Ejercicios de probabilidad en sistemas de potencia

7
2.1 LET , AND BE ARBITRARY SETS. DETERMINE WHICH OF THE FOLLOWING RELATIONS ARE CORRECT AND WHICH ARE INCORRECT: a) ( βˆͺ ) = = β‰  Incorrecto b) = ∩ = βˆͺ (Ley de Morgan) Correcto c) βˆͺ = Μ… ∩ = (Ley de Morgan) Correcto d) ( βˆͺ ) = ( Μ… ∩ ) = Correcto 2.4 LET = {, , … , }, = {, , }, = {, , }, And = {, , }. DETERMINE ELEMENTS OF THE FOLLOWING SETS: a) βˆͺ = {1,2,3,4,5,6,7,8,9,10} b) = {1,3,4,5,6} c) Μ… = {2,4,6,7,8,9,10} β†’ Μ… = {2,7} d) βˆͺ () = {βˆ…} β†’ βˆͺ () = {2,4,6,7,8,9,10} e) = {βˆ…} β†’ = {1,2,3,4,5,6,7,8,9,10} f) Μ… = {2,4,6,7,8,9,10} , = {2,3,5,7,8,9,10} = {2,7,8,9,10} β†’ = {1,3,4,5,6} g) () βˆͺ () βˆͺ () = {1}, = {βˆ…}, = {5} β†’ () βˆͺ () βˆͺ () = {1,5} 2.5 REPEAT PROBLEM 2.4 if = {: ≀ ≀ }, = {: ≀ ≀ }, = {: ≀ ≀ }, AND = {: ≀ ≀ } a) βˆͺ = {: 0 ≀ ≀ 10} b) βˆͺ = {: 1 ≀ ≀ 6} c) Μ… = {: 0 ≀ < 1, 5 < ≀ 10 } β†’ Μ… = {: 5 < ≀ 7}

description

ejercicos de confiabilidad

Transcript of Ejercicios de probabilidad en sistemas de potencia

Page 1: Ejercicios de probabilidad en sistemas de potencia

2.1 LET 𝑨, 𝑩 AND π‘ͺ BE ARBITRARY SETS. DETERMINE WHICH OF THE FOLLOWING

RELATIONS ARE CORRECT AND WHICH ARE INCORRECT:

a) 𝑨𝑩(π‘ͺ βˆͺ 𝑩) = 𝐴𝐡𝐢 π‘ˆ 𝐴𝐡𝐡 = 𝐴𝐡𝐢 π‘ˆ 𝐴𝐡 β‰  𝑨𝑩π‘ͺ Incorrecto

b) 𝑨𝑩̅̅ Μ…Μ… = 𝐴 ∩ 𝐡̅̅ Μ…Μ… Μ…Μ… Μ…Μ… Μ… = οΏ½Μ…οΏ½ βˆͺ οΏ½Μ…οΏ½ (Ley de Morgan) Correcto

c) 𝑨 βˆͺ 𝑩̅̅ Μ…Μ… Μ…Μ… Μ…Μ… Μ… = οΏ½Μ…οΏ½ ∩ οΏ½Μ…οΏ½ = 𝑨 ̅𝑩 Μ… (Ley de Morgan) Correcto

d) (𝑨 βˆͺ 𝑩)Μ…Μ… Μ…Μ… Μ…Μ… Μ…Μ… Μ…Μ… Μ…Μ… π‘ͺ = (οΏ½Μ…οΏ½ ∩ οΏ½Μ…οΏ½)𝐢 = 𝑨 ̅𝑩 Μ… π‘ͺ Correcto

2.4 LET𝑺 = {𝟏, 𝟐, … , 𝟏𝟎}, 𝑨 = {𝟏, πŸ‘, πŸ“}, 𝑩 = {𝟏, πŸ’, πŸ”}, And π‘ͺ = {𝟐, πŸ“, πŸ•}. DETERMINE

ELEMENTS OF THE FOLLOWING SETS:

a) 𝑺 βˆͺ π‘ͺ = {1,2,3,4,5,6,7,8,9,10}

b) 𝑨 𝑼 𝑩 = {1,3,4,5,6}

c) οΏ½Μ…οΏ½π‘ͺ

οΏ½Μ…οΏ½ = {2,4,6,7,8,9,10} β†’ �̅�𝐢 = {2,7}

d) 𝑨 Μ… βˆͺ (𝑩π‘ͺ)

𝐡𝐢 = {βˆ…} β†’ 𝐴 Μ… βˆͺ (𝐡𝐢) = {2,4,6,7,8,9,10}

e) 𝑨𝑩π‘ͺ Μ…Μ… Μ…Μ… Μ…Μ… Μ…

𝐴𝐡𝐢 = {βˆ…} β†’ 𝐴𝐡𝐢 Μ…Μ… Μ…Μ… Μ…Μ… Μ… = {1,2,3,4,5,6,7,8,9,10}

f) 𝑨 ̅𝑩 Μ…Μ…Μ… Μ…Μ… Μ…Μ…

οΏ½Μ…οΏ½ = {2,4,6,7,8,9,10} , οΏ½Μ…οΏ½ = {2,3,5,7,8,9,10}

𝐴 ̅𝐡 Μ… = {2,7,8,9,10} β†’ 𝐴 ̅𝐡 Μ…Μ…Μ… Μ…Μ… Μ…Μ… = {1,3,4,5,6}

g) (𝑨𝑩) βˆͺ (𝑩π‘ͺ) βˆͺ (π‘ͺ𝑨)

𝐴𝐡 = {1}, 𝐡𝐢 = {βˆ…}, 𝐢𝐴 = {5} β†’ (𝐴𝐡) βˆͺ (𝐡𝐢) βˆͺ (𝐢𝐴) = {1,5}

2.5 REPEAT PROBLEM 2.4 if 𝑺 = {𝒙: 𝟎 ≀ 𝒙 ≀ 𝟏𝟎}, 𝑨 = {𝒙: 𝟏 ≀ 𝒙 ≀ πŸ“}, 𝑩 = {𝒙: 𝟏 ≀ 𝒙 ≀

πŸ”}, AND π‘ͺ = {𝒙: 𝟐 ≀ 𝒙 ≀ πŸ•}

a) 𝑺 βˆͺ π‘ͺ = {π‘₯: 0 ≀ π‘₯ ≀ 10}

b) 𝑨 βˆͺ 𝑩 = {π‘₯: 1 ≀ π‘₯ ≀ 6}

c) οΏ½Μ…οΏ½π‘ͺ

οΏ½Μ…οΏ½ = {π‘₯: 0 ≀ π‘₯ < 1, 5 < π‘₯ ≀ 10 } β†’ �̅�𝐢 = {π‘₯: 5 < π‘₯ ≀ 7}

Page 2: Ejercicios de probabilidad en sistemas de potencia

d) 𝑨 Μ… βˆͺ (𝑩π‘ͺ)

𝐡𝐢 = {π‘₯: 2 ≀ π‘₯ ≀ 6} β†’ 𝐴 Μ… βˆͺ (𝐡𝐢) = {π‘₯: 0 ≀ π‘₯ < 1, 2 ≀ π‘₯ ≀ 10}

e) 𝑨𝑩π‘ͺ Μ…Μ… Μ…Μ… Μ…Μ… Μ…

𝐴𝐡𝐢 = {π‘₯: 2 ≀ π‘₯ ≀ 5} β†’ 𝐴𝐡𝐢 Μ…Μ… Μ…Μ… Μ…Μ… Μ… = {π‘₯: 0 ≀ π‘₯ < 2, 5 < π‘₯ ≀ 10}

f) 𝑨 ̅𝑩 Μ…Μ…Μ… Μ…Μ… Μ…Μ…

οΏ½Μ…οΏ½ = {π‘₯: 0 ≀ π‘₯ < 1, 5 < π‘₯ ≀ 10 } , οΏ½Μ…οΏ½ = {π‘₯: 0 ≀ π‘₯ < 1, 6 < π‘₯ ≀ 10 }

𝐴 ̅𝐡 Μ… = {π‘₯: 0 ≀ π‘₯ < 1, 6 < π‘₯ ≀ 10 } β†’ 𝐴 ̅𝐡 Μ…Μ…Μ… Μ…Μ… Μ…Μ… = {π‘₯: 1 ≀ π‘₯ ≀ 6 }

g) (𝑨𝑩) βˆͺ (𝑩π‘ͺ) βˆͺ (π‘ͺ𝑨)

𝐴𝐡 = {π‘₯: 1 ≀ π‘₯ ≀ 5}, 𝐡𝐢 = {π‘₯: 2 ≀ π‘₯ ≀ 6}, 𝐢𝐴 = {π‘₯: 2 ≀ π‘₯ ≀ 5}

(𝐴𝐡) βˆͺ (𝐡𝐢) βˆͺ (𝐢𝐴) = {π‘₯: 1 ≀ π‘₯ ≀ 6}

2.6 DRAWN VENN DIAGRAMS OF EVENTS A AND B REPRESENTING THE FOLLOWING

SITUATIONS:

a) 𝐴 and 𝐡 are arbitrary

b) If 𝐴 occurs, 𝐡 must occur

c) If 𝐴 occurs, 𝐡 cannot occur

d) 𝐴 and 𝐡 are independent.

Page 3: Ejercicios de probabilidad en sistemas de potencia

2.9 AN ENGINEERING SYSTEM HAS TWO COMPONENTS. LET US DEFINE THE FOLLOWING

EVENTS:

𝐴: First component is good. οΏ½Μ…οΏ½: First component is defective.

𝐡: Second component is good. οΏ½Μ…οΏ½: Second component is defective.

Describe the following events in terms of 𝐴, οΏ½Μ…οΏ½, 𝐡, π‘Žπ‘›π‘‘ οΏ½Μ…οΏ½:

a) At least one of the components is good 𝐴 βˆͺ 𝐡

b) One is good and one is defective 𝐴�̅� βˆͺ �̅�𝐡

2.11 A SATELLITE CAN FAIL FOR MANY POSSIBLE REASONS, TWO OF WHICH ARE COMPUTER

FAILURE AND ENGINE FAILURE. FOR A GIVEN MISSION, IT IS KNOWN THAT:

The probability of engine failure is 0.008

The probability of computer failure is 0.001

Given engine failure, the probability of satellite failure is 0.98

Given computer failure, the probability of satellite failure is 0.45

Given any other component failure, the probability of satellite failure is zero.

a) Determine the probability that a satellite fails.

𝑃(𝑓𝑑) = 0.008 βˆ— 0.98 + 0.001 βˆ— 0.45 = 8.29 βˆ— 10βˆ’3

b) Determine the probability that a satellite fails and is due to engine failure.

𝑃(π‘“π‘šπ‘œπ‘‘π‘œπ‘Ÿ) = 0.008 βˆ— 0.98 = 7.84 βˆ— 10βˆ’3

c) Assume that engines in different satellites perform independently. Given a satellite has

failed as result of engine failure, what is the probability that the same will happen to

another satellite?

𝑃(π‘“π‘šπ‘œπ‘‘π‘œπ‘Ÿ π‘ π‘Žπ‘‘π‘’π‘™π‘–π‘‘π‘’π‘  𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑖𝑒𝑛𝑑𝑒𝑠) = 0.008 βˆ— 0.98 = 7.84 βˆ— 10βˆ’3

Page 4: Ejercicios de probabilidad en sistemas de potencia

2.14 A BOX CONTAINS 20 PARTS, OF WHICH 5 ARE DEFECTIVE. TWO PARTS ARE DRAWN AT

RANDOM FROM THE BOX. WHAT IS THE PROBABILITY THAT:

a) Both are good?

𝑃 =15

20βˆ—

14

19= 0.553

b) Both are defective?

𝑃 =5

20βˆ—

4

19= 0.053

c) One is good and one is defective?

𝑃 =15

20βˆ—

5

19+

5

20βˆ—

15

19= 0.395

2.15 AN AUTOMOBILE BRAKING DEVICE CONSISTS OF THREE SUBSYSTEMS, ALL OF WHICH

MUST WORK FOR THE DEVICE TO WORK. THESE SYSTEMS ARE AN ELECTRONIC SYSTEM, A

HYDRAULIC SYSTEM, AND A MECHANICAL ACTIVATOR. IN BRAKING, THE RELIABILITIES

(PROBABILITIES OF SUCCESS) OF THESE UNITS ARE 0.96, 0.95 AND 0.95 RESPECTIVELY.

ESTIMATE THE SISTEM RELIABILITY ASSUMING THAT THESE SUBSYSTEMS FUNCTION

INDEPENDENTLY.

Comment: systems of this type can be graphically represented as shown in Figure 2.10,

in which subsystems 𝐴 (electronic system), 𝐡 (hydraulic system), and 𝐢(mechanical

activator) are arranged in series. Consider the path π‘Ž β†’ 𝑏 as the β€˜path to success’. A

breakdown of any or all of 𝐴, 𝐡, or 𝐢 will block the path from π‘Ž to 𝑏.

𝑅 = 𝑃(𝐴) βˆ— 𝑃(𝐡) βˆ— 𝑃(𝐢) = 0.96 βˆ— 0.95 βˆ— 0.95 = 0.8664

2.16 A SPACECRAFT HAS 1000 COMPONENTS IN SERIES. IF THE REQUIRED RELIABILITY OF

THE SPACECRAFT IS 𝟎. πŸ— AND IF ALL COMPONENTS FUNCTION INDEPENDENTLY AND HAVE

THE SAME RELIABILITY, WHAT IS THE REQUIRED RELIABILITY OF EACH COMPONENT?

𝑅 = 0. 91000βˆ’1= 0.999895

2.17 AUTOMOBILES ARE EQUIPPED WITH REDUNDANT BRAKING CIRCUITS; THEIR BRAKES

FAIL ONLY WHEN ALL CIRCUITS FAIL. CONSIDER ONE WITH TWO REDUNDANT BRAKING

Page 5: Ejercicios de probabilidad en sistemas de potencia

CIRCUITS, EACH HAVING A RELIABILITY OF 𝟎. πŸ—πŸ“. DETERMINE THE SYSTEM RELIABILITY

ASSUMING THAT THESE CIRCUITS ACT INDEPENDENTLY.

Comment: systems of this type are graphically represented as in Figure 2.11, in which

the circuits (𝐴 and 𝐡) have a parallel arrangement. The path to success is broken only

when breakdowns of both 𝐴 and 𝐡 occur.

𝑃(𝐴 βˆͺ 𝐡) = 1 βˆ’ (1 βˆ’ 0.95)(1 βˆ’ 0.95) = 0.998

2.18 ON THE BASIS OF THE DEFINITIONS GIVEN IN PROBLEMS 2.15 AND 2.17 FOR SERIES AND

PARALLEL ARRANGEMENTS OF SYSTEM COMPONENTS, DETERMINE RELIABILITIES OF THE

SYSTEMS DESCRIBED BY THE BLOCK DIAGRAMS AS FOLLOWS.

a) The diagram

𝑃(𝐡 βˆͺ 𝐢) = 1 βˆ’ (1 βˆ’ 0.85)(1 βˆ’ 0.90) = 0.985

b) The diagram

Page 6: Ejercicios de probabilidad en sistemas de potencia

𝑃(𝐴 ∩ (𝐡 βˆͺ 𝐢)) = 0.90 βˆ— 0.985 = 0.887

2.20 EVENTS 𝑨 AND 𝑩 ARE MUTUALLY EXCLUSIVE. CAN THEY ALSO BE INDEPENDENT?

EXPLAIN.

No, ya que dos eventos mutuamente exclusivos no pueden presentarse a la misma vez,

a diferencia de dos eventos independientes ya que estos pueden o no ocurrir al mismo

tiempo.

2.21 LET 𝑷(𝑨) = 𝟎. πŸ’, AND 𝑷(𝑨 βˆͺ 𝑩) = 𝟎. πŸ•. WHAT IS 𝑷(𝑩) IF:

a) 𝐴 and 𝐡 are independent?

𝑃(𝐴 βˆͺ 𝐡) = 𝑃(𝐴) + 𝑃(𝐡) βˆ’ 𝑃(𝐴) βˆ— 𝑃(𝐡) β‡’ 0.7 = 0.4 + 𝑃(𝐡) βˆ’ 0.4 βˆ— 𝑃(𝐡) β‡’ 𝑃(𝐡) = 0.5

b) 𝐴 and 𝐡 are mutually exclusive.

𝑃(𝐴 βˆͺ 𝐡) = 𝑃(𝐴) + 𝑃(𝐡) β‡’ 0.7 = 0.4 + 𝑃(𝐡) β‡’ 𝑃(𝐡) = 0.7 βˆ’ 0.4 = 0.3

2.22 LET 𝑷(𝑨 βˆͺ 𝑩) = 𝟎. πŸ•πŸ“, AND 𝑷(𝑨𝑩) = 𝟎. πŸπŸ“. IS IT POSSIBLE TO DETERMINE 𝑷(𝑨)

AND 𝑷(𝑩)?

Answer the same question if, in addition:

a) 𝐴 and 𝐡 are independent?

𝑃(𝐴 βˆͺ 𝐡) = 𝑃(𝐴) + 𝑃(𝐡) βˆ’ 𝑃(𝐴)𝑃(𝐡) β‡’ 0.75 = 𝑃(𝐴) + 𝑃(𝐡) βˆ’ 0.25 β‡’ 𝑃(𝐴) + 𝑃(𝐡)

= 1

TambiΓ©n se tiene que: 𝑃(𝐴) βˆ— 𝑃(𝐡) = 0.25

Por lo que: 𝑃(𝐴) =0.25

𝑃(𝐡)

0.25

𝑃(𝐡)+ 𝑃(𝐡) = 1 β‡’ 0.25 + [𝑃(𝐡)]2 = 𝑃(𝐡) β‡’ [𝑃(𝐡)]2 βˆ’ 𝑃(𝐡) + 0.25 = 0

β‡’ 𝑃(𝐴) = 0.5, 𝑃(𝐡) = 0.5

b) 𝐴 and 𝐡 are mutually exclusive.

Page 7: Ejercicios de probabilidad en sistemas de potencia

𝑃(𝐴 βˆͺ 𝐡) = 𝑃(𝐴) + 𝑃(𝐡)

Debido a la falta de informaciΓ³n no se puede resolver el ejercicio.