El acero

40
1 Alma Máter del Magisterio Nacional Tema El Acero propiedades fisicoquímicas y aplicaciones Alumno Campos Curi Toño Tony - López Calderón Luis Fernando - 20141458 Vargas Pariona Everson - Docente Cisneros Percy Asignatura Química Aplicada Trabajo Monografía Ciclo IV Sección UNIVERSIDAD NACIONAL DE EDUCACIÓN

description

El acero es una aleación de hierro con una cantidad de carbono que puede variar entre 0,03% y 1,075% en peso de su composición, dependiendo del grado.Acero no es lo mismo que hierro. Y ambos materiales no deben confundirse. El hierro es un metal relativamente duro y tenaz, con diámetro atómico (dA) de 2,48 Å, con temperatura de fusión de 1535 °C y punto de ebullición 2740 °C.La diferencia principal entre el hierro y el acero se halla en el porcentaje de carbono: el acero es hierro con un porcentaje de carbono de entre el 0,03% y el 1,075%.El acero conserva las características metálicas del hierro en estado puro, pero la adición de carbono y de otros elementos tanto metálicos como no metálicos mejora sus propiedades físico-químicas, sobre todo su resistencia.Existen muchos tipos de acero según el/los elemento/s aleante/s que estén presentes. Cada tipo de acero permitirá diferentes aplicaciones y usos, lo que lo hace un material versátil y muy difundido en la vida moderna, donde podemos encontrarlo ampliamente.

Transcript of El acero

Page 1: El acero

1

Alma Máter del Magisterio Nacional

Tema El Acero propiedades fisicoquímicas y aplicaciones Alumno

Campos Curi Toño Tony - López Calderón Luis Fernando - 20141458 Vargas Pariona Everson -

DocenteCisneros Percy

Asignatura

Química Aplicada

TrabajoMonografía

Ciclo IV Sección K-7

2015

UNIVERSIDAD NACIONAL DE EDUCACIÓN

Page 2: El acero

2

Page 3: El acero

3

El presente trabajo de El Acero dedico a mis progenitores por innumerables motivos hayan logrado encaminarme por el buen camino y así lograr el objetivo deseado.

Dedico también a mi profesor de topografía básica I por la guía y la orientación prestada a si lograr el presente proyecto.

ÍNDICEINTRODUCCIÓN.....................................................................................................................- 6 -

Page 4: El acero

4

I.- GENERALIDADES DEL ACERO......................................................................................- 7 -

1.1. DEFINICIÓN DEL ACERO:............................................................................................- 7 -

1.2. RESEÑA HISTÓRICA:....................................................................................................- 8 -

1.3. TIPOS:.............................................................................................................................- 10 -

1.3.1. ACEROS AL CARBONO:...........................................................................................- 10 -

1.3.2. ACEROS ALEADOS:..................................................................................................- 11 -

1.3.3. ACEROS DE BAJA ALEACIÓN ULTRA RESISTENTES:......................................- 11 -

1.3.4. ACEROS INOXIDABLES:..........................................................................................- 11 -

1.3.5. ACEROS DE HERRAMIENTAS:..............................................................................- 12 -

1.4. CLASES:.........................................................................................................................- 12 -

1.4.1. EN BARRAS LISAS Y PERFILES: - 12 -

1.4.2. BARRAS DE CONSTRUCCIÓN:...............................................................................- 13 -

1.4.3. ALAMBRONES Y DERIVADOS:..............................................................................- 14 -

1.5. ESTRUCTURA DEL ACERO:.......................................................................................- 15 -

1.6. COMPOSICIÓN QUÍMICA DEL ACERO:...................................................................- 16 -

1.7. TRATAMIENTO TÉRMICO DEL ACERO:.................................................................- 17 -

1.8. PROPIEDADES DEL ACERO:......................................................................................- 18 -

1.8.1. PROPIEDADES FÍSICAS DEL ACERO:..................................................................- 18 -

1.8.2. PROPIEDADES MECÁNICAS DEL ACERO...........................................................- 18 -

1.8.3. PROPIEDADES TÉRMICAS:.....................................................................................- 19 -

1.8.4. PROPIEDADES QUÍMICAS......................................................................................- 20 -

1.9. CARACTERÍSTICAS DEL ACERO:............................................................................- 21 -

1.9.1. CARACTERÍSTICAS POSITIVAS DEL ACERO:....................................................- 21 -

1.9.2. CARACTERÍSTICAS NEGATIVAS DEL ACERO:..................................................- 21 -

II.- UTILIZACIÓN DEL ACERO..........................................................................................- 22 -

2.1.- VENTAJAS Y DESVENTAJAS:...................................................................................- 22 -

2.1.1.- VENTAJAS DEL ACERO COMO MATERIAL ESTRUCTURAL:.........................- 22 -

2.1.2.- DESVENTAJAS DEL ACERO COMO MATERIAL DE CONSTRUCCIÓN:.........- 23 -

2.2.- USOS DE LOS ACEROS ESTRUCTURALES:............................................................- 23 -

2.3.- EMPRESAS QUE FABRICAN ACERO.......................................................................- 24 -

2.3.1.- ACEROS AREQUIPA:................................................................................................- 24 -

2.3.2.- SIDERPERU (EMPRESA SIDERURGICA DEL PERÚ S.A.A):..............................- 25 -

2.4.- NORMA TÉCNICA PERUANA:...................................................................................- 25 -

2.5.- TRATAMIENTOS DEL ACERO:.................................................................................- 26 -

2.5.1.- Tratamiento Superficiales:...........................................................................................- 26 -

Page 5: El acero

5

2.5.2.- Tratamiento Térmico:...................................................................................................- 26 -

2.6.- ENSAYOS MECANICOS DEL ACERO:......................................................................- 27 -

Ensayos no destructivos...................................................................................................- 27 -

Ensayos destructivos........................................................................................................- 27 -

2.6.1.- Ensayo del acero corrugado:........................................................................................- 27 -

CONCLUSIÓN........................................................................................................................- 28 -

BIBLIOGRAFÍA.....................................................................................................................- 29 -

INTRODUCCIÓN

Page 6: El acero

6

A través de la historia el hombre ha tratado de mejorar las materias primas, añadiendo materiales tanto orgánicos como inorgánicos, para obtener los resultados ideales para las diversas construcciones.Dado el caso de los materiales más usados en la construcción no se encuentran en la naturaleza en estado puro, por lo que para su empleo hay que someterlos a una serie de operaciones metalúrgicas cuyo fin es separar el metal de las impurezas u otros minerales que lo acompañen. Pero esto no basta para alcanzar las condiciones óptimas, entonces para que los metales tengan buenos resultados, se someten a ciertos tratamientos con el fin de hacer una aleación que reúna una serie de propiedades que los hagan aptos para adoptar sus formas.

El acero como material indispensable de refuerzo en las construcciones, es una aleación de hierro y carbono, en proporciones variables, y pueden llegar hasta el 2% de carbono, con el fin de mejorar algunas de sus propiedades, puede contener también otros elementos. Una de sus características es admitir el temple, con lo que aumenta su dureza y su flexibilidad.En las décadas recientes, los ingenieros y arquitectos han estado pidiendo continuamente aceros cada vez más resientes, con propiedades de resistencia a la corrección; aceros más soldables y otros requisitos. La investigación llevada a cabo por la industria del acero durante este periodo ha conducido a la obtención de varios grupos de nuevos aceros que satisfacen mucho de los requisitos y existe ahora una amplia variedad cubierta gracias a las normas y especificaciones actuales.El acero es una aleación de hierro con carbono en una proporción que oscila entre 0.03 y 2%. Se suele componer de otros elementos, ya inmersos en el material del que se obtienen. Pero se le pueden añadir otros materiales para mejorar su dureza, su maleabilidad u otras propiedades.

Las propiedades físicas de los aceros y su comportamiento a distintas temperaturas dependen sobretodo de la cantidad de carbono y de su distribución. Antes del tratamiento, la mayoría de los aceros son una mezcla de tres sustancias: ferrita, perlita, cementita. La ferrita, blanda y dúctil, es hierro con pequeñas cantidades de carbono y otros elementos de disolución. La cementita es un compuesto de hierro con el 7% de carbono aproximadamente, es de gran dureza y muy quebradiza. La perlita es una mezcla de ferrita y cementita, con una composición específica y una estructura características, sus propiedades con intermedias entre la de sus componentes. La resistencia y su dureza de un acero que no ha sido tratado térmicamente dependen de las proporciones de estos tres ingredientes. Cuanto mayor es el contenido en carbono de un acero, menor es la cantidad de ferrita y mayor la de perlita: cuanto el acero tiene un 0.8% de carbono, está por compuesto de perlita. El acero con cantidades de carbono aún mayores es una mezcla de perlita y cementita.

I.- GENERALIDADES DEL ACERO

Page 7: El acero

7

1.1. DEFINICIÓN DEL ACERO:

El acero es una aleación de hierro y carbono, donde el carbono no supera el 3.5% que le otorga mayor resistencia y pureza, alcanzando normalmente porcentajes entre el 0.2% y el 0.3% para aceros de bajo carbono, que son los utilizados para las construcciones. Porcentajes mayores al 3.5% de carbono dan lugar a las fundiciones, aleaciones que al ser frágiles y no poderse forjar, se moldean. Algunas veces otros elementos de aleación específicos tales como el Cr (Cromo) o Ni (Níquel) se agregan con propósitos determinados.

No se debe confundir el hierro con el acero, dado que el hierro es un metal en estado puro al que se le mejoran sus propiedades físico-químicas con la adición de carbono y demás elementos.La gran variedad de aceros llevó a Siemens a definirlo como un compuesto de hierro y otra sustancia que incrementa

su resistencia.Por la variedad y disponibilidad de los elementos primordiales que abundan en la naturaleza ayudan facilitando de su producción en cantidades industriales, los aceros son las aleaciones más utilizadas en la construcción de maquinarias, herramientas, edificios y obras públicas, habiendo contribuido al alto nivel de desarrollo tecnológico de las sociedades industriales.

1.2. RESEÑA HISTÓRICA:

Los metales inician su historia cuando el hombre se siente atraído por su brillo y se da cuenta de que golpeándolos puede darles forma y fabricar así utensilios tan necesarios para su supervivencia.

Page 8: El acero

8

En el año 3000 a C., los arqueólogos descubrieron en Egipto los primeros utensilios de este metal También se sabe que antes de esa época se empleaban adornos de hierro. En el año 1500 a. C., fue descubierto en Medzamor el hierro para uso industrial, cerca de Ereván, capital de Armenia y del monte Ararat. La tecnología del hierro se mantuvo mucho tiempo en secreto, difundiéndose extensamente hacia el año 1200 a. C.

Los artesanos del hierro aprendieron a fabricar acero calentando hierro forjado y carbón vegetal en recipientes de arcilla durante varios días, con lo que el hierro absorbía suficiente carbono para convertirse en acero auténtico.Hacia el 1.000 a.C. se fabricaba acero en el Próximo y Medio Oriente y en la India. Después de forjar el hierro con martillos, los artesanos endurecían la superficie de sus herramientas y armas calentándolas en carbón de leña al rojo vivo.En el año 400 a. C. armas como la falcata fueron producidas en la península Ibérica. El acero wootz fue producido en India y en Sri Lanka desde aproximadamente el año 300 a. C. Este temprano método utilizaba un horno de viento, soplado por los monzones (viento que sopla en el sureste de Asia).La China antigua bajo la dinastía Han, entre el 202 y el 220 d. C., creó acero al derretir hierro forjado junto con hierro fundido (El fundido sin refinar), obteniendo así el mejor producto de carbón intermedio, el acero, en torno al siglo I a. C. Junto con sus métodos originales de forjar acero, los chinos también adoptaron los métodos de producción para la creación de acero wootz, una idea traída de India a China hacia el siglo V.El acero crucible basado en distintas técnicas de producir aleaciones de acero empleando calor lento y enfriando hierro puro y carbón, fue producido en Merv entre el siglo IX y el siglo X.En China, bajo la dinastía Song del siglo XI, hay evidencia de la producción de acero empleando dos técnicas: una de un método "berganesco" que producía un acero de calidad inferior por no ser homogéneo, y un precursor del moderno método Bessemer el cual utilizaba una des carbonización a través de repetidos forjados bajo abruptos enfriamientos. En 1740, el inglés Benjamín Huntsman redescubrió el procedimiento indio por casualidad, al calentar una mezcla de hierro y una cantidad cuidadosamente medida de carbón vegetal en un crisol. Pese a la invención de otros procedimientos, siguió prefiriéndose el método del crisol para obtener acero de alta calidad.

Page 9: El acero

9

En 1856, el inventor inglés Henry Bessemer patentó un método más barato para fabricar acero en serie. Bessemer construyó un recipiente cónico de acero forrado de ladrillos refractarios que se llamó convertidor (se retira las impurezas del hierro mediante la oxidación que surge por la elevación de la temperatura de la masa de hierro, producida por aire en el hierro fundido). El hierro fundido se vertía en el convertidor situado en posición vertical, y se hacía pasar aire a través de orificios abiertos en la base. El "soplado", que duraba unos veinte minutos, resultaba espectacular. El primer acero fabricado por este método era quebradizo por culpa del oxígeno absorbido.

En 1858, los hermanos Siemens patentaron un horno de solera para acero que incorporaba sus pre-calentadores o "regeneradores". Pero no tuvo éxito hasta que lo mejoraron dos hermanos franceses, Pierre y Emile Martín, en 1864.En 1948: Proceso del oxígeno básico. Tras la segunda guerra mundial se iniciaron experimentos en varios países con oxígeno puro en lugar de aire para los procesos de refinado del acero. El éxito se logró en Austria, cuando una fábrica de acero situada cerca de la ciudad de Linz y de Donawitz desarrolló el proceso del oxígeno básico o L-D.

En 1950: Fundición continúa: En el método tradicional de moldeo, el acero fundido del horno se vierte en moldes o lingotes y se deja enfriar. Luego se vuelven al calentar los lingotes hasta que se ablandan y pasan a trenes de laminado, donde se reducen a planchas de menor tamaño para tratamientos posteriores.

Page 10: El acero

10

 Hoy en día los arquitectos realizan sus diseños contemplando el uso intensivo del acero, tratando de crear nuevas formas y lograr volúmenes a la vez caprichosos y funcionales. Toman las bondades del metal como un reto para su imaginación. Si algunas veces llegan al límite de la creatividad al proyectar y construir enormes rascacielos con el acero como material principal, en otras ocasiones debe recurrir al

acero por necesidad, como en la construcción de enormes puentes requeridos para superar obstáculos naturales.

Más allá de la monumentalidad, en sus aplicaciones para la industria de la construcción el acero es un material cotidiano, versátil y amigable, que cada día encuentra nuevos y variados usos a partir del desarrollo de productos con propiedades mejoradas, acabados y formas diferentes, nuevas aleaciones y recubrimientos.

1.3. TIPOS:

Los aceros se clasifican en cinco grupos principales: Aceros al carbono Aceros aleados Aceros de baja aleación ultra resistente Aceros inoxidables Aceros de herramientas.

1.3.1. ACEROS AL CARBONO:

El acero al carbono, constituye el principal producto de los aceros que se producen, estimando que un 90% de la producción total producida mundialmente corresponde a aceros al carbono. Estos aceros son también conocidos como aceros de construcción, La composición química de los aceros al carbono es compleja, además del hierro y el carbono que generalmente no supera el 1%, hay en la aleación otros elementos necesarios para su producción, tales como silicio y manganeso.

El aumento del contenido de carbono en el acero eleva su resistencia a la tracción, incrementa el índice de fragilidad en frío y hace que disminuya la tenacidad y la ductilidad.

1.3.2. ACEROS ALEADOS:

Page 11: El acero

11

Estos aceros están compuestos por una proporción determinada de vanadio, molibdeno y otros elementos; además de cantidades mayores de manganeso, silicio y cobre que los aceros al carbono. Estos aceros se emplean para fabricar engranajes, ejes, cuchillos, etc.

1.3.3. ACEROS DE BAJA ALEACIÓN ULTRA RESISTENTES:

Es la familia de aceros más reciente de las cinco. Estos aceros son más baratos que los aceros convencionales debido a que contienen menor cantidad de materiales costosos de aleación. Sin embargo, se les da un tratamiento especial que hace que su resistencia sea mucho mayor que la del acero al carbono. Este material se emplea para la fabricación de vagones porque al ser más resistente, sus paredes son más

delgadas, con lo que la capacidad de carga es mayor. Además, al pesar menos, también se pueden cargar con un mayor peso. También se emplea para la fabricación de estructuras de edificios.

1.3.4. ACEROS INOXIDABLES:

Estos aceros contienen cromo, níquel, y otros elementos de aleación que los mantiene brillantes y resistentes a la oxidación. Algunos aceros inoxidables son muy duros y otros muy resistentes, manteniendo esa resistencia durante mucho tiempo a temperaturas extremas. Debido a su brillo, los arquitectos lo emplean mucho con fines decorativos. También se emplean mucho para tuberías, depósitos de petróleo y productos químicos

por su resistencia a la oxidación y para la fabricación de instrumentos quirúrgicos o sustitución de huesos porque resiste a la acción de los fluidos corporales. Además se usa para la fabricación de útiles de cocina, como pucheros, gracias a que no oscurece alimentos y es fácil de limpiar.

Page 12: El acero

12

1.3.5. ACEROS DE HERRAMIENTAS:

Estos aceros se emplean para fabricar herramientas y cabezales de corte y modelado de máquinas. Contiene wolframio, molibdeno y otros elementos de aleación que le proporcionan una alta resistencia, dureza y durabilidad.

1.4. CLASES:

1.4.1. EN BARRAS LISAS Y PERFILES:Productos laminados en caliente de diversas secciones transversales que tienen en común las siguientes características: la altura h, es igual o mayor de 80mm; las superficies del alma se empalman con las caras interiores de las alas; las alas son generalmente simétricas y de igual ancho; las caras exteriores de las alas son paralelas; las alas pueden ser de espesor decreciente desde el alma hacia los bordes, en este caso los perfiles se denominan de "alas inclinadas", o de espesor uniforme las que se denominan de alas paralelas.

a) Ángulos de Alta Resistencia Grado 50 : Producto de acero laminado en caliente cuya sección transversal está formada por dos alas de igual longitud, en ángulo recto.

b) Ángulos Estructurales : Producto de acero laminado en caliente cuya sección transversal está formada por dos alas de igual longitud, en ángulo recto.

c) Barras Calibradas : Barra de acero laminado en caliente y calibrado en frío; se caracterizan por su alta exactitud dimensional y buena calidad superficial.

d) Barras Cuadradas : Producto de acero laminado en caliente de sección cuadrada.

e) Barras Cuadradas Ornamentales : Producto de acero laminado en caliente de sección cuadrada de lados cóncavos, que lo convierte en un elemento decorativo de gran belleza.

f) Barras Hexagonales: Producto laminado en caliente de sección hexagonal, de superficie lisa.

Page 13: El acero

13

g) Barras Redondas Lisas : Producto laminado en caliente de sección circular, de superficie lisa.

1.4.2. BARRAS DE CONSTRUCCIÓN:

Barras de acero de sección redonda con la superficie estriada, o con resaltes, para facilitar su adherencia al concreto al utilizarse en la industria de la construcción. Se fabrican cumpliendo estrictamente las especificaciones que señalan el límite de fluencia, resistencia a la tracción y su alargamiento. Las especificaciones señalan también las dimensiones y tolerancias. Se les conoce como barras para la construcción, barras deformadas y en Venezuela con el nombre de cabillas. Las barras para construcción se identifican por su diámetro, que puede ser en pulgadas o milímetros. Las longitudes usuales son de 9 y 12 metros de largo. a) Fierro Corrugado ASTM A706 :

Barras de acero micro aleado de alta ductilidad, rectas de sección circular, con resaltes Hi-bond de alta adherencia con el concreto.

b) Fierro Corrugado ASTM A615-GRADO 60 : Barras de acero rectas de sección circular, con resaltes Hi-bond de alta adherencia con el concreto.

c) Corrugado 4.7 mm: Varillas de acero corrugadas obtenidas por laminado en frío.

d) Nuevos Estribos Corrugados: Para Columnas y vigas

Page 14: El acero

14

1.4.3. ALAMBRONES Y DERIVADOS:

 Redondos que son laminados en caliente a partir de palanquillas, a una sección recta aproximadamente redonda en rollos de una longitud continúa. Los productos en barras pueden haber sufrido una deformación en frío controlada, por ejemplo un estirado o torzonado alrededor de su eje longitudinal.

a) Alambre Negro Recocido : Es un alambre de acero de bajo carbono, obtenido por traficación y con posterior tratamiento térmico de recocido que le otorga excelente ductilidad y maleabilidad, conservando suficiente resistencia mecánica para trabajar.

b) Alambrón Liso para Construcción : Es un producto laminado en caliente de sección circular y de superficie lisa.

c) Alambrón para Trefilería : Producto de acero fabricado por laminación en caliente, de sección circular y de superficie lisa.

1.5. ESTRUCTURA DEL ACERO:

Page 15: El acero

15

Las propiedades físicas de los aceros y su comportamiento a distintas temperaturas dependen sobre todo de la cantidad de carbono y de su distribución en el hierro. Antes del tratamiento térmico, la mayor parte de los aceros son una mezcla de tres sustancias: ferrita, perlita y cementita.

a) La ferrita: Blanda y dúctil, es hierro con pequeñas cantidades de carbono y otros elementos en disolución.

b) La cementita: Un compuesto de hierro con el 7% de carbono aproximadamente, es de gran dureza y muy quebradiza.

c) La perlita: Es una profunda mezcla de ferrita y cementita, con una composición específica y una estructura característica, y sus propiedades físicas son intermedias entre las de sus dos componentes.

La resistencia y dureza de un acero que no ha sido tratado térmicamente depende de las proporciones de estos tres ingredientes. Cuanto mayor es el contenido en carbono de un acero, menor es la cantidad de ferrita y mayor la de perlita: cuando el acero tiene un 0,8% de carbono, está por completo compuesto de perlita. El acero con cantidades de carbono aún mayores es una mezcla de perlita y cementita. Al elevarse la temperatura del acero, la ferrita y la perlita se transforman en una forma alotrópica de aleación de hierro y carbono conocida como austenita, que tiene la propiedad de disolver todo el carbono libre presente en el metal. Si el acero se enfría despacio, la austenita vuelve a convertirse en ferrita y perlita, pero si el enfriamiento es repentino la austenita se convierte en martensita, una modificación alotrópica de gran dureza similar a la ferrita pero con carbono en solución sólida.

1.6. COMPOSICIÓN QUÍMICA DEL ACERO:

Page 16: El acero

16

Es una aleación de diversos elementos, entre ellas están el carbono, magnesio, silicio, cromo, níquel y vanadio.

El carbono: es el que determina sus propiedades mecánicas. A mayor contenido de carbono la dureza, la resistencia, la tracción y el límite elástico aumentan. Por el contrario, disminuye la ductibilidad y la tenacidad.

El magnesio es adicionado en forma de ferro magnesio, aumenta la forjabilidad del acero, su templacidad y resistencia al impacto, así como disminuye en su ductibilidad.

El silicio se adiciona en proporciones que varían de 0.05% a 0.5%. Se incluye en la aleación para propósitos de oxidación, pues se combinan con oxígeno disuelto en la mezcla.

El cromo incrementa la resistencia a la abrasión y a la templacidad. El níquel mejora la resistencia al impacto y calidad superficial. El vanadio mejora la templacidad. El fósforo, al igual que el Azufre, en algunos tipos de aceros se agrega

deliberadamente para aumentar su resistencia a la tensión y mejorar la maquinabilidad; pero reduce la ductilidad y la resistencia al impacto.

COMPOSICION

Aleación Cantidad

Hierro 92%

Carbono 3 o 4%

Silicio 3%

Magnesio 0.25 al 2.5%

Fosforo y algunas partículas de Azufre 2%

1.7. TRATAMIENTO TÉRMICO DEL ACERO:

Page 17: El acero

17

El proceso básico para endurecer el acero mediante tratamiento térmico consiste en calentar el metal hasta una temperatura a la que se forma austenita, generalmente entre los 750 y 850 ºC, y después enfriarlo con rapidez sumergiéndolo en agua o aceite. Estos tratamientos de endurecimiento, que forman martensita, crean grandes tensiones internas en el metal, que se eliminan mediante el temple o el recocido, que consiste en volver a calentar el acero hasta una temperatura menor. El temple reduce la dureza y resistencia y aumenta la ductilidad y la tenacidad. El objetivo fundamental del proceso de tratamiento térmico es controlar la cantidad, tamaño, forma y distribución de las partículas de cementita contenidas en la ferrita, que a su vez determinan las propiedades físicas del acero. Hay muchas variaciones del proceso básico. Los ingenieros metalúrgicos han descubierto que el cambio de austenita a martensita se produce en la última fase del enfriamiento, y que la transformación se ve acompañada de un cambio de volumen que puede agrietar el metal si el enfriamiento es demasiado rápido. Se han desarrollado tres procesos relativamente nuevos para evitar el agrietamiento. En el templado prolongado, el acero se retira del baño de enfriamiento cuando ha alcanzado la temperatura en la que empieza a formarse la martensita, y a continuación se enfría despacio en el aire. En el mar templado, el acero se retira del baño en el mismo momento que el templado prolongado y se coloca en un baño de temperatura constante hasta que alcanza una temperatura uniforme en toda su sección transversal. Después se deja enfriar el acero en aire a lo largo del rango de temperaturas de formación de la martensita, que en la mayoría de los aceros va desde unos 300 ºC hasta la temperatura ambiente. En el austemplado, el acero se enfría en un baño de metal o sal mantenido de forma constante a la temperatura en que se produce el cambio estructural deseado, y se conserva en ese baño hasta que el cambio es completo, antes de pasar al enfriado final. Hay también otros métodos de tratamiento térmico para endurecer el acero. En la cementación, las superficies de las piezas de acero terminadas se endurecen al calentarlas con compuestos de carbono o nitrógeno. Estos compuestos reaccionan con el acero y aumentan su contenido de carbono o forman nitruros en su capa superficial.

Page 18: El acero

18

1.8. PROPIEDADES DEL ACERO:

4450 kg/cm2 Límite de fluencia (fy) 5100 kg/cm2

Resistencia a la tracción: 6450 kg/cm2

1.8.1. PROPIEDADES FÍSICAS DEL ACERO:

Aunque es difícil establecer las propiedades físicas y mecánicas del acero debido a que estas varían con los ajustes en su composición y los diversos tratamientos térmicos, químicos o mecánicos, con los que pueden conseguirse aceros con combinaciones de características adecuadas para infinidad de aplicaciones, se pueden citar algunas propiedades genéricas:

Su densidad media es de 7850 kg/m³. En función de la temperatura el acero se puede contraer, dilatar o fundir.

El punto de fusión del acero depende del tipo de aleación y los porcentajes de elementos aleantes. El de su componente principal, el hierro es de alrededor de 1.510 °C en estado puro (sin alear), sin embargo el acero presenta frecuentemente temperaturas de fusión de alrededor de 1.375 °C, y en general la temperatura necesaria para la fusión aumenta a medida que se aumenta el porcentaje de carbono y de otros aleantes, (excepto las aleaciones auténticas que funden de golpe). Por otra parte el acero rápido funde a 1.650 °C. Su punto de ebullición es de alrededor de 3.000 °C.

1.8.2. PROPIEDADES MECÁNICAS DEL ACERO

Tenacidad:Es la capacidad que tiene un material de absorber energía sin producir fisuras (resistencia al impacto). El acero es un material muy tenaz, especialmente en alguna de las aleaciones usadas para fabricar herramientas.

Ductilidad: Es relativamente dúctil. Con él se obtienen hilos delgados llamados alambres. Un aumento de la temperatura en un elemento de acero provoca un aumento en la longitud del mismo. Este aumento en la longitud puede valorarse por la expresión: δL = α δ t° L, siendo a el coeficiente de dilatación, que para el acero vale aproximadamente 1,2 · 10−5 (es decir α = 0,000012).El acero se dilata y se contrae según un coeficiente de dilatación similar al coeficiente de dilatación del hormigón, por lo que resulta muy útil su uso simultáneo en la construcción, formando un material compuesto que se denomina hormigón armado.

Page 19: El acero

19

Maleable:Se pueden obtener láminas delgadas llamadas hojalata. La hojalata es una lamina de acero, de entre 0,5 y 0,12 mm de espesor, recubierta, generalmente de forma electrolítica, por estaño.

Resistencia al desgaste:Es la resistencia que ofrece un material a dejarse erosionar cuando está en contacto de fricción con otro material.

Maquinabilidad:Es la facilidad que posee un material que permitir el proceso de mecanizado. Permite una buena mecanización en máquinas herramientas antes de recibir un tratamiento térmico.

Dureza:La densidad promedio del acero es 7850 kg/m3. Es la resistencia que ofrece un acero para dejarse penetrar. La dureza de los aceros varía entre la del hierro y la que se puede lograr mediante su aleación u otros procedimientos térmicos o químicos entre los cuales quizá el más conocido sea el templado del acero, aplicable a aceros con alto contenido en carbono, que permite, cuando es superficial, conservar un núcleo tenaz en la pieza que evite fracturas frágiles. Aceros típicos con un alto grado de dureza superficial son los que se emplean en las herramientas de mecanizado, denominados aceros rápidos que contienen cantidades significativas de cromo, wolframio, molibdeno y vanadio. Los ensayos tecnológicos para medir la dureza son Brinell, Vickers y Rockwell, entre otros.

Conductividad eléctrica:Posee una alta conductividad eléctrica en las líneas aéreas de alta tensión se utilizan con frecuencia conductores de aluminio con alma de acero proporcionando éste último la resistencia mecánica necesaria para incrementar los vanos entre la torres y optimizar el coste de la instalación.

1.8.3. PROPIEDADES TÉRMICAS:

Conductividad eléctrica: Es la facilidad que presenta un material para dejar pasar a través de él la corriente eléctrica. Este fenómeno se produce por una diferencia de potencial entre los extremos del metal.

Page 20: El acero

20

Conductividad térmica: Es la facilidad que presenta un material para dejar pasar a través de él una cantidad de calor. El coeficiente de conductividad térmica k nos da la cantidad de calor que pasaría a través de un determinado metal en función de su espesor y sección.

Dilatación: Es el aumento de las dimensiones de un metal al incrementarse la temperatura. No es uniforme ni sigue leyes determinadas.

1.8.4. PROPIEDADES QUÍMICAS.

La actividad química del metal depende de las impurezas que contenga y de la presencia de elementos que reaccionan con estas, dependiendo también en menor medida de la temperatura y zonas de contacto. Distinguimos fundamentalmente dos reacciones: oxidación y corrosión.

Oxidación: La oxidación se produce cuando se combina el oxigeno del aire y el metal. La oxidación es superficial, produciéndose en la capa más externa del metal y protegiendo a las capas interiores de la llamada oxidación total. El óxido no es destructivo.

Corrosión:Se considera corrosión a toda acción que ejercen los diversos agentes químicos sobre los metales, primeramente en la capa superficial y posteriormente en el resto. Cuando es producida por el oxígeno y usando como catalizador el agua, la corrosión es progresiva desde la capa superficial hasta el interior del metal lo que provoca su total destrucción.Corrosión general: Cuando es en toda la superficie, se protege con facilidad. Corrosión intercristalina: Se debe a las impurezas y no se advierte a simple vista.Corrosión localizada: Se localiza en sitios poco visibles y pasa desapercibida hasta que se rompe la pieza.

Page 21: El acero

21

1.9. CARACTERÍSTICAS DEL ACERO:

1.9.1. CARACTERÍSTICAS POSITIVAS DEL ACERO:

Trabajabilidad: Se pueden cortar y perforar a pesar de que es muy resistente y aun así siguen manteniendo su eficacia.

Soldabilidad: Es un material que se puede unir por medio de soldadura y gracias a esto se pueden componer una serie de estructuras con piezas rectas

Forjabilidad: Significa que al calentarse y al darle martillazos se les puede dar cualquier forma deseada

Alta resistencia mecánica: Los aceros son materiales con alta resistencia mecánica al someterlos a esfuerzos de tracción y compresión y lo soportan por la contribución química que tienen los aceros. Por medio de los ensayos de laboratorio se determina la resistencia a tracción y a compresión evaluando su límite elástico y el esfuerzo de rotura.

Resistencia al desgaste: Es la resistencia que ofrece un material a dejarse erosionar cuando está en contacto de fricción con otro material.

1.9.2. CARACTERÍSTICAS NEGATIVAS DEL ACERO:

Oxidación: Los aceros tienen una alta capacidad de oxidarse si se exponen al aire y al agua simultáneamente y se puede producir corrosión del material si se trata de agua salina.

Transmisor de calor y electricidad: El acero es un alto transmisor de corriente y a su vez se debilita mucho a altas temperaturas, por lo que es preferible utilizar aceros al níquel o al aluminio o tratar de protegerlos haciendo ventilados y evitar hacer fábricas de combustible o plásticos con este tipo de material. Estas dos desventajas son manejables teniendo en cuenta la utilización de los materiales y el mantenimiento que se les dé a los mismos.

Page 22: El acero

22

II.- UTILIZACIÓN DEL ACERO

2.1.- VENTAJAS Y DESVENTAJAS:

2.1.1.- VENTAJAS DEL ACERO COMO MATERIAL ESTRUCTURAL:

Para su uso en construcción, el acero se distribuye en perfiles, siendo éstos de diferentes características según su forma y dimensiones y debiéndose usar específicamente para una función concreta, ya sean vigas o pilares.

Alta resistencia:La alta resistencia del acero por unidad de peso implica que será poco el peso de las estructuras, esto es de gran importancia en puentes de grandes claros.

Uniformidad:Las propiedades del acero no cambian apreciablemente con el tiempo como es el caso de las estructuras de concreto reforzado.

Durabilidad:Si el mantenimiento de las estructuras de acero es adecuado duraran indefinidamente.

Ductilidad:La ductilidad es la propiedad que tiene un material de soportar grandes deformaciones sin fallar bajo altos esfuerzos de tensión. La naturaleza dúctil de los aceros estructurales comunes les permite fluir localmente, evitando así fallas prematuras.

Tenacidad:Los aceros estructurales son tenaces, es decir, poseen resistencia y ductilidad. La propiedad de un material para absorber energía en grandes cantidades se denomina tenacidad.

Otras ventajas importantes del acero estructural son:

Gran facilidad para unir diversos miembros por medio de varios tipos de conectores como son la soldadura, los tornillos y los remaches.

Posibilidad de prefabricar los miembros de una estructura. Rapidez de montaje. Gran capacidad de laminarse y en gran cantidad de tamaños y formas. Resistencia a la fatiga. Posible rehúso después de desmontar una estructura.

Page 23: El acero

23

2.1.2.- DESVENTAJAS DEL ACERO COMO MATERIAL DE CONSTRUCCIÓN:

Resistencia a la corrosión:La corrosión es la mayor desventaja de los aceros ya que el hierro se oxida con suma facilidad incrementando su volumen y provocando grietas superficiales que posibilitan el progreso de la oxidación hasta que se consume la pieza por completo. Tradicionalmente los aceros se han venido protegiendo mediante tratamientos superficiales diversos. Si bien existen aleaciones con resistencia a la corrosión mejorada como los aceros de construcción «corten» aptos para intemperie (en ciertos ambientes) o los aceros inoxidables.

Costo de mantenimiento.- La mayor parte de los aceros son susceptibles a la corrosión al estar expuestos al agua y al aire y, por consiguiente, deben pintarse periódicamente.

Costo de la protección contra el fuego.- Aunque algunos miembros estructurales son incombustibles, sus resistencias se reducen considerablemente durante los incendios.

Susceptibilidad al pandeo.- Entre más largos y esbeltos sean los miembros a compresión, mayor es el peligro de pandeo. Como se indico previamente, el acero tiene una alta resistencia por unidad de peso, pero al utilizarse como columnas no resulta muy económico ya que debe usarse bastante material, solo para hacer más rígidas las columnas contra el posible pandeo.

2.2.- USOS DE LOS ACEROS ESTRUCTURALES:

Una relación completa sería imposible: desde el objeto más corriente hasta el instrumento más sofisticado, desde lo microscópico (piezas menores de un gramo en los micro motores de relojes eléctricos) hasta lo gigantesco (cubas de metanero, capaces de alojar el volumen del arco del triunfo), el acero esta en el origen de la infinidad de productos elaborados por la industria humana.

En la construcción de puentes o de edificios:El acero puede tener múltiples papeles. Sirve para armar el hormigón, reforzar los cimientos, transportar el agua, el gas u otros fluidos. Permite igualmente formar el armazón de edificios, sean estos de oficinas, escuelas, fabricas, residenciales o polideportivos. Y también vestirlos (fachadas, tejados). En una palabra, es el elemento esencial de la arquitectura y de la estética de un proyecto.

En el sector de la automoción:Este sector constituye el segundo mercado acero, después de la construcción y las obras publicas. Chasis y carrocerías, piezas de motor, de la dirección o de la transmisión, instalaciones de escape, carcasas de neumáticos, el acero representa del 55 al 70% del peso de un automóvil.

Page 24: El acero

24

En la comunicación:Los componentes electrónicos utilizados en la informática o en las telecomunicaciones, así como los elementos funcionales del tubo de los televisores en colero, son piezas delicadas con exigencias particulares: por ello, se fabrican en aleaciones adaptadas a cada caso.

En la energía:El petróleo y la industria nuclear requieren infraestructuras, equipos y redes de conductos de fluidos muy específicos. El acero se muestra como un material clave en este mundo que, como la industria química, debe hacer frente a numerosos desafíos: medios altamente corrosivos, altas temperaturas, condiciones mecánicas altamente exigentes.

2.3.- EMPRESAS QUE FABRICAN ACERO:En el mercado local existen actualmente dos principales productores de acero:

2.3.1.- ACEROS AREQUIPA:

1964: Fue fundada en la ciudad de Arequipa su primera planta.1966: inicia sus operaciones con la producción y comercialización de perfiles y barras lisas de acero para la industria metal- mecánica, construcción y de carpintería metálica.1983: Se inauguró su segunda planta de laminación en la ciudad de Pisco, al sur de Lima, e incursionamos en la fabricación de barras corrugadas y alambrones.1988: La fusión con Laminadora del Pacifico permitió ampliar sus operaciones a la fabricación de acero en forma de palanquillas, materia prima para los productos laminados en caliente.1997: Recibió la Certificación ISO 9002.Actualmente, han adecuado su sistema de calidad a la norma ISO 9001 versión 2000. A fines de 1997, se fusiono con la empresa Aceros Calibrados S.A. A fin de ampliar su portafolio de productos. De esta manera, nace Corporación Aceros Arequipa.Para el 2009 está programado concluir la segunda ampliación de su Planta de Pisco, para incrementar nuevamente u capacidad de producción, esta vez de 550 mil a 1100 mil toneladas de acero anuales, con una inversión que superara los 280 millones de dólares.

Page 25: El acero

25

2.3.2.- SIDERPERU (EMPRESA SIDERURGICA DEL PERÚ S.A.A):

Principal empresa de extracción y la transformación del hierro en el Perú. Fue el 9 de Mayo de 1956 cuando nace la primera siderúrgica del Perú, con la con la creación de la Sociedad de Gestión de la Planta Siderúrgica de Chimbote y de la Central Hidroeléctrica del Cañón del Pato (SOGESA)Posteriormente, el 21 de abril de 1958 fue inaugurada la Planta Siderúrgica de Chimbote por el Presidente Manuel Prado.Actualmente Sider Perú se encuentra bajo la administración del grupo Gerdau (inversionistas Brasileños), que a finales del año 2006, compró más del 70% de la acciones de la empresa.

Beneficios:

1. Para las viviendas y construcciones del Perú, ofrecen gran seguridad frente a los sismos porque cumplen todas las exigencias del Reglamento Nacional de Edificaciones del Perú y son fabricadas con la más avanzada tecnología, bajo un estricto control de calidad.

2. Sus buenas corrugas aseguran una gran adherencia al concreto haciendo que las construcciones sean más fuertes.

3. Aceros Arequipa asegura que el 100% de las barras tengan el peso y medidas exactas.

4. Todas las barras están identificadas con el diámetro y la marca de Aceros Arequipa, lo que facilita su reconocimiento, su compra y uso en las construcciones.

2.4.- NORMA TÉCNICA PERUANA:

Código:NTP 341.031 2008Título:HORMIGÓN (CONCRETO). Barras de acero al carbono con resaltes y lisas para hormigón (concreto) armado. Especificaciones. 3a. ed.Publicado:2008/01/25 Resumen: Establece los requisitos que deben cumplir y los ensayos a los cuales deben someterse las barras de acero al carbono, con resaltes y lisas para ser usadas como refuerzo en el hormigón (concreto). Esta Norma Técnica Peruana se aplica a las barras de acero.Reemplaza a: NTP 341.031 2001I.C.S:91.100.30 Hormigón y productos de hormigón.

Page 26: El acero

26

2.5.- TRATAMIENTOS DEL ACERO:

2.5.1.- Tratamiento Superficiales:

Debido a la facilidad que tiene el acero para oxidarse cuando entra en contacto con la atmósfera o con el agua, es necesario y conveniente proteger la superficie de los componentes de acero para protegerles de la oxidación y corrosión. Muchos tratamientos superficiales están muy relacionados con aspectos embellecedores y decorativos de los metales.

Los tratamientos superficiales más usados son los siguientes:

Cincado: tratamiento superficial antioxidante por proceso electrolítico o mecánico al que se somete a diferentes componentes metálicos.

Cromado: recubrimiento superficial para proteger de la oxidación y embellecer. Galvanizado: tratamiento superficial que se da a la chapa de acero. Niquelado: baño de níquel con el que se protege un metal de la oxidación. Pavonado: tratamiento superficial que se da a piezas pequeñas de acero, como la

tornillería. Pintura: usado especialmente en estructuras, automóviles, barcos, etc.

2.5.2.- Tratamiento Térmico:

Un proceso de tratamiento térmico adecuado permite aumentar significativamente las propiedades mecánicas de dureza, tenacidad y resistencia mecánica del acero. Los tratamientos térmicos cambian la micro estructura del material, con lo que las propiedades macroscópicas del acero también son alteradas.

Los tratamientos térmicos que pueden aplicarse al acero sin cambiar en su composición química son:

Temple

Revenido Recocido Normalizado

Los tratamientos termoquímicos son tratamientos térmicos en los que, además de los cambios en la estructura del acero, también se producen cambios en la composición química de la capa superficial, añadiendo diferentes productos químicos hasta una profundidad determinada. Estos tratamientos requieren el uso de calentamiento y enfriamiento controlados en atmósferas especiales. Entre los objetivos más comunes de estos tratamientos están aumentar la dureza superficial de las piezas dejando el núcleo más blando y tenaz, disminuir el rozamiento aumentando el poder lubrificante, aumentar la resistencia al desgaste, aumentar la resistencia a fatiga o aumentar la resistencia a la corrosión.

Page 27: El acero

27

2.6.- ENSAYOS MECANICOS DEL ACERO:

Hay dos tipos de ensayos, unos que pueden ser destructivos y otros no destructivos.

Todos los aceros tienen estandarizados los valores de referencia de cada tipo de ensayo al que se le somete.

Ensayos no destructivos

Los ensayos no destructivos son los siguientes:

Ensayo microscópico y rugosidad superficial. Microscopios y rugosímetros.

Ensayos por ultrasonidos. Ensayos por líquidos penetrantes. Ensayos por partículas magnéticas. Ensayo de dureza (Brinell, Rockwell, Vickers). Mediante durómetros.

Ensayos destructivos

Los ensayos destructivos son los siguientes:

Ensayo de tracción con probeta normalizada.

Ensayo de resiliencia. Ensayo de compresión con probeta normalizada. Ensayo de cizallamiento. Ensayo de flexión. Ensayo de torsión. Ensayo de plegado. Ensayo de fatiga.

2.6.1.- Ensayo del acero corrugado:

El ensayo mecánico del acero corrugado consiste en tomar una muestra de barras de acero corrugado en la obra que se esté construyendo, trasladarlas a un laboratorio metalúrgico y realizar un ensayo completo, según EHE, para determinar:

sección media equivalente

características geométricas del corrugado doblado simple doblado/desdoblado, según UNE 36068 adherencia, según UNE 36740 límite elástico carga de rotura y alargamiento en rotura, según UNE-EN 10020 identificación del fabricante, según UNE 36811 acta de resultados

Page 28: El acero

28

CONCLUSIÓN

El acero es un material ampliamente utilizado por las características maleables que posee, ya que en la medida de la composición de los materiales que se le añaden al hierro, tiene distintas características que lo hacen ser utilizado en muchos campos de la ingeniería y demás.

De igual manera tiene algunas desventajas como el ser corrosivo y debilitarse en gran medida con temperaturas relativamente bajas.

Sin embargo aun así en un futuro se espera que estas desventajas, se extingan y que el material pueda tener las características ideales, aun así no tan alejadas de las que conocemos hoy en día, de este material de construcción: El ACERO.

Page 29: El acero

29

BIBLIOGRAFÍA

http://campus.fi.uba.ar/file.php/295/Material_Complementario/Aceros.pdf

http://caminos.udc.es/info/asignaturas/406/contenido_publico/recursos/tema00.pdf

http://www.tratar.com.co/descargas/acero.pdf

https://upcommons.upc.edu/bitstream/handle/2099.1/3319/55868-7.pdf?sequence=7