Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… ·...

29
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diffeology I 18–20 Aug 2015 岩瀬 則夫 ( 九大 数理) Diffeology I 信州大学 1 / 23

Transcript of Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… ·...

Page 1: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

Diffeology I

18–20 Aug 2015

岩瀬則夫 (九大 数理) Diffeology I 信州大学 1 / 23

Page 2: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

始めに

始めに Refs

Diffeology — Spaces/Maps

Construction — Induced diffeology/Mapping sp

de Rham complex — Differential form/Partition of unity

Application — Homotopy/Mayer-Vietoris seq

岩瀬則夫 (九大 数理) Diffeology I 信州大学 2 / 23

Page 3: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

Diffeology

Diffeology

Diffeology — Spaces/Maps

Construction — Induced diffeology/Mapping sp

de Rham complex — Differential form/Partition of unity

Application — Homotopy/Mayer-Vietoris seq

岩瀬則夫 (九大 数理) Diffeology I 信州大学 3 / 23

Page 4: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

Diffeology

Diffeology

Diffeology — Spaces/Maps

岩瀬則夫 (九大 数理) Diffeology I 信州大学 3 / 23

Page 5: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

Diffeology Spaces and Maps

Diffeology In ≥ 0

1. Rn n-domain domainDomainn Domain =

∪n

Domainn

2. n-domain X X n-parametrizationParamn(X) Param(X) =

∪n

Paramn(X)

Diffeology D X parametrizations D X

diffeology1. ∀x∈X ∀n∈N0

∃c(x)∈D∩Paramn(X) s.t. im c(x) = x

2. P ∈ Paramn(X) & ∀s∈U ∃V∈Domainns ∈ V ⊂ U, P|V ∈ D =⇒ P ∈ D

3. ∀(P:U→X)∈D ∀F∈C∞(V,U) PF ∈ D

D parametrization plot

岩瀬則夫 (九大 数理) Diffeology I 信州大学 4 / 23

Page 6: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

Diffeology Spaces and Maps

Diffeology II

C∞-map f : (X,DX) → (Y,DY) C∞-map f

∀P∈DXfP ∈ DY

C∞-diffeological space C∞-map Diff∞

diffeology n-domain U domain V domain U

C∞- diffeology diffeological space

理 diffeology Diffeological space X = (X,D)

domain U plot D(U) U X C∞-

岩瀬則夫 (九大 数理) Diffeology I 信州大学 5 / 23

Page 7: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

Diffeology Spaces and Maps

Diffeologyから Topology

A ⊂ X diffeological space X = (X,D)

∀(P:U→X)∈D P−1(A) : open in U

X

C∞-map

岩瀬則夫 (九大 数理) Diffeology I 信州大学 6 / 23

Page 8: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

Diffeology Spaces and Maps

TopologyからDiffeology

Diffeology X D

P ∈ D ⇐⇒ P is a continuous map from U to X.X = (X,D) diffeological space

C∞-map diffeological spaceC∞-map

岩瀬則夫 (九大 数理) Diffeology I 信州大学 7 / 23

Page 9: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

Diffeology Spaces and Maps

Smooth structureからDiffeology

Diffeology Smooth manifold M = (M,U) D

P ∈ D ⇐⇒ P is a smooth map from U to M.M = (M,D) diffeological space

C∞-map Smooth manifolds smooth mapdiffeological spaces C∞-map

V-manifolddiffeological space

岩瀬則夫 (九大 数理) Diffeology I 信州大学 8 / 23

Page 10: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

Construction

Construction

Diffeology — Spaces/Maps

Construction — Induced diffeology/Mapping sp

de Rham theory — Differential form/Partition of unity

Application — Homotopy/Mayer-Vietoris seq

岩瀬則夫 (九大 数理) Diffeology I 信州大学 9 / 23

Page 11: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

Construction

Construction

Construction — Induced diffeology/Mapping sp

岩瀬則夫 (九大 数理) Diffeology I 信州大学 9 / 23

Page 12: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

Construction Induced diffeology

Induced diffeologypull-back/push-forward f : X → Y

1. (Y = (Y,DY) diffeological space f C∞-mapX diffeology DY f pull-back f∗(DY)

2. (X = (X,DX) diffeological space f C∞-mapY diffeology DX f push-forward

f∗(DX)

1. diffeological space (X,D) A ⊂ X

i : A → X D pull-back i∗(D) subset diffeology2. diffeological space (X,D) X ↠ B p : X ↠ B

D push-forward p∗(D) quotient diffeology

岩瀬則夫 (九大 数理) Diffeology I 信州大学 10 / 23

Page 13: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

Construction Mapping space

product and function diffeologies

Xj = (Xj,Dj)j∈J diffeological spaces1. j ∈ Jに pj :

∏j∈J Xj → Xj C∞ に∏

j∈J Xj diffeology product diffeologyparametrizations P : U → C∞(X, Y) Q : V → X

parametrization P·Q : U×V → Y

(P·Q)(s, t) = P(s)(Q(t)), s ∈ U, t ∈ V

X = (X,DX) Y = (Y,DY) diffeological spaces1. parametrization P : U → C∞(X, Y) C∞(X, Y)

diffeologyに∀(Q:V→X)∈DX

P·Q ∈ DY

岩瀬則夫 (九大 数理) Diffeology I 信州大学 11 / 23

Page 14: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

de Rham theory

de Rham theory

Diffeology — C∞-Spaces/Maps

Construction — Induced diffeology/Mapping sp

de Rham theory — Differential form/Partition of unity

Application — Homotopy/Mayer-Vietoris seq

岩瀬則夫 (九大 数理) Diffeology I 信州大学 12 / 23

Page 15: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

de Rham theory

de Rham theory

de Rham theory — Differential form/Partition of unity

岩瀬則夫 (九大 数理) Diffeology I 信州大学 12 / 23

Page 16: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

de Rham theory Exterior algebra

Exterior algebraT∗n = Hom(Rn,R) =

n⊕i=1

R dxi dxi ei

T∗n Λ∗(T∗

n) =n⊕

p=0Λp(T∗

n) n-domain U

p-form Λp(U) p ≥ 0 domain g : V → U

Λp(g) = g∗ : Λp(U) → Λp(V)

1. ∀U∈DomainnΛp(U) = C∞(U,Λp(T∗

n))

2. f(x) =∑

i1<···<ip

ai1,··· ,ip(x) dxi1 ∧ · · ·∧ dxip x ∈U⊂ Rn

g∗(f)(y) =∑

j1<···<jp

bj1,···,jp(y)· dyj1 ∧ · · ·∧ dyjp y ∈ V

bj1,···,jp(y) = g∗(f)(y)(ej1 ∧ · · ·∧ ejp)

bj1,···,jp(y) = f(g(y))(D(g)(y)ej1 ∧ · · ·∧D(g)(y)ejp)

=∑

i1<···<ip

ai1,···,ip(g(y))·∂(xi1

,···,xip)

∂(yj1,···,yjp )

岩瀬則夫 (九大 数理) Diffeology I 信州大学 13 / 23

Page 17: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

de Rham theory Exterior Derivative

Exterior derivative

U n-domain

Exterior derivative d : Λp(U) → Λp+1(U)

1. f(x) ∈ Λ0(U) に df(x) =n∑

i=1

∂f

∂xi(x)dxi め

2. f(x) =∑

1≤i1<···<ip≤n

ai1,··· ,ip(x)dxi1 ∧ · · ·∧ dxip に

df(x) =∑

1≤i1<···<ip≤n

dai1,··· ,ip(x)dxi1 ∧ · · ·∧ dxip

理 d2 = 0

岩瀬則夫 (九大 数理) Diffeology I 信州大学 14 / 23

Page 18: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

de Rham theory Compact supp

Differential formdifferential form (X,D) diffeological space α X

differential form1. ∀(P:U→X)∈D α(P) ∈ Λp(U)

2. ∀(P:U→X)∈D ∀F∈C∞(V,U) α(PF) = F∗(α(P))

X p differential forms Ωp(X)

differential form with compact support, Izumida (X,D)

diffeological space α ∈ Ωp(X) X

differential form Kα ⊂ X

1. ∀P∈D Supp(α(P)) ⊂ P−1(Kα)

X p differential forms with compact support Ωpc (X)

岩瀬則夫 (九大 数理) Diffeology I 信州大学 15 / 23

Page 19: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

de Rham theory Compact supp

Differential form

Exterior derivative (X,D) diffeological spaced : Ωp(X) → Ωp+1(X)

1. ∀α∈Ωp(X) ∀P∈D d(α)(P) = d(α(P))

X p differential forms Ωp(X)

differential form with compact support, Izumida (X,D)

diffeological space α ∈ Ωp(X) X

differential form Kα ⊂ X

1. ∀P∈D Supp(α(P)) ⊂ P−1(Kα)

X p differential forms with compact support Ωpc (X)

岩瀬則夫 (九大 数理) Diffeology I 信州大学 16 / 23

Page 20: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

de Rham theory Partition of unity

Partition of unity(X,D) diffeological space Aλλ∈Λ X

partition of unity, Izumida ρλλ∈Λ ⊂ Ω0(X) Aλλ∈Λに

1 P ∈ Dに

1. ρλ(P) ≥ 0, ∑λ∈Λ

ρλ(P) ≡ 1

2. Supp(ρλ(P)) ⊂ P−1(Aλ)

proper partition of unity, Izumida Aλλ∈Λに 1

ρλλ∈Λ ⊂ Ω0(X)に X Fλ ⊂ Aλλ∈Λ

1 ρλλ∈Λ proper∀λ∈Λ ∀P∈D Supp(ρλ(P)) ⊂ P−1(Fλ)

Izumida X に 1 らproper 1 に ら

岩瀬則夫 (九大 数理) Diffeology I 信州大学 17 / 23

Page 21: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

Application

Application

Diffeology — Spaces/Maps

Construction — Induced diffeology/Mapping sp

de Rham theory — Differential form/Partition of unity

Application — Homotopy/Mayer-Vietoris seq

岩瀬則夫 (九大 数理) Diffeology I 信州大学 18 / 23

Page 22: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

Application

Application

Application — Homotopy/Mayer-Vietoris seq

岩瀬則夫 (九大 数理) Diffeology I 信州大学 18 / 23

Page 23: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

Application Homotopy

Paths(X,D) diffeological space

1. C∞-map γ : [0, 1] → X X path γ(0) = γ(1) loop

2. X path Paths(X) loop Loops(X)

3. A, B ⊂ X

Paths(X;A,B) = γ ∈ Paths(X) γ(0) ∈ A, γ(1) ∈ B

1. X x, x ′ ∈ X ∼

x ∼ x ′ ⇐⇒ ∃γ∈Paths(X) s.t. γ(0) = x, γ(1) = x ′

2. X ⇐⇒ ∀x,x ′∈X x ∼ x ′

π0(X) = X/ ∼

岩瀬則夫 (九大 数理) Diffeology I 信州大学 19 / 23

Page 24: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

Application Homotopy

Homotopy

(X,D) (X ′,D ′) diffeological spaces1. C∞-map f, g : X → X ′ homotopic C∞(X,X ′) f ∼ g

2. X X ′ homotopy equivalent C∞ maps f : X → X ′, g : X ′ → X

fg ∼ idX ′ , gf ∼ idX

∗ ∈ X π1(X, ∗) = π0(Paths(X; ∗, ∗))X

岩瀬則夫 (九大 数理) Diffeology I 信州大学 20 / 23

Page 25: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

Application Mayer-Vietoris seq

Mayer-Vietoris seqIglesias-Zemmour Izumida

de Rham cohomologyH

pDR(X) =

Ker(d : Ωp(X) → Ωp+1(X)

)Im (d : Ωp−1(X) → Ωp(X))

de Rham cohomology with compact support

Hpc (X) =

Ker(d : Ωp

c (X) → Ωp+1c (X)

)Im

(d : Ωp−1

c (X) → Ωpc (X)

)I Mに D M C∞ parametrizations

X = (M,D)

1. HpDR(M) ∼= H

pDR(X), H

pc (M) ∼= H

pc (X)

岩瀬則夫 (九大 数理) Diffeology I 信州大学 21 / 23

Page 26: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

Application Mayer-Vietoris seq

(X,D) diffeological space U = A0, A1

理 Izumida, Haraguchi-Shimakawa U 1

· · · → HpDR(X) → H

pDR(A0)⊕H

pDR(A1) → H

pDR(A0 ∩A1)→ H

p+1DR (X) → H

p+1DR (A0)⊕H

p+1DR (A1) → H

p+1DR (A0 ∩A1) → · · ·

理 Izumida, Haraguchi-Shimakawa U proper 1

· · · → Hpc (A0 ∩A1) → H

pc (A0)⊕H

pc (A1) → H

pc (X)→ H

p+1c (A0 ∩A1) → H

p+1c (A0)⊕H

p+1c (A1) → H

p+1c (X) → · · ·

理 Iglesias-Zemmourη : H1

DR(X) → Hom(π1(X, ∗),R) ⇐⇒ η([α]) : [ℓ] 7→ ∫ℓ

α :=

∫10

α(ℓ)

X η

岩瀬則夫 (九大 数理) Diffeology I 信州大学 22 / 23

Page 27: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

Application Mayer-Vietoris seq

(X,D) diffeological space U = A0, A1

理 Izumida, Haraguchi-Shimakawa U 1

· · · → HpDR(X) → H

pDR(A0)⊕H

pDR(A1) → H

pDR(A0 ∩A1)→ H

p+1DR (X) → H

p+1DR (A0)⊕H

p+1DR (A1) → H

p+1DR (A0 ∩A1) → · · ·

理 Izumida, Haraguchi-Shimakawa U proper 1

· · · → Hpc (A0 ∩A1) → H

pc (A0)⊕H

pc (A1) → H

pc (X)→ H

p+1c (A0 ∩A1) → H

p+1c (A0)⊕H

p+1c (A1) → H

p+1c (X) → · · ·

理 Iglesias-Zemmourη : H1

DR(X) → Hom(π1(X, ∗),R) ⇐⇒ η([α]) : [ℓ] 7→ ∫ℓ

α :=

∫10

α(ℓ)

X η

岩瀬則夫 (九大 数理) Diffeology I 信州大学 22 / 23

Page 28: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

Application Mayer-Vietoris seq

(X,D) diffeological space U = A0, A1

理 Izumida, Haraguchi-Shimakawa U 1

· · · → HpDR(X) → H

pDR(A0)⊕H

pDR(A1) → H

pDR(A0 ∩A1)→ H

p+1DR (X) → H

p+1DR (A0)⊕H

p+1DR (A1) → H

p+1DR (A0 ∩A1) → · · ·

理 Izumida, Haraguchi-Shimakawa U proper 1

· · · → Hpc (A0 ∩A1) → H

pc (A0)⊕H

pc (A1) → H

pc (X)→ H

p+1c (A0 ∩A1) → H

p+1c (A0)⊕H

p+1c (A1) → H

p+1c (X) → · · ·

理 Iglesias-Zemmourη : H1

DR(X) → Hom(π1(X, ∗),R) ⇐⇒ η([α]) : [ℓ] 7→ ∫ℓ

α :=

∫10

α(ℓ)

X η

岩瀬則夫 (九大 数理) Diffeology I 信州大学 22 / 23

Page 29: Diffeology と微分形式 Imarine.shinshu-u.ac.jp/~kuri/ALG_TOP2015/Algebraic_and_Geometri… · Diffeology B « 5 úI > g % ç û K e Ô X Ô x á 0 H c X B P ] B º Ã B 7 H H

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

Application References

References (Historical order) [Return][Ch1] K. T. Chen, Iterated integrals of differential forms and loop space homology, Ann. of

Math. (2) 97 (1973), 217–246.[Sch] R. Schön, “Acyclic Models and Excision”, Proc. Amer. Math. Soc., 59 (1976), 167–168.[Ch2] K. T. Chen, Iterated path integrals, Bull. Amer. Math. Soc., 83 (1977), 831–879.[Sou] J. M. Souriau, Groupes differentiels, in “Differential Geometrical Methods in

Mathematical Physics” (Proc. Conf. Aix-en-Provence/Salamanca, 1979), Lecture Notesin Math., 836, Springer, Berlin, 1980, 91–128.

[B-T] R. Bott and L. Tu, “Differential Forms in Algebraic Topology”, Springer-Verlag GTM 82,1982.

[Ch3] K. T. Chen, On differentiable spaces, Categories in Continuum Physics, Lecture Notes inMath., 1174, Springer, Berlin, 1986, 38–42.

[B-H] J.C. Baez and A.E. Hoffnung, Convenient categories of smooth spaces, Trans. Amer.Math. Soc., 363 (2011), 5789–5825.

[Zem] P. Iglesias-Zemmour, “Diffeology”, Mathematical Surveys and Monographs, 185, Amer.Math. Soc., New York, 2013.

岩瀬則夫 (九大 数理) Diffeology I 信州大学 23 / 23