El cemento

19
Tema IX. Cemento, Bosquejo Histórico Introducción De todos los conglomerantes hidráulicos el cemento portland y sus derivados son los más empleados en la construcción debido a estar formados, básicamente, por mezclas de caliza, arcilla y yeso que son minerales muy abundantes en la naturaleza, ser su precio relativamente bajo en comparación con otros materiales y tener unas propiedades muy adecuadas para las metas que deben alcanzar. Dentro de los conglomerantes hidráulicos entran también los cementos de horno alto, los puzolánicos y los mixtos, teniendo todos éstos un campo muy grande de empleo en hormigones para determinados medios, así como los cementos aluminosos "cementos de aluminato de calcio", que se aplican en casos especiales. Los cementos se emplean para producir morteros y hormigones cuando se mezclan con agua y áridos, naturales o artificiales, obteniéndose con ellos elementos constructivos prefabricados o construidos "in situ". Antecedentes Hace 5.000 años aparecen al norte de Chile las primeras obras de piedra unidas por un conglomerante hidráulico procedente de la calcinación de algas, estas obras formaban las paredes de las chozas utilizadas por los indios. Los egipcios emplearon morteros de yeso y de cal en sus construcciones monumentales. En Troya y Micenas, dice la historia que, se emplearon piedras unidas por arcilla para construir muros, pero,

description

Todo sobre el cemento

Transcript of El cemento

Page 1: El cemento

Tema IX. Cemento, Bosquejo Histórico

Introducción

De todos los conglomerantes hidráulicos el cemento portland y sus derivados son los más empleados en la construcción debido a estar formados, básicamente, por mezclas de caliza, arcilla y yeso que son minerales muy abundantes en la naturaleza, ser su precio relativamente bajo en comparación con otros materiales y tener unas propiedades muy adecuadas para las metas que deben alcanzar.

Dentro de los conglomerantes hidráulicos entran también los cementos de horno alto, los puzolánicos y los mixtos, teniendo todos éstos un campo muy grande de empleo en hormigones para determinados medios, así como los cementos aluminosos "cementos de aluminato de calcio", que se aplican en casos especiales.

Los cementos se emplean para producir morteros y hormigones cuando se mezclan con agua y áridos, naturales o artificiales, obteniéndose con ellos elementos constructivos prefabricados o construidos "in situ".

Antecedentes

Hace 5.000 años aparecen al norte de Chile las primeras obras de piedra unidas por un conglomerante hidráulico procedente de la calcinación de algas, estas obras formaban las paredes de las chozas utilizadas por los indios.

Los egipcios emplearon morteros de yeso y de cal en sus construcciones monumentales.

En Troya y Micenas, dice la historia que, se emplearon piedras unidas por arcilla para construir muros, pero, realmente el hormigón confeccionado con un mínimo de técnica aparece en unas bóvedas construidas cien años antes de J.C.

Los romanos dieron un paso importante al descubrir un cemento que fabricaban mezclando cenizas volcánicas con cal viva. En Puteoli conocido hoy como Puzzuoli se encontraba un depósito de estas cenizas, de aquí que a este cemento se le llamase "cemento de puzolana".

Con hormigón construye Agripa en el año 27 antes de J.C. el Panteón en Roma, que sería destruido por un incendio y reconstruido posteriormente por Adriano en el año 120 de nuestra era y que, desde entonces, desafió el paso de tiempo sin sufrir daños hasta el año 609 se transformó en la iglesia de Santa María de los Mártires. Su cúpula de 44 metros de

Page 2: El cemento

luz está construida en hormigón y no tiene mas huecos que un lucernario situado en la parte superior.

Historia del cemento portland

Hasta el siglo XVIII puede decirse que los únicos conglomerantes empleados en la construcción fueron los yesos y las cales hidráulicas, sin embargo, es durante este siglo cuando se despierta un interés notable por el conocimiento de los cementos.

John Smeaton, ingeniero de Yorkshire (Inglaterra), al reconstruir en 1758 el faro de Eddystone en la costa de Cornish, se encuentra con que los morteros formados por la adición de una puzolana a una caliza con alta proporción de arcilla eran los que mejores resultados daban frente a la acción de las aguas marinas y que la presencia de arcilla en las cales, no sólo las perjudicaba sino que por el contrario, las mejoraba, haciendo que estas cales

fraguasen bajo el agua y que una vez endurecidas fuesen insolubles en ella.

Puede decirse con acierto que el primer padre del cemento fue Vicat a él se debe el sistema de fabricación que se sigue empleando en la actualiad y que propuso en 1817. Vicat fue un gran investigador y divulgador de sus trabajos; en 1818 publicó su "Recherches experimentales" y en 1928 "Mortiers et ciments calcaires". En estos trabajos marca la pauta a seguir en la fabricación del cemento por medio de mezclas calizas y arcillas dosificadas en las proporciones convenientes y molidas conjuntamente. El sistema de fabricación que empleó Vicat fue el de vía húmeda y con él marcó el inicio del actual proceso de fabricación. Este gran científico en 1853 empieza a estudiar la acción destructiva del agua de mar sobre el mortero y hormigón.

En 1824, Joseph Aspdin, un constructor de Leeds en Inglaterra, daba el nombre de cemento portland y patentaba un material pulverulento que amasado con agua y con arena se endurecía formando un conglomerado de aspecto parecido a las calizas de la isla de Portland. Probablemente, el material patentado por Aspdin era una caliza hidráulica debido, entre otras cosas, a las bajas temperaturas empleadas en la cocción.

En 1838 Brunel emplea por primera vez un cemento procedente de la fábrica de Aspdin en el que se había logrado una parcial sinterización por elección de una temperatura adecuada de cocción. Este cemento se aplicó en la construcción de un túnel bajo el río Támesis en Londres.

Page 3: El cemento

Puede decirse que el prototipo del cemento moderno fue producido a escala industrial por Isaac Johnson quien en 1845 logra conseguir temperaturas suficientemente altas para clinkerizar a la mezcla de arcilla y caliza empleada como materia prima.

El intenso desarrollo de la construcción de ferrocarriles, puentes, puertos, diques, etc., en la segunda mitad del siglo XIX, da una importancia enorme al cemento y las fábricas de éste, especialmente las de cemento natural, empiezan a extenderse por doquier.

Es a partir de 1900 cuando los cementos portland se imponen en las obras de ingeniería y cuando empieza un descenso veloz del consumo de cementos naturales.

Actualmente, el cemento portland ha llegado a una gran perfección y es el material industrializado de construcción de mayor consumo Se puede decir que el cemento es el alma del hormigón, yendo destinada, prácticamente, toda su producción a en lazar piedras sueltas para crear el material pétreo que conocemos como hormigón.

Las investigaciones llevadas a cabo por los padres del cemento Michaelis y Le Chatelier, en 1870 y 1880, fueron fundamentales y muy meritorias para el desarrollo de este material. En ellas se apoya toda la investigación actual que emplea técnicas de análisis muy sofisticadas y rápidas.

Clasificación del cemento

Tipo, nombre y aplicación

I : Normal. Para uso general, donde no son requeridos otros tipos de cemento.IA : Normal. Uso general, con inclusor de aire.II : Moderado. Para uso general y además en construcciones donde existe un moderado ataque de sulfatos o se requiera un moderado calor de hidratación.IIA : Moderado. Igual que el tipo II, pero con inclusor de aire.III : Altas resistencias. Para uso donde se requieren altas resistencias a edades tempranas.IIIA : Altas resistencias. Mismo uso que el tipo III, con aire incluido.IV : Bajo calor de hidratación. Para uso donde se requiere un bajo calor de hidratación.V : Resistente a la acción de los sulfatos. Para uso general y además en construcciones donde existe un alto ataque de sulfatos.

Tipo I

Este tipo de cemento es de uso general, y se emplea cuando no se requiere de propiedades y características especiales que lo protejan del ataque de factores agresivos como sulfatos, cloruros y temperaturas originadas por calor de hidratación.Entre los usos donde se emplea este tipo de cemento están: pisos, pavimentos, edificios, estructuras, elementos prefabricados.

Page 4: El cemento

Tipo II

El cemento Pórtland tipo II se utiliza cuando es necesario la protección contra el ataque moderado de sulfatos, como por ejemplo en las tuberías de drenaje, siempre y cuando las concentraciones de sulfatos sean ligeramente superiores a lo normal, pero sin llegar a ser severas (En caso de presentarse concentraciones mayores se recomienda el uso de cemento Tipo V, el cual es altamente resistente al ataque de los sulfatos).Genera normalmente menos calor que el cemento tipo I, y este requisito de moderado calor de hidratación puede especificarse a opción del comprador. En casos donde se especifican límites máximos para el calor de hidratación, puede emplearse en obras de gran volumen y particularmente en climas cálidos, en aplicaciones como muros de contención, pilas, presas, etc.La Norma ASTM C 150 establece como requisito opcional un máximo de 70 cal/g a siete días para este tipo de cemento.

Tipo III

Este tipo de cemento desarrolla altas resistencias a edades tempranas, a 3 y 7 días. Esta propiedad se obtiene al molerse el cemento más finamente durante el proceso de molienda. Su utilización se debe a necesidades específicas de la construcción, cuando es necesario retirar cimbras lo más pronto posible o cuando por requerimientos particulares, una obra tiene que ponerse en servicio muy rápidamente, como en el caso de carreteras y autopistas.

Tipo IV

El cemento Pórtland tipo IV se utiliza cuando por necesidades de la obra, se requiere que el calor generado por la hidratación sea mantenido a un mínimo. El desarrollo de resistencias de este tipo de cemento es muy lento en comparación con los otros tipos de cemento. Los usos y aplicaciones del cemento tipo IV están dirigidos a obras con estructuras de tipo masivo, como por ejemplo grandes presas.La hidratación inicia en el momento en que el cemento entra en contacto con el agua; el endurecimiento de la mezcla da principio generalmente a las tres horas, y el desarrollo de la resistencia se logra a lo largo de los primeros 30 días, aunque éste continúa aumentando muy lentamente por un período mayor de tiempoEn la fabricación del cemento se utilizan normalmente calizas de diferentes tipos, arcillas, aditivos -como el mineral de fierro cuando es necesario- y en ocasiones materiales silicosos y aluminosos. Estos materiales son triturados y molidos finamente, para luego ser alimentados a un horno rotatorio a una temperatura de 1,400 grados centígrados y producir un material nodular de color verde oscuro denominado CLINKER.

Cementos Hidráulicos Mezclados

Estos cementos han sido desarrollados debido al interés de la industria por la

Page 5: El cemento

conservación de la energía y la economía en su producción.La norma ASTM C 595 reconoce la existencia de cinco tipos de cementos mezclados:Cemento Pórtland de escoria de alto horno - Tipo IS.Cemento Pórtland puzolana - Tipo IP y Tipo P.Cemento de escoria - Tipo S.Cemento Pórtland modificado con puzolana - Tipo I (PM).Cemento Pórtland modificado con escoria - Tipo I (SM).

Tipo IS

El cemento Pórtland de escoria de alto horno se puede emplear en las construcciones de concreto en general. Para producir este tipo de cemento, la escoria del alto horno se muele junto con el clinker de cemento Pórtland, o puede también molerse en forma separada y luego mezclarse con el cemento. El contenido de escoria varía entre el 25 y el 70% en peso.

Tipo IP y Tipo P

El cemento Pórtland IP puede ser empleado en construcciones en general y el tipo P se utiliza en construcciones donde no sean necesarias resistencias altas a edades tempranas. El tipo P se utiliza normalmente en estructuras masivas, como estribos, presas y pilas de cimentación. El contenido de puzolanade estos cementos se sitúa entre el 15 y el 40 % en peso.

Tipo S

El cemento tipo S, de escoria, se usa comúnmente en donde se requieren resistencias inferiores. Este cemento se fabrica mediante cualquiera de los siguientes métodos:1) Mezclando escoria molida de alto horno y cemento Pórtland.2) Mezclando escoria molida y cal hidratada.3) Mezclando escoria molida, cemento Pórtland y cal hidratada.

El contenido mínimo de escoria es del 70% en peso del cemento de escoria

Tipo I (PM)

El cemento Pórtland tipo I (PM), modificado con puzolana, se emplea en todo tipo de construcciones de concreto. El cemento se fabrica combinando cemento Pórtland o cemento Pórtland de escoria de alto horno con puzolana fina. Esto se puede lograr:1) Mezclando el cemento Pórtland con la puzolana2) Mezclando el cemento Pórtland de escoria de alto horno con puzolana3) Moliendo conjuntamente el clinker de cemento con la puzolana4) Por medio de una combinación de molienda conjunta y de mezclado.

Page 6: El cemento

El contenido de puzolana es menor del 15% en peso del cemento terminado.

Tipo I (SM)

El cemento Pórtland modificado con escoria, TIPO I (SM), se puede emplear en todo tipo de construcciones de concreto. Se fabrica mediante cualquiera de los siguientes procesos:1) Moliendo conjuntamente el clinker con alguna escoria granular de alto horno2) Mezclando escoria molida y cal hidratada3) Mezclando escoria, cemento Pórtland y cal hidratada

El contenido máximo de escoria es del 25% del peso del cemento de escoria.A todos los cementos mezclados arriba mencionados, se les puede designar la inclusión de aire agregando el sufijo A, por ejemplo, cemento TIPO S-A.Además, en este tipo de cementos, la norma establece como requisito opcional para los cementos tipo I (SM), I (PM), IS, IP y los denominados con subfijo MS o MH lo siguiente: moderada resistencia a los sulfatos y/o moderado calor de hidratación y en caso del tipo P y PA, moderada resistencia a los sulfatos y/o bajo calor de hidratación.

La Norma ASTM C 1157 establece los requisitos de durabilidad para los cementos hidráulicos cuando se utilicen en aplicaciones especiales o para uso general. Por ejemplo, donde se requieran altas resistencias tempranas, moderada a alta resistencia a los sulfatos, moderado o bajo calor de hidratación y opcionalmente baja reactividad con los agregados reactivos a los álcalis.

Cementos Especiales

Cementos para Pozos Petroleros

Estos cementos, empleados para sellar pozos petroleros, normalmente están hechos de clinker de cemento Pórtland. Generalmente deben tener un fraguado lento y deben ser resistentes a temperaturas y presiones elevadas. El Instituto Americano del Petróleo (American Petroleum Institute) establece especificaciones (API 10-A) para nueve clases de cemento para pozos (clases A a la H). Cada clase resulta aplicable para su uso en un cierto rango de profundidades de pozo, temperaturas, presiones y ambientes sulfatados. También se emplean tipos convencionales de cemento Pórtland con los aditivos adecuados para modificar el cemento.

Cementos Plásticos

Los cementos plásticos se fabrican añadiendo agentes plastificantes, en una cantidad no mayor del 12% del volumen total, al cemento Pórtland de TIPO I ó II durante la operación de molienda. Estos cementos comúnmente son empleados para hacer morteros y aplanados.

Page 7: El cemento

Cementos Pórtland Impermeabilizados

El cemento Pórtland impermeabilizado usualmente se fabrica añadiendo una pequeña cantidad de aditivo repelente al agua como el estearato de sodio, de aluminio, u otros, al clinker de cemento durante la molienda final.

Otros Tipos de Cementos

Cementos de Albañilería

Estos son cementos hidráulicos diseñados para emplearse en morteros, para construcciones de mampostería.Están compuestos por alguno de los siguientes: cemento Pórtland, cemento Pórtland puzolana, cemento Pórtland de escoria de alto horno, cemento de escoria, cal hidráulica y cemento natural. Además, normalmente contienen materiales como cal hidratada, caliza, creta, talco o arcilla.La trabajabilidad, resistencia y color de los cementos de albañilería se mantienen a niveles uniformes gracias a los controles durante su manufactura. Aparte de ser empleados en morteros para trabajos de mampostería, pueden utilizarse para argamasas y aplanados, mas nunca se deben emplear para elaborar concreto.

Cementos Expansivos

El cemento expansivo es un cemento hidráulico que se expande ligeramente durante el período de endurecimiento a edad temprana después del fraguado. Debe satisfacer los requisitos de la especificación ASTM C 845, en la cual se le designa como cemento tipo E-1. Comúnmente se reconocen tres variedades de cemento expansivo:E-1(K) contiene cemento Pórtland, trialuminosulfato tetracálcico anhídro, sulfato de calcio y óxido de calcio sin combinar.E-1(M) contiene cemento Pórtland, cemento de aluminato de calcio y sulfato de calcio.E-1(S) contiene cemento Pórtland con un contenido elevado de aluminato tricálcico y sulfato de calcio.

Cemento Portland Blanco

El cemento Pórtland blanco difiere del cemento Pórtland gris únicamente en el color. Se fabrica conforme a las especificaciones de la norma ASTM C 150, normalmente con respecto al tipo I ó tipo III; el proceso de manufactura, sin embargo, es controlado de tal manera que el producto terminado sea blanco. El cemento Pórtland blanco es fabricado con materias primas que contienen cantidades insignificantes de óxido de hierro y de manganeso, que son las sustancias que dan el color al cemento gris.El cemento blanco se utiliza para fines estructurales y para fines arquitectónicos, como muros precolados, aplanados, pintura de cemento, páneles para fachadas, pegamento para azulejos y como concreto decorativo.

Page 8: El cemento

Cemento Portland

El Cemento Pórtland, uno de los componentes básicos para la elaboración del concreto, debe su nombre a Joseph Aspdin, un albañil inglés quién en 1824 obtuvo la patente para este producto.Debido a su semejanza con una caliza natural que se explotaba en la Isla de Pórtland, Inglaterra, lo denominó Cemento Pórtland.Los cementos Pórtland son cementos hidráulicos compuestos principalmente de silicatos de calcio hidráulicos, esto es, fraguan y endurecen al reaccionar químicamente con el agua. En el curso de esta reacción, denominada hidratación, el cemento se combina con el agua para formar una pasta, y cuando le son agregados arena y grava triturada, se forma lo que se conoce como el material más versátil utilizado para la construcción: el CONCRETO.El clinker, la materia prima para producir el cemento, se alimenta a los molinos de cemento junto con mineral de yeso, el cual actúa como regulador del fraguado. La molienda conjunta de éstos materiales produce el cemento. Las variables a controlar y los porcentajes y tipos de materiales añadidos, dependerán del tipo de cemento que se requiera producir.El tipo de materias primas y sus proporciones se diseñan en base al tipo de cemento deseado.

Materias primas

Para fabricar cemento existen recursos minerales de origen natural (rocas y arcillas) y productos secundarios de la industria (cenizas, lodos), los componentes pueden ser

a) CALIZA.- que viene a ser el carbonato de calcio CaCO3 que abunda en la naturaleza en forma natural

b) LA CRETA.-Es una roca sedimentaria en comparación a ala caliza la Creta pose estructura suelta, esta propiedad califica a al Creta de modo especial para la fabricación del cemento por la vía húmeda

c) LA MARGA.-son calizas que van acompañadas de sílice y productos arcillosos así como el oxido de hierro las margas forman el paso de transición de las arcillas, debido a su abundancia las margas se utilizan con mucha frecuencia para la fabricación de este material.

d) COMPONENTES ARCILLOSOS.-El Al2O3 conocido como alúmina se encuentra en la naturaleza como componente de las arcillas en su forma más pura la arcilla se encuentra como caolinita Al2O3SiO2.2H2O la caolinita es el constituyente principal del caolinita producto de la disgregacion de las rocas (feldespatos principalmente).

Page 9: El cemento

e) COMPONENTES CORRECTORES.- se añaden en los caso en que las materias primas disponibles no contienen la cantidad suficiente de uno de los químicos necesarios en el crudo , los principales materiales correctores son : Diatomeas , Bauxita , Cenizas de pirita , mineral de hierro , etc

Preparación de la mezcla del cemento

El proceso de fabricación de cemento se inicia con la extracción de calizas y arcillas en las canteras y su trituración para reducir el tamaño de las rocas hasta partículas de aproximadamente una pulgada. El material triturado arcilla y caliza, junto con el hierro, se almacena en patios desde donde se transporta en camiones o bandas hacia los molinos de crudo. De los molinos se obtiene un material muy fino, conocido como harina cruda, el proceso vía seca y pasta cruda en procesos vía húmeda. Una vez obtenida la harina o pasta cruda se deposita en los silos de almacenamiento. La siguiente etapa consiste en la calcinación del material, la cual se realiza en hornos que alcanzan temperaturas de aproximadamente 1450 ° C, favoreciendo la ocurrencia de reacciones químicas que dan lugar al Clinker.El Clinker, junto con pequeñas porciones de material de yeso se transporta a los molinos de cemento dando lugar al producto terminado. El cemento se almacena en silos y se distribuye a los clientes en sacos de 21.25 Kg., 42.5 Kg. dependiendo del caso.

Vía húmeda y vía seca

Vía seca

En el método por vía seca la mezcla intima de los materiales calcáreo-arcillosos se transporta por corrientes de aire, para algunos productores de cemento la diferencia más notable entre los dos métodos se encuentra en que en el método vía húmeda se consume más energía en el proceso de cocción debido a que primero se debe evaporar el exceso de agua antes de iniciar la fusión de los materiales con las altas temperaturas. La Figura 6.1 ilustra el método vía seca para el caso en que la arcilla proviene de una roca, de acuerdo con esta figura las etapas más importantes en la producción del cemento Portland son las siguientes: explotación de las canteras de arcilla y caliza, triturado, molienda y obtención de la harina cruda, calcinación, adición del yeso y molienda del clinker, finalmente almacenamiento y envasado.

Page 10: El cemento

Vía Húmeda

En el método vía húmeda se forma una suspensión con los materiales calcáreo-arcillosos previamente molidos, la suspensión es transportada por todo el sistema como un fluido por medio de tuberías. En el método por vía seca la mezcla intima de los materiales calcáreo-arcillosos se transporta por corrientes de aire, para algunos productores de cemento la diferencia más notable entre los dos métodos se encuentra en que en el método vía húmeda se consume más energía en el proceso de cocción debido a que primero se debe evaporar el exceso de agua antes de iniciar la fusión de los materiales con las altas temperaturas.

Molienda

En esta etapa el clinker se mezcla con el regulador de fraguado (yeso) y con las posibles adiciones y se introduce en los molinos de bolas para su molienda. Una vez alcanzada la finura deseada, el producto que obtenemos finalmente es el cemento.

Hornos verticales y giratorios

Page 11: El cemento

Composición de los cementos portland americanos y españoles

Los compuestos principales del cemento portland son:

Cal ( CA O )

Sílice ( Si O2 )

Alúmina ( Al2 O3 )

Oxido de hierro ( Fe2 O3 )

Como pocas veces se encuentran en la naturaleza juntos y en las proporciones requeridas, para la fabricación del cemento, generalmente se hace necesario mezclar sustancias minerales que los contienen, como calizas por el aporte de cal y las arcillas por el aporte de alúmina y oxido de hierro; en algunas ocasiones es necesario agregar directamente oxido de hierro o arenas silíceas, para ajustar las proporciones de cada compuesto con el fin de obtener reacciones químicas equilibradas.

Una tercera sustancia necesaria en la fabricación del cemento, es el yeso hidratado que se adiciona al clinker durante la molienda con el fin de retardar el tiempo de fraguado de la pasta de cemento.

Fraguado y endurecimiento del cemento

El proceso de fraguado y endurecimiento es el resultado de reacciones químicas de hidratación entre los componentes del cemento. La fase inicial de hidratación se llama fraguado y se caracteriza por el paso de la pasta del estado fluido al estado sólido. Esto se observa de forma sencilla por simple presión con un dedo sobre la superficie del hormigón. Posteriormente continúan las reacciones de hidratación alcanzando a todos los constituyentes del cemento que provocan el endurecimiento de la masa y que se caracteriza por un progresivo desarrollo de resistencias mecánicas.

El fraguado y endurecimiento no son más que dos estados separados convencionalmente; en realidad solo hay un único proceso de hidratación continuo.

Page 12: El cemento

Desprendimiento de calor cemento

En el curso de la reacción del cemento con el agua, o hidratación del cemento, se produce desprendimiento de calor porque se trata de una reacción de carácter exotérmico. Si el calor que se genera en el seno de la masa de concreto no se disipa con la misma rapidez con que se produce, queda un remanente que al acumularse incrementa la temperatura de la masa.

El calentamiento del concreto lo expande, de manera que posteriormente al enfriarse sufre una contracción, normalmente restringida, que genera esfuerzos de tensión capaces de agrietarlo.

Variaciones de volumen del cemento

Tanto durante el proceso de hidratación del cemento como una vez finalizado el fraguado y primer endurecimiento, el hormigón experimenta una disminución de volumen, lo que se conoce como retracción.

La contracción total experimentada por el hormigón es la suma de varios procesos sucesivos:

– La retracción plástica. Tiene lugar mientras el hormigón se encuentra en estado plástico, es decir, antes de que haya finalizado el proceso de fraguado, experimentando el volumen de la pasta una contracción del orden del 1% con respecto al volumen absoluto de cemento seco más agua

– La retracción hidráulica o de secado. Cuando el hormigón ha fraguado y se encuentra en un ambiente no saturado pierde agua, apareciendo una contracción que se denomina retracción de secado

Page 13: El cemento

Retardadores del fraguado

Los aditivos retardadores de fraguado se emplean para retrasar el tiempo de fraguado del concreto, dando con esto más tiempo para el manejo del concreto en la obra, especialmente cuando se trata de colados grandes y cuando no se cuenta con suficiente personal. Este tipo de aditivos son de mucha utilidad cuando los trabajos se tienen que realizar en climas calientes y/o cuando se espera que el transporte del concreto tome mucho tiempo.

El retraso en la hidratación se atribuye a que el aditivo es absorbido por las partículas de cemento dilatando el contacto del agua con el cemento, el fenómeno a nivel de superficie evita por lo tanto que la mezcla se haga rígida en el tiempo de acción del aditivo. Posteriormente, al disminuir el efecto del aditivo, el agua alcanza las partículas de cemento y la hidratación prosigue en forma normal. Los compuestos químicos más conocidos como retardantes son: los sulfatos de calcio, los azúcares, los ácidos hidroxicarboxílicos, y los compuestos orgánicos basados en fosfatos, boro y sales de magnesio.

Sustancias perjudiciales al cemento portland

Los ácidos en general, aguas jabonosas, cloruros, nitratos, algunos abonos, el agua de mar y las sustancias grasas.

Acción del hielo y el calor

El frío retarda el fraguado y lo detiene cuando la temperatura es bajo cero; el calor, por el contrario, lo acelera, pero una vez fraguado y endurecido, puede aguantar temperaturas de hasta 100ºC.