Eficiencia Energética en Generación y Distribución de Vapor

39
UPME

Transcript of Eficiencia Energética en Generación y Distribución de Vapor

Page 1: Eficiencia Energética en Generación y Distribución de Vapor

UPME

Page 2: Eficiencia Energética en Generación y Distribución de Vapor

EELLAABBOORRAADDOO PPOORR::

UUNNIIVVEERRSSIIDDAADD DDEELL AATTLLÁÁNNTTIICCOO

GGRRUUPPOO DDEE GGEESSTTIIÓÓNN EEFFIICCIIEENNTTEE DDEE EENNEERRGGÍÍAA,, KKAAII::

DDRR.. JJUUAANN CCAARRLLOOSS CCAAMMPPOOSS AAVVEELLLLAA,, IINNVVEESSTTIIGGAADDOORR PPRRIINNCCIIPPAALL..

MMSSCC.. EEDDGGAARR LLOORRAA FFIIGGUUEERROOAA,, CCOOIINNVVEESSTTIIGGAADDOORR..

MMSSCC.. LLOOUURRDDEESS MMEERRIIÑÑOO SSTTAANNDD,, CCOOIINNVVEESSTTIIGGAADDOORR..

MMSSCC.. IIVVÁÁNN TTOOVVAARR OOSSPPIINNOO,, CCOOIINNVVEESSTTIIGGAADDOORR..

IINNGG.. AALLFFRREEDDOO NNAAVVAARRRROO GGÓÓMMEEZZ,, AAUUXXIILLIIAARR DDEE IINNVVEESSTTIIGGAACCIIÓÓNN..

UUNNIIVVEERRSSIIDDAADD AAUUTTÓÓNNOOMMAA DDEE OOCCCCIIDDEENNTTEE

GGRRUUPPOO DDEE IINNVVEESSTTIIGGAACCIIÓÓNN EENN EENNEERRGGÍÍAASS,, GGIIEENN::

MMSSCC.. EENNRRIIQQUUEE CCIIRROO QQUUIISSPPEE OOQQUUEEÑÑAA,, CCOOIINNVVEESSTTIIGGAADDOORR..

MMSSCC.. JJUUAANN RRIICCAARRDDOO VVIIDDAALL MMEEDDIINNAA,, CCOOIINNVVEESSTTIIGGAADDOORR..

MMSSCC.. YYUURRII LLÓÓPPEEZZ CCAASSTTRRIILLLLÓÓNN,, CCOOIINNVVEESSTTIIGGAADDOORR..

EESSPP.. RROOSSAAUURRAA CCAASSTTRRIILLLLÓÓNN MMEENNDDOOZZAA,, CCOOIINNVVEESSTTIIGGAADDOORR..

AASSEESSOORR

MMSSCC.. OOMMAARR PPRRIIAASS CCAAIICCEEDDOO,, CCOOIINNVVEESSTTIIGGAADDOORR..

UUNN PPRROOYYEECCTTOO DDEE LLAA UUNNIIDDAADD DDEE PPLLAANNEEAACCIIÓÓNN MMIINNEERROO

EENNEERRGGÉÉTTIICCAA DDEE CCOOLLOOMMBBIIAA ((UUPPMMEE)) YY EELL IINNSSTTIITTUUTTOO

CCOOLLOOMMBBIIAANNOO PPAARRAA EELL DDEESSAARRRROOLLLLOO DDEE LLAA CCIIEENNCCIIAA YY LLAA

TTEECCNNOOLLOOGGÍÍAA.. ““FFRRAANNCCIISSCCOO JJOOSSÉÉ DDEE CCAALLDDAASS”” ((CCOOLLCCIIEENNCCIIAASS))..

Page 3: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

i

CCOONNTTEENNIIDDOO

Pág.

11.. AANNÁÁLLIISSIISS DDEE SSIISSTTEEMMAA DDEE VVAAPPOORR……………………………………………………………………………… 11

11..11 MMEEDDIICCIIOONNEESS YY PPRRUUEEBBAA DDEE CCOOMMBBUUSSTTIIÓÓNN EENN LLOOSS GGEENNEERRAADDOORREESS

DDEE VVAAPPOORR………………………………………………………………………………………………………………………………………… 11

11..22 PPRREEPPAARRAACCIIÓÓNN MMEEDDIICCIIOONNEESS………………………………………………………………………………………………........ 33

11..33 DDIIFFEERREENNTTEESS OOPPCCIIOONNEESS DDEE PPRRUUEEBBAA…………………………………………………………………………............ 33

11..44 IINNSSTTRRUUMMEENNTTOOSS DDEE MMEEDDIICCIIÓÓNN…………………………………………………………………………………………........ 88

11..55 TTOOMMAA DDEE MMEEDDIICCIIOONNEESS…………………………………………………………………………………….................................... 88

11..55..11 MMeeddiicciioonneess ddee CCoonnddiicciioonneess ddeell MMeeddiioo AAmmbbiieennttee……..………………………………...... 88

11..55..22 GGeenneerraaddoorreess ddee VVaappoorr…………………………………………………………..……..………………………………...... 99

11..55..33 AAnnáálliissiiss ddee GGaasseess…………………………………………………………..……..………………………………...................... 1100

11..55..44 FFlluujjoo ddee AAgguuaa ddee AAlliimmeennttaacciióónn……………………..……..……..………………………………...................... 1111

11..55..55 CCaannttiiddaadd ddee PPuurrggaa CCoonnttiinnuuaa..………………………………..……..………………………………...................... 1111

11..55..66 CCaarraacctteerrííssttiiccaass ddeell CCoommbbuussttiibbllee..……………………..……..……………………………….......................... 1122

11..55..77 FFuuggaass eenn TTrraammppaass……………………....………………………………..……..………………………………...................... 1133

11..55..88 MMeeddiicciioonneess eenn SSuuppeerrffiicciieess CCaalliieenntteess………………..……..………………………………...................... 1133

11..66 CCÁÁLLCCUULLOOSS DDEE LLAA EEFFIICCIIEENNCCIIAA DDEELL GGEENNEERRAADDOORR DDEE VVAAPPOORR………………………………........ 1144

11..66..11 MMééttooddoo ddee PPéérrddiiddaass ddee CCaalloorr………………………………..……..………………………………...................... 1144

11..66..22 MMééttooddoo ddee EEnnttrraaddaass yy SSaalliiddaass………………..……..………………………………........................................ 1155

11..77 FFOORRMMUULLAARRIIOO PPAARRAA CCÁÁLLCCUULLOOSS…………………………………………………………………………………….............. 1166

11..77..11 CCáállccuulloo ddee llaa EEffiicciieenncciiaa………………………………..……..………………………………........................................ 1166

11..77..22 BBaallaannccee ddee CCaalloorr eenn eell GGeenneerraaddoorr ddee VVaappoorr…………………….......................................... 2222

11..77..33 VVaappoorr yy AAgguuaa ddee AAlliimmeennttaacciióónn……………………...................................................................................... 2233

11..77..44 PPéérrddiiddaass eenn eell GGeenneerraaddoorr ddee VVaappoorr……………………...................................................................... 2244

11..88 EEFFIICCIIEENNCCIIAA MMEEDDIIAA PPEESSAADDAA..………………………………………………………………………………………………........ 2255

11..99 PPÉÉRRDDIIDDAA DDEE CCAALLOORR EENN LLÍÍNNEEAASS YY TTUUBBEERRÍÍAASS………………………………………………………….............. 2277

11..99..11 CCáállccuulloo ddee llaa PPéérrddiiddaa ddee CCaalloorr eenn LLíínneeaass ((TTuubbeerrííaass))……..……………………........ 2277

11..99..22 CCáállccuulloo ddee llaa PPéérrddiiddaa ddee CCaalloorr eenn TTaannqquueess ((SSuuppeerrffiicciieess PPllaannaass))........ 2288

11..1100 PPÉÉRRDDIIDDAA DDEE CCAALLOORR EENN TTRRAAMMPPAASS PPAARRAA VVAAPPOORR YY FFUUGGAASS………………………….............. 2299

11..1100..11 TTrraammppaass ppaarraa VVaappoorr……………………………………………………………………....……..……………………........ 2299

11..1100..22 FFuuggaass………………………………..……………………………………………………………………....……..……………………........ 3300

11..1111 GGUUÍÍAA DDEE MMEEDDIIDDAASS DDEE AAHHOORRRROO DDEE EENNEERRGGÍÍAA…………………………………………………….............. 3322

11..1122 PPÉÉRRDDIIDDAASS EENN AACCCCEESSOORRIIOOSS EENN TTUUBBEERRÍÍAASS………………………………………………………….............. 3355

Page 4: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

1

11.. AANNÁÁLLIISSIISS DDEE SSIISSTTEEMMAASS DDEE VVAAPPOORR

El vapor de agua es uno de los medios de transmisión de calor de mayor efectividad, y su fácil generación y manejo lo han situado como uno de los servicios auxiliares más difundidos en la industria. En los diagnósticos energéticos, se han encontrado grandes potenciales de ahorro en la generación y distribución de vapor, que van desde 5 hasta 20% del consumo de combustible. El presente documento contiene información base a ser empleada para evaluar energética y económicamente el potencial existente en sistemas de generación y distribución vapor. La información contenida se encuentra dividida en:

1. MMEEDDIICCIIOONNEESS.. En la parte correspondiente a mediciones, se tratan de aspectos básicos de instrumentación como las mediciones que son requeridas para realizar evaluaciones, la forma de realizarlas y métodos alternativos para el caso de que no se cuente con los instrumentos necesarios o con la posibilidad de tomar la medición.

2. MMÉÉTTOODDOOSS DDEE CCÁÁLLCCUULLOO.. Dada la aceptación a escala internacional del código de pruebas de potencia de la American Society of Mechanical Engineers (ASME PTC 4.1); este fue tomado como referencia para el cálculo de la eficiencia en generadores de vapor, utilizando los métodos de pérdidas, y el de entradas y salidas (Directo).

11..11 MMEEDDIICCIIOONNEESS YY PPRRUUEEBBAASS DDEE CCOOMMBBUUSSTTIIÓÓNN EENN LLOOSS GGEENNEERRAADDOORREESS DDEE VVAAPPOORR..

La medición en un diagnostico energético, es una etapa que, mediante la instrumentación adecuada, experiencia, buen criterio, programación, análisis, coordinación y planeación apropiadas, permite dar seguimiento al flujo y distribución de energía en sus procesos de transformación y establecer un balance en cada etapa y en cualquier tiempo. Aún cuando las aplicaciones, usos finales, fuentes de pérdida y formas de la energía son numerosas, conceptualmente los procesos siguen patrones bien establecidos y sencillos en sus transformaciones de energía química – térmica – mecánica – eléctrica. Para la medición, se parte del conocimiento de los parámetros que intervienen en cada etapa de transformación, de los efectos que el cambio produce en ellos y de los patrones que siguen esos cambios. La calidad del diagnóstico energético, y por lo tanto la efectividad de las medidas que se recomienden, dependerá de la precisión, exactitud, forma y condiciones en que las mediciones sean tomadas, por lo que habrá que cuidar la variación entre

Page 5: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

2

lecturas y para una serie de lecturas del mismo parámetro y bajo las mismas condiciones, se esperarían valores similares, en caso contrario se deberán analizar buscando el origen de la variación; mediciones de la misma variable y bajo las mismas condiciones deberán mostrar valores con poca variación, en caso contrario las lecturas deberán desecharse y se tendrán que repetir las mediciones hasta obtener la precisión adecuada. Otro aspecto importante es el punto donde se tomen las mediciones.

a. Propósito de las Pruebas y Mediciones. Las pruebas y mediciones tendrán

como objetivo, conocer el comportamiento energético de la unidad, por lo que será importante y necesario representar o reproducir las condiciones y régimen de operación que normalmente se tienen durante la mayor parte del tiempo en servicio, en la unidad que se prueba.

Los parámetros principales a medir serán aquellos cuya influencia es importante o determinante en los cálculos de eficiencia o rendimiento energético de la caldera, y de éstos, aquellos con mayor exigencia en la precisión serán los que en forma directa o en mayor proporción participen en el cálculo de pérdidas.

b. Condiciones Deseables de Prueba. La campaña de mediciones y pruebas

nos presenta también la oportunidad de determinar, además del rendimiento energético, la capacidad real de generación y la identificación de áreas de mejora operativa o de factores limitantes para obtener la generación máxima y óptima del generador de vapor, por lo que será recomendable revisar y de preferencia comprobar que sean previstas en la planeación de campaña de mediciones como mínimo las condiciones que se dan al final.

c. Pruebas a Diferente Régimen. Aún cuando sería deseable conocer el

comportamiento de una caldera en toda su gama de capacidades, esta condición y las posibilidades prácticas de conseguirlo son poco comunes por alguna, entre otras, de las siguientes razones:

Condiciones determinantes por demanda de usuarios principales del

vapor. Perfil de carga constante. Imposibilidad por deterioro o “derrateo” de la unidad para alcanzar su

capacidad nominal. Problemas con sistemas o equipos auxiliares. Ajustes o problemas de potencia del sistema de control. Sobredimensionamiento de las unidades. Diseño original inapropiado del generador de vapor.

Page 6: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

3

11..22 PPRREEPPAARRAACCIIÓÓNN DDEE LLAASS MMEEDDIICCIIOONNEESS..

Se sugiere que previamente a la prueba en que se realizarán las mediciones, se mantenga la carga del generador de vapor durante un lapso de una hora para que los parámetros: presión, temperatura y flujo se estabilicen. A partir de los 30 minutos, se tomarán lecturas para verificar la estabilidad y en el caso de que ésta se haya logrado, se procederá a iniciar la prueba. Antes de realizar las pruebas y las mediciones correspondientes, es conveniente realizar una inspección completa al sistema para verificar la operación de todos los instrumentos, incluyendo los equipos portátiles. El equipo de trabajo dará indicaciones al personal que participará en las mediciones y en la prueba. Con el propósito de que todos los datos necesarios para el cálculo sean obtenidos. Las pruebas se realizarán de ser posible, al 50% (carga baja), 75% (carga media) y al 100 % (carga máxima de trabajo), de acuerdo al proceso productivo. Cada prueba se realizará durante una hora y se tomarán mediciones cada 15 minutos, las que se registrarán en los formatos correspondientes. Los valores medidos no deben tener discrepancias mayores del 5% entre sí en cada prueba, pues de lo contrario ésta tendrá que repetirse.

11..33 DDIIFFEERREENNTTEESS OOPPCCIIOONNEESS DDEE PPRRUUEEBBAA.. La medición plantea un problema diferente para cada planta de acuerdo con el servicio, las necesidades y la calidad requerida del vapor por los usuarios en planta, sin embargo hay una serie de opciones o artificios que pueden ser empleados por el consultor o ejecutor de las pruebas y de los cuales, sin que esto sea limitativo, se exponen a continuación algunos.

1. Distribución de Carga. Las plantas que cuentan con más de una unidad en disponibilidad; ya sea en servicios todos o con unidad en reserva tendrán siempre posibilidades de operar con otras unidades para lograr el nivel deseado en cada carga o régimen seleccionado para medición.

Esto particularmente resuelve los problemas de alta carga en el caso de la reserva y de alta o baja carga en el caso de usar otras unidades en servicio.

Lo anterior sin embargo establece el concurso de varios condicionantes, entre otros: que las calderas alimenten al mismo sistema, que operen a la misma presión de trabajo, que no sean de capacidades muy distintas, etc.

2. Programación de Acuerdo con el Perfil de Carga Normal. Esta opción

normalmente requiere de un tiempo más amplio en la ejecución de la campaña de mediciones ya que para tener representados diferentes niveles de carga debe ajustarse al perfil de un período típico de operación que

Page 7: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

4

incluya los valores mínimo y máximo de carga en la planta y ese período puede ser diario, semanal, mensual, etc.

3. Programa de Pruebas con Producción Programada. Si el perfil y procesos

normales de producción no permiten representar los niveles de carga en toda la gama deseada, hay la posibilidad de convenir temporalmente y por mínimo tiempo posible, algunas operaciones del proceso ya sea para desplazar una operación respecto de otra o para hacerlas coincidir.

Lo anterior puede convenirse, en fechas, horas y duración, con los responsables a cargo de producción y de áreas específicas de proceso y permitirá realizar las pruebas en menor tiempo que en la opción anterior.

4. Variación del Régimen de Combustión Independientemente de la

Generación de Vapor. En muchos casos podrá realizarse la operación de

variar temporalmente el régimen de combustión de una caldera y realizar mediciones de combustión a diferentes regímenes entre el mínimo y el máximo independientemente de la generación de vapor instantánea.

Lo anterior es posible de acuerdo con los siguientes razonamientos:

La gran mayoría de las calderas industriales, medianas y pequeñas, en

capacidades de generación nominales de 500 CC y menores están equipadas con sistemas de control de combustión tipo posicionador - paralelo y control de dos posiciones y un elemento para el sistema de agua de alimentación (o de nivel).

Las calderas tienen almacenamiento o inercia térmica que pueden adecuadamente aprovechar por períodos cortos.

El control de agua de alimentación, por otro lado, opera en forma independiente y únicamente obedece a señales de arranque y paro de la bomba de alimentación, a través de señales de un interruptor en el casco (envolvente - coraza - cuerpo) o domo de la caldera según el tipo.

En el caso de control de combustión, lo anterior significa, que para cada valor de presión, dentro de la banda de desviaciones permisible del control de presión de vapor, corresponde una posición angular del eje maestro y para cada ángulo de la manivela de éste hay una posición fija del mecanismo de leva/seguidor o manivela en la válvula de control, según el tipo de combustible correspondiente con una posición fija de las compuertas de registros y de regulación de aire.

Un buen número de calderas tienen controles de agua de alimentación de dos posiciones (dentro-fuera) cuyas características e influencia en el

Page 8: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

5

control de combustión pueden aprovecharse adecuadamente para estas maniobras.

Esta configuración permite el operar por períodos cortos, el control de combustión a diferente régimen de fuego independientemente que se tenga alta o baja evaporación en la caldera.

Las calderas pueden operarse manualmente y conseguir una situación favorable de combinación, presión de vapor-nivel de agua adecuada para la operación por corto tiempo a un régimen de combustión distinto al de la generación instantánea.

Además en calderas medianas y pequeñas la estabilidad en las condiciones de combustión y análisis de gases puede lograrse en pocos minutos, así como la temperatura con un factor de corrección que no influye en la veracidad de los resultados.

Si se analizan los conceptos anteriores se entenderá que es relativamente fácil operar manualmente, ya sea con desconexión de mecanismos maestros o sin necesidad de éstos y lograr prácticamente cualquier nivel de régimen de combustión, dentro de las capacidades del sistema, para obtener una información completa de las unidades y lograr un diagnóstico adecuado. Lo anterior se consigue variando manualmente el nivel o régimen de combustión desde el tablero de control, cuando se tiene control manual remoto, o bien desconectando el varillaje del servomotor de control de presión, que permita operar manualmente el eje maestro al ángulo o posición que requiere el régimen de combustión deseado. Esta condición permite obtener mediciones confiables de combustión y análisis de gases para cualquier condición de carga a prácticamente cualquier generación de vapor y con bajo margen de error en la temperatura de gases. Lo anterior es más cierto en las calderas de tubos de humo, las que por otras parte, permiten también un margen en tiempo de estas condiciones de “carga ficticia” dada la mayor relación de almacenamiento de agua a producción de vapor con respecto a las calderas de tubos de agua. En los casos de calderas con sistemas de control más elaborado como el posicionador en serie, también se aplica lo anterior y cuando las calderas están equipadas con control modulante de agua de alimentación, estas operaciones también pueden realizarse con mayor precisión y seguridad.

Page 9: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

6

Tabla 1. Lista de Mediciones y Lugares Donde se van a Efectuar.

MMEEDDIICCIIÓÓNN LLUUGGAARR

MMEEDDIIOO AAMMBBIIEENNTTEE

Temperatura ambiente de bulbo seco

Temperatura ambiente de bulbo húmedo

Humedad relativa

Presión barométrica

Área donde se localice el sistema de generación y distribución de vapor.

(Punto No. 9)

GGEENNEERRAADDOORR DDEE VVAAPPOORR

Chimenea

Análisis de gases

Temperatura de gases de escape

En algún lugar de la tubería, lo más cercano posible al cuerpo de la caldera, para evitar que la medición se vea afectada por posibles infiltraciones de aire. (Punto No. 2,3 ó 4)

Agua de alimentación

Flujo

Temperatura

Presión

Conductividad

En la instrumentación localizada a la descarga de la bomba de agua de alimentación y en el tanque de agua de alimentación.

(Punto No. 1 ó 10)

Vapor

Flujo

Temperatura

Presión

En la instrumentación localizada en el generador de vapor, o en el cabezal de distribución de vapor.

(Punto No. 8)

Combustible

Flujo

Temperatura

En el tanque de día, a la descarga de la bomba del combustible o en la caseta del suministro de combustible. (Punto No. 6 u 7)

Aire

Temperatura del aire a quemadores

En cuarto de máquinas. En el ducto de aire o a la salida del calentador de aire. (Punto No. 5)

TTUUBBEERRÍÍAA,, TTAANNQQUUEESS YY DDEEPPÓÓSSIITTOOSS

Temperatura de superficie

Dimensiones del equipo o tubería

Superficie o pared del equipo que se trate,

En el cuerpo del equipo que se trate.

FFUUGGAASS

Diámetro de fuga

Presión del vapor fugado

Temperatura de la fuga

En el lugar donde se detecten.

PPUURRGGAASS

Temperatura

Presión

Flujo

Cabezales de distribución o instrumentación localizada en tanques. (Punto No. 11)

TTRRAAMMPPAASS DDEE VVAAPPOORR

Sonido emitido por el flujo de vapor

Sonido emitido por el flujo de condensado

Sonido emitido por falla del dispositivo interno de la trampa de vapor.

Temperaturas y presiones de trabajo

Tubería antes de la trampa

Tubería de descarga de la trampa

En el cuerpo de la trampa de vapor

Page 10: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

7

Figura 1. Diagrama Simplificado del Generador de Vapor.

Quem

ador

Economizador

Calentador

de aire

Agua de

alimentación

Agua de atemperación

Precalentador de aire

con vapor

Ventilador de

tiro forzado

Combustible

líquido

Combustible

gaseoso

Sobrecalentador

Soplador de hollìn o

servicios de vapor auxiliar

PurgasDomo

1

2

3

4

Aire para combustión 5

7

6

8

9

10

11

Vapor principal

Fuente

de calorVentilador de tiro inducido

Chimenea

Calentador de

combustible

líquido

Frontera del

generador de

vapor

Atemperador

Page 11: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

8

11..44 IINNSSTTRRUUMMEENNTTOOSS DDEE MMEEDDIICCIIÓÓNN..

Los principios básicos que la medición emplea son sencillos y sólidos, su conocimiento es fundamental para interpretar con buen criterio los resultados que se obtengan y el levantamiento en las plantas de industria media; puede requerir algunos días de esfuerzo de buena ingeniería. La selección del equipo apropiado para mediciones y el uso efectivo que se haga de él, son muy importantes en el programa de conservación de energía y deben considerarse en las etapas iniciales de éste. Para una adecuada selección del equipo, tome en cuenta aspectos y condiciones reales de servicio, y considere los siguientes factores:

a. Resistencia a la intemperie, temperatura, corrosión, abrasión al medio, vibraciones e impacto en el uso normal del equipo.

b. Factibilidad de instalación, espacio requerido y necesidad de interrumpir el

proceso. c. Fuente de energía y costos requeridos para su operación. d. Costos iniciales de entrenamiento, refacciones y servicio. e. Rango de valores medidos, protección contra variaciones súbitas. f. Generalmente la versatilidad y la efectividad tienen signos opuestos. g. Precisión del aparato.

El conocimiento de fenómenos físicos y químicos; y el comportamiento de materiales y fluidos, amplían el horizonte de posibilidades de medición y la gama de habilidades de la instrumentación disponible.

11..55 TTOOMMAA DDEE MMEEDDIICCIIOONNEESS.. Es frecuente que los regímenes de energía no puedan ser medidos directamente y se calculen a partir de mediciones de parámetros como presión, voltaje, temperatura, amperaje, análisis u otros. 1.5.1 Mediciones de Condiciones del Medio Ambiente. Se tomarán en el cuarto de máquinas junto al generador de vapor. Temperatura de Bulbo Seco: Corresponde a la temperatura normal del

ambiente y es medida por un termómetro de bulbo o cualquier otro tipo.

Page 12: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

9

Temperatura de Bulbo Húmedo: Corresponde a la temperatura medida por

un psicrómetro (termómetro similar al anterior pero con una mecha o algodón mojado en la parte sensible por donde se hace circular aire del ambiente).

Humedad Relativa: Se determina con la temperatura de bulbo seco y

húmedo usando tablas psicrométricas o con un psicrómetro. Presión Barométrica: Se determina con un barómetro, barómetro aneroide o

conociendo la elevación del lugar y consultando tablas.

Fórmula aproximada para determinar la presión barométrica de un lugar conociendo su elevación sobre el nivel del mar, válido entre 500 y 4000 m.

1000

50033,10Pr

haBarométricesión

Donde:

P: Presión barométrica en m columna de agua. h: Elevación del lugar en m.

Método Alternativo:

Se podrá usar la presión barométrica del lugar determinada por las

“Normales Climatológicas”, del Servicio Meteorológico Nacional. 1.5.2 Generador de Vapor

Flujo de Vapor: Su medición se realiza por medio de medidores de flujo (de

toberas, orificio) instalados en la tubería de salida del generador de vapor o en el ramal de la red de distribución en los puntos o secciones convenientes.

Métodos Alternativos:

1. Para el caso específico de producción de vapor de un generador se

medirá la variación de nivel en el tanque de agua de alimentación, manteniendo cerradas la purga continua y de superficie del generador de vapor durante la medición.

2. En algunos casos, se puede estimar el flujo de vapor si se conoce: la

potencia demandada real, el modelo y el diámetro del impulsor de la bomba del agua de alimentación al generador de vapor; el flujo se determina de acuerdo a la presión de descarga promedio de la bomba, potencia requerida por la bomba y utilizando las curvas proporcionadas por el fabricante de la misma.

Page 13: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

10

3. Mediante la medición y la suma del condensado que sale de los equipos a los cuales se les suministra vapor, y agregando el agua de repuesto y las pérdidas en distribución. Esta medición se realizará en el tanque de condensados midiendo la variación de su nivel, además de cerrar todas aquellas válvulas que pudieran afectar la medición.

4. Con la medición del agua de alimentación.

Temperatura del Vapor: Por medio de termómetro ya instalado en la tubería

de salida del generador de vapor, en el caso de tener medición de temperatura en los tableros de control o en gráficos, podrán tomarse dichos valores.

Métodos Alternativos:

1. Si se trata de vapor saturado que es el más común; con la medición

precisa de presión y el uso de tablas de vapor podemos obtener el valor de este parámetro.

2. Si se trata de vapor sobrecalentado y no existen termómetros en el generador de vapor, cabezales, equipos que reciben el vapor o cuarto de control, una alternativa empírica es medir la temperatura en un punto conveniente que este desnudo y limpio, y sumar 15 °C.

Presión del Vapor: Por medio de un manómetro ya instalado en la tubería

de salida del generador de vapor.

Método Alternativo:

1. Si se trata de vapor saturado, se puede determinar si se conoce su temperatura, mediante tablas de vapor.

1.5.3 Análisis de Gases

Por medio del analizador de gases de combustión Orsat o analizador electrónico de gases de combustión, se deberán tomar muestras a diferentes penetraciones del ducto de escape de gases. En caso de que no existan los puertos para realizar las mediciones correctamente, no sirven los que se encuentran para las mediciones de Semarnap, porque se encuentran alejados de la fuente; se puede hacer un orificio de toma de muestras en el ducto de descarga de gases, cuidando que éste no se localice en puntos donde exista infiltración de aire o cambio de dirección del flujo de gases. Se recomienda realizar este orificio a la salida del generador de vapor.

Page 14: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

11

Temperatura de Gases: Por medio de un termómetro o termopar en el

mismo orificio donde se tomó la muestra de gases. Es recomendable que también se realice la medición a diferentes penetraciones del ducto, con el objeto de obtener la temperatura promedio de los gases. En el caso de utilizar un analizador de gases electrónico, éste ya incluye la sonda de temperatura junto con la de gases.

1.5.4 Flujo de Agua de Alimentación Por medio de medidores ya instalados: pueden ser toberas, orificios o medidores de flujo de desplazamiento positivo. También se podrán utilizarse aparatos de medición ultrasónicos. Método Alternativo

1. Seguir las recomendaciones sugeridas en la medición alternativa del flujo de vapor.

Temperatura de Agua de Alimentación: Por medio de termómetro ya

instalado.

Método Alternativo

1. Medir la temperatura con sonda de inmersión en el tanque de agua de alimentación.

Presión de Agua de Alimentación: Por medio de un manómetro ya

instalado. 1.5.5 Cantidad de Purga Continua Se obtiene por la diferencia entre el flujo de vapor y flujo de agua de alimentación (adecuado si no hay fugas de agua en los tubos del generador de vapor). Como esta medición es indirecta depende de la exactitud y confiabilidad de las mediciones realizadas. Método Alternativo

1. Mediante un medidor de flujo ultrasónico.

2. Por observación de las variaciones de nivel y volumen desplazado en las

operaciones de purga de fondo considerando el tiempo o con la instalación de una placa de orificio.

Page 15: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

12

1.5.6 Características del Combustible

Utilizar de preferencia la información del combustible de la fuente de suministro, o realizar un análisis de laboratorio de una muestra de combustible. Cantidad de Combustible:

1. Gaseoso: Por medio de medidor de flujo de orificio, generalmente se

instala en la caseta de medición y es proporcionado por el vendedor de combustible, compensado por temperatura, presión y densidad.

2. Líquido: Por medio de medidor de flujo, generalmente de desplazamiento

positivo o de área variable, compensado por temperatura o por diferencias de nivel compensado por temperatura en un tanque cubicado.

3. Sólidos: Mediante el pesado del combustible.

4. Otros combustibles: Usar el método de medición utilizado por la empresa

diagnosticada, analizándolo y sugiriendo si se puede optimizar.

Método Alternativo

1. En el caso de que se cuente con un cabezal para el suministro de

combustible a varios generadores de vapor la determinación del gasto por generador de vapor se realizará de la siguiente forma:

a. Se podrá cuantificar proporcionalmente a la carga de cada uno de los

generadores de vapor, esto es, se asignará un porcentaje de consumo de combustible a cada generador de vapor en función a su carga y potencia, mediante el siguiente procedimiento:

Se calcula una capacidad Ci para cada generador de vapor,

mediante la siguiente ecuación:

100

arg a de cPorcentajeor xdor de vapdel generaCapacidad Ci

donde:

i: Nº de generador de vapor.

Se obtiene una capacidad total del sistema de generación de vapor:

nt C ... C C C C 321

Page 16: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

13

Se determina el factor para cada generador de vapor:

t

i

iC

CF

donde:

i: Nº de generador de vapor y,

Fii

n

1

1

Se obtiene el consumo de combustible para cada generador de

vapor y para el sistema de generación de vapor, mediante las siguientes ecuaciones:

iCi FxWW

donde: i: Nº de generador de vapor. Wc: Consumo de combustible medido de entrada al sistema de generación de vapor. Fi: Factor para el generador i.

Además, la sumatoria de todos los consumos calculados para los

generadores de vapor debe ser igual al consumo de combustible medido.

W Wii

nc

1

b. En el caso de que la operación lo permita, se aislará cada uno de los generadores de vapor de manera que el combustible suministrado al cabezal, sea el combustible consumido por el generador de vapor. Esto podrá implicar la suspensión momentánea del suministro de vapor a procesos no relevantes.

1.5.7 Fugas en Trampas. Equipo de ultrasonido, estetoscopio, termómetro de bulbo, bimetálico o termopar. 1.5.8 Mediciones en Superficies Calientes En el caso de tuberías o tanques, se tomará la medición de temperatura en la superficie del aislamiento, en el caso de que se cuente con éste, o en su defecto, directamente sobre la superficie de la tubería o tanque. Así mismo, en el caso de tuberías se determinará su longitud y en el caso de tanques su superficie.

Page 17: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

14

11..66 CCÁÁLLCCUULLOO DDEE LLAA EEFFIICCIIEENNCCIIAA DDEELL GGEENNEERRAADDOORR DDEE VVAAPPOORR..

Como se expresó anteriormente, para el cálculo de la eficiencia energética del generador de vapor se utilizará como referencia el “Código PTC 4.1 para unidades de generación de vapor del ASME”. El código establece dos métodos para determinar la eficiencia: El método de pérdidas de calor y el de entradas y salidas (Directo).

1. El método de pérdidas de calor o sea la determinación de la eficiencia mediante la sustracción en porcentaje de la suma de las pérdidas medidas en la caldera.

2. El método directo o energía que entrega la caldera en el vapor contra la

energía entregada a la caldera. Se recomienda utilizar el método de pérdidas, dado que la información requerida por el método directo obliga al uso de equipos e instrumentos de difícil obtención y operación. 1.6.1 Método de Pérdidas de Calor.

Consiste en la evaluación de las pérdidas en el generador de vapor y del calor suministrado como crédito con los fluidos que entran a él. Para la aplicación del método de pérdidas de calor se requiere determinar lo siguiente:

a. Total de Pérdidas de Calor: Por gases secos. Por formación de CO. Por radiación. Por la combustión del H2. Por la humedad del aire. Por la humedad en el combustible. Pérdidas no determinadas

b. Créditos.

Calor en el aire de entrada. Calor sensible en el combustible. Calor que entra con la humedad del aire. Calor en el vapor de atomización (externo)

La eficiencia será cuantificada mediante la siguiente expresión:

Eficiencia = (1 - Pérdidas) x 100%

Page 18: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

15

1.6.2 Método de Entradas y Salidas.

En este método lo que se pretende es cuantificar la forma en que es utilizado el calor suministrado por el combustible, agua de alimentación y créditos. Esto es, cuánto de este calor es usado para la producción del vapor, que es el objetivo del sistema de generación, y cuánto calor es perdido por la purga continua y las pérdidas del generador de vapor. Para el método de entradas y salidas se requiere evaluar lo siguiente: Calor que entra con el combustible. Calor que entra con el agua de alimentación. Calor que entra por créditos. Calor que sale con el vapor generado. Calor que sale con la purga continua. Calor que sale con las pérdidas en el generador de vapor.

La eficiencia será cuantificada mediante la siguiente expresión:

%100xQ

QEficiencia

DOSUMINISTRA

OAPROVECHAD

Tabla 2. Errores Probables de Medición y Errores Resultantes en Cálculos de

Eficiencia (Tomado del ASME PTC 4.1, Sección 3).

MMÉÉTTOODDOO EENNTTRRAADDAASS YY SSAALLIIDDAASS

MMEEDDIICCIIÓÓNN EERRRROORR EENN

MMEEDDIICCIIÓÓNN,, %% EERRRROORR EENN EEFFIICCIIEENNCCIIAA

DDEE GG..VV..,, %%

Tanques pesadores (básculas calibradas) +/- 0.10 +/- 0.10

Tanques medidores (escalas calibradas) +/- 0.25 +/- 0.25

Tobera u orificio de flujo calibrado (incluyendo manómetro) +/- 0.35 +/- 0.35

Tobera u orificio de flujo calibrado (incluyendo registrador) +/- 0.55 +/- 0.55

Tobera u orificio de flujo no calibrado (incluyendo manómetro) +/- 1.25 +/- 1.25

Tobera u orificio de flujo no calibrado (incluyendo registrador) +/- 1.60 +/- 1.60

Poder Calorífico (gas y combustóleo) +/- 0.35 +/- 0.35

Temperatura de salida del sobrecalentador (calibrado) +/- 0.25 +/- 0.25

Presión de salida del sobrecalentador (calibrado) +/- 1.00 +/- 1.00

Temperatura de agua de alimentación (calibrado) +/- 0.25 +/- 0.25

MMÉÉTTOODDOO DDEE PPÉÉRRDDIIDDAASS

Poder calorífico (gas y combustóleo) +/- 0.35 +/- 0.02

Análisis de gases Orsay +/- 3.00 +/- 0.30

Temperatura de salida de gases de combustión (calibrado) +/- 0.50 +/- 0.02

Temperatura de aire de combustión (calibrado) +/- 0.50 +/- 0.00

Humedad del combustible +/- 1.00 +/- 0.00

Page 19: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

16

11..77 FFOORRMMUULLAARRIIOO PPAARRAA LLOOSS CCÁÁLLCCUULLOOSS

1.7.1 Cálculo de la Eficiencia.

La eficiencia de un generador será calculada por el método de pérdidas de acuerdo con la siguiente fórmula:

%100100 x

BH

LEficiencia

f

donde: L: Pérdidas en el generador de vapor, kJ/kg. Hf: Calor suministrado con el combustible, kJ/kg. B: Créditos, kJ/kg.

a. Cálculos Preliminares

1. Gasto de Nitrógeno:

100

07,32

01,12

01,12

02,28

2

2

2

SxCx

COCOx

NxWN

donde:

WN2: Gasto de nitrógeno, kgN2/kg cq N2: Nitrógeno en los gases de escape, % CO2: Bióxido de carbono en los gases de escape, % CO: Monóxido de carbono en los gases de escape, % C: Carbono en el combustible, % S: Azufre en el combustible, % cq: combustible quemado

2. Gasto de Aire

7685,0100

22

NWW

N

a

donde:

Wa: Gasto de aire seco, kg as/ kg cq WN2: Gasto de nitrógeno, kgN2/ kg cq N2: Nitrógeno en el combustible, %

Page 20: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

17

3. Gasto de Gases de Combustión

10001,12

07,32

01,1201,2802,283201,44

2

222

COCOx

SxCxCOxNxOxCOx

Wg

donde: Wg: Gasto de gases secos, kg gas/ kg cq CO2: Bióxido de carbono en los gases de escape, % O2: Oxígeno en los gases de escape, % N2: Nitrógeno en los gases de escape, % C: Carbono en el combustible, % S: Azufre en el combustible, % CO: Monóxido de carbono en los gases de escape, %

4. Relación Carbono /Hidrógeno

2H

C

H

C

donde: C: Carbono en el combustible, % H2: Hidrógeno en el combustible, %

5. Presión Parcial de la Humedad en el Flujo de Gases

awag WxWHxm 100/936,8 2

donde:

mg: Contenido de humedad en los gases de escape, kg agua/ kg g H2: Hidrógeno en el combustible, % Wa: Gasto de aire seco, kg as/kg cq Waw: Humedad en el aire, kg agua/ kg as

COCOxmCx

PP

g

b

mg

25,11

donde:

Pmg: Presión parcial de la humedad en el flujo de gases, bar. Pb: Presión barométrica del lugar, bar. mg: Contenido de humedad en los gases de escape, kg agua/kg g. CO2: Bióxido de carbono en los gases de escape, % CO: Monóxido de carbono en los gases de escape, % C: Carbono en el combustible, %

Page 21: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

18

6. Exceso de Aire

100

335,4937,7

3,3451,11

SxO

HxCx

At

donde:

At: Aire teórico (estequiométrico), kg as/kg cq C: Carbono en el combustible, % H2: Hidrógeno en el combustible, % S: Azufre en el combustible, %

22682,0

2100

22

2

COONx

COOx

Ea

donde: Ea: Exceso de aire, % CO: Monóxido de carbono en los gases de escape, % O2: Oxígeno en los gases de escape, % N2: Nitrógeno en los gases de escape, %

b. Cálculo de Créditos

1. Calor en el Aire de Entrada

faasaa TTCpxWB Re

donde: Ba: Calor en el aire de entrada, kJ/kg cq. Wa: Gasto de aire seco, kg as/ kg cq. Cpas: Calor específico del aire seco, kJ/kgas ºC. Ta: Temperatura del aire a quemadores, ºC. TRef: Temperatura de referencia, ºC.

2. Calor Sensible en el Combustible

ffff TTxCpB Re

donde: Bf: Calor sensible en el combustible, kJ/kg cq Cpf: Calor específico del combustible, kJ/kg ºC Tf: Temperatura del combustible, ºC.

Page 22: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

19

3. Calor en el Vapor de Atomización

f

VVva

ZW

hhxWB Sata

donde: Bz: Calor en el vapor de atomización, kJ/kg cq Wva: Gasto de vapor de atomización externo a la unidad, kg/s hva: Entalpía del vapor de atomización, kJ/kg hvsat: Entalpía de vapor saturado a TRef, kJ/kg Wf: Gasto de combustible, kg/s

4. Calor Suministrado con la Humedad que Entra con el Aire

faVawam TTxCpWxWB Re

donde: Bm: Calor suministrado con la humedad que entra con el aire, kJ/kg cq Wa: Gasto de aire seco, kg as/kg cq Waw: Humedad en el aire, kg agua/kg as Cpv: Calor específico del vapor, kJ/kg ºC Ta: Temperatura del aire a quemadores, ºC TRef: Temperatura de referencia, ºC

c. Cálculo de Pérdidas de Calor

1. Pérdidas por Gases Secos

fgqqq TTxCpxWL Re

donde: Lg: Pérdidas por gases secos, kJ/kg cq Wg: Gasto de gases secos, kg gas/kg cq Cpg: Calor específico de los gases secos, kJ/kg ºC Tg: Temperatura de los gases de escape, ºC TRef: Temperatura de referencia, ºC

2. Pérdidas por Formación de CO

COCO

CxxxxCO

LCO

2

100205,20549,110160

donde: Lco: Pérdidas por la formación de CO, kJ/kg cq CO2: Bióxido de carbono en los gases de escape, % CO: Monóxido de carbono en los gases de escape, % C: Carbono en el combustible, %.

Page 23: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

20

3. Pérdidas por Radiación.

LR = Pérdidas por radiación, %. (Figura 2).

Figura 2. Perdida Estándar por Radiación.

Page 24: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

21

4. Pérdidas por la Humedad Producto de la Combustión del Hidrógeno

SatV WPh hhxHxL 2936,8

donde:

Lh: Pérdidas por la humedad producto de la combustión del H2, kJ/kg cq H2: Hidrógeno en el combustible, % hpv: Entalpía del vapor a la presión Pmg y Tgas, kJ/kg hwsat: Entalpía del líquido saturado a TRef, kJ/kg

5. Pérdidas por la Humedad del Aire

SatV WPaeama hhxWxWL

donde:

Lma: Pérdidas por la humedad del aire, kJ/kg cq Wa: Gasto de aire seco, kg as/kg cq Waw: Humedad en el aire, kg agua/kgas hpv: Entalpía del vapor a la presión Pmg y Tgas, kJ/kg hwsat: Entalpía del líquido saturado a TRef, kJ/kg

6. Pérdidas por la Humedad en el Combustible

100

2 SatV WP

mf

hhxOHL

donde:

Lmf : Pérdidas por la humedad en el combustible, kJ/kg cq H2O: Humedad en el combustible, % hpv: Entalpía del vapor a la presión Pmg y Tgas, kJ/kg hwsat: Entalpía del líquido saturado a TRef, kJ/kg

7. Pérdidas No Determinadas

Li = Pérdidas no determinadas, %. (Información del fabricante).

Page 25: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

22

d. Cálculo de la Eficiencia.

1. Pérdidas por gases secos:

%,100

BH

xL

f

g

2. Pérdidas por formación de CO:

%,100

BH

xL

f

CO

3. Pérdidas por radiación: LR, %

4. Pérdidas por la humedad producto de la combustión del

hidrógeno:

%,100

BH

xL

f

h

5. Pérdidas por la humedad del aire:

%,100

BH

xL

f

ma

6. Pérdida por la humedad del combustible:

%,100

BH

xL

f

mf

7. Pérdidas no determinadas: Li, %

8. Eficiencia = 100 - Suma % Pérdidas

1.7.2 Balance de Calor en el Generador de Vapor

a. Combustible y Créditos

1. Calor que Entra con el Combustible

fff hxWQ

donde:

Qf: Calor que entra con el combustible, kJ/s Wf: Gasto de combustible, kg/s hf: Calor suministrado con el combustible, kJ/kg

Page 26: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

23

2. Créditos

fB WxBQ , mZfa BBBBB

donde: QB: Calor por Créditos, kJ/s B: Créditos, kJ/kg cq Wf: Flujo másico de combustible, kg/s Ba: Calor en el aire de entrada, kJ/kg cq.

faaa TTxWB Re

Bf: Calor sensible en el combustible, kJ/kg cq

ffff TTxCpB Re

BZ: Calor en el vapor de atomización, kJ/kg cq

fVVaVaZ WhhxWBSat

Bm: Calor suministrado con la humedad que entra con el aire, kJ/kg cq

faVawam TTxCpxWxWB Re

1.7.3 Vapor y Agua de Alimentación

1. Calor que Sale con el Vapor de Alta Presión

VaVaVa hxWQ

donde:

QVa: Calor que sale con el vapor de alta presión, kJ/s WVa: Flujo másico del vapor de alta presión, kg/s HVa: Entalpía del vapor de alta presión, kJ/kg

2. Calor que Sale con el Vapor de Media Presión

VmVmVm hxWQ

donde:

QVm: Calor que sale con el vapor de media presión, kJ/s WVm: Flujo másico del vapor de media presión, kg/s HVa: Entalpía del vapor de media presión, kJ/kg

Page 27: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

24

3. Calor que Sale con el Vapor de Baja Presión.

VbVbVb hxWQ

donde: QVb: Calor que sale con el vapor de media presión, kJ/s WVb: Flujo másico del vapor de media presión, kg/s HVb: Entalpía del vapor de media presión, kJ/kg

4. Calor que Sale con el Vapor Principal

VbVmVaV QxQxQQ , kJ/s

5. Calor que Entra con el Agua de Alimentación

AAAAAA hxWQ

donde: QAA: Calor que entra con el agua de alimentación, kJ/s WAA: Flujo másico del agua de alimentación, kg/s HAA: Entalpía del agua de alimentación, kJ/kg

6. Calor que Sale con la Purga Continua

PcPcPc hxWQ

donde:

QAA: Calor que sale con la purga continua, kJ/s WAA: Flujo másico de la purga continua, kg/s HAA: Entalpía de la purga continua, kJ/kg

1.7.4 Pérdidas en el Generador de Vapor

1. Pérdidas en el Generador de Vapor

imfmahRCOqP LLLLLLLQ

donde: QP: Pérdidas en el generador de vapor, kJ/s Lg: Pérdidas por gases secos, kJ/s Lco: Pérdidas por la formación de CO, kJ/s LR: Pérdidas por radiación, kJ/s Lh: Pérdidas por la humedad producto de la combustión del H2, kJ/s Lma: Pérdidas por la humedad del aire, kJ/s Lmf: Pérdidas por la humedad en el combustible, kJ/s Li: Pérdidas no determinadas, kJ / s

Page 28: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

25

2. Calor Total que Entra

AABfET QQQQ .

donde: QT.E: Calor Total que Entra, kJ/s Qf: Calor que entra con el combustible, kJ/s QB: Créditos, kJ/s QAA: Calor que entra con el agua de alimentación, kJ/s

3. Calor Total que Sale

PPcVST QQQQ .

donde: QT.E: Calor Total que Sale, kJ/s QV: Calor que sale con el vapor principal, kJ/s QPc: Calor que sale con la purga continua, kJ/s QP: Pérdidas en el generador de vapor, kJ/s

Con los datos anteriores, podemos determinar la eficiencia por el método de entradas y salidas de acuerdo a la siguiente expresión:

%100xEntradadeCalor

SalidadeCalorEficiencia

Tabla 3. Estimación de Pérdidas No Determinadas

PPÉÉRRDDIIDDAASS CCOONNDDIICCIIÓÓNN

1.0 % Combustibles líquidos y gaseosos

1.5 % Combustibles sólidos

4 % Generador de vapor en mal estado

11..88 EEFFIICCIIEENNCCIIAA MMEEDDIIAA PPEESSAADDAA.. Para la evaluación de las medidas de ahorro de energía relacionando los datos de medición obtenidos, con los datos históricos de consumo de combustible y producción anual de un generador de vapor, se emplea la fórmula denominada “Eficiencia media pesada”.

En esta sección, se explica la base del cálculo para estimar la eficiencia de un generador de vapor durante un año de operación, utilizándose la fórmula de la “Eficiencia media pesada”, la cual determina el valor de la eficiencia que se debe

utilizar para calcular las pérdidas de energía ocasionadas por la falta de aislamientos, fugas detectadas, trampas en mal estado o aquellas mejoras que se

Page 29: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

26

propongan al generador de vapor, con el fin de que los ahorros de energía sean más representativos con respecto a las verdaderas condiciones de operación de los generadores de vapor a lo largo del año. Dicha fórmula toma en cuenta el rendimiento integral de la unidad, empleando los porcentajes de tiempo que opera en cada valor de carga, y la eficiencia correspondiente determinada por cualquiera de las dos formas de cálculo (entradas y salidas o el de pérdidas). Para esto es necesario hacer primero un análisis histórico de los reportes mensuales de la generación de vapor para identificar los diferentes tipos de operación, y conocer los porcentajes de tiempo correspondientes a la carga normal de operación de cada generador. La confiabilidad de los resultados dependerá de la información que proporcione la planta sobre la producción mensual de vapor en todo el año así como del consumo de combustible respectivo, pudiendo apreciar una conducta cíclica que permita incluso, proyectar tales resultados. Con la información proporcionada se deberán obtener los siguientes tres gráficos:

1. Una gráfica que muestre la conducta de la producción en toneladas de vapor producidas en cada mes.

2. Una gráfica que indique el porcentaje de carga al que operó cada generador

en cada mes.

3. Con la información de las gráficas anteriores se realizará finalmente un histograma que indique los diferentes porcentajes de carga correspondientes a sus porcentajes de tiempo de operación en el mes respectivo.

Una vez conocido el porcentaje de tiempo a los diferentes porcentajes de carga y con los valores de eficiencia encontrados, se calculará la “Eficiencia media pesada” (EMP) para cada uno de los generadores de vapor de acuerdo a la siguiente fórmula:

100

... ZZBBAA

MP

TETETEE

donde:

EMP: Eficiencia media pesada.

EA...

Z: Eficiencia a una carga de operación "A" (%).

TA...

Z: Tiempo de operación a la carga "A" (%).

Page 30: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

27

Posteriormente se puede obtener el valor promedio de la eficiencia media pesada, según el número de generadores de vapor que tenga la empresa:

n

EEEE nMPMPMP

MP

...21

donde:

MP

E : Eficiencia media pesada promedio.

EMP1 … EMPn: Eficiencia media pesada de cada generador. n: Cantidad de generadores de vapor. Nota: Para determinar la eficiencia media pesada, es muy importante analizar las

bitácoras diarias de cada caldera, para así determinar los porcentajes de carga y de tiempo más comunes en la operación de cada una de ellas.

11..99 PPÉÉRRDDIIDDAA DDEE CCAALLOORR EENN LLÍÍNNEEAASS YY TTAANNQQUUEESS.. Como el diagnóstico energético se aplicará al sistema de generación y distribución de vapor, se considerarán las pérdidas de calor por falta de aislamiento en las líneas de vapor y retorno de condensados, en las líneas de combustible y en las de agua. El cálculo de las pérdidas o ganancias de calor en tuberías y superficies planas se determinan de acuerdo a la ASME eficiencia energética en aislamientos térmicos industriales, donde se utiliza la siguiente nomenclatura: C: Coeficiente de forma, 1.79 para superficies planas y 1.016 para tuberías,

adimensional. Esp: Espesor del material aislante, m TOp: Temperatura de operación, K tsup: Temperatura supuesta de la superficie del termoaislante, K ta: Temperatura ambiente, K kais: Conductividad térmica del termoaislante, W/(m K) V: Velocidad del viento, m/h Emss: Emisividad de la superficie aislada, adimensional dO: Diámetro exterior del equipo o tubería aislado, m 1.9.1 Cálculo de la Pérdida de Calor en Líneas (Tuberías).

Para el cálculo de la pérdida o ganancia de calor y la temperatura en la superficie en tuberías hasta de 609 mm de diámetro nominal, se emplearán las siguientes relaciones:

Page 31: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

28

1. Cálculo del Diámetro aislado, da (m):

Espxdd Oa 2

2. Cálculo del coeficiente de transferencia de calor por convección natural y forzada, desde la superficie aislada hacia el ambiente, hC (W/m2 K):

5,04266,0

sup

181,0

sup

2,0109366,718,1

44,510

11,17241,2 Vxxxttxx

ttxdxCxh a

a

aC

3. Cálculo del coeficiente de transferencia de calor por radiación, hR (W/m2 K ):

sup

4

sup

4

8109824,0tt

ttxExxh

a

a

mssR

4. Cálculo del coeficiente global de transferencia de calor, hs (W/m2 K):

RCS hhh

5. Cálculo del flux de calor, q (W/m):

aSO

a

ais

aOp

dxhd

dx

kx

ttxq

1ln

2

1

6. Verificación de la temperatura de superficie, tsc (K):

O

a

ais

Opscd

dx

kxx

qtt ln

2

7. Convergencia de la temperatura de superficie: Si tsup = tsc, entonces las pérdidas de calor son igual a q y la temperatura en la superficie aislada es tsc. En caso contrario, hacer tsup = tsc y regresar al punto No. 1 del procedimiento de cálculo para tuberías.

1.9.2 Cálculo de la Pérdida de Calor en Tanques (Superficies Planas).

Para el cálculo de la pérdida o ganancia de calor y la temperatura en la superficie, en superficies planas o tuberías de diámetro mayor a 610 mm, se emplearán las siguientes relaciones:

Page 32: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

29

1. Cálculo del coeficiente de transferencia de calor por convección natural y forzada, desde la superficie aislada hacia el ambiente, hC (W/m2 K):

5,04266,0

sup

181,0

sup

109366,718,144,510

11,10075,3 Vxxxttxx

ttxCxh a

a

C

2. Cálculo del coeficiente de transferencia de calor por radiación, hR (W/m2 K):

sup

4

sup

4

8109824,0tt

ttxExxh

a

a

mssR

3. Cálculo del coeficiente global de transferencia de calor, hS (W/m2 K):

RCS hhh

4. Cálculo del flujo de calor por unidad de área, q (W/m2):

Sais

aOp

hk

Esp

ttq

1

5. Verificación de la temperatura de superficie, tsc (K):

S

aSCh

qtt

6. Convergencia de la temperatura de superficie: Si tsup = tsc, entonces las

pérdidas de calor son igual a q y la temperatura en la superficie aislada es tsc. En caso contrario, hacer tsup = tsc y regresar al punto No. 1 del

procedimiento de cálculo para superficies planas.

11..1100 PPÉÉRRDDIIDDAA DDEE CCAALLOORR EENN TTRRAAMMPPAASS PPAARRAA VVAAPPOORR YY FFUUGGAASS

1.10.1 Trampas para Vapor

Tan pronto como el vapor deja la caldera empieza a ceder parte de su energía a cualquier superficie de menor temperatura. Al hacer esto, parte del vapor se condensa convirtiéndose en agua, prácticamente a la misma temperatura.

La combinación de agua y vapor hace que el flujo de calor sea menor ya que el coeficiente de transferencia de calor del agua es menor que el del vapor.

Page 33: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

30

Una trampa para vapor es un dispositivo cuya función básica es eliminar condensados, como beneficios o cualidades adicionales puede eliminar aire y otros gases no condensables, además de prevenir pérdidas de vapor.

Eliminación de Condensado. El condensado debe pasar siempre, rápido y

completamente a través de la trampa para vapor para obtener un mejor aprovechamiento de la energía térmica del vapor.

Eliminar Aire y otros Gases no Condensables. El aire y los gases

disminuyen el coeficiente de transferencia de calor. Además, se debe tener presente que el O2 y otros gases formados, pueden causar corrosión.

Prevenir Pérdidas de Vapor. No deben permitir el paso de vapor sino hasta que éste ceda la mayor parte de energía que contiene, también las pérdidas de vapor deben ser mínimas mientras la trampa libera vapor condensado, aire y gases incondensables.

1.10.2 Fugas.

La pérdida de calor por fugas de vapor, es uno de los problemas más comunes, cuya corrección, además de que requiere de una inversión mínima, ya que en la mayoría de los casos únicamente se trata de mantenimiento, es una de las medidas que permiten un ahorro importante en una empresa.

El cálculo de una fuga, ya sea en una línea de vapor o en alguna válvula o accesorio, se realizará mediante la determinación del diámetro equivalente de fuga (aproximado), de manera de tener un parámetro que permita cuantificar la energía perdida por fugas.

A continuación, se presenta una tabla en la que se puede determinar de una manera aproximada el flujo de vapor fugado. Tabla 4. Fugas de Vapor.

DDIIÁÁMMEETTRROO

DDEE LLAA FFUUGGAA PPRREESSIIÓÓNN DDEE VVAAPPOORR,, bar

mm 7 10 20

1,5 5.5 11 13

3 22 35 50

4 40 47 95

5 62 70 135

6 90 120 200

8 190 220 310

FFLLUUJJOO DDEE VVAAPPOORR FFUUGGAADDOO,, kg/h

Page 34: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

31

En el caso de las purgas, se evaluará la cantidad de calor perdido, en función de la temperatura y del gasto de agua purgado. En el caso de que la purga involucre agua tratada, se deberá considerar además el costo por el tratamiento. 1. Cálculo de la Pérdida de Calor en Trampas para Vapor: El flujo de vapor

que se fuga por una trampa para vapor o que se fuga por una línea de vapor en malas condiciones, se puede calcular de la forma siguiente:

5,0

2

15,2738,1

4536,0502,144,254

4118,08,0

Tx

xxPxD

xxx

WVf

donde:

WVf: Vapor que se fuga, kg/s D: Diámetro de la línea de vapor, mm P: Presión del vapor en la línea, bar T: Temperatura del vapor en la línea, °C

Para este cálculo es necesario acotar que la descarga de la trampa de vapor es a la atmósfera, lo que trae como resultado una sobreestimación de ahorro que puede llevar a situaciones erróneas. En caso de que no se descargue a la presión atmosférica; la presión de vapor en la línea tomará el valor de la diferencia entre la presión de la línea de vapor y de la presión de la línea de condensados.

Calor Perdido por las Trampas para Vapor

VVfVf hxWQ

donde: QVf: Calor perdido en la trampa para vapor, kJ/s Wvf: Vapor que se fuga, kg/s

hv = hVf – h: Entalpía del vapor en la línea, kJ/kg

h del agua a la temperatura del sistema donde se fuga el vapor, es igual a “ha reposición”, entalpía del agua de reposición, si no hay retorno de condensado. h del agua a la temperatura del sistema donde se fuga el vapor, es igual a “haa”, entalpía del agua de alimentación, si se tiene retorno de condesado.

Page 35: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

32

Cálculo de las Pérdidas de Calor en Fugas

hxWQ Vff

donde: Qf: Calor perdido por la fuga, kJ/s Wvf: Flujo de vapor fugado, kg/s

h = hVf - haa hVf : Entalpía del vapor fugado, kJ/kg haa : Entalpía a temperatura del agua de alimentación, kJ/kg.

11..1111 GGUUÍÍAA DDEE MMEEDDIIDDAASS DDEE AAHHOORRRROO DDEE EENNEERRGGÍÍAA..

En esta sección se presenta un directorio de las medidas encaminadas a eliminar (en la medida de lo posible), no sólo las pérdidas evaluadas en el potencial de ahorro; sino, también se presentarán medidas que permitan mejorar la generación y distribución del vapor, como podría ser el mejoramiento del tratamiento de agua, o el proponer programas de capacitación para el personal de la empresa. Estas medidas, aunque no resultan de la cuantificación de una pérdida, son el resultado de las observaciones y evaluaciones realizadas durante los diagnósticos. Cabe mencionar que las medidas de ahorro sugeridas, son sólo una guía de las propuestas que se podrían aplicar para incrementar el aprovechamiento energético de la empresa. Las medidas de ahorro están divididas en tres categorías básicas o niveles de implantación: aquellas cuya implantación requiera de una inversión nula o baja (nivel 1) y las medidas que requieran de una inversión mayor para poder ser adoptadas (nivel 2). En el caso de que sea necesaria la aplicación de un estudio posterior al diagnóstico para determinar la posible aplicación de una medida, o definir otras, éste quedará fuera del alcance del diagnóstico y se considerará como nivel 3.

Page 36: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

33

Tabla 5. Directorio de Medidas de Ahorro de Energía Térmica

ÁÁRREEAASS PPOOTTEENNCCIIAALLEESS DDEE

AAHHOORRRROO MMEEDDIIDDAASS DDEE AAHHOORRRROO NNIIVVEELL

CCAALLOORR PPEERRDDIIDDOO EENN LLÍÍNNEEAASS

AAIISSLLAADDAASS YY NNOO AAIISSLLAADDAASS..

Colocar aislamiento térmico en tuberías.

Cambio del aislamiento térmico en tuberías.

2

2

CCAALLOORR PPEERRDDIIDDOO EENN

TTAANNQQUUEESS YY DDEEPPÓÓSSIITTOOSS

Colocar aislamiento térmico en tanques o depósitos.

Cambio de aislamiento térmico en tanques o depósitos.

2

2

CCAALLOORR PPEERRDDIIDDOO EENN PPUURRGGAASS

YY FFUUGGAASS..

Automatización de purgas.

Sustitución de purgadores.

Reparación y eliminación de fugas.

Recuperación de purgas.

2

2

1

2

CCAALLOORR PPEERRDDIIDDOO EENN

TTRRAAMMPPAASS PPAARRAA VVAAPPOORR..

Instalación de trampas para vapor en líneas y equipos.

Reparación de las trampas para vapor.

Cambio de las trampas para vapor.

Instalación de mirillas de flujo o válvulas de 3 vías en las líneas de condensado.

2

2

2

2

CCAALLOORR PPEERRDDIIDDOO PPOORR

PPUURRGGAASS EENN CCAALLDDEERRAASS..

Reducción del calor perdido en la purga continua.

Evaluar la calidad del agua de repuesto.

Analizar los sistemas de tratamiento de agua, para poder reducir la purga continua.

Recuperar el calor de la purga continua.

Incrementar el retorno de condensados.

1

1

2

2

2

PPÉÉRRDDIIDDAASS EENN EELL

GGEENNEERRAADDOORR DDEE VVAAPPOORR..

Optimización de la combustión.

Reducir el porcentaje de exceso de aire.

Precalentamiento del combustible.

Sustitución por quemadores de bajo exceso de aire.

Instalación de equipos de recuperación de calor: Economizador o precalentador de aire.

Sustitución de generador de vapor.

2

2

2

3

3

3

CCOOMMBBUUSSTTIIBBLLEE

Sustitución o complementación.

Control de la recepción, manejo, almacenamiento y seguridad.

Secado, Calentado y Atomizado.

2

3

2

IINNSSTTRRUUMMEENNTTAACCIIÓÓNN YY

CCOONNTTRROOLL

Calibración o modernización de los instrumentos.

Automatización del sistema de control (control distribuido o control remoto).

Control de velocidad en bombas y ventiladores.

Dotar con analizadores de gases y otros instrumentos.

Corrección por Oxígeno.

Corrección por CO.

2

3

3

2

2

2

Page 37: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

34

Cont.

ÁÁRREEAASS PPOOTTEENNCCIIAALLEESS DDEE

AAHHOORRRROO MMEEDDIIDDAASS DDEE AAHHOORRRROO NNIIVVEELL

PPLLAANNEEAACCIIÓÓNN DDEE LLAA

OOPPEERRAACCIIÓÓNN

Repartir la carga eficientemente entre generadores de vapor y en el tiempo.

Administración de la carga de la caldera.

1

1

EEQQUUIIPPOOSS AAUUXXIILLIIAARREESS

OO PPEERRIIFFÉÉRRIICCOOSS

Compuertas y capuchones para viento en chimenea.

Deflector de viento en ventilas del cuarto de calderas.

Quemadores de bajo exceso de aire.

Sustituir quemadores atmosféricos por quemadores de alta presión.

Quemadores con retención de flama.

Instalación de quemadores a atomización con vapor o aire.

Instalación de quemadores duales.

Instalación de turbuladores.

Instalación de sopladores de hollín.

Mejorar las condiciones del retorno de condensado.

2

1

3

3

3

3

3

3

3

2

CCOONNTTAABBIILLIIDDAADD EENNEERRGGÉÉTTIICCAA

Establecer los costos de producción de vapor.

Determinar el consumo específico de combustible.

Determinar eficiencia de operación.

1

1

1

TTUUBBEERRÍÍAASS Revisar dimensionamiento y disposición de tuberías.

Agregar cabezal común para varios generadores de vapor.

2

2

GGAASSEESS DDEE CCOOMMBBUUSSTTIIÓÓNN

Precalentamiento de agua y aire.

Revisar tiros forzados o inducidos.

Revisar transferencia de calor a tubos de agua.

Verificar espesor de fluxes.

2

1

1

2

AAGGUUAA DDEE AALLIIMMEENNTTAACCIIÓÓNN YY

CCOONNDDEENNSSAADDOOSS..

Instalar turbobombas para el agua de alimentación.

Evaluar el retorno de condensados: contaminación, porcentaje y temperatura.

Inyectar directamente a la caldera los condensados de muy alta temperatura.

Evaluar la presión de bombas de agua de alimentación.

3

2

2

2

AAIISSLLAAMMIIEENNTTOO YY FFUUGGAASS Eliminación de grietas en mamparas, paredes y válvulas.

Mejorar el aislamiento.

2

2

PPLLAANNEEAACCIIÓÓNN DDEE LLAA

OOPPEERRAACCIIÓÓNN Reparta la carga según puntos de mayor eficiencia. 1

CCAAPPAACCIITTAACCIIÓÓNN Capacitación de personal. 2

MMAANNTTEENNIIMMIIEENNTTOO Mantenimiento y pruebas. 2

Page 38: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

35

11..1122 PPÉÉRRDDIIDDAASS EENN AACCCCEESSOORRIIOOSS DDEE TTUUBBEERRÍÍAASS..

En todas las empresas los accesorios en las tuberías implican a una gran variedad de aditamentos como pueden ser válvulas, codos, tes y dispositivos de medición entre otros. Muchos de estos accesorios, de acuerdo a su forma de construcción, es posible aislarlos completamente o parcialmente, mientras que otros no es posible aislarlos. En las siguientes tablas se muestran los valores aproximados de las pérdidas suplementarias originadas por los accesorios en función de una longitud equivalente de tubería, considerando, un tipo único de accesorio válido para todos los casos. Las tablas se consideran para la situación en que los accesorios estén ubicados en el interior o exterior de edificios y que estos se encuentren desnudos o parcialmente aislados, quedando los valores en función de la fracción aislada, del diámetro y de la temperatura de la tubería en que se encuentran los accesorios. Tabla 6. Pérdidas Suplementarias Debidas a los Accesorios en Tuberías

Situadas en el Interior de Edificios.

NNAATTUURRAALLEEZZAA DDEELL

AAIISSLLAAMMIIEENNTTOO DDIIÁÁMMEETTRROO IINNTTEERRIIOORR

DDEE LLAA TTUUBBEERRÍÍAA, mm

LLOONNGGIITTUUDD EEQQUUIIVVAALLEENNTTEE DDEE LLAA

TTUUBBEERRÍÍAA EENN MMEETTRROOSS PPAARRAA UUNNAA

TTEEMMPPEERRAATTUURRAA DDEE:: 100 ºC 400 ºC

Totalmente Desnudo

100 500

6 9

16 26

1/4 desnudo 3/4 aislado

100 2.5 5

1/4 desnudo 3/4 aislado

500 3 7.5

1/3 desnudo 2/3 aislado

100 3 6

1/3 desnudo 2/3 aislado

500 4 10

a. VVÁÁLLVVUULLAASS:: En la tabla 6 y 7 se tienen las pérdidas de calor correspondientes

a válvulas, sin tomar en cuenta las bridas. b. PPAARREESS DDEE BBRRIIDDAASS:: Si están desnudas se considera que la pérdida de calor es

la tercera parte de la pérdida en la válvula del mismo diámetro de tubería.

Si están aisladas se considera que la pérdida de calor es la misma que si fuera una longitud igual de tubería.

c. SSOOPPOORRTTEESS DDEE LLAASS TTUUBBEERRÍÍAASS: Si se encuentran ubicadas en el interior hay que añadir el 15% de las pérdidas calculadas sin accesorios.

Page 39: Eficiencia Energética en Generación y Distribución de Vapor

______________________________________________________________________________________________________________________________

EEFFIICCIIEENNCCIIAA EENNEERRGGÉÉTTIICCAA EENN LLAA GGEENNEERRAACCIIÓÓNN YY DDIISSTTRRIIBBUUCCIIÓÓNN DDEELL VVAAPPOORR

36

Si están ubicadas en el exterior y protegidas del viento hay que añadir el 20%. Si están situadas en el exterior y no protegidas del viento hay que añadir el 25%.

d. AANNIILLLLOOSS SSOOPPOORRTTEE DDEELL RREECCUUBBRRIIMMIIEENNTTOO DDEELL AAIISSLLAAMMIIEENNTTOO: Si la protección del

aislamiento es de chapa de hierro o aluminio y la distancia entre los soportes es de 1 m, deben añadirse unas cantidades adicionales a la conductividad térmica del material aislante.

Tabla 7. Pérdidas Suplementarias Debidas a los Accesorios en Tuberías

Situadas en el Exterior de Edificios.

NNAATTUURRAALLEEZZAA DDEELL

AAIISSLLAAMMIIEENNTTOO

DDIIÁÁMMEETTRROO IINNTTEERRIIOORR

DDEE LLAA TTUUBBEERRÍÍAA, mm

LLOONNGGIITTUUDD EEQQUUIIVVAALLEENNTTEE DDEE LLAA

TTUUBBEERRÍÍAA EENN MMEETTRROOSS PPAARRAA UUNNAA

TTEEMMPPEERRAATTUURRAA DDEE::

100 ºC 400 ºC

Totalmente

Desnudo

100

500

15

19

22

32

1/4 desnudo

3/4 aislado 100 4.5 6

1/4 desnudo

3/4 aislado 500 6 8.5

1/3 desnudo

2/3 aislado 100 6 8

1/3 desnudo

2/3 aislado 500 7 11

Tabla 8. Cantidades Adicionales al Coeficiente de Conductividad Térmica del

Aislante

kcal/m h ºC

Soporte de hierro en pletina con un aislamiento técnicamente mediocre.

0.010

Soporte de hierro en pletina con un aislamiento técnicamente bueno.

0.006

Soporte de hierro en pletina con plaquetas de amianto rompiendo el puente térmico.

0.003