DISEÑO Y CALCULO DE UN GATO MECANICO

41
DISEÑO Y CALCULO DE UN GATO MECANICO 1.- Introducción Con este proyecto nos introduciremos al tema del cálculo y diseño mecánico con las diferentes teorías de elementos de máquinas, resistencia de los materiales y tecnología mecánica. El informe consta de los cálculos a realizar para el diseño de un gato mecánico. Este gato mecánico constará de una altura mínima de 300 mm y una altura máxima de 550 mm con una carga de trabajo de: P=1500 kg. Para saber qué material usar, se dedujo que lo mejor y más práctico sería utilizar un acero de medio carbono debido a su alta tenacidad y a que es fácil obtenerlo. Para calcular si el gato mecánico resistirá nuestra carga de trabajo se toma el gato desde la altura máxima y se calcula como si fuera una columna sin cambio de sección para simplificar los cálculos y así obtener el diámetro necesario para soportar la carga con su factor de seguridad. Se sabe que si este diámetro soporta la carga, entonces todo diámetro superior también la soportará porque aumentará su Momento de Inercia y no habrá falla, esto en función de los diámetros normalizados de los materiales para la fabricación del tornillo de potencia. Para el diseño y cálculo del gato mecánico se trabajara dentro de la zona de seguridad del diseño aumentando el valor de la carga de trabajo a 1600 kg esto nos asegura un margen de seguridad en el caso de que el operador del dispositivo exceda la capacidad de carga. Para esto trabajaremos dentro del límite de la zona elástica sin pasar del límite de fluencia mínimo de la curva ingenieril o real de resistencia de los materiales

Transcript of DISEÑO Y CALCULO DE UN GATO MECANICO

DISEÑO Y CALCULO DE UN GATO MECANICO

1.- Introducción

Con este proyecto nos introduciremos al tema del cálculo y diseño mecánico con las diferentes teorías de elementos de máquinas, resistencia de los materiales y tecnología mecánica.

El informe consta de los cálculos a realizar para el diseño de un gato mecánico.Este gato mecánico constará de una altura mínima de 300 mm y una altura máxima de 550 mm con una carga de trabajo de: P=1500 kg.

Para saber qué material usar, se dedujo que lo mejor y más práctico sería utilizar un acero de medio carbono debido a su alta tenacidad y a que es fácil obtenerlo.Para calcular si el gato mecánico resistirá nuestra carga de trabajo se toma el gato desde la altura máxima y se calcula como si fuera una columna sin cambio de sección para simplificar los cálculos y así obtener el diámetro necesario para soportar la carga con su factor de seguridad. Se sabe que si este diámetro soporta la carga, entonces todo diámetro superior también la soportará porque aumentará su Momento de Inercia y no habrá falla, esto en función de los diámetros normalizados de los materiales para la fabricación del tornillo de potencia.

Para el diseño y cálculo del gato mecánico se trabajara dentro de la zona de seguridad del diseño aumentando el valor de la carga de trabajo a 1600 kg esto nos asegura un margen de seguridad en el caso de que el operador del dispositivo exceda la capacidad de carga.Para esto trabajaremos dentro del límite de la zona elástica sin pasar del límite de fluencia mínimo de la curva ingenieril o real de resistencia de los materiales para asegurarnos que no habrá falla de los distintos componentes del gato mecánico

Para el diseño Para esto podremos usar herramientas o softwares para cálculos y comprobaciones como ACAD , SolidWork, Ram Elements v8i, junto con ACAD, pero el mas usado será SolidWork, para realizar la verificación de pandeo y tensiones de Von-Misses con sus comprobaciones de esfuerzos e interpretaciones de datos a los que está sometido el gato mecánico.

2.- Objetivos

Diseñar un gato mecánico, considerando los materiales a utilizar con sus respectivos cálculos de resistencias, todo lo que tenga que ver desde el punto de vista mecánico y dar a conocer la información necesaria que se requiere para su fabricación y montaje.

También se demostrara la iteración de herramientas computacionales para el diseño del gato mecánico, dé esta manera se podrá mostrar la función del C.A.E (ingeniería asistida por computadora) para el desarrollo de máquinas o herramientas de nuestro entorno.

3.- Función principal

La función del gato mecánico será de levantar una carga de trabajo de: P=1600 kg Con las siguientes características:

|Capacidad de levante(P) |1600 kg ||Altura de elevación |Hmax= 550mm || |Hmin= 300mm |

4.- Cálculo y Diseño del gato mecánico

4.1 Memoria de cálculo

Primero procederemos al cálculo del tornillo de potencia mediante la bibliografía de referencia, pero tomando en cuenta otra bibliografía para los cálculos como dobroski

¨ diseño de elementos de máquinas¨, Casillas, sharkus, ryley¨estatica¨ y otros.Alturas de trabajoHmax=300 mmHmin=550 mmCapacidad de carga de levanteP=1600 kg siendo esta la capacidad real para los cálculos y la de 1500 kg que sería la de operación.Gravedad= 9.8 m/s2

Material a utilizar es acero SAE 1035:E=210 Gpaσ0=210 (Mpa)

Para el desarrollo de los cálculos del tornillo de potencia se estimara un coeficiente de seguridad K=2.5

∆H= Hmax- Hmin=550-300=250 mm=L

Carga de trabajo=P*g=1600*9,8=15680 N

Carga critica=Pcr=P*g*K=15680*2.5=39200 N

4.2- Calculo del diámetro por pandeo

El largo efectivo se obtiene debido a la relación resultante de la condición en la cual está expuesto el tornillo de potencia, en este caso se estima un lado empotrado y el otro libre, por lo tanto Lef=2*L Radio de giro: r=√ I /A

I=momento de inercia del tornillo de potenciaA=area de la sección circular del tornillo de potencia

I= (π*d4)/64 ; A= (π*d2)/4

r=√( π∗d 464

)/ ( π∗d 24

)=¿¿) Simplificando r= d/4

La esbeltez del material está dada por la relación:

λ=Lef*r = 2*L*r = 2*250*d/4 = 1000*d

Ahora se debe analizar por pandeo para poder determinar el diámetro del tornillo de potencia.

Según parábola de Johnson:

PcrA= σ0*1-σ0*λ2/4*π2*E

39200=210*(1-210)*1000d2/4*π2*210*103*π*d2/4

d=16.06 mm

λ=1000*d=16060=63.25Según Euler:para el material seleccionado λ2=103960*dPcrA=π2*Eλ2

39200*π*d2/4=π2*210*63.252*d

d=16.4 mm

λ=1000*d=16400=65

Como λ<120, en los cálculos realizados por parábola de Johnson y Euler, el diámetro a utilizar es el obtenido por Euler,, entonces:d=16.4 mm,

Como el diámetro anterior no está normalizado se aproxima a 16 mm y se utiliza para entrar a la tabla 14 – 2 (libro Diseño de Maquinas Robert L. Norton y Joseph shigley ) en donde se obtiene:

Diámetro mayor d (mm) | Paso p (mm) | Diámetro menor dr (mm) |16 | 3 | 13,55 |

Entrando con los datos del diámetro y paso del tornillo a tablas de roscas de sharkus, elegimos la cuarta opción que será un Tr 16 * 3 según din 103.Con los siguientes datos para la fabricación se procede a entrar en casillas para las fórmulas que faltan:

d=16 mmp=3dk=11.5H=4D=16.5 mm (tuerca)DK=12.5 mm (tuerca)T=0.933*p=2.799 mmC=0.5*p+2a-b =1.5 mma=0.25mm para paso de 3-12 mmb=0.5 mm para paso de 3-4 mmf=0.634*p-0.536*d=1.098 mmd=0.5*p= 1.5 mm

Resultados del Análisis

Impresión de diagramas de esfuerzos

___________________________________________________________________________________________

Estados considerados:

D1=1.4CM

MIEMBRO : 1 Largo :0.600 [m] Nudo J : 1

Material : A36 Sección : fe 3/4 Nudo K : 2

------------------------------------------------------------------------------------------------------------

Estado : D1=1.4CM

Momentos flectores M33 Esfuerzos cortantes V2

Momentos [Kg*m], Long [m] Fuerzas [Kg], Long [m]

Momentos flectores M22 Esfuerzos cortantes V3

Momentos [Kg*m], Long [m] Fuerzas [Kg], Long [m]Traslación en 1 Traslación en 2

Deflexión [cm], Long [m] Deflexión [cm], Long [m]

Rotación alrededor de 2 Rotación alrededor de 3

Rotación [Rad], Long [m] Rotación [Rad], Long [m]

Envolventes :

Momentos flectores M33: Momentos flectores M22:

Momentos [Kg*m], Long [m] Momentos [Kg*m], Long [m]

Rotación alrededor de 3

Rotación [Rad], Long [m]

El coeficiente de rozamiento según el tipo de material y lubricación utilizado es:μ=0,12

1.3- Análisis de esfuerzos (subida)

Fuerza de roce fr= μ*NL=n*pason=numero de entradas de la rosca, (en este caso n=1)

L=1*2=2

4.3.- Sumatoria de fuerzas:

a) ∑Fx=0 ⇒ F-μ*N*cosλ-N*senλ=0b) ∑Fy=0 ⇒-Pw+N*cosλ-μ*N*senλ=0

Despejando N en a) se tiene:

N=Fμ*cosλ+senλ

Despejando N en b) se tiene:

N=-Pwcosλ+μ*senλ

Igualando N de a) y b)

Fμ*cosλ+senλ = -Pwcosλ+μ*senλ

F=Pw*(μ*cosλ+senλ)cosλ+μ*senλ* 1cosλ1cosλ ⟹ F=Pw*μ + Pw*tgλ1 + μ*tgλ

Determinación de tgλ

tgλ=Lπ*∅m ⟹ tgλ= 2π*15=0,042441

F=15680*0,12 + 15680*0,0424411 + 0,12*0,042441=2546.60 N

4.4.- Torque de subida:

Tsub=F*∅m2*L+π*μ*∅mπ*∅m-μ*L

Tsub=1600,07*152*2+π*0,12*15π*15-0,12*2

Tsub=3117.76 (N*mm)

4.5.- Análisis de esfuerzos (bajada)

Fuerza de roce fr= μ*NL=n*pason=numero de entradas de la rosca, (en este caso n=1)

4.6.- Sumatoria de fuerzas:

c) ∑Fx=0 ⇒ μ*N*cosλ-F-N*senλ=0d) ∑Fy=0 ⇒ N*cosλ+μ*N*senλ-Pw=0

Despejando N en c) se tiene:

N=Fμ*cosλ-senλ

Despejando N en b) se tiene:N=Pwcosλ+μ*senλ

Igualando N de a) y b)Fμ*cosλ-senλ = Pwcosλ+μ*senλ

F=Pw*(μ*cosλ-senλ)cosλ+μ*senλ*1cosλ1cosλ ⟹ F=Pw*μ- Pw*tgλ1 + μ*tgλ

F=15680*0,12- 15680*0,0424411 + 0,12*0,042441=1216.6 N

4.7- Torque de bajada:

Tbajada=F*∅m2*π*μ*∅m-Lπ*∅m+μ*L

Tbajada=1216.6*152*π*0,12*15-2π*15+0,12*2

Tbajada= 704.105 (N*mm)

4.6.- Auto bloqueó del tornillo

El auto bloqueó que debe tener el tornillo es para evitar el retroceso cuando se encuentre en la altura máxima de trabajo, las fuerzas a las que estará sometido la estructura serán de compresión y tracción trasmitidas al tornillo haciéndolo girar en sentido contrario al de avance haciendo que retorne a su posición inicial.Un tornillo se auto bloquea si se cumple lo siguiente:μ≥tgλ Reemplazando se tiene:0,12≥0,042441 Por lo tanto la rosca se autobloquea, es decir, esta no descenderá al momento de soportar una carga menor o igual a 1600 kg.

4.7.-- Eficiencia del tornillo de potencia

η=ToTsubida*100, en donde To se determina a partir de la siguiente expresión:

To=Pw*L2*π= (F*L)/2*π= (2546.60 *2)/2*π=810.4

η=To/Tsubida*100= 810.4/3117.76 *100

η=25,99%

4.8.-- Esfuerzo de corte

τ=16*Tsubidaπ*∅int3= 16*2546.60 *143

τ=4.72 Nmm2

5- Esfuerzo axial

σx=-4*Pwπ*∅int3= -4*15680π*143σx= -7.257 Nmm2

4.9.- Numero de espiras

Ac=∅int*π*P2*ZAc=π*162-1424=47,124 mm2

Z=47,12414*π*22=1,07, se necesitan como minimo 2 espiras

7- Calculo de la fuerza aplicada al brazo

Torque=Fuerza*Largo; suponiendo que el largo del brazo es de 300 mm

Fuerza=Torque/largo=3117.76/300=10.39 (N)

6.- Comprobación del diámetro del tornillo por flexión

Cuanto mayor sea el esfuerzo de flexión f y el brazo de la palanca tanto mayor es la solicitación a flexión producto de la fuerza por el brazo nos dará el momento flector

La tensión de flexión sigma en la fibra neutra N-N es igual a cero.

Las tensiones se hacen tanto mayores cuanto mayor es la distancia a la línea neutra y cuanto menor es la capacidad de resistencia de la sección transversal. La distancia y la capacidad de resistencia se expresan mediante el llamado momento resistente W que es para las siguientes secciones:

M=113.41*60/4=1701.201 kp cm

W=M/sigma adm.=1701.201/6915.45=0.246

d=√w∗10 =1.349 cm=13.49 mm el diámetro calculado mediante sigley y Norton dieron un valor de 16 mm, con esto nos damos cuenta que con diámetros mayores a 13.5 mm no fallaría el tornillo a flexión que sería el caso más factible a falla.

5.2.-Selección de rodamiento

Para la selección se utilizó la aplicación del programa SKF para Selección de rodamientos, entrando con los datos cálculos anteriormente torque de subida máximo y la fuerza, a parte de la aplicación para la que está diseñado.

RODAMIENTO SKF 51204El más adecuado para este diseño es el rodamiento axial de bolas de simple efecto, ya que como su propio nombre indica, pueden soportar cargas axiales en una dirección y se aprecia claramente que el sistema no está sometido en una carga radial y por tanto está fijado un eje axialmente en una dirección.

Descripción: Rodamiento axial de bolas con simple efecto 51204 que calculé mediante la página de www.skf.cl en función de la carga a soportar, de diámetro interior 16mm y diámetro exterior de 25mm. Co=4300kg y C=1600kg.

6.- Estructura

Para la selección del perfil más adecuado para soportar el peso de carga de 1600 kg se utilizara el programa Ram Elements v8i que sirve para el cálculo de estructuras de acero, para la verificación de pandeo y tensiones de Von-Misses,efecto h y p-delta ,con sus comprobaciones de esfuerzos e interpretaciones de datos a los que está sometido el gato mecánico.

Además de tener opciones para la optimización del material, los datos que usaremos será una fuerza de 1600 kg y la longitud efectiva de 0.6 m el brazo de una tijera de la gato para el caso uno, para el caso dos serán los cuatro brazos de la tijera, un tercer caso que será los cuatro brazos del gato y el tornillo verificando el comportamiento que tendrá en dos casos particulares altura mínima de 0.3 m y altura máxima de 0.55 m.

El programa Ram Elements v8i trabaja con cargas puntuales y fuerzas distribuidas:

Caso 1: La fuerza distribuida se obtendrá con el valor de la multiplicando la fuerza por la distancia del brazo de la tijera: el valor de la carga es de 1600 kg y estará suspendida por dos brazos de tijera superior la fuerza que soporte un solo brazo será de 800 kg y la longitud del brazo será de 0.6m por lo tanto el valor de la fuerza distribuida será de 480 kg/m, tomando un lado como fijo y otro como móvil que sería el lado del soporte para el vehículo.

1.-Introduccion de las coordenadas y creación de los nodos N1 y N2, asignación del material y descripción del miembro

2.-Verficacion del perfil seleccionado y rotación del perfil .

3.-Asigancion de restricciones de movimiento N1 empotrado y N2 articulado

4.-Asignacion de fuerzas o cargas distribuidas; creación de dos estados de carga, carga muerta que será el peso del perfil y carga distribuida el peso de levantamiento

5.- Análisis y diseño del elemento mediante los métodos mencionados anteriormenteEstados considerados: D1=1.4CM+1.4id2

Momentos flectores M22 Esfuerzos cortantes V3

Momentos [Kg*m], Long [m] Fuerzas [Ton], Long [m]

Traslación en 3 Rotación alrededor de 1

Deflexión [cm], Long [m] Rotación [Rad], Long [m]

Rotación alrededor de 2 Rotación alrededor de 3

Rotación [Rad], Long [m] Rotación [Rad], Long [m]

Von mises

Viendo el análisis de von mises la concentraciones de tensiones más elevada se da en el nodo empotrado pero en el caso real este será móvil cambiando la concentración de tensiones a un color amarillo manteniendo dentro de la zona de seguridad del diseño

Para saber si el perfil cumple según lo estandarizado por la norma tendremos dos formas la primera que si la relación de esfuerzos del material es menor a 1 no fallara el material y la segunda será por el status de diseño del programa indicado por colores

Revisando los datos del diseño comprobamos que el material es el adecuado dando una

relación de esfuerzos máxima de 0.76 de la capacidad del material y de diseño satisfactorio por el color verde.El perfil a usar será el aisic C(U) 45X25X3

Caso 2: El valor de la fuerza distribuida será repartida a los dos brazos superiores dejando sin carga a los brazos inferiores, de esta manera se podrá ver la distribución de

la fuerza desde el soporte del vehículo hasta el soporte del piso o pie del gato mecánico considerando como apoyo fijo al pie del gato móvil en la unión de las tijeras con el tornillo.

1.-Introduccion de las coordenadas y creación de los nodos N1 , N2,N3 Y N4, asignación del material y descripción de los miembros

2.-

Verficacion de los perfiles seleccionados y rotación de los perfiles.

3.-Asigancion de restricciones de movimiento N4 empotrado y N1,N3 articulado

4.-Asignacion de fuerzas o cargas distribuidas; creación de dos estados de carga, carga muerta que será el peso del perfil y carga distribuida el peso de levantamiento

5.- Análisis y diseño del elemento mediante los métodos mencionados anteriormenteEstados considerados: D1=1.4CM+1.4id2

Brazos superiores

Envolventes :

Momentos flectores M33: Momentos flectores M22:

Momentos [Kg*m], Long [m] Momentos [Kg*m], Long [m]

Momentos flectores M22 Esfuerzos cortantes V3

Momentos [Kg*m], Long [m] Fuerzas [Kg], Long [m]

Esfuerzos axiales Momentos torsores

Fuerzas [Kg], Long [m] Momentos [Kg*m], Long [m]

Traslación en 1 Traslación en 2

Deflexión [cm], Long [m] Deflexión [cm], Long [m]

Traslación en 3 Rotación alrededor de 1

Deflexión [cm], Long [m] Rotación [Rad], Long [m]

Rotación alrededor de 2 Rotación alrededor de 3

Rotación [Rad], Long [m] Rotación [Rad], Long [m]

Brazos inferiores

Envolventes :

Momentos flectores M33: Momentos flectores M22:

Momentos [Kg*m], Long [m] Momentos [Kg*m], Long [m]

Momentos flectores M22 Esfuerzos cortantes V3

Momentos [Kg*m], Long [m] Fuerzas [Kg], Long [m]

Esfuerzos axiales Momentos torsores

Fuerzas [Kg], Long [m] Momentos [Kg*m], Long [m]

Traslación en 1 Traslación en 2

Traslación en 3 Rotación alrededor de 1

Rotación alrededor de 2 Rotación alrededor de 3

Von mises

Viendo el análisis de von mises la concentraciones de tensiones más similares se dan en los miembros cercanos al nodo empotrado que son los brazos inferiores porque será sobre el que amortiguara todo el peso del vehículo por la acción de las fuerzas que serán de compresión hacia el suelo pero el color amarillo se mantiene dentro de la zona de seguridad del diseño

Para saber si el perfil cumple según lo estandarizado por la norma tendremos dos formas la primera que si la relación de esfuerzos del material es menor a 1 no fallara el material y la segunda será por el status de diseño del programa indicado por colores

Revisando los datos del diseño comprobamos que el material es el adecuado dando una relación MAXIMA DE ESFUERZOS de 0.23 de la capacidad del material y de diseño satisfactorio por el color verde.El perfil a usar será el aisic C(U) 45X25X3

Caso 3: El valor de la fuerza distribuida será repartida a los dos brazos superiores dejando sin carga a los brazos inferiores y al tornillo, de esta manera se podrá ver la distribución de la fuerza desde el soporte del vehículo hasta el soporte del piso o pie del gato mecánico considerando como apoyo fijo al pie del gato móvil en la unión de las tijeras con el tornillo y trabajando con el valor de la altura minina de 0.3 m

von mises

en el segundo caso de von mises nos muestra la deformación que existirá si se sobre pasa los valores de la carga distribuida en función de la carga de levante, de esta manera se puede observar las zonas más factibles a fallar, pero también se pueden reforzar para soportar mayor carga de levante reforzando con doble perfil en esas zonas

Revisando los datos del diseño comprobamos que el material es el adecuado dando una relación MAXIMA DE ESFUERZOS de 0.114 esto debido a la inclinación que tiene con una altura de 0.3 m esto cambia ángulo de inclinación también cambiara el valor de la distribución de las fuerzas ,el status de diseño es satisfactorio por el color verde.El perfil a usar será el aisic C(U) 45X25X3

Caso 4: El valor de la fuerza distribuida será repartida a los dos brazos superiores dejando sin carga a los brazos inferiores y al tornillo, de esta manera se podrá ver la distribución de la fuerza desde el soporte del vehículo hasta el soporte del piso o pie del gato mecánico considerando como apoyo fijo al pie del gato móvil en la unión de las tijeras con el tornillo y trabajando con el valor de la altura máxima de 0.55m

Revisando los datos del diseño comprobamos que el material es

el adecuado dando una relación MAXIMA DE ESFUERZOS de 0.416 esto debido

a la inclinación que tiene con una altura de 0.6 m esto cambia

ángulo de inclinación también cambiara el valor de la distribución de las fuerzas ,el status de diseño es satisfactorio por el color verde.El perfil a usar será el aisic C(U) 45X25X3

Otra ventaja de este programa es que nos brinda la lista de materiales con las longitudes totales de cada perfil y el peso.

MIREYA

Fecha Actual: 09/06/2013 23:24

Sistema de unidades: Métrico

Nombre del archivo: C:\Documents and Settings\Mireya\Escritorio\gato mecanico\ram advanse\caso 4.etz\

Lista de Materiales

___________________________________________________________________________________________

Nota.- Listado sólo de las barras y placas seleccionadas gráficamente

Miembros:

Perfil Material PesoU Longitud Peso

[Kg/m] [m] [Kg]

----------------------------------------------------------------------------------------------------------------------------------

AISIC 40X25X3 A36 1.88E+00 1.697 3.193

FE 3/4 A36 2.24E+00 0.600 1.343

----------------------------------------------------------------------------------------------------------------------------------

Peso Total [Kg] 4.536

7.- Engranajes de movimiento

La mayoría de los gatos mecánicos consta de 4 plantillas de engranajes de movimiento al no ser engranajes completos, el número de dientes varia de 4 a 6 dientes dependiendo de la abertura que tendrá los brazos de la tijera del gato.

Entrando a casillas seleccionamos el tipo de material a usar para la fabricación: según la aplicación para engranajes y maquinas sometidos a esfuerzos o choque la composición del material deberá ser del tipo de carbono de 0.20 % ,con el limite elástico de 38-326 kg/mm2,carga de rotura de 42-51 kg/mm2 ,entonces será un SAE 1020.

Cálculos para la fabricación:

Datos de partida

Modulo=M=3; número de dientes =Z=N=14; ángulo de presión alfa =14º30´

Paso P=M/pi=3/PI=9.42 mm

Diámetro exterior de=M*(N+2)=48 mm

Diámetro primitivo dp=M*N=42 mm

Diámetro interior di=Dp-(2*M*1.1675)= 34.928 mm

Altura del diente H=M*2.167=6.501 mm

Espesor del diente e=P/2=4.71 mm

Distancia entre centros a=(DP+DP)/2=42 mm

R=0.3*M=0.9 mm

Fresa a usar número 2 para tallado de 14-16 dientes

8.-Pasador o remache

Dos espesores por ser dos uniones en cada extremo igual a 6 mm diámetro de 10 mm

longitud de 50mm, por lo tanto el remache será ; remache de 10 x 50 Din7341 y su pasador será de 4h x 11 x 50 Din 7.

9.- Planos y hojas de proceso

10.-Conclusion e investigación novedosa

Como conclusión se puede apreciar que el diseño de una maquina o elemento mecánico no es muy complejo simplemente depende de la interpretación que uno tenga para resolver los cálculos, la realización del diseño y la parte de planos.Normalmente conceptualizamos de manera errónea el diseño de un elemento mecánico tratando de buscar primero el nombre del elemento, después su funcionamiento y luego la utilidad que este tiene mes por eso que muchos proyectos no se concretan, investigando diferentes libros, páginas web sobre diseño de máquinas encontramos esta serie de pasos para el diseño de elementos mecánicos1.-Inicio del problema¿Necesito una máquina que levante 1600 kg?¿El costo de construir una maquina comparada con una del mercado?¿El nombre que tendrá la maquina?¿Los nombres de los elementos de la maquina?¿Cómo se fabricara la maquina?2: Solución al problema2.1 Necesito un simple mecanismo para levantar el peso podría ser un conjunto de brazos que formen un rombo y un eje sobre el que avance para aumentar su altura y realizar un bosquejo a mano de las diferentes formas.2.2 No es necesario saber de inmediato el nombre que tendrá la maquina porque al final el objetivo es dar la solución al problema no el de dar el nombre, muchas maquinas se construyen, diseñan y al final recién se conceptualiza el nombre.2.3 Entender los conceptos de margen de seguridad en el diseño Ejemplo se pide realizar el diseño de una silla que soporte 100 kg de peso, uno primero debe de pensar si existe una persona de 101 kg será que se pesara para ver si el asiento soporta, el cliente tendrá una pesa para saber si sus asientos soportan el peso de las personas ,la respuesta es no ,lo que se debe de hacer es tener un margen de seguridad y esto se lograra aumentando el valor del peso ,podría ser en unos 15 o 20 kg no es bueno trabajar al límite del diseño ni cerrarse en los diseños ,al aumentar la carga tenemos un margen donde no fallara si se excede el peso .2.4 Analizar las ventajas y desventajas de los diferentes tipos de materiales con los que se podría construir los elementos de la maquina como la resistencia del material, disponibilidad, peso, dimensiones normalizadas, costo del materia, la función que cumplirá y muchas preguntas que uno debe hacerse antes de seleccionar el material en función de los cálculos. 2.5 La realización de los planos y hojas de proceso es la segunda parte importante del proyecto ver si es factible la fabricación, será que se tiene las máquinas para la realización, las medidas de las piezas serán normalizadas el operario podrá interpretar los planos, que detalles extras se necesitan brindar, esas son preguntas frecuentes que uno mismo se hace pero la respuesta es sencilla el proyectista o diseñista debe de imaginar que él es el operario preguntarse qué cotas le sirven o que datos le faltan no es necesario ser técnico para darse cuenta de errores en planos o hojas de proceso2.6 algo muy importante es que nosotros mismos nos ponemos las metas mientras más complicado sea un diseño llegar a la meta será más interesante, pero hasta la maquina más pequeña puede ser una gran metaNovedad del proyecto: Se encuentra en el diseño reduciendo los pares de engranajes para el levantamiento así como el reemplazo de cualquiera de ellos al entrar por apriete, la mayoría viene soldados o sino son realizados en el perfil del brazo lo que es perjudicial porque se debe de reemplazar todo el brazo.

Se dio mayor seguridad al diseño al aumentar la longitud del tornillo, normalmente el problema de los gatos mecánicos comerciales es que cuando llegan a la altura máxima de levantamiento la distancia entre soportes de tornillo llega hacer de 5 cm

Haciendo que el gato actué como una columna y por el peso de levantamiento tienda al pandeo y esto hace que el gato empiece a oscilar al lado izquierdo y derecho que es por lo no se pueden usar hasta su altura máxima por este inconveniente ,en cambio al aumentar el largo total del tornillo y modificar los engranajes al no estar fusionado con los brazos dan una longitud mínima de 10 cm manteniendo la figura de dos trapecios aumentando la resistencia a la deformación en la máxima altura de trabajo, además de tener un número mínimo de piezas para la fabricación haciendo que el costo sea similar

a uno del mercado pero con la diferencia de la altura de levantamiento que es de 550 mm y los del mercado de 340mm-500 mm