Ejercicios Ecuaciones lineales

Click here to load reader

  • date post

    05-Nov-2015
  • Category

    Documents

  • view

    248
  • download

    0

Embed Size (px)

description

Ejercicios Ecuaciones lineales

Transcript of Ejercicios Ecuaciones lineales

Documento 1Una ecuacin se considera lineal cuando el mayor grado de las incgnitas es uno.1. Si2. Si3. Si4. No5. Si6. No7. Si8. Si9. Si10. Si11. Si12. Si13. Si14. Si15. Si16. No17. No18. Si

19. No se evidencia el ejemplo 2.1.2

20. 4X1 2X2 + 6X3 = 0a. Si X1 = -4, X3 = 2-2X2 = -4X1 6X3X2 = 2X1 + 3X3X2 =2(-4) + 3(2) = -8+6 X2 = -2b. Si 2 variables equivalen a 0, el conjunto solucin ser {0}21. X1 3X2 + 4X3 2X4 = -60a. Si X1 = 10, X2 = 8 Y X3 = -2-2X4 = -60 X1 + 3X2 4X3X4 = 30 + X1/2 3X2/2 + 2X3X4 = 30 + 10/2 - 3(8)/2 4(-2)X4 = 30 + 5 12 +8X4 = 31

22. a. 3x+ 5y = 240b. Si se producen 30 und de B3x = 240 5y3x = 240 5(30)3x =240 -150X = 90/3 X = 30 und de A diarias c. Si se producen 12 und de B3x = 240 5y3x = 240 5(12)3x =240 -60X = 180/3 X = 60 und de A diarias X =300 und de A semanales

Documento 21. 3x 4y = 36Si x = 0:-4y = 36Y = 9.5

Si y = 0:3x = 36X=13

2. -2x + 5y = -10Si x = 0:5y = -10Y = -10/5 = -2

Si y = 0:-2x = -10X=-10/-2 = 5

3. x + 3y = -18Si x = 0:3y = -18Y = -6

Si y = 0:-x = -18X=18

4. 4x+ 2y = -24Si x = 0:2y = -24Y = -12

Si y = 0:4x = -24X=-6

5. -4x = 16X = -4

6. -10x + 30 = 0-10X = -30 X = 3

7. X + 2y = 0

Si x = 0:2y = 0Y = 0

Si y = 0:X=0

8. 5x + 3y = 0Si x = 0:3y = 0Y = 0

Si y = 0:5x = 0X=0

9. -8x + 5y = -40Si x = 0:5y = -40Y = -9

Si y = 0:-8x = -40X= -40/-8X=510. (x+y)/2 = 3x 2y + 16X + y = 6x 4y + 32-5x + 5y = 32Si x = 0:5y = 32Y = 32/5

Si y = 0:-5x = 32X=-32/5

11. 2x 3y = -18 + xX 3y = -18Si x = 0:-3y = -18Y = 6

Si y = 0:x = -18

12. -3x + 4y -10 = 7x 2y + 50-10x + 6y = 60Si x = 0:6y = 60Y = 10

Si y = 0:-10x = 60X=-6

13. -15y + 90 = 0-15y = - 90Y = 6

14. (x-2y)/3 12 = (2x +4y)/3x-2y 36 = 2x + 4y-x 6y = 36Si x = 0:-6y = 36Y = -6

Si y = 0:-x = 36X=-36

15. ax + by = tSi x = 0:by = tY = t/b

Si y = 0:ax = tX = t/a

16. cx dy = eSi x = 0:-dy = eY = -e/d

Si y = 0:cx = eX = e/c

17. px = qx = q/p

18. dx ey + f = gx hyx (d-g) y(e-h) = fSi x = 0:-(e-h) y = fY = - f/(e-h)

Si y = 0:(d-g) x = fX = f/(d-g)

19. ry = s Y= -r/s

20. e + fx gy = h fx gy = h + eSi x = 0:-g y = h+eY = -(h+e)/g

Si y = 0:f x = (h+e)X =(h+e)/f

21. 22. 23. 24.

25. 26. 27. 28. 29. 30. 31. 32. 33. No es una ecuacin

Documento 3

38. m = (y2 y1) / (x2 x1)m = (-16 8 ) / (-4 2)m = -24 / -6m = 4

pendiente positiva

39. m = (y2 y1) / (x2 x1)m = (-5 20) / (2 + 3)m = -25 / 5m = -5

pendiente negativa

40. m = (y2 y1) / (x2 x1)m = (-15 5) / (-1 3)m = -10 / -4m = 5/2

pendiente positiva

41. m = (y2 y1) / (x2 x1)m = (4-8) / (12 10)m = -4 / 2m = -2

pendiente negativa

42.m = (y2 y1) / (x2 x1)m = (-9 +3 ) / (1+2)m = -6 / 3m = -2

pendiente negativa

43.m = (y2 y1) / (x2 x1)m = (15-8) / (3 5)m = 7 / -2m = -7/2

pendiente negativa

44. m = (y2 y1) / (x2 x1)m = (-12 3 ) / (-1 4)m = -15 / -5m = 3

pendiente positiva

45.m = (y2 y1) / (x2 x1)m = (-5-24) / (5 8)m = -29/ -3m = 29/3

pendiente positiva

46. m = (y2 y1) / (x2 x1)m = (-22 8 ) / (3+2)m = -30 / 5m = -6

pendiente negativa

47. m = (y2 y1) / (x2 x1)m = (6-4) / (-5+5)m = 2 / 0m = indefinida

es una lnea completamente vertical y = -5

48.m = (y2 y1) / (x2 x1)m = (30+20) / (-4+4)m = 50 / 0m = indefinida

es una lnea completamente vertical y = -4

49. m = (y2 y1) / (x2 x1)m = (0-0) / (25-0)m = 0/25m = 0

es una lnea completamente horizontal x = 0

50.m = (y2 y1) / (x2 x1)m = (-25-30) / (0-0)m = -55/ 0m = indefinida

es una lnea completamente vertical y = 0

51. m = (y2 y1) / (x2 x1)m = (-10-0) / (0-5)m = -10 /- 5m = 2

pendiente positiva

52.m = (y2 y1) / (x2 x1)m = (b-b) / (-a-a)m = 0 / -2am = 0

es una lnea completamente horizontal x = b

53.m = (y2 y1) / (x2 x1)m = (b-0) / (a-0)m = b/a

pendiente positiva

54. m = (y2 y1) / (x2 x1)m = (0+c) / (0-d)m = -c/d

pendiente negativa

55. m = (y2 y1) / (x2 x1)m = (5+5) / (5+5)m = 10/10m=1

pendiente positiva

Ejercicios 2.3.1. Y = (12 -3x)/2Y = -3x/2 + 6

Pendiente: -3/2Intercepto: 6

3. Y = (24 -4x)/-3Y = 4x/3 - 8

Pendiente: 4/3Intercepto: -8

5. Y = 6 + x

Pendiente: 1Intercepto: 6

7. Y = (-20 x)/2Y = -2x 10 Pendiente: -2Intercepto: -10

9. Y = (20 +3x)/5Y = 3x/5 + 4 Pendiente: 3/5Intercepto: 4

11. 8x = 5x 2y2y = -3xY = -3/2

Pendiente: -3/2Intercepto: 0

13. 3y = 5xY = 5/3xPendiente: 5/3Intercepto: 0

15. 3y = x +10Y = x/3 +10/3Pendiente: 1/3Intercepto: 10/3

17. X =0

19. Y = -24 /8 = 325. a. b. pendiente : 1.1intercepto : 41.6c. Se puede observar que a medida que aumentan los aos, la fuerza laboral de la mujer tiende a aumentar. d. Para el 2005, es decir t = 9, habrn 51.5 mujeres y para el 2010, con t = 14, habrn 57 mujeres.26. a. b. pendiente : 12500intercepto : 550000c. Se puede observar que a medida que aumentan los aos, los turistas por temporada tienden a aumentar. e. Dentro de 5 aos, es decir t = 5, 612500 turistas. 29. v = 90000 15000ta. si v = 0 15000t = 90000T = 90000/15000 = 6Si t = 0V = 90000b. Cuando la mquina inicia su trabajo, se producen 90000 dlares. Al cabo de 6 aos, los libros bajaran su valor a 0.c. Es decreciente, es decir, a medida que aumenta el tiempo, el valor disminuye.d.

Ejercicios 2.41. Y= mx + bY = -3x + 10

3. y = 1x/2 + 25. y = -rx 3t7. y = mx + b- 2 = -2 (4) + b-2 + 8 = b6 = bY = -2x + 69.y = mx + b8 = 3/2 (-5) + b8 15/2 = b1/2 = bY = 3x/2 + 11.y = mx + b6 = 2.5 (-3) + b6 + 15/2 = b27/2 = bY = 2.5x + 27/213.y = mx + b- 4.8 = 3.6 (2.4) + b-4.8 8.64 = b-13.44 = bY = 3.6x -13.44

15.y = mx + bq = w (p) + bq wp = bY = wx + q wp17.y = -519.X= u

21.m = (y2 y1) / (x2 x1)m = (3-5) / (-2+4)m = -2 /2m = -1y y1 = m(x-x1)y-5 = -1(x+4)y = -x -4 +5y = -x + 123.m = (y2 y1) / (x2 x1)m = (380-240) / (15-20)m = -140/5m = -28y y1 = m(x-x1)y-240 = -28(x-20)y = -28x +56 +240y = -28x + 29625.m = (y2 y1) / (x2 x1)m = (18.24-20.75) / (2.642-0.234)m = -2.51/2.408m = -1.042y y1 = m(x-x1)y-20.75 = -1.042(x-0.234)y = -1.042x +0.243 +20.75y = -1.042x + 20.5

27.m = (y2 y1) / (x2 x1)m = (d-b) / (c-a)y y1 = m(x-x1)y-b = (d-b) / (c-a) (x-a)y = {(d-b) / (c-a )}x {(d-b) / (c-a)}a + b

29. m = (y2 y1) / (x2 x1)m = (b-b) / (e+d)m=0

y y1 = m(x-x1)y-b = 0y = b

31. 3x- 4y = 20Y = (-20 +3x)/4m = y y1 = m(x-x1)y-4 = (x+2)y = 3x/4 + 3/2 + 4y = 3x/4 + 11/233. a. x=7m = indefinidax= 2

b.y = 6; m = 0

y = -5

35.8x 2y = 02y = 8xY = 4xm= -1/4y y1 = m(x-x1)y-8 = -1/4(x-4)y = -1x/4 + 1+ 8y = -1x/4 + 9

37. (0, 80000) y (1, 66000)a. m = (y2 y1) / (x2 x1)m = (66000-80000) / (1-0)m = -14000/1m = -14000y y1 = m(x-x1)y-80000= -14000(x-0)y = -14000x + 80000b.A medida que aumenta el tiempo, el valor de la mquina va disminuyendo.c. Intercepto: 80000. Es el valor cuando la mquina no se ha usado.39. (5,41) y (25,77)m = (y2 y1) / (x2 x1)m = (77-41) / (25-5)m = 36/20m = 1.8y y1 = m(x-x1)y-41= 1.8(x-5)y = 1.8x + 9+41y = 1.8x + 5041. (6,11.32) y (9, 12.04)m = (y2 y1) / (x2 x1)m = (12.04-11.32) / (9-6)m = 0.72/3m = 0.24y y1 = m(x-x1)y-11.32= 0.24(x-6)y = 0.24x 1.44 + 11.32y = 0.24x + 9.88

a. Para marzo de 1988, es decir, el t=-2 se estiman -19.52 el valor de la accin.b. Para junio de 1991, es decir, el t=37 se estiman 365.8 el valor de la accin.c. Para marzo de 1992, es decir, el t=46 se estiman 454.72 el valor de la accin.