática del potencial a través de un cátodo poroso de espesor L, rodeado de un

ánodo cilíndrico para una deposición de oro de una solución alcalina cianídrica (Kammel y Lieber, 1977).

6. REACCIONES ELECTROQUIMICAS

Durante el proceso de electrodeposición de oro algunas reacciones catódicas deben

tenerse en cuenta:

El complejo de Au (CN)2 se reduce a oro metálico de acuerdo a la Reacción 1. Esta reacción

muestra que la disminución del cianuro libre en solución favorece la reducción del complejo auro-

cianuro de oro metálico. Las eacciones 2 y 3 representan una reducción de oxígeno en solución

alcalina. Estas son las principales reacciones catódicas para competir con la deposición de oro y

utilizar gran parte de la corriente eléctrica disponible, ya que el electrolito está saturado con

oxígeno. Usando una membrana de intercambio iónico, con el inconveniente de aumentar la

resistividad de la celda, se puede minimizar tal reacción.

La Reacción 4 representa la formación de hidrógeno en solución alcalina, que también se produce

junto con la deposición de oro bajo condiciones de control de corriente por de transferencia de

Page 9: ELECTROOBTENCION

www.intermetperu.com

masa. En el ánodo, la formación de oxígeno, descrita en la Reacción 5, es la reacción principal,

seguida de la Reacción 6.

El cianuro libre también puede ser oxidado por el oxígeno disuelto, no dentro de la solución,

de acuerdo con la Reacción 7, mientras que la Reacción 8 muestra la posibilidad de que el oro

depositado se disuelva con oxígeno generado en el ánodo:

7. CONDUCTIVIDAD VS. VOLUMEN DE CATODOS ELECTROACTIVOS

El efecto de la conductividad de la solución en el uso del electrodo puede ser mejor entendido

utilizando la Ecuación 7, donde i es la densidad de corriente máxima que podría producirse, si

hubiera la deposición completa de oro introducida en la celda, y B es un término adimensional que

depende de la concentración de salida, espesor, porosidad y área del electrodo, velocidad del

fluido y coeficiente de transferencia de masa y de difusión. Por lo tanto,

si el volumen disminuye con L, también disminuye con la conductividad K.

Esto se ilustra esquemáticamente en la Figura 5.

Además, la diferencia de potencial (Er) mínima para la deposición de oro, aumenta

catódicamente cuando la concentración de oro disminuye, por lo que podría esperarse

que en sistemas con recirculación de electrolito en la célula, una distancia L, y por lo tanto el

volumen electroactivo (el volumen del cátodo dentro del cual hay un potencial suficiente para

depositar oro), se incrementaría.

Page 10: ELECTROOBTENCION

www.intermetperu.com

Figura 5.- Efecto de la conductividad del electrolito en la distribución del potencial en el compartimiento

catódico (Enriquez-Granados et al., 1982).

8. REDUCCION DE ORO MEDIANTE COMPLEJOS DE CIANURO

El estudio más profundo de la cinética implicado en la electrodeposición de oro es muy reciente

cuando en comparación con la larga historia de la industria del acabado electrolítico superficial

con este metal. El grado alcanzado por las aplicaciones industriales de recubrimiento de oro

también se refleja en el número de estudios en la bibliografía relativos a los procesos

fundamentales envueltos en su declaración. La facilidad de deposición de oro (Au (I)) a partir de

soluciones de cianuro, que contiene oro en forma de iones de Au (CN) 2- dependerá de la facilidad

con que estos iones se disocian. De acuerdo con la ley de acción de masas, para una reacción

reversible, se tiene:

donde [Au(CN)2-], [Au] y [CN-] son las concentraciones molares respectivas de estos iones en

solución. El término de la derecha de la Ecuación 8, b, es una constante que proporciona una

medida de estabilidad del complejo de Au (CN)2- y se denomina constante de estabilidad.

Page 11: ELECTROOBTENCION

www.intermetperu.com

El valor de b2 para el ion de Au (CN)2- ya ha sido determinado siendo 1038,8. Este valor alto

implica que el ión Au (CN)2- es muy estable. La concentración de iones Au se determina

a través de la Ecuación 10. Esta concentración es extremadamente baja, lo que significa que las

altas tasas de deposición de oro de soluciones cianídricas sólo son posibles debido a la

polarización de los iones Au(CN)2- que se acercan a la superficie del cátodo. En soluciones

cianídricas, con una aireación adecuada, el oro es oxidado y se disuelve para formar el complejo

aurocianato (I), Au (CN)2- . El complejo auro-cianato (III), Au (CN)4

-, también se forma, pero un Au

(I) complejo es más estable. La voltametría cíclica, utilizado para estudiar el mecanismo de

disolución de oro, muestra que procede en tres etapas. La primera etapa, un potencial de -0,4 V

(S.C.E.) representa probablemente la formación de una especie preliminar adsorbida, AuCN, lo que

causa la pasivación temporal de la superficie de oro:

En la segunda etapa, aproximadamente -0,3 V (S.C.E.), se atribuye a la reacción de

acomplejamiento entre el cianuro libre y una especie adsorbida previamente AuCN(ads):

En la etapa final de -0,6 a -0,7 V (S.C.E.), se asigna la formación de una capa de óxido oro (III)

(Au203), que pasiva una superficie de oro metálico. Sin embargo, es poco probable que esta

pasivación sea un problema en la práctica debido a los altos potenciales positivos requeridos para

la pasivación.

9. INFLUENCIA DE LA CONCENTRACION DEL ORO EN LA DEPOSICIÓN

El efecto de la concentración de oro en la tasa de deposición se muestra en la Figura

6. Las curvas muestran que una corriente límite para la deposición de oro aumenta catódicamente

en 0,7 V, cuando una concentración de oro aumenta de 0,001 mg de L-1 a 0,05 mg de L-1. El

conocimiento de esta información es importante cuando se habla de los resultados de los

experimentos realizados en la corriente límite de soluciones con diferentes concentraciones de

oro.

Page 12: ELECTROOBTENCION

www.intermetperu.com

Figura 6.- Curvas de intensidad de la corriente vs. potencial mostrando un efecto de concentración de oro.

[KCN]: 0,03 mol L-1, rotación: 10Hz, velocidad de barrido: 0,01 V s-1.

10. INFLUENCIA DE LA CONCENTRACION DE CIANURO LIBRO EN LA TASA DE CIANURO LIBRE

EN LA TASA DE DEPOSICION DE ORO

La influencia de la concentración de cianuro libre en la deposición de oro, se muestra en las curvas

de corriente vs potencial de la Figura 7. El aumento de la concentración de cianuro toma las curvas

en valores más negativos (catódicos) de potencial. También puede ser verificada por la reacción de

reducción de oro, donde un aumento en la concentración de CN- favorece la reacción en la

dirección opuesta a la deposición de oro. Todavía se puede demostrar (Ecuación 10) que para un

aumento de diez veces en la concentración de cianuro libre es un cambio potencial, en el sentido

negativo de 0,118 V, requiriendo por lo tanto, la aplicación de un potencial más alto para asegurar

que el proceso sea operado en la corriente límite o ligeramente por encima de ella.

Page 13: ELECTROOBTENCION

www.intermetperu.com

Figura 7.- Curvas de intensidad vs. Potencial mostrando un efecto de concentración de cianuro. [Au]: 0,01 mol

L-1

, velocidad de barrido: 0,01 V s-1

, rotación: 10Hz.

11. INFLUENCIA DE IMPUREZAS EN LA DEPOSICION DE ORO

Durante la lixiviación del mineral de oro con soluciones de cianuro se pueden disolver

diversos metales. Aunque la recuperación de oro por electrólisis puede ser una alternativa

atractiva debido a la posibilidad de recuperación selectiva, los efectos de la interacción

entre varios metales en solución no se conocen completamente. Las dificultades para

el tratamiento electrolítico con diversos componentes se deben, en parte, a los efectos de

la polarización, efectos de despolarización de co-deposición y efectos catalíticos. Incluso trazas de

algunos metales pueden provocar cambios significativos en la tasa de electrodeposición de oro. El

mecanismo de despolarización catódica inducida por metales pesados como, por ejemplo, Pb (II),

durante la electrodeposición del oro, puede ser mejor entendido. El plomo y otros metales (Hg, T1

y Bi) están causando la despolarización de la reacción de deposición oro, actuando como

catalizadores en la capa eléctrica doble en la superficie del cátodo.

12. ASPECTOS DE ELECTROCRISTALIZACIÓN EN LA DEPOSICIÓN DE ORO

La Figura 8 muestra un diagrama esquemático del mecanismo probable durante la deposición de

un metal, a partir de una solución de uno de sus complejos. En (1), un ion metálico en

su campo de ligandos; en (2), un campo de los ligandos se distorsiona, en (3), un ion metálico es

despojado de sus ligandos, en (4), un ion metálico es neutralizado formando un átomo adicional,

en (5), un átomo de metal se extiende sobre la superficie del electrodo al sitio de crecimiento

energéticamente más favorable.

Page 14: ELECTROOBTENCION

www.intermetperu.com

El cátodo atrae predominantemente iones positivos a una región cerca de la superficie que se

conoce como capa doble de Helmholtz. Además, los iones complejos,

cargados negativamente, como Au (CN) 2-, presentes en soluciones de aurocianato, cuando se

aproximan a la capa son polarizados por el campo eléctrico del cátodo. La distribución de los

ligandos alrededor del metal, de este modo, es distorsionada ayudando a propagar el ión complejo

en la capa de Helmholtz. Por último, dentro de la capa de Helmholtz un complejo se rompe, los

componentes del ligando se liberan (o una capa de solvatación), iones o moléculas, y el metal

fundido en forma de catión de metal, cargado positivamente, el cual es depositado como metal en

el cátodo.

El fenómeno de cristalización juega un papel importante en el caso de la deposición

metales. Se incluye pasos diferentes después que el ion metálico atraviesa la capa doble

eléctrica y todavía está parcialmente solvatado. La etapa final puede ser descrita como

la incorporación del átomo de metal descargado en la estructura cristalina del metal substrato.

Las siguientes etapas de cristalización puede ocurrir: difusión de la superficie metálica,

iones añadidos al metal parcialmente cargado, la formación de núcleos

bidimensionales o tridimensionales y el crecimiento de los núcleos formados.

Figura 8.- Diagrama esquemático del mecanismo de proceso de deposición de un metal de una solución de

uno de sus complejos

13. LA TÉCNICA DEL ELECTRODO ROTATORIO

El electrodo de disco rotatorio (EDR) es la forma más práctica de electrodo de trabajo para

un tratamiento hidrodinámico completo y riguroso. La teoría de un EDR se aplica una

superficie plana, tan grande en diámetro que los extremos pueden disminuir con

Page 15: ELECTROOBTENCION

www.intermetperu.com

respecto a la superficie total. Este plano es girado con una velocidad angular constante alrededor

de un eje perpendicular al plano. En la práctica, este electrodo tiene la forma de un disco, de 1

mm a varios centímetros de diámetro, que giran a velocidad constante.

La idea física del flujo hacia la superficie de un EDR es de la siguiente manera: cuando el disco gira,

el líquido en una capa límite adyacente adquiere su movimiento de rotación. El líquido es dirigido

por lo tanto una velocidad tangencial, y debido a la fuerza centrífuga, también lleva una velocidad

radial del centro del disco. Este patrón de flujo, el cual mueve el líquido horizontalmente hacia

afuera y lejos del centro del disco, requiere flujo axial ascendente para suministrar el electrólito a

la superficie del disco. La capa hidrodinámica límite, d0, se puede establecer aproximadamente

como:

donde w es la velocidad angular del disco y n es la viscosidad cinemática del líquido. Dentro del

espesor d0, las velocidades radial y tangencial del fluido disminuyen de acuerdo a la distancia

y, medida verticalmente a partir de la superficie del disco en la dirección descendente. En d0

la velocidad tangencial, de acuerdo con Levich, disminuye una vigésima de su valor en

la superficie del disco. A distancias de disco y > d0, se considera que hay un solo movimiento axial

(vertical). Con soluciones acuosas y velocidad de rotación de 16 rps (960 rpm) d0 es de orden de

unas pocas décimas de milímetro. Físicamente, d0 puede ser visto como el espesor aproximado de

la capa líquida arrastrada por el disco giratorio. Nótese que la discusión anterior se refiere

únicamente al flujo líquido y se aplica a un disco giratorio siendo utilizado como un electrodo o no.

Si, ahora, incluyendo gradientes concentración, todo el problema de la difusión por convección

puede ser resuelto. En el caso habitual de la electrólisis con un exceso de electrolito de soporte,

las condiciones de contorno para la difusión convectiva de especies electroactivas son C=Cb

(concentración en la solución) cuando y tiende a infinito y C = 0 en y = 0. Todos los detalles de este

problema fueron determinados por Levich y el resultado final, en términos de densidad de

corriente límite, controlado apenas por transferencia de masa (reversible), y dado por

Levich como:

donde w = 2pf [rps] es la velocidad angular del disco giratorio, n es la viscosidad cinemática

[M2s-1], Cb es la concentración de especies electroactivas [moles m-3] y iL la densidad de corriente

límite [A m-2].

Page 16: ELECTROOBTENCION

www.intermetperu.com

14. CÉLULAS ELETROQUÍMICAS EN FLUJO PISTONADO

Teniendo en cuenta que el objetivo principal de algunas empresas es la investigación de la

posibilidad de desarrollo comercial de la electrorecuperación de oro a partir de soluciones

cianídricas diluidas, los datos experimentales deben ser analizados para establecer coeficientes de

transferencia de masa que pueden ser utilizados en los diseños de celdas en una escala industrial.

Estos análisis se basan en la aplicación de modelos de reactores simples, adaptados a las

reacciones químicas convencionales. Así, en un reactor electroquímico operado con flujo

pistonado, en el cual un proceso catódico es controlado por transferencia de masa (operación en

corriente límite), la siguiente relación se puede aplicar:

Donde Csai y Cent son las concentraciones de entrada y de salida afectadas con un pasaje la solución

a través del reactor con un caudal Q. El área de los electrodos es A y km es el coeficiente de

transferencia de masa medio para un electrodo como un todo, por suposición equipotencial. Esto

es análogo a la Ecuación 14 para el reactor en flujo pistonado en el que una reacción química se

produce de primer orden con una velocidad constante r durante un tiempo t de residencia media:

El término A/Q en la Ecuación 13 es la velocidad del espacio a través de la porción electroactiva

del electrodo (en el caso de electrodos porosos). Para una celda electrolítica, en el que

los iones en solución son depositados en forma de película metálica, una recuperación de metal de

interés, o la conversión, se define como:

Una sustitución de la Ecuación 15 en la Ecuación 13 conducen a la expresión siguiente:

Esta ecuación se puede utilizar para diseñar una celda de flujo pistonado con un solo paso del

electrolito, ya que km es conocido. El coeficiente de transferencia masa se puede calcular a partir

de la teoría hidrodinámica, para una geometría estándar, medida directamente en los estudios en

la corriente límite o se deduce de las pruebas piloto o de las celdas a pequeña escala. En los

sistemas de proceso por lotes, como en la Figura 9, donde Vr es el volumen del depósito donde un

electrólito agitado y Q, es el flujo volumétrico, una concentración de metal cae exponencialmente

Page 17: ELECTROOBTENCION

www.intermetperu.com

a medida que el electrolito recircula a través del reactor en el flujo pistonado. Una adaptación de

la teoría de Walker, que conduce a la Ecuación 17, se puede utilizar para mostrar cómo la

concentración decae durante el proceso.

Figura 9.- Modelo de reactor para el electrodo en flujo pistonado, con un volumen de electrolito no

reservatorio de solución perfectamente homogeneizado, recirculando en circuito cerrado (Storck et al. 1982)

La Ecuación 17 representa el comportamiento de un electrodo en flujo pistonado con un depósito

perfectamente agitado en un circuito cerrado. Las variables tienen el mismo significado que antes,

excepto que Ct es la concentración en el tiempo t, y C0 es la concentración en t = 0. El tiempo de

residencia medio en el circuito externo está representado por t = VRQ-1, y t es el tiempo

transcurrido. Esta ecuación se puede usar para calcular los coeficientes de transferencia de masa

a partir de curvas de caída de la concentración, determinadas experimentalmente.

Otros estudios de celdas con recirculación se toman en los tratamientos teóricos, que reportan

cambios en la concentración de los reactivos como: (a) la velocidad de flujo de electrolito, (b) área

del electrodo, y (c) el volumen del electrodo y célula. El reactor tubular con un electrodo poroso

fijo (Figura 10) se ha utilizado frecuentemente. Las características de este tipo de reactor ha sido

descrito, desde el punto de vista de la ingeniería, como un sistema exitoso para la deposición del

metal de interés en una sola pasada a través del electrolito.

Page 18: ELECTROOBTENCION

www.intermetperu.com

Figura 10.- Reactor tubular con un electrodo poroso fijo (Langlois y Coeuret, 1989)

En una de las maneras para describir el comportamiento electroquímico y el rendimiento de un

electrodo poroso tridimensional en una celda electrolítica de lecho fijo, se supone que la

porosidad del electrodo es uniforme, el tiempo de funcionamiento es suficiente para que un

sistema alcance el estado estacionario, y que la velocidad del proceso electroquímico de interés es

controlado por el transporte de las especies electroactivas a la superficie cátodica. La

concentración Cx disminuye con una distancia x dentro del cátodo, de acuerdo a la relación

siguiente:

Donde Cent es la concentración de estas especies en la celda y λ, una longitud característica, está

dada por:

donde δ es el espesor de la capa límite de difusión (m), u es la velocidad lineal de la solución a

través de la célula (m s-1), D es el coeficiente de difusión de las especies electroactivas (m2 s-1), A es

Page 19: ELECTROOBTENCION

www.intermetperu.com

el área del cátodo (m2) y ν representa los vacíos del cátodo. Para que una celda con un cátodo

constituido por un lecho compromido de longitud L, a través de la cual la solución debe fluir, una

fracción de especies electroactivas que se depositan en cada pasada a través de la celda

(extracción, ε, en una sola pasada) está dada por:

donde Cent y Csai son, respectivamente, las concentraciones de las especies electroactivas entrando

y dejando la célula. Para un valor fijo de la longitud característica, λ, (suponiendo entonces un flujo

constante de solución y un valor constante para el área de superficie y vacíos del cátodo), la

extracción en una sola pasada de la solución es independiente de la concentración de especies que

entran en la celda, dependiendo a penas de la longitud del cátodo.

Aunque una célula de lecho compactado puede operar en la forma de extracción en una sola

pasada, unas cuantas plantas en funcionamiento han elegido este camino. La mayoría prefiere la

forma de extracción con múltiples pasadas (con circulación de la solución a partir de un tanque

pulmón, a través de la célula, y volviendo al mismo tanque). La mayor desventaja del primer modo

de funcionamiento (una sola pasada) es que la concentración de oro que deja célula debe ser

controlada con frecuencia para que pueda garantizarse que la célula está funcionando

correctamente. La concentración de Ct, las especies electroactivas en cualquier tiempo t, después

del inicio de la operación en varias pasadas, sigue la siguiente relación:

donde C0 es la concentración de especies electroactivos en un tanque bien agitado en la puesta en

marcha de la operación de la celda (en t = 0) en mol.m-3, Q es un flujo de la solución (m 3 s-1), ε es

la extracción en una sola pasada de la solución, t es el tiempo transcurrido y Vr es el volumen de

solución contenida en el depósito (m3).

Se puede observar, a partir de las Ecuaciones 20 y 21, que la operación y el rendimiento de una

célula electrolítica que cumple con los requisitos del modelo presentado anteriormente se puede

predecir a partir del conocimiento de la longitud característica λ. Las restricciones más severas en

el modelo son la deposición de las especies reactivas deben ser controladas en todo momento por

el cátodo para el transporte de estas especies a la superficie del electrodo. Aunque las celdas de

lecho fijo, cumpliendo con estos requisitos, se pueden construir a escala de laboratorio, los

problemas asociados a un posible aumento de escala son tales que pocos cumplen los requisitos

para el proyecto a escala industrial.

Page 20: ELECTROOBTENCION

www.intermetperu.com

Otra manera de describir el comportamiento electroquímico de un reactor con recirculación del

electrolito, se supone que tiene las características de flujo pistonado y la agitación ideal en el

depósito de la solución. Ambas concentraciones de entrada y salida de cambian con el tiempo de

electrólisis, de modo que dos ecuaciones son necesarias para describir la variación de la

concentración. Una concentración de entrada es dependiente de la concentración de salida del

reactor y de la eficiencia de agitación en el tanque:

donde Vr es el volumen del tanque (m3), Q es el flujo volumétrico (m3s-1), Cent es una concentración

de entrada (mol.m-3) y Csai es una concentración de salida (mol m-3). La concentración de salida del

reactor depende de su eficacia y la concentración de entrada. Esto puede expresarse como el

balance de masa:

donde Vc es el volumen de la celda electrolítica (m3), km es el coeficiente de transferencia de masa

(m s-1), y A es el área de los electrodos (m2). La solución para estas relaciones tiene una forma que

no se consigue fácilmente. Sin embargo, para las condiciones dadas, es posible proporcionar una

solución en una forma sencilla y práctica:

Bajo las condiciones de que Vc<<Vr el reactor puede ser considerado como una parte del depósito,

esto significa que se puede identificar un depósito como un reactor de alto volumen, pero con un

área electrolítica muy pequeña.

Integrando la Ecuación 24 se llega a:

donde C0 es la concentración (mol m-3) inicial dentro de la solución. Si una dependencia de km en

relación a otros parámetros son conocidos, este puede introducirse en la Ecuación 25 para

producir una relación que puede ser utilizada para describir el funcionamiento del reactor con

recirculación del electrolito a una velocidad constante. A partir de mediciones experimentales de

relaciones I-E en estado estacionario, el rendimiento del reactor se puede definir como una

relación adimensional (Ecuación 26) en el número de Sherwood.

Page 21: ELECTROOBTENCION

www.intermetperu.com

Cuando km, basado en la Ecuación 26, se introduce en la Ecuación 25, se obtiene la Ecuación 27,

donde Ct es la concentración (mol m-3) dentro de la solución después de un tiempo dado de

electrólisis, C0 es la concentración (mol m-3) inicial dentro de la solución, Vt es el volumen total del

electrólito (m3), de = 4∈ As-1(1-∈) es el diámetro equivalente, y ∈ porosidad (volumen libre/volumen

ocupado por el electrodo) y As el área específica del electrodo (m-1). Re= vdev1 1 es el número de

Reynolds, donde v es la velocidad de flujo lineal (m s-1) y v la viscosidad cinemática (m2 s-1).

Sc = ν D-1 es el número de Schmidt, donde D es el coeficiente de difusión (m2 s-1). La ecuación 27 se

puede utilizar para predecir el cambio en la concentración para un modo de operación con

recirculación del electrolito, de forma estable.

15. CAMBIO DE ESCALA EN SISTEMAS ELECTROQUÍMICOS

Un proceso viable a escala de laboratorio, en principio, puede ser comercializado como una planta

de escala industrial. Sin embargo, en este caso, el proceso puede sufrir modificaciones para

permitir cambios en el tamaño del aparato. El principio que rige estas modificaciones es

denominado ampliación de escala (scale up).

Los criterios para un pasaje perfecto de un sistema operativo en una escala de laboratorio a una

escala industrial deben, en la mayoría de los casos, basarse en dos factores:

i. determinación precisa del régimen que controla los mecanismos de reacción de

interés;

ii. determinación y preservación (o alteración si es necesario) de la geometría y los

parámetros de transferencia de masa;

Cuando la escala de un sistema electroquímico deben ser considerada en caída de tensión debido

a la resistividad a través de las resistencias de la celda y una densidad de corriente. La caída de

voltaje a través de una celda electrolítica se compone, principalmente, de tres componentes que

surgen de vienen tres tipos de resistencia: la resistencia del electrolito (RE), las resistencia debido a

la polarización procedente del intervalo de concentración (RC) y la resistencia debido a la

polarización de activación (RA).

Page 22: ELECTROOBTENCION

www.intermetperu.com

Cuando se trabaja en torno a la corriente límite, una condición comúnmente utilizada en las

industrias, la resistencia debido a la polarización de activación (RA) puede pasarse por alto.

Asumiendo tal condición, el problema de scale up puede ser considerado bajo dos formas

distintas: régimen controlado por la resistencia óhmica y régimen controlado por transferencia de

masa o convección natural.

En el régimen controlado por la resistencia óhmica una caída de tensión depende a penas de RE.

Por lo tanto, de la ley de Ohm tenemos:

donde

i = densidad de corriente, A cm-2

K = conductividad específica del electrolito, ohm-1 cm-1

d = distancia entre los electrodos, (cm)

V = caída de voltaje a través de la celda (V)

Para un scale up del modelo y el prototipo deben obedecer a la Ecuación 13 y deben tener una

misma relación Kd-1 mientras que se opera con I y V constantes.

En el sistema controlado por la transferencia de masa o convección natural, es decir, si para el

impuesto que no hay convección forzada (movimiento del electrolito por agitación artificial),

entonces una caída de tensión en este sistema depende de RE y RC. Sin embargo, las

contribuciones exactas de RE y RC no se pueden predecir teóricamente. Sin embargo, las variables

involucradas en tal situación son conocidas. Al menos ocho de estas variables parecen influir

directamente en los fenómenos de transferencia de masa en el sistema de tales condiciones, lo

que hace los cálculos necesarios sean más complejo. En este caso, un enfoque empírico debe ser

adoptado. Un ejemplo es la aplicación del teorema Buckingham, donde son consideradas las

variables densidad de corriente (i), tensión celular (V), resistividad específica (q), distancia entre

los electrodos (d), altura del electrodo (h) difusividad del electrolito (D), viscosidad cinemática (n) y

fuerza de fluctuación(g.Δρ.ρ -1). Para la viabilidad de scale up, estas variables deben expresarse en

términos de cuatro dimensiones fundamentales: M, unidad de masa, L, unidad de longitud, T,

unidad de tiempo, Q, unidad de carga y, por consiguiente, formando grupos adimensionales

obtenidos por simplificación matemática, que deben mantenerse durante la ampliación de escala.

Page 23: ELECTROOBTENCION

www.intermetperu.com

16. CONSIDERACIONES FINALES

Una electrorecuperación de oro de soluciones cianídricas diluidas, utilizando cátodos

tridimensionales (estructuras metálicas reticuladas, lana de acero, etc.) aparece como un proceso

muy prometedor, teniendo la capacidad de acceder cuando la electrorrecuperación oro de

soluciones cianídricas diluidas. Tales estructuras soportan una pasada de elevados flujos de

electrolito, asegurando así un aumento en el transporte de especies electroactivas de interés y,

por lo tanto, una alta eficiencia de extracción.

La electrodeposición de oro de tales licores diluidos representa un ahorro sustancial, considerando

que una serie de operaciones y procesos unitarios son eliminados, tal como se muestra en la

Figura 1.

En la operación continua del proceso de electrorecuperación de oro, el cambio del proceso de

deposición para la eliminación del oro depositado puede representar la obtención de soluciones

concentradas en el oro, que puede ser tratadas posteriormente por agentes reductores

tradicionales (bisulfito sódico -. NaHSO3, SO2, etc), y la liberación del área catódica para el proceso

continuo de electrorecuperación a partir de lejía diluida.

Page 24: ELECTROOBTENCION

www.intermetperu.com

17. REFERENCIA BIBLIOGRÁFICA

ADAMS, R. N., Electrochemistry at Solid Electrodes, Malcel Dekker Inc., New York, 1969.

BARD, J., Parsons, R. e Jordan, J., Standard potentials in aqueous solution, International Union of

Pure and Applied Chemistry, New York, 1985.

BOCKRIS, J. O’M. e Reddy, A. K. N., Modern Electrochemistry, p. 1103, Plenum, N.Y. (1970).

BOSLEY, D., “Recovery of gold from solution by cementation”, The Extractive Metallurgy of Gold

in South African, Edited by G. G. Stanley, vol. 1, 331(1987).

BRANDON, N. P., Mahmood, M. N., Page, P. W. e Roberts, C. A., “The direct electrowinning of gold

from dilute cyanide leach liquors”, Hydrometallurgy, 18, 305(1987).

CHU, K. P., Fleichman, F. e Hills, G. J., “Packed bed electrodes, I-The electrochemical extraction of

copper ions from dilute aqueous solutions”, J. Appl. Electrochem., 4, 323(1974).

DAVIDSON, R. J., Brown, G. A. e Hanf, N. W.., “The intensive cyanidation of gold-plant gravity

concentrates”, J. S. Afr.Inst. Min. Metall., 78, 146(1978).

ELGES III, C. H. e Eisele, J. A., “Direct electrowinning of gold”, Proc. Electrochem. Min. Met. Proc., P.

E.

Richardson, S. Srinivason and R. Woods (Eds.), The Electrochemical Society, 1984, pp.501-512.

ENRIQUEZ-Granados, M. A., Hutin, D. e Storck, A., “The bechaviour of porous electrodes in a

flow-by regime. Part II: experimental study”, Electrochimica Acta, 27, 2, 303(1982).

ENRIQUEZ-Granados, M. A., Valentin, G. e Storck, A., “Electrochemical removal of silver using a

three-dimensional electrode”, Electrochimica Acta, 28, 10, 1407(1983).

FILMER, O., “The electrowinning of gold from carbon-in-pulp eluates”, Carbon-in-Pulp Seminar,

July, 49(1982), The Aus. I.M.M., Perth and Kalgoorlie Branches and Murdoch University.

FLEMING, C. A. e Cromberge, G., “Small-scale pilot-plant tests on the resin-in-pulp extraction of

gold from cyanide media”, J. S. Afr. Inst. Min. Metall., 84(11), 369(1984).

Page 25: ELECTROOBTENCION

www.intermetperu.com

HARRINSON, J. A. e Thompson, J., “The Reduction of Gold Cyanide Complexes”, J. Electroan.

Chem., 40, 113 (1972).

HEINEN, H. J., Peterson, D. G. e Lindstrom, R. E., “Processing ores using heap leach-carbon

adsorption

methods”, RI.8388, Bureau of Mines (1979).

HEINEN, H. J. e Porter, B., “Experimental leaching of gold from mines waste”, RI.7250, Bureau of

Mines (1969).

KAMMEL R., e Lieber, H-W., “Direct electrowinning of gold” Z. Galvanotechnik, 68, 241(1977).

KIRK, D. W. e Folkes, F. R., “A potentiodynamic study of metals affecting precious metals recovery

from alkaline cyanide solutions”, J. Electrochem. Soc., April, 760(1984).

LANGLOIS, S. e Coeuret, F., “Flow-through and flow-by porous electrodes of nickel foam. Part I:

material characterization”, J. Appl. Electrochem., 19, 43(1989).

LANGLOIS, S. e Coeuret, F., “Flow-through and flow-by porous electrodes of nickel foam. Part II:

diffusion-convective mass transfer between the electrolyte and the foam”, J. Appl.

Electrochem., 19, 51(1989).

LATIMER, W. M., The Oxidation States of the Elements and their Potentials in Aqueous Solutions,

2nd ed., p. 201, Prentice-Hall, N.Y. (1959).