Diodo Gunn

5
Diodo Gunn Este diodo tiene características muy diferentes, ya que no es rectificador. Se trata de un generador de microondas, formado por un semiconductor de dos terminales que utiliza el llamado efecto Gunn. Cuando se aplica entre ánodo y cátodo una tensión continua de 7 V, de modo que el ánodo sea positivo con respecto al cátodo, la corriente que circula por el diodo es continua pero con unos impulsos superpuestos de hiperfrecuencia que pueden ser utilizados para inducir oscilaciones en una cavidad resonante. De hecho, la emisión de microondas se produce cuando las zonas de campo eléctrico elevado se desplazan del ánodo al cátodo y del cátodo al ánodo en un constante viaje rapidísimo entre ambas zonas, lo que determina la frecuencia en los impulsos. Es una forma de diodo usado en la electrónica de alta frecuencia. A diferencia de los diodos ordinarios construidos con regiones de dopaje P o N, solamente tiene regiones del tipo N, razón por lo que impropiamente se le conoce como diodo . Existen en este dispositivo tres regiones; dos de ellas tienen regiones tipo N fuertemente dopadas y una delgada región intermedia de material ligeramente dopado. Cuando se aplica un voltaje determinado a través de sus terminales, en la zona intermedia el gradiente eléctrico es mayor que en los extremos. Eventualmente esta zona empieza a conducir

Transcript of Diodo Gunn

Page 1: Diodo Gunn

Diodo Gunn

Este diodo tiene características muy diferentes, ya que no es rectificador. Se trata de un generador de microondas, formado por un semiconductor de dos terminales que utiliza el llamado efecto Gunn. Cuando se aplica entre ánodo y cátodo una tensión continua de 7 V, de modo que el ánodo sea positivo con respecto al cátodo, la corriente que circula por el diodo es continua pero con unos impulsos superpuestos de hiperfrecuencia que pueden ser utilizados para inducir oscilaciones en una cavidad resonante. De hecho, la emisión de microondas se produce cuando las zonas de campo eléctrico elevado se desplazan del ánodo al cátodo y del cátodo al ánodo en un constante viaje rapidísimo entre ambas zonas, lo que determina la frecuencia en los impulsos.

Es una forma de diodo usado en la electrónica de alta frecuencia. A diferencia de los diodos ordinarios construidos con regiones de dopaje P o N, solamente tiene regiones del tipo N, razón por lo que impropiamente se le conoce como diodo. Existen en este dispositivo tres regiones; dos de ellas tienen regiones tipo N fuertemente dopadas y una delgada región intermedia de material ligeramente dopado. Cuando se aplica un voltaje determinado a través de sus terminales, en la zona intermedia el gradiente eléctrico es mayor que en los extremos. Eventualmente esta zona empieza a conducir esto significa que este diodo presenta una zona de resistencia negativa.

La frecuencia de la oscilación obtenida a partir de este efecto, es determinada parcialmente por las propiedades de la capa o zona intermedia del diodo, pero también puede ser ajustada exteriormente. Los diodos Gunn son usados para construir osciladores en el rango de frecuencias comprendido entre los 10 Gigahertz y frecuencias aún más altas (hasta Terahertz). Este diodo se usa en combinación con circuitos resonantes construidos con guías de ondas, cavidades coaxiales y resonadores YIG (monocristal de granate Itrio y hierro, Yttrium Iron Garnet por sus siglas en inglés) y la sintonización es realizada mediante ajustes mecánicos, excepto en el caso de los resonadores YIG en los cuales los ajustes son eléctricos.

Page 2: Diodo Gunn

Los diodos Gunn suelen fabricarse arseniuro de galio para osciladores de hasta 200 GHz, mientras que los de Nitruro de Galio pueden alcanzar los 3 Terahertz.

El dispositivo recibe su nombre del científico británico, nacido en Egipto, John Battiscombe Gunn quien produjo el primero de estos diodos basado en los cálculos teóricos del profesor y científico británico Cyril Hilsum.

· Diodo Gunn

Este tipo de diodo es similar al diodo tunnel ya que también entra en los semiconductores osciladores de “resistencia negativa”.Se trata de un generador de microondas (no un rectificador), formado por un semiconductor de dos terminales que utiliza el llamado efecto Gunn. Cuando se aplica entre ánodo y cátodo una tensión continua (mayor a 3.3 V/cm), de modo que el ánodo sea positivo con respecto al cátodo, la corriente que circula por el diodo es continua, pero con unos impulsos superpuestos de hiperfrecuencia que pueden ser utilizados para inducir oscilaciones en una cavidad resonante (con la cual alcanza oscilaciones de muy alta frecuencia en el rango comprendido entre los 5 y 140GHz). De hecho, la emisión de microondas se produce cuando las zonas de campo eléctrico elevado se desplazan del ánodo al cátodo y del cátodo al ánodo en un constante viaje rapidísimo entre ambas zonas, lo que determina la frecuencia en los impulsos, la cual es alta.

El diodo Gunn a diferencia del diodo tunnel, mantiene un ciclo gracias a la continuidad de los impulsos de hiperfrecuencia del material y la cavidad resonante que produce las

Page 3: Diodo Gunn

oscilaciones; el diodo tunnel necesita algo que lo limite y que vuelva a producir la oscilación

Efecto Gunn

El efecto fue descubierto por Gunn en 1963. Este efecto es un instrumento eficaz para la generación de oscilaciones en el rango de las microondas en los materiales semiconductores.

Gunn observó esta característica en el Arseniuro de Galio (GaAs) y el Fósforo de Indio (InP)

El efecto Gunn es una propiedad del cuerpo de los semiconductores y no depende de la unión misma, ni de los contactos, tampoco depende de los valores de voltaje y corriente y no es afectado por campos magnéticos.

Cuando se aplica un pequeño voltaje continuo a través de una plaquita delgada de Arseniuro de Galio (GaAs), ésta presenta características de resistencia negativa. Todo esto bajo la condición de que el voltaje en la plaquita sea mayor a los 3.3 voltios / cm.

Ahora, si esta plaquita es conectada a un circuito sintonizado (generalmente una cavidad resonante), se producirán oscilaciones y todo el conjunto se puede utilizar como oscilador.

Este efecto Gunn sólo se da en materiales tipo N (material con exceso de electrones) y las oscilaciones se dan sólo cuando existe un campo eléctrico.

Estas oscilaciones corresponden aproximadamente al tiempo que los electrones necesitan para atravesar una plaquita de material tipo N cuando se aplica el voltaje en continua.

Page 4: Diodo Gunn

Funcionamiento de resistencia positiva:

Cuando se aplica un voltaje a la plaquita (tipo N) de Arseniuro de Galio (GaAs), los electrones, que el material tiene en exceso, circulan y producen una corriente al terminal positivo. Si se aumenta la tensión, la velocidad de la corriente aumenta. Comportamiento típico y el gráfico tensión-corriente es similar al que dicta la ley de Ohm.

Funcionamiento de resistencia negativa:

Si a plaquita anterior se le sigue aumentando el voltaje, se les comunica a los electrones una mayor energía, pero en lugar de moverse más rápido, los electrones saltan a una banda de energía más elevada, que normalmente está vacía, disminuyen su velocidad y por ende la corriente.

De esta manera una elevación del voltaje en este elemento causa una disminución de la corriente.

Eventualmente, el voltaje en la plaquita se hace suficiente para extraer electrones de la banda de mayor energía y menor movilidad, por lo que la corriente aumentará de nuevo con el voltaje.

La característica voltaje contra corriente se parece mucho a la del diodo Tunnel.

La aplicación más común es la del oscilador Gunn