Desarrollo de nuevos morteros de restauración de cal con ...

315

Transcript of Desarrollo de nuevos morteros de restauración de cal con ...

Page 1: Desarrollo de nuevos morteros de restauración de cal con ...
Page 2: Desarrollo de nuevos morteros de restauración de cal con ...
Page 3: Desarrollo de nuevos morteros de restauración de cal con ...
Page 4: Desarrollo de nuevos morteros de restauración de cal con ...
Page 5: Desarrollo de nuevos morteros de restauración de cal con ...
Page 6: Desarrollo de nuevos morteros de restauración de cal con ...
Page 7: Desarrollo de nuevos morteros de restauración de cal con ...

A mi madre y a mi padre

Page 8: Desarrollo de nuevos morteros de restauración de cal con ...
Page 9: Desarrollo de nuevos morteros de restauración de cal con ...

“La ciencia, muchacho, está hecha de errores,

pero de errores útiles de cometer, pues poco a

poco, conducen a la verdad”

Julio Verne

Page 10: Desarrollo de nuevos morteros de restauración de cal con ...
Page 11: Desarrollo de nuevos morteros de restauración de cal con ...

Agradecimientos

Agradezco a todas las personas que de una u otra forma, han colaborado y me han

ayudado en esta etapa de formación durante estos cuatro años.

Le doy las gracias a mis directores de tesis, Dr. José Ignacio Álvarez Galindo y Dr. Íñigo

Navarro Blasco, por motivarme a realizar esta tesis doctoral, así como por dedicarme parte de

su tiempo y su paciencia para la elaboración de este trabajo, así como ser la guía para terminar

con éxito pese las circunstancias adversas que vive nuestra sociedad.

Agradezco en especial al Dr. Íñigo Navarro Blasco, porque gracias a él comencé esta

aventura, además de que fue la persona que me encaminó a la elaboración de este trabajo y fue

quien me ayudó a realizar la travesía de México a España.

Agradezco también el Dr. José María Fernández, por su asesoramiento a lo largo de este

trabajo, por lo que esta Tesis también es resultado de su esfuerzo.

A Cristina Luzuriaga y a Marta Yárnoz, por haberme apoyado a lo largo de mi doctorado

con sus consejos y su ayuda en la experimentación. Gracias por ayudarme, ser muy serviciales

conmigo y facilitarme lo necesario para el desarrollo de este trabajo.

A todos los miembros del Departamento de Química, que siempre me han ayudado con

alegría y buena disposición. Quisiera dar las gracias particularmente a mis compañeros y

amigos Max Petitjean, Burcu Taşcɪ, María Pérez, Joan Puig, Beatriz de Diego, Leire Goñi,

Mikel Domeño y David Lucio, por compartir conmigo el tiempo en el laboratorio, y compartir

gratas experiencias a lo largo de este periodo

Agradezco a la Asociación de Amigos de la Universidad de Navarra por el soporte

económico recibido durante estos cuatro años de formación.

A todos los amigos que he conocido durante todo este tiempo que, aunque no tuvieron

relación con mi formación Doctoral, me han ayudado a sentirme en casa, al abrirme las puertas

de su hogar y brindarme su amistad, compartiendo momentos inolvidables conmigo. En

especial agradezco a Alberto, Sandy, María, Andrea, Óscar, Javier, a mis actuales compañeros

de piso: Jhony, Shirley, Laura y Araceli con quien he pasado estos días difíciles de cuarentena,

pero gracias a su compañía los han hecho amenos y todos mis amigos de Logroño quienes me

han animado a seguir adelante en momentos difíciles.

Page 12: Desarrollo de nuevos morteros de restauración de cal con ...

Agradecimientos

Agradezco a mi familia a mis padres María Guadalupe y Fidel por apoyarme siempre,

confiar en mí y ser compresivos conmigo durante todo este tiempo: sin ustedes no sería lo que

soy ahora. A mis hermanos Jessica, Marco y Lizbeth por hacerme saber que cuento con todos

ellos aun estando lejos.

Page 13: Desarrollo de nuevos morteros de restauración de cal con ...

Resumen

Page 14: Desarrollo de nuevos morteros de restauración de cal con ...
Page 15: Desarrollo de nuevos morteros de restauración de cal con ...

Resumen

El objetivo principal de este trabajo ha sido optimizar morteros de cal aérea mediante la

incorporación combinada de diferentes aditivos para obtener tres gamas de morteros cal aérea

para la restauración de obras arquitectónicas del Patrimonio Cultural. Entre los aditivos

combinados están: materiales puzolánicos (nanosílice, microsílice o metacaolín),

superplastificantes (investigando diversos tipos como éteres de policarboxilato,

lignosulfonatos, condensados de naftaleno–formaldehído y de sulfonato de melamina–

formaldehído), hidrofugante (oleato sódico), fotocatalizador en la masa (TiO2), aditivo

incrementador de la adherencia (copolímero de etileno–vinil–acetato) y modificador de la

reología (almidón).

En la primera gama se desarrollaron morteros de cal de inyección (grouts) combinando

puzolana, superplastificante e hidrofugante. Se estudiaron cinco superplastificantes

poliméricos: lignosulfonato, éter de policarboxilato, sulfonato de naftaleno y condensado de

melamina–formaldehído sulfonato. Se añadió oleato de sodio para reducir la absorción de agua

y se usaron como minerales puzolánicos microsílice y metacaolín para la mejora de la

resistencia y el tiempo de fraguado. Se estudió la compatibilidad entre las diferentes mezclas y

el mecanismo de acción de los diferentes polímeros mediante medidas de potencial zeta e

isotermas de adsorción. Se prepararon e investigaron diversas mezclas de grouts evaluando su

inyectabilidad, fluidez, estabilidad, resistencia a la compresión, hidrofobicidad y durabilidad.

La mezcla multicomponente compuesta de cal, metacaolín, oleato de sodio y PCE (éste al 1%

en peso), resultó ser la composición más efectiva, mejorando la resistencia mecánica, la

inyectabilidad y la hidrofobicidad.

Posteriormente se estudió una gama de morteros de cal con capacidades fotocatalíticas,

de descontaminación del entorno atmosférico y de autolimpieza. Se empleó la nanosílice, como

aditivo puzolánico para mejorar la resistencia de los morteros, y se añadió nanotitania (TiO2)

para proporcionar a las mezclas propiedades fotocatalíticas. Se estudió el efecto de cinco

aditivos dispersantes (superplastificantes) diferentes para mejorar la actividad fotocatalítica,

asumiendo su función dispersante de las partículas de nanotitania, reduciendo la velocidad de

recombinación hueco positivo–electrón. Se incluyó también oleato de sodio, como en la

primera gama, como agente repelente de agua con el fin de aumentar la durabilidad de los

morteros. Dado que la hidrofilicidad fotoinducida, responsable del efecto de autolimpieza,

podría verse afectada por el hidrofugante, se investigó la compatibilidad entre este aditivo y el

TiO2. Los resultados mostraron que la actividad fotocatalítica mejoró debido a la acción de los

superplastificantes (un aumento promedio del 33% de la degradación del NO), significativo

Page 16: Desarrollo de nuevos morteros de restauración de cal con ...

Resumen

para la actividad descontaminante de estos morteros. Además, estos morteros también

mostraron una liberación muy reducida de compuestos intermedios tóxicos, principalmente

NO2: el factor de selectividad (NOx/NO) alcanzó valores de hasta el 87%. La capacidad de

autolimpieza de los morteros, estudiada a través de la degradación del colorante rodamina B,

se incrementó al utilizar a los superplastificantes. En relación con la capacidad de autolimpieza,

y a pesar de la presencia de oleato, las mezclas con superplastificante conservaron e incluso

elevaron la hidrofilicidad fotoinducida de los morteros de cal, alcanzando una buena

humectabilidad de la superficie de los morteros (ángulos de contacto de aprox. 10º),

demostrando compatibilidad de los aditivos y permitiendo obtener una nueva gama de morteros

de cal con capacidades descontaminante y autolimpiante.

Por último, se usaron diferentes aditivos para el desarrollo de una gama de morteros de

cal de revoque con mejor adherencia y durabilidad, así como con reducida fisuración. Para ello,

se ensayaron combinaciones de un mejorador de la adherencia (copolímero de etileno–acetato

de vinilo, EVA), un hidrofugante, un incrementador de la viscosidad (un derivado del almidón)

y una adición puzolánica de nanosílice o metacaolín. Las mezclas resultantes se aplicaron en

forma de monocapa de 15 mm de espesor sobre cuatro sustratos diferentes (arenisca, caliza,

granito y ladrillo) para evaluar su desempeño. Se estudió la influencia de la combinación de los

aditivos sobre la fluidez, el tiempo de fraguado, la adherencia, la formación de microfisuras, la

resistencia a la compresión, la estructura porosa y la durabilidad (resistencia a heladas y al

ataque por sulfatos). Se observó que el EVA mejoró la adherencia cuando se usa en

combinación con oleato, metacaolín y almidón. Esta combinación condujo además a una

mínima fisuración. Además, se observó que la formación de fisuras y la adherencia dependieron

de la porosidad de los sustratos y de la presencia de poros capilares de pequeño tamaño (0.01 a

1 micra). Las mezclas con nanosílice mostraron elevadas resistencias a compresión, debido al

efecto de relleno del aditivo y a la formación de C–S–H, y mejoraron claramente la durabilidad

frente a los ciclos de hielo–deshielo y al ataque por sulfatos.

Page 17: Desarrollo de nuevos morteros de restauración de cal con ...

Índice

i

I. Introducción

1. Mortero de cal............................................................................................................. 3

1.1. Introducción ...................................................................................................... 3

1.2. Componentes .................................................................................................... 4

1.2.1. Cal .......................................................................................................... 4

1.2.2. Árido ....................................................................................................... 7

1.2.3. Agua ....................................................................................................... 8

1.2.4. Aditivos .................................................................................................. 8

2. Empleo del mortero de cal en restauración del Patrimonio Edificado ....................... 9

2.1. Estudios actuales y justificación ....................................................................... 9

2.2. Los aditivos como solución a los problemas de los morteros de cal .............. 12

3. Aditivos en morteros de cal ...................................................................................... 14

3.1. Panorámica general ........................................................................................ 14

3.2. Tipos de aditivos empleados en morteros de cal ............................................ 16

3.2.1. Superplastificantes (reductores de agua) .............................................. 16

3.2.2. Agentes puzolánicos ............................................................................. 22

3.2.3. Hidrofugantes ....................................................................................... 24

3.2.4. Aditivos fotocatalíticos ........................................................................ 26

3.2.5. Incrementadores de la viscosidad ......................................................... 29

3.2.6. Mejoradores de adherencia ................................................................... 31

4. Interés del estudio sobre combinaciones de aditivos en morteros de cal ................. 33

4.1. Morteros de inyección .................................................................................... 33

4.2. Morteros autolimpiantes ................................................................................. 34

4.3. Morteros de adherencia mejorada .................................................................. 35

Referencias ................................................................................................................... 36

Page 18: Desarrollo de nuevos morteros de restauración de cal con ...

Índice

ii

II. Objetivos

Objetivos....................................................................................................................... 53

III. Material y métodos

1. Materiales empleados ............................................................................................... 57

1.1. Materiales generales ....................................................................................... 57

1.1.1. Cal ........................................................................................................ 57

1.1.2. Árido ..................................................................................................... 57

1.1.3. Hidrofugante ......................................................................................... 58

1.1.4. Aditivos puzolánicos ............................................................................ 58

1.1.5. Agua ..................................................................................................... 59

1.2. Aditivos específicos de la Gama 1: morteros de inyección de cal con

elevada resistencia, durabilidad y buena fluidez ........................................... 59

1.2.1. Aditivos superplastificantes ................................................................. 59

1.3. Aditivos específicos de la Gama 2 de morteros de cal con capacidad

autolimpiante ................................................................................................. 61

1.3.1. Aditivos superplastificantes ................................................................. 61

1.3.2. Aditivo fotocatalítico: TiO2 .................................................................. 63

1.4. Aditivos específicos de la Gama 3 de morteros de cal de reología

controlada y adherencia mejorada ................................................................. 63

1.4.1. Modificador de reología ....................................................................... 63

1.5. Potenciador de la adherencia .......................................................................... 64

2. Caracterización de los materiales ............................................................................. 65

2.1. Difracción de Rayos X (XRD) ....................................................................... 65

2.2. Isotermas de adsorción gas–sólido ................................................................. 65

2.3. Determinación de potencial zeta .................................................................... 66

2.4. Determinación de tamaño de partícula ........................................................... 66

2.5. Espectroscopía IR ........................................................................................... 66

2.6. Determinación de adsorción mediante carbono orgánico total (TOC) ........... 66

Page 19: Desarrollo de nuevos morteros de restauración de cal con ...

Índice

iii

3. Preparación y estudio de las mezclas ....................................................................... 68

3.1. Dosificación .................................................................................................... 68

3.2. Mezcla y amasado .......................................................................................... 68

3.3. Elaboración de las probetas ............................................................................ 69

3.4. Ensayos del mortero fresco ............................................................................ 69

3.4.1. Determinación de la consistencia (mesa de sacudidas) ........................ 69

3.4.2. Determinación de la densidad y el contenido de aire ocluido .............. 70

3.4.3. Determinación del periodo de trabajabilidad ....................................... 70

3.4.4. Estudio del proceso de hidratación ....................................................... 71

3.4.5. Determinación de la capacidad de retención de agua .......................... 71

3.4.6. Evolución del extendido sobre diferentes superficies .......................... 71

3.4.7. Inyectabilidad ....................................................................................... 72

3.5. Ensayos del mortero endurecido .................................................................... 73

3.5.1. Determinación de la resistencia a compresión ..................................... 73

3.5.2. Estudio de la estructura porosa ............................................................. 74

3.5.3. Estudio químico y mineralógico .......................................................... 74

3.5.4. Análisis térmico .................................................................................... 74

3.5.5. Estudio del ángulo de contacto ............................................................. 74

3.5.6. Estudio de actividad fotocatalítica ....................................................... 75

3.5.7. Estudio de la durabilidad ...................................................................... 76

3.5.8. Estudio biocida ..................................................................................... 77

4. Metodología de Estudio ............................................................................................ 78

IV. Resultados y discusión

Capítulo I: Desarrollo de morteros de cal de inyección (grouts) .................................. 85

Parte A. Polymer–based superplasticizers to prepare lime–metakaolin grouts:

mechanical performance and durability assessment .............................. 87

Page 20: Desarrollo de nuevos morteros de restauración de cal con ...

Índice

iv

Parte B. Combination of polymeric superplasticizers, water repellents and

pozzolanic agents to improve air lime–based grouts for historic

masonry repair ..................................................................................... 123

Capítulo II: Desarrollo de morteros de cal con actividad fotocatalítica mejorada y

autolimpiables ......................................................................................... 161

Improvement of the depolluting and self–cleaning abilities of air lime mortars

with dispersing admixtures .................................................................................. 163

Capítulo III: Diseño y obtención de morteros de revoco con fisuración reducida y

adherencia mejorada ............................................................................. 201

Improving lime–based rendering mortars with admixtures ................................ 203

V. Discusión general

1. Aditivos puzolánicos .............................................................................................. 253

1.1. Microsílice .................................................................................................... 253

1.2. Metacaolín .................................................................................................... 255

1.3. Nanosílice ..................................................................................................... 257

2. Superplastificantes .................................................................................................. 262

2.1. Lignosulfonato .............................................................................................. 262

2.2. Éteres de policarboxilato .............................................................................. 263

2.3. Sulfonato de naftaleno .................................................................................. 266

2.4. Condensado de melamina–formaldehído sulfonato (SMF) .......................... 268

3. Aditivo hidrofugante: oleato de sodio .................................................................... 270

4. Fotocatalizador: TiO2 ............................................................................................. 272

4.1. Estudio biocida ............................................................................................. 272

4.2. Abatimiento de NO y autolimpieza .............................................................. 273

5. Modificador de la viscosidad: almidón de patata modificado ................................ 274

6. Modificador de la adherencia: copolímero de etileno–acetato de vinilo (EVA) .... 276

Page 21: Desarrollo de nuevos morteros de restauración de cal con ...

Índice

v

7. Resumen de resultados y recomendaciones de combinaciones de aditivos ........... 277

7.1. Morteros de inyección .................................................................................. 277

7.2. Morteros autolimpiantes ............................................................................... 277

7.3. Morteros de adherencia mejorada ................................................................ 278

Referencias ................................................................................................................. 279

VI. Conclusiones

Conclusiones............................................................................................................... 287

Page 22: Desarrollo de nuevos morteros de restauración de cal con ...
Page 23: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

Page 24: Desarrollo de nuevos morteros de restauración de cal con ...
Page 25: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

3

1. Mortero de cal

1.1. Introducción

Desde la antigüedad la cal ha sido uno de los principales conglomerantes que el

hombre ha utilizado debido a su fácil obtención a partir de rocas carbonatadas abundantes

en la corteza terrestre. A través de la historia, sus aplicaciones han sido múltiples,

empleándose para revestimientos o en forma de morteros para rellenos, solados, levante,

etc., así como en materiales hidráulicos y resistentes a la acción del agua del mar

añadiendo puzolanas como aditivos [1,2].

Además, se sabe que a los morteros de cal se les agregaban aditivos para su mejora

desde la época egipcia, en la cual se emplearon aditivos orgánicos tales como la sangre

animal, huevos, caseína, etc. En la época griega y romana se empezaron a utilizar

adiciones inorgánicas como tejo, ladrillo triturado o polvo volcánico, todos ellos con

actividad puzolánica más o menos intensa. Los romanos fueron los primeros en darse

cuenta de que las mezclas con puzolana poseían carácter hidráulico y eran capaces de

endurecer bajo el agua, alcanzando además elevadas resistencias mecánicas y muy buenas

durabilidades [3,4].

El empleo de la cal como ligante se atribuye al extensivo uso en el período

neolítico y posteriormente por parte de las culturas griega y romana, siendo estos últimos

los que perfeccionaron la técnica de fabricación y aplicación [5]. Los morteros de cal

romanos estaban formados por cal y arena, generalmente en dosificación 1:3 o 2:5 en

función de la calidad del árido, y en ocasiones incluían materiales hidráulicos como

cenizas volcánicas, tejas trituradas o puzolanas [3,6,7].

Posteriormente, la fabricación y utilización de los morteros de cal fue una práctica

razonablemente común hasta la primera guerra mundial, en combinación con los

cementos naturales. A partir de ese momento, la gran evolución de los cementos Portland

(con mayor velocidad de endurecimiento y resistencia mecánica más elevada) hizo que

los morteros de cemento desplazaran a los tradicionales morteros de cal en prácticamente

todas sus aplicaciones [8].

Sin embargo, hoy en día el mortero de cal constituye la alternativa más deseable

para acometer la restauración del Patrimonio Edificado. Su aplicación y uso es muy

diverso y abarca desde la reparación de daños estructurales hasta meramente decorativos

Page 26: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

4

[9–11]. Todo ello es factible gracias a la obtención de morteros con diversas

características y propiedades por variación de sus componentes o la proporción de los

constituyentes [6,12].

1.2. Componentes

1.2.1. Cal

La cal es una sustancia alcalina constituida por óxido de calcio, que al contacto

con el agua genera una reacción de hidratación fuertemente exotérmica. La normativa

enuncia el concepto de cal para construcción, definida como “Conglomerante cuyos

principales constituyentes, dados por el análisis químico, son los óxidos e hidróxidos de

calcio (CaO, Ca(OH)2), con cantidades menores de magnesio (MgO, Mg(OH)2), silicio

(SiO2), aluminio (Al2O3) y hierro (Fe2O3)” [13]. La cal forma el mortero o argamasa

cuando se mezcla con arena y agua.

Comúnmente en el ámbito de la construcción se utiliza la cal apagada, o hidróxido

de calcio, que no produce una reacción exotérmica al hidratarse. La cal apagada (a la que

comúnmente se extiende la denominación de cal) se produce mediante la hidratación

controlada de la cal viva proveniente de la calcinación de roca caliza o dolomítica. Esta

hidratación puede hacerse mediante proceso industrialmente controlado o por

embalsamiento en agua durante tiempos prolongados, en procesos artesanales [14].

Pueden distinguirse en función de la composición química y del mecanismo de

fraguado, cales aéreas o hidráulicas. En el caso de cales aéreas, se componen

principalmente de óxido o hidróxido de calcio. Debido a que este tipo de cal carece de

componentes hidráulicos, el material en contacto con el agua no endurece. El agua se

inmoviliza y se genera adherencia, aportando humedad al mortero evitando, hasta cierto

punto, un secado demasiado rápido.

El fraguado es un proceso en el que el material tras ser mezclado con agua deja de

comportarse como una suspensión líquida [15,16]. En el caso de la cal, durante el

fraguado se experimenta un proceso de carbonatación y posterior liberación de agua.

Dependiendo del tipo de cal, los procesos de fraguado y endurecimiento se desarrollarán

a través de diferentes mecanismos. Las cales aéreas endurecen como consecuencia de un

doble proceso, evaporación de parte del exceso de agua de amasado y carbonatación del

hidróxido de calcio por contacto con el dióxido de carbono atmosférico. La evaporación

Page 27: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

5

inicial del agua es la que proporciona el endurecimiento inicial, y la carbonatación es un

proceso irreversible que modifica la microestructura del material a largo plazo [16].

Debido a la presencia de agua, el CO2 y la portlandita se disuelven previamente,

dando como productos ácido carbónico (Ec. 1) y una pasta de cal respectivamente.

𝐶𝑎(𝑂𝐻)2 + 2𝐻2𝑂 + 𝐶𝑂2 → 𝐻2𝐶𝑂3+ + 𝐶𝑎(𝑂𝐻)2 + 𝐻2𝑂 𝑬𝒄. 𝟏

El ácido carbónico generado reaccionará con la portlandita en disolución,

transformándose en carbonato cálcico y agua (Ec. 2).

𝐻2𝐶𝑂3 + 𝐶𝑎(𝑂𝐻)2 → 𝐶𝑎𝐶𝑂3 + 𝐻2𝑂 𝑬𝒄. 𝟐

Esta reacción forma un producto intermedio (bicarbonato cálcico) que se

descompone por evaporación de agua, lo que forma finalmente cristales de carbonato

cálcico (Ec. 3).

𝐶𝑂2(𝑔) + 𝐶𝑎(𝑂𝐻)2(𝑠) → 𝐶𝑎(𝐻𝐶𝑂3)2(𝑠) → 𝐶𝑎𝐶𝑂3(𝑠) + 𝐻2𝑂(𝑙) + 𝐶𝑂2(𝑔) 𝑬𝒄. 𝟑

El proceso global de carbonatación de la cal aérea se describe en la Fig. 1 [17–

19].

La velocidad e intensidad del proceso de carbonatación se ve afectado por diversos

factores como son: la temperatura, la humedad relativa, la existencia de agua en el

mortero, la estructura porosa y espesor del material, el tiempo de reacción, la

permeabilidad del medio, la composición de la cal, la adición de un ligante o la presencia

de aditivos orgánicos; todo ello tendrá repercusión directa sobre la microestructura del

material [20].

La resistencia a compresión de cales aéreas depende directamente de su proceso

de carbonatación. Llegará a su máximo valor, dependiendo de su propiedades, en un

periodo de aproximado de 1 a 3 años [14,15,21–23].

Figura 1. Proceso de carbonatación de la cal

Page 28: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

6

La cal hidráulica se obtiene a partir de rocas que contienen mezclas de margas y

arcillas ricas en sílice, aluminio y hierro. Durante la calcinación de la cal se forman, en

función de la carga mineral, de la temperatura del horno y del tiempo de residencia,

diferentes silicatos de calcio, particularmente C2S y gehlenita. La disponibilidad de

hidróxido de calcio y de estos compuestos permite que este tipo de cal endurezca en

contacto con el aire y con el agua, y más rápido que la cal aérea, lo que permite acelerar

el ritmo de su aplicación en obra. Su capacidad de endurecimiento en ausencia de aire

permite su empleo en obra hidráulica y grandes macizos de albañilería.

En cales hidráulicas, el proceso de carbonatación es análogo al acontecido para

las cales aéreas; sin embargo, adicionalmente se lleva a cabo un proceso paralelo de

hidratación de silicatos y aluminatos presentes, principalmente bajo las formas químicas:

silicato dicálcico (C2S), y en mucha menor medida de silicato tricálcico (C3S) y aluminato

tricálcico (C3A), que darán lugar a los correspondientes productos hidratados

responsables de la resistencia mecánica del material, y también originará portlandita que

sufrirá posteriormente la reacción de carbonatación (Ec. 4–6).

2(3𝐶𝑎𝑂 ∙ 𝑆𝑖𝑂2) + 6𝐻2𝑂 → 3𝐶𝑎𝑂 ∙ 2𝑆𝑖𝑂2 ∙ 3𝐻2𝑂 + 3𝐶𝑎(𝑂𝐻)2 𝑬𝒄. 𝟒

3(𝐶𝑎𝑂) · 𝐴𝑙2𝑂3 + 6𝐻2𝑂 → 3𝐶𝑎𝑂 ∙ 𝐴𝑙2𝑂3 ∙ 6𝐻2𝑂 𝑬𝒄. 𝟓

2(2𝐶𝑎𝑂 ∙ 𝑆𝑖𝑂2) + 4𝐻2𝑂 → 3𝐶𝑎𝑂 ∙ 2𝑆𝑖𝑂2 ∙ 3𝐻2𝑂 + 𝐶𝑎(𝑂𝐻)2 𝑬𝒄. 𝟔

En morteros de cal deben tenerse en cuenta las siguientes características y

comportamientos observables:

a) Modificaciones de volumen: como consecuencia directa de dos fenómenos

principales: retracción y expansión. La retracción es debida a la disminución

de volumen experimentada por el mortero de cal, durante y después del

fraguado, tras la exposición al aire, térmica (cales hidráulicas), plástica e

hidráulica o de secado (cales aéreas).

La expansión, por el contrario, es un fenómeno que puede suceder en cualquier

tipo de cal, que puede contener cierta cantidad de cal viva y sufrir un proceso

de hidratación tras su aplicación, dando como resultado un mercado incremento

de volumen. Este hecho origina roturas y despegues de material, conocidos

como caliches. Este fenómeno puede desencadenar un notable inconveniente y

debe ser debidamente controlado.

Page 29: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

7

b) Plasticidad, esta propiedad proporciona a las pastas y los morteros de cal la

capacidad para moldearse con facilidad. La cal puede absorber las

deformaciones originadas por esfuerzos mecánicos [16,24].

c) Retención de agua, dicho atributo depende del tamaño de grano del hidróxido

de calcio, así como de su estructura. La alta capacidad retenedora de agua de

los diferentes tipos de cal es consecuencia directa de su reducido tamaño [25].

d) Demanda de agua, se considera la cantidad de agua necesaria ya sea para apagar

la cal viva o para llevar acabo la etapa de amasado.

1.2.2. Árido

Por lo general, los áridos que forman parte de los morteros de cal son materiales

granulares inorgánicos de tamaño variable. Se considera oportuno dispongan de un

carácter inerte ya que por sí mismos no deben actuar químicamente en la mezcla. Sin

embargo, la vinculación con la cal ejercerá una influencia determinante en las propiedades

físicas del mortero. En los últimos años se ha reconocido ampliamente la importancia de

seleccionar el tipo de áridos y su efecto en el cambio de propiedades del hormigón y

mortero de cal. En el contexto de la rehabilitación de revestimientos de muros, este factor

cobra especial importancia, ya que se pretende obtener morteros con características

específicas y prestaciones compatibles con los existentes en mampostería antigua. Los

áridos, al ser parte integrante de los morteros de cal, y en algunos casos definidos como

el "esqueleto" de los sistemas de revestimiento, influyen directamente en sus propiedades,

tanto en estado fresco como endurecido. El comportamiento de los morteros depende en

gran medida de su microestructura, que a su vez está condicionada por varios aspectos,

entre los que destacan: las características de los componentes utilizados (a saber, tipo de

ligante y naturaleza mineralógica y tamaño del agregado); la formulación (proporción con

la que se mezclan los componentes y cantidades de agua de mezcla); la cura; los

procedimientos de aplicación y el tipo de soporte. Los áridos, que constituyen alrededor

del 75 al 85% del volumen de mortero, asumen un papel fundamental en el

comportamiento físico, químico y mecánico de los morteros, así como en el acabado y

aspecto final de los morteros, principalmente en el caso de morteros de cal [14,26–28].

Page 30: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

8

1.2.3. Agua

El papel desempeñado por el agua de amasado en un mortero de cal es variable.

En el caso de las cales hidráulicas, el agua es necesaria para que se lleven a cabo la

reacción de hidratación durante el endurecimiento, denominándose entonces agua de

curado. En el caso de las cales aéreas, el papel ejercido se puede calificar de intermedia:

el agua no participa directamente en las reacciones químicas del mortero, pero es

necesaria como medio para que se produzca la carbonatación [18].

Cualquier tipo de agua hallada en la naturaleza , siempre y cuando no contenga

abundantes sales o impurezas, es apta para su empleo en la preparación de un mortero. El

agua utilizada para el amasado o el curado en obra no debe contener ningún residuo o

constituyente perjudicial en cantidades tales que afecten a las propiedades del mortero,

según las prescripciones para cementos y hormigones [29]. En definitiva, toda agua de

consumo público es válida para su empleo, y en general, es preferible el agua de ríos que

la procedente de pozos y pantanos, debido a su mayor contenido en materia orgánica,

fangos, limos, arcillas y finos en suspensión, y que por su pequeño tamaño disminuyen

considerablemente la adherencia de la pasta y el árido.

Se conoce que las aguas que presentan un contenido en sales naturales en torno al

5% producen pérdidas de resistencia de hasta un 30%, y que las aguas de origen mineral

carbonatadas que contienen pequeñas cantidades de sulfatos y cloruros pueden inferir

caídas de resistencia de hasta un 80%. Además, un alto contenido en sales conlleva

necesariamente a la aparición de eflorescencias.

1.2.4. Aditivos

Estos compuestos son materiales añadidos antes o durante la mezcla del mortero

o pasta, en una proporción inferior al 5% en masa del contenido de ligante. Ejercen su

función principal con objeto de mejorar las propiedades del mortero, en estado fresco o

endurecido, con determinadas modificaciones bien definidas y con carácter permanente

[30,31].

Page 31: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

9

2. Empleo del mortero de cal en restauración del Patrimonio

Edificado

2.1. Estudios actuales y justificación

En el momento de elaborar el presente trabajo, los investigadores dedicados a la

restauración del Patrimonio Edificado recomiendan, de forma apremiante, la utilización

de morteros de cal en procesos de restauración de obras monumentales de interés

histórico–artístico [23,32–34], dado que dichos materiales de reparación exhiben

características, composición y propiedades similares a los materiales originales de la obra

arquitectónica en donde son aplicados [35].

Durante las últimas décadas del siglo XX, el uso a gran escala del cemento

Portland postergó, cuando no evitó, los estudios sobre los morteros de cal a un segundo

plano, lo que explica relativamente su limitada aplicación en obra de intervención. El

cemento Portland constituyó, tras su extensión como material conglomerante, el foco

neurálgico para la comunidad científica dedicada a los materiales de construcción

aglutinantes [14] y, además, se convirtió en el material de referencia para ser usado en la

práctica totalidad de los procesos constructivos, incluyendo las actuaciones de

restauración de obras monumentales [14,36].

Sin embargo, los problemas asociados a la utilización del cemento Portland

explican y avalan el creciente uso de los morteros de cal. Son destacables varios

argumentos positivos a favor de los morteros de cal, que minimizan los inconvenientes

de los morteros de cemento, e incluso justifican el empleo y aplicación de aquellos

[37,38]:

• Los morteros de cal presentan mayor compatibilidad con los métodos de

edificación y los materiales antiguos desde los puntos de vista químico, estructural

y mecánico.

• La cantidad de sales solubles aportada por el mortero de cal es notablemente

inferior a la proporcionada por el cemento Portland. Esto evita el importante daño

en el sistema conjunto piedra/mortero originado por los ciclos de recristalización

(disolución y precipitación) y/o hidratación.

• Manifiestan una mayor flexibilidad bajo determinadas condiciones mecánicas,

aspecto esencial en previsión de los esperados movimientos de las fábricas de

Page 32: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

10

mampostería: los morteros de cal poseen una compatibilidad tecnológica con los

materiales antiguos muy superior en comparación con los análogos de cemento.

• Los morteros de cal proporcionan una aventajada estabilidad estructural del

edificio a largo plazo, ya que en el caso de que se originen fracturas en el mortero,

éstas pueden subsanarse mediante un proceso de autosellado (self–healing en el

término inglés), vinculado a los ciclos de disolución/reprecipitación de la calcita.

Junto a estas premisas iniciales, en favor del uso de morteros de cal, cabe esgrimir

criterios históricos, que sostienen el principio de mínima intervención sobre obra

patrimonial, en aras de conservación preventiva o, en su defecto, en caso de necesidad, la

utilización de materiales y técnicas de construcción análogos a los empleados en la

edificación original, atendiendo a la salvaguarda de los valores intrínsecos y extrínsecos

propios de la obra integrante del Patrimonio Histórico [22,37].

Existen, además, revestimientos interiores y exteriores (enlucidos y revocos), en

las que estos morteros proporcionan ventajosa aplicación, ya que permiten i) una buena

plasticidad, ii) una débil retracción,, iii) una gran elasticidad que favorece su adaptación

a las deformaciones del soporte sin provocar agrietamientos, iv) permeabilidad apreciable

al vapor de agua que favorece el intercambio gaseoso, v) escaso contenido en sales

solubles por lo que disminuye el riesgo de aparición de eflorescencias, vi) buen

aislamiento térmico y acústico, vii) buen aspecto estético y homogéneo, y viii) facilidad

de coloración con garantía de sellado y estucado [39,40].

La cal es, además, un material tradicional, barato y localmente disponible en la

mayoría de las zonas. En determinadas aplicaciones, como hormigones de cal y cáñamo,

puede llegar a tener un impacto de carbono negativo. Es decir, en un análisis completo de

su ciclo de vida, incluyendo su extracción, producción y aplicación, no libera CO2 a la

atmósfera, sino que actúa como absorbente del mismo. Entre otras razones, el menor coste

energético en transporte y producción (por la menor energía de calcinación requerida, en

comparación con el cemento), y su capacidad de carbonatación, explican estos resultados.

Además, es un material saludable, con notable capacidad biocida por su pH alcalino

[41,42].

En definitiva, resulta, por ello, de enorme interés abordar el estudio de las

propiedades de los morteros de cal y su grado de afectación por diversos materiales,

métodos y técnicas [30,43]. A modo de ejemplo, varios estudios han mostrado la

Page 33: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

11

implicación de las propiedades de morteros de cal aérea cálcica, dolomítica e hidráulica,

como factores críticos para la resistencia mecánica del material [14,22,30,44,45]. En este

mismo sentido, la adición de agentes puzolánicos procuran un resultado muy positivo

para dichos morteros de cal [44,46–48].

En su detrimento, la literatura señala un largo periodo de endurecimiento para que

el mortero de cal alcance su resistencia mecánica definitiva, de forma que los valores

máximos se alcanzan tras uno o dos años [14,15,21–23]. La lenta carbonatación de estos

morteros, responsable principal de su lenta evolución mecánica, se ha relacionado con la

alteración en la distribución de tamaño de poro producida durante el propio proceso de

carbonatación y con el secado del material. Por un lado, la transformación de portlandita

en calcita conduce al bloqueo de los poros de mayor tamaño, de forma que la reacción de

carbonatación se dificulta mediante la restricción del acceso de agua necesaria la

disolución de la portlandita y la transformación del CO2. Por otro, el secado y evaporación

del agua de amasado, en las primeras etapas, y del agua remanente en el interior de los

poros, en los siguientes estadios, limita el contenido de agua requerido, según se ha

comentado, para la carbonatación. En conclusión, el proceso de carbonatación en los

morteros de cal se considera autolimitante [49,50].

Añadido a ello, también es sencillo enumerar las desventajas que se relacionan

con el mortero de cal. Entre ellas destacan la relativa baja resistencia mecánica, alta

sensibilidad a los procesos de deterioro debidos a su baja cohesión interna y alta porosidad

−factores que aportan una elevada capacidad de retención de agua−, su pequeña

resistencia a ciclos hielo–deshielo y el alto grado de afectación de la cristalización de

sales [38]. Además del menoscabo de estos factores físicos sobre las características

estructurales, se deben considerar los factores químicos (reacciones químicas directas

entre los morteros y reactantes agresivos, procesos de disolución en agua, con

contaminantes atmosféricos: CO2, SO2, NO2) o los biológicos (crecimiento de

microorganismos que conllevan destrucción química por los productos de su

metabolismo, variación del pH en el sustrato o colonización biológica desestabilizando la

integridad del mortero), como aspectos relevantes en el de deterioro de los morteros de

cal [21,51,52].

La incorporación de uno o varios aditivos químicos o puzolánicos adecuadamente

seleccionados a un mortero conlleva una mejora muy considerable en una o varias de sus

propiedades y, por lo tanto, del comportamiento del material. Por esta razón, los aditivos

Page 34: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

12

han adquirido en los últimos años una importancia enorme en la industria de la

construcción y son muchos los estudios que se han desarrollado en torno a este tema para

morteros de cemento y hormigones [53–55].

2.2. Los aditivos como solución a los problemas de los morteros de cal

A pesar de la abundancia de investigación en el campo de los materiales de

construcción sobre la inclusión de aditivos de diversa naturaleza y puzolanas sobre

agentes conglomerantes basados en cemento, los estudios de incorporación de aditivos y

empleo de puzolanas a morteros de cal son limitados, especialmente los primeros. Dado

su diferente carácter químico, los resultados obtenidos en los ensayos con matrices de

cemento no son directamente extrapolables a los sistemas de cal, en los que el

comportamiento de aditivos requiere un estudio independiente para conocer su función

desarrollada, así como su eficacia y actividad, incluyendo el mecanismo de acción

específico en la matriz de cal.

Asimismo, la mejora de las propiedades de los morteros de cal podría ser de

enorme interés, enfocada a aplicaciones modernas (revocos y enlucidos) o encaminada

hacia obras de restauración llevadas a cabo con materiales compatibles pero mejorados,

con la ayuda de productos y técnicas de fabricación modernos. En este sentido puede

indicarse que muchos de los aditivos que se proponen son compuestos químicos de

naturaleza orgánica, como oleatos, estearatos, derivados de goma guar o almidón; otros

son derivados químicos sintéticos, pero, en todo caso, se añaden en proporciones muy

bajas, en torno al 0.5% respecto al peso de cal, porcentaje muy inferior todavía respecto

al peso del mortero total en seco. Por ello, los sistemas que se proponen son respetuosos

con las técnicas y materiales clásicos, aportando las mejoras lógicas del avance científico

y técnico, y preservan además las características de la cal relativas a su sostenibilidad

medioambiental.

Todo ello se apoya en investigaciones previas que han estudiado la incorporación

individual de superplastificantes a morteros de cal aérea o hidráulica, el uso de

retenedores de agua, aireantes, hidrofugantes o el empleo de puzolanas como el

metacaolín o nanosílice como aceleradores del fraguado [23,30,38,47,56–61], o la adición

de aditivos fotocatalíticos, basados en TiO2 [62,63]. Los resultados son muy

prometedores, ya que se han observado ventajas claras en la incorporación de un único

Page 35: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

13

aditivo: mejora en resistencias mecánicas, en tiempos de fraguado o en durabilidad han

sido resaltadas recientemente [50,60,64].

Sin embargo, en la mayor parte de los trabajos, toda la información disponible se

circunscribe al efecto de un único aditivo, sin contemplar el posible efecto conjunto o

incluso sinérgico de las combinaciones más interesantes de dos o más aditivos y/o

puzolanas. Sólo de forma reciente se han publicado algunos trabajos que plantean la

combinación binaria de una puzolana con otros aditivos, principalmente

superplastificantes, con muy buenos y esperanzadores resultados [48,50,58,65].

Page 36: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

14

3. Aditivos en morteros de cal

3.1. Panorámica general

El uso de aditivos con objeto de mejorar las propiedades del mortero de cal no es

una idea moderna. Los primeros datos correspondientes a su empleo se remontan a la

cultura egipcia, como se ha comentado, en la que se aplicaron una variedad grande de

aditivos orgánicos disponibles, de origen animal o vegetal, como la sangre animal,

huevos, caseína, etc. En la época griega y romana se dispusieron de adiciones inorgánicas

como teja y ladrillo triturado o polvo volcánico (la conocida Tierra de Santorini), todos

ellos con probada actividad puzolánica más o menos intensa. Así, los romanos alcanzaron

morteros de elevada resistencia mecánica y muy alta durabilidad a largo plazo [66,67].

El empleo de aditivos se ha generalizado, y a lo largo de los años han ido

apareciendo nuevos compuestos y productos capaces de mejorar enormemente el

comportamiento de los morteros. Gracias al notable avance tecnológico, se permite llevar

a cabo la modificación de materiales naturales o la síntesis de nuevos aditivos con el

objeto de conseguir productos que cumplan unas expectativas tan concretas como se

desee. Sin embargo, este gran desarrollo industrial, se ha centrado en la última década en

los aditivos para productos con base cemento (hormigones, morteros, etc.).

Existen numerosas referencias acerca de distintos grupos de aditivos de aplicación

íntegra a hormigones y morteros de cemento: aditivos hidrofugantes, reductores de agua

y superplastificantes, retenedores de agua, aireantes, aceleradores de fraguado y

retardadores [68–71]. La descripción detallada de los mecanismos de acción de cada uno

de los aditivos y el conocimiento pleno de los procesos que tienen lugar en las mezclas,

han permitido sentar las bases para el desarrollo de nuevos y mejores productos

comerciales.

Como estrategia convergente, la adición mineral conjunta ha abierto una nueva

perspectiva de investigación. Las adiciones minerales plantean la incorporación de un

material añadido a la mezcla, en porcentaje generalmente más alto que los aditivos, que

asimismo implica una modificación de la mezcla, sea física, química o fisicoquímica.

Estas adiciones persiguen rebajar la cantidad de cemento incorporado, tanto en el proceso

de clinkerización como a posteriori, abaratando costes, e incluso permitiendo el reciclado

y la reutilización de residuos. La incorporación de uno o varios aditivos o puzolanas

adecuadamente seleccionados a un mortero conlleva una mejora muy considerable en una

Page 37: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

15

o varias de sus propiedades y, por lo tanto, del comportamiento del material. Por esta

razón, los aditivos han adquirido en los últimos años una importancia enorme en la

industria de la construcción y son muchos los estudios que se han desarrollado en torno a

este tema para morteros de cemento y hormigones [68–70].

Entre los aditivos más frecuentemente estudiados se encuentran los materiales de

relleno o reciclados y las adiciones minerales, que engloban los materiales con mayor

potencial, aquellos de naturaleza puzolánica como el humo de sílice, cenizas de cáscara

de arroz, cenizas volantes, escorias metalúrgicas, tobas volcánicas, arcillas calcinadas,

nanosílice, microsílice, etc. [72]. La incorporación de dichos agentes minerales con

carácter puzolánico, denominados materiales cementicios suplementarios

(Supplementary Cementitious materials, SCMs) representa una eficaz estrategia para

solventar, parcial o totalmente, algunos de los principales inconvenientes que presentan

hoy en día los morteros de cal. Las puzolanas, bien documentadas en la química de los

materiales cementantes ordinarios, llevan a cabo una intensa reacción con el hidróxido de

calcio, formando silicatos de calcio que permiten su posterior hidratación resultando en

una matriz de evidente carácter hidráulico, dotando al sistema un notable incremento de

su resistencia mecánica y aminorando el tiempo de fraguado [34,37,38,50]. A modo de

ejemplo, en el caso específico de morteros de inyección o de relleno, la presencia de

aditivos se hace indispensable para adquirir adecuada reología del mortero fresco que

posibilite su proyección, ya que dichos morteros deben fluir oportunamente durante su

aplicación, garantizando a posteriori, además de su estabilidad de volumen, un oportuno

fraguado y posterior durabilidad [53,56].

Por último, cabe destacar los aditivos fotocatalizadores, compuestos entre los que

sobresale de manera clara el TiO2, son generalmente semiconductores basados en óxidos

de los elementos de transición, que mediante la acción de luz (en el caso del TiO2 en el

espectro ultravioleta), permiten la descomposición/oxidación química de contaminantes

y depósitos de materia orgánica facilitando su eliminación [63]. Además, estos aditivos

muestran eficacia biocida, evitando la colonización biológica sobre los morteros, tanto de

algas, como por ejemplo de líquenes o cianobacterias [73].

Page 38: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

16

3.2. Tipos de aditivos empleados en morteros de cal

En este apartado se describen los diferentes tipos de aditivos empleados en los

morteros de cal, su uso, aplicación y así como las propiedades que modifican, utilizando

como base la clasificación realizada por Izaguirre [74]. Dicha clasificación considera los

grupos de aditivos más frecuentemente descritos en la bibliografía o que han tenido mayor

importancia. La mayoría constituyen una categoría propia y, como se detallará después,

han sido utilizados en esta tesis doctoral, en que se discutirán los siguientes tipos de

aditivos:

• Superplastificantes (reductores de agua)

• Agentes puzolánicos

• Hidrofugantes

• Aditivos fotocatalíticos

• Incrementadores de la viscosidad

• Mejoradores de adherencia

3.2.1. Superplastificantes (reductores de agua)

Estos aditivos permiten reducir la necesidad de agua de amasado (si se quiere

mantener similar consistencia) o aumentar la fluidez del material (si se quiere mantener

la cantidad de agua de amasado). Estos aditivos pueden ser útiles para morteros de cal ya

que su acción reductora de agua puede evitar el exceso de agua de amasado, lo que puede

ser beneficioso para el proceso de carbonatación y el desarrollo de la resistencia mecánica

final [26]. Existen algunas evidencias de que estos aditivos pueden disminuir en los

morteros de cal su largo tiempo de fraguado e incrementar su resistencia mecánica

[75,76]. Además, un menor contenido de agua puede representar una menor contracción

por secado y una menor porosidad asociada con la absorción de agua (poros capilares), lo

que puede reducir la susceptibilidad a la degradación de los morteros de cal. En estado

fresco, la mayor fluidez que se puede conseguir con el uso de aditivos reductores de agua

puede mejorar la aplicación de estos morteros, en particular de inyección o grouts, y su

adherencia al soporte.

Page 39: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

17

Figura 2. Esquema del mecanismo de acción de los superplastificantes

Los superplastificantes consisten en agentes tensioactivos o tensioactivos

aniónicos que se adsorben en las partículas de la cal, aportando frecuentemente carga

superficial negativa. Esta carga electrostática conduce a la repulsión entre las partículas

(repulsión electrostática) y, por tanto, a su dispersión. Dado que las fuerzas de atracción

entre las partículas se reducen, es más fácil superarlas para que el material fluya

(reducción del límite elástico), razón por la cual estos aditivos son responsables de un

aumento de fluidez, cuando el agua de amasado se mantiene igual [77]. La diferencia

entre un plastificante y un superplastificante es la reducción de agua: mientras que los

primeros conducen a una reducción de agua entre un 5 y un 10%, los segundos permiten

reducciones de agua de hasta un 40% [77].

También se conoce que estos aditivos pueden ejercer su papel a través de

impedimento estérico entre las partículas, incluso con la formación de multicapas, con lo

que el efecto se amplía [69,78]. La Fig. 2 muestra un esquema de la posible interacción

de los superplastificantes con las partículas del mortero de cal.

Los superplastificantes más utilizados en la actualidad son los basados en

lignosulfonato (LS), policondensados de sulfonato de naftaleno (PNS), sulfonato de

melamina formaldehído (SMF) y éteres de policarboxilato (PCE) [50,75,79,80].

• Lignosulfonatos (LS)

Estos plastificantes son un polímero natural que se deriva del procesamiento de la

madera. La lignina de la pulpa de madera se elimina mediante una reacción de sulfito y

luego se procesa antes de usarse para aditivos Los lignosulfonatos empleados como

reductores de agua son principalmente cálcicos y sódicos. La molécula básica (Fig. 3). es

un fenilpropano sustituido, que contiene grupos hidroxil, carboxil, metoxi y ácido

sulfónico. El polímero final no se dispone linealmente, sino que forma esferas situando

sus cargas en la superficie exterior.

Page 40: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

18

Figura 3. Lignosulfonato

Los lignosulfonatos más solubles son los sódicos, lo que es de utilidad ya que evita

la sedimentación a bajas temperaturas. En sistemas conglomerantes con cal, el LS

aumenta considerablemente la fluidez de las muestras además de que puede formar

complejos de Ca2+ que producen moléculas de LS "libres" en la suspensión lo que provoca

que estas moléculas generen un fuerte efecto estérico que evita la floculación, explicando

de esta manera el efecto plastificante de este aditivo. Al mismo tiempo, la complejación

de Ca2+ dificulta la carbonatación de los morteros de cal. En el estudio realizado por Pérez

et al en 2016, este aditivo −a una dosis de 1% con respecto a la masa de cal− alcanzó un

valor de trabajabilidad de aproximadamente 1200 minutos, provocando un retraso en el

tiempo de fraguado y menores resistencias mecánicas, por lo que este plastificante debe

ser usado en porcentajes menores a este. También a través de un ensayo de potencial zeta

se observó que este aditivo es adsorbido por la nanosílice y completa una adsorción en

dos capas en el sistema de cal. La primera capa se formó debido a la adsorción del

plastificante sobre las partículas de la cal, lo cual generó una disminución continua del

potencial zeta por la carga negativa del LS; posteriormente, debido a la formación de esa

monocapa, y al exceso de cationes Ca2+ que apantallaron a esas moléculas adsorbidas de

LS, se observó una sobrecarga y un aumento pronunciado hacia valores más positivos.

Por último el LS se volvió adsorber en forma de una segunda monocapa, reflejado en la

disminución continua del potencial zeta a partir de unos 7 mL de titulante añadidos, como

se muestra en la Fig. 4 [75].

Page 41: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

19

Figura 4. Figura tomada del trabajo de Pérez et al. donde se muestra la curva de

potencial zeta de pastas de cal tituladas con una solución acuosa de LS al 1%[75]

• Policondensados de sulfonato de naftaleno–formaldehído (PNS)

El sulfonato de naftaleno formaldehído (Fig. 5) se sintetiza mediante reacciones

químicas sucesivas a partir del naftaleno. Pueden obtenerse pesos moleculares muy

diversos, siendo los de mayor peso los que se consideran más efectivos. Este

superplastificante puede ser útil para mejorar los morteros de cal, ya que promueve un

aumento de la resistencia mecánica incluso en edades tempranas, y mantiene la estructura

porosa similar a la de un mortero de cal pura. Al no alterar las propiedades de un mortero

de cal, la compatibilidad con materiales antiguos puede mantenerse potencialmente,

evitando daños prematuros y la consiguiente necesidad de reparación [79].

En el trabajo de Pérez et al. [75] se comprobó que este superplastificante limitaba

la formación de fases CSH, advirtiéndose una reducción en el rango de poros entre 0.1 y

0.01 m, que son los poros atribuidos a la estructura gelificada de CSH. Además, debido

a su arquitectura molecular y a su elevada carga aniónica (2,44 meq de carga aniónica / g

de polímero), tiene una adsorción plana sobre partículas de cal o de cemento, a diferencia

del LS, que se adsorbe de manera perpendicular. También al realizar el ensayo de

potencial zeta se observó un comportamiento de adsorción en multicapa, que debido a la

fuerte carga aniónica y a la adsorción plana generó el perfil indicado en la Fig. 6 (patrón

en dientes de sierra).

Figura 5. Sulfonato de melamina formaldehído (PNS)

Page 42: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

20

Figura 6. Figura tomada del trabajo de Pérez et al. donde se muestra la curva de

potencial zeta de pastas de cal tituladas con una solución acuosa de PNS al 1% [75]

• Sulfonato de melamina formaldehído (SMF)

El sulfonato de melamina formaldehído (Fig. 7) se obtiene a partir de la melamina,

mediante técnicas de resinificación. Dependiendo del proceso de polimerización, se

pueden obtener diferentes pesos moleculares, siendo 30.000 el orden considerado más

efectivo. Este superplastificante puede emplearse de manera aislada o en combinación

con PNS. Al ser utilizado de forma individual, produce un efecto mínimo de introducción

de aire o retraso en el fraguado. Este compuesto reduce la resistencia a la flexión de 4.2

a 2.9 MPa y a la compresión de 16.5 a 14.3 MPa [81], sin embargo, produce morteros con

valores suficientemente altos para competir con las prestaciones de un mortero

convencional. La adherencia superficial en el estudio donde se ha investigado ha sido

aceptable, con una interfaz de rotura cohesiva y valores aceptables para un mortero de

revoque. La capilaridad de los morteros de cal en los que se ensayó este plastificante

permite predecir una adecuada permeabilidad al vapor de agua, válida para la aplicación

de esos composites [81].

Figura 7. Sulfonato de melamina formaldehído (SMF)

Page 43: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

21

• Éteres de policarboxilato (PCE)

Los éteres de policarboxilato constituyen la tercera y más nueva generación de

superplastificantes, siendo más eficaces que los basados en SMF o PNS, debido a su

estructura molecular. Las moléculas de PCE tienen forma de peine, con un esqueleto

lineal principal con grupos carboxílicos y cadenas largas de grupos éter unidos (Fig. 8)

[58,76]. En este caso, los grupos carboxílicos ionizados son los responsables de la carga

negativa de estas moléculas y, por tanto, de la repulsión electrostática cuando se unen a

las partes superficiales cargadas positivamente de las partículas aglutinantes. Sin

embargo, las cadenas laterales, generalmente largas e hidrofóbicas, del polímero son

responsables de fuerzas repulsivas adicionales (obstáculo estérico), siendo este último el

mecanismo de dispersión dominante en este tipo de superplastificantes y la razón de su

mayor efectividad [58]. En los trabajos de Fernández et al. y de Silva et al. [50,79] se

comprobó que en las muestras que contienen PCE se redujo sustancialmente la demanda

de agua de amasado, se redujo el tiempo de fraguado y hubo un notable aumento de la

resistencia mecánica. Se advirtió también una disminución de la porosidad debido a una

fuerte reducción de los poros en el rango de 1 a 10 µm de diámetro y cambios drásticos

en la microestructura del mortero. El empleo de PCE a una dosis del 1% incrementó la

resistencia mecánica hasta un 161%. La pérdida de fluidez a lo largo del tiempo fue

moderada y también se observó una pequeña acción de incorporación de aire [79].

En el trabajo de Fernández et al. se comprobó a través del estudio de potencial

zeta y de microscopia óptica el papel que tiene este tipo de superplastificantes para

dispersar a las moléculas de cal (Fig. 9)[50].

Figura 8. Éter de policarboxilato

Page 44: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

22

Figura 9. Tomada del trabajo de Fernández et al. [50]

La Fig. 9 muestra fotografías de microscopía óptica de suspensiones de cal: a)

Suspensión de cal pura: las flechas blancas muestran grandes aglomerados, representados

como áreas oscuras, que van desde 50 a 100 μm. También se puede observar una gran

población de partículas de portlandita de 10 μm de tamaño (áreas oscuras). b) Suspensión

de cal pura a mayor aumento. Además de las partículas de 10 µm, se detectó una cantidad

significativa de partículas pequeñas de 0.3 µm y las áreas que abundan en estas partículas

pequeñas se indican mediante círculos blancos. c) Suspensión de cal con NS, que presenta

una estructura más densa, con grandes aglomerados de partículas. Las partículas más

pequeñas de 0.3 μm de tamaño casi han desaparecido. d) Microfotografía de suspensión

de cal–PCE, que muestra pequeñas partículas y ausencia de grandes aglomerados como

resultado de la fuerte acción dispersante del PCE.

3.2.2. Agentes puzolánicos

La adición de aditivos puzolánicos a los morteros de cal aérea es una práctica

común en la construcción, especialmente en el sector de la restauración, ya que esto

mejora las propiedades de los morteros de cal aérea tanto en estado fresco como

endurecido (por ejemplo, resistencia mecánica, permeabilidad al agua y durabilidad) [82–

Page 45: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

23

84]. Los materiales puzolánicos reaccionan a temperatura ambiente normal con el

hidróxido de calcio disuelto (Ca(OH)2) para formar compuestos de aluminato de calcio y

silicato de calcio que desarrollan fuerza. Se ha observado que las puzolanas conducen a

la formación de fases hidratadas como C–S–H, C–A–S–H y C–A–C–H [44,50,85]. La

literatura ha mostrado interés en la incorporación a matrices de cal aérea de materiales

con actividad puzolánica, como el metacaolín [84,86–88], con el fin de superar algunos

de los inconvenientes de este tipo de aglutinantes, especialmente los relacionados con sus

bajas resistencias mecánicas [26]. En este trabajo de investigación se han utilizado la

sílice de tamaño nano y micro–métrico que se han estudiado ampliamente en sistemas de

cemento [24,83], y también recientemente en ligantes de cal aéreos [54,58,75].

El metacaolín generalmente se procesa mediante la calcinación de arcilla de caolín

de alta pureza a temperaturas que oscilan entre 650 y 800 °C. Contiene sílice y alúmina

en forma activa que reaccionan con el hidróxido de calcio produciendo fases de silicato

de calcio hidratado (CSH), y también C2ASH8 y C4AH13 como, respectivamente, fases de

silicoaluminato de calcio hidratado y aluminato de calcio hidratado. El efecto de relleno

de MK y la producción de nuevas fases hidratadas proporcionan la mejora de varias

propiedades de los morteros y pastas a base de cal aérea, como su tiempo de fraguado o

resistencia a la compresión, y también reducen la microfisuración [33,53,87].

La microsílice (MS), generalmente compuesta por dióxido de silicio amorfo en

forma de polvo fino, es un producto del silicio y ferrosilicio, y se produce en las industrias

de fundición. Su componente químico es principalmente una gran cantidad de sílice activa

(SiO2), que básicamente tienen reacción puzolánica. después de mezclarse con la cal,

haciendo su mezcla compatible con materiales de construcción antigua, con un gran

potencial de aplicación [83].

La adición de nanosílice a un material aglutinante a base de cal se advirtió que

modificaba drásticamente la distribución de la porosidad debido al comportamiento

probado como nano–filler, que provocó una disminución de los poros en el rango de 20 a

100 nm. Entre las partículas de cal se intercalaron partículas de nano–sílice dando lugar

a una población enriquecida de poros gel (<10 nm), incluyendo el rango de microporos.

Estos dos hechos dieron como resultado una mejora en la resistencia mecánica en los

morteros de cal donde fue empleada y pueden tener propósitos prácticos relevantes para

mejorar la resistencia a la compresión de los morteros de cal aéreos [50,58].

Page 46: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

24

3.2.3. Hidrofugantes

El objetivo principal de estos aditivos es minimizar la absorción de agua por

capilaridad del mortero endurecido. Con estos aditivos el mortero no es totalmente

impermeable, sino que reduce su capacidad de absorción de agua a baja presión. Como

consecuencia de esta acción hidrofugante, se controlan las eflorescencias, se mantiene la

superficie más limpia y seca y se mejora la durabilidad del material frente a ciclos de

hielo–deshielo y de humectación–secado [60].

Los aditivos hidrofugantes actúan como agentes aireantes, por lo que su uso puede

conllevar un aumento en el porcentaje de aire ocluido, y, por ende, se acompaña de una

mejora en la trabajabilidad, una disminución en la densidad y explica la mayor

durabilidad frente a los ciclos de hielo–deshielo. Cuando los aditivos son partículas muy

finas, su incorporación puede aumentar la cantidad de agua requerida para obtener un

material trabajable, pudiendo disminuir las resistencias mecánicas y aumentar la

permeabilidad por un exceso de agua [60,89].

Se han propuesto tres mecanismos de acción que explican el impedimento en la

entrada de agua por capilaridad: i) las finas partículas de hidrofugante ocluyen los huecos

presentes en el material; ii) son capaces de colmatar los poros y la superficie del material

formando una fina película hidrofóbica; ya que el hidrofugante posee una estructura con

una parte polar y otra apolar, y iii) una acción combinada de ambos mecanismos. La Fig.

10 ilustra el mecanismo de formación de una película hidrofóbica, aunque en función de

la naturaleza del producto, la vía por la que se forma esta película es sustancialmente

diferente:

• Los ácidos grasos reaccionan con los productos de hidratación del cemento,

generando una capa protectora.

• Las emulsiones de cera sufren coalescencia al ponerse en contacto con el medio

alcalino del mortero, formando la película hidrofóbica.

• Los materiales hidrófobos finamente divididos tienen la capacidad de crear la

película gracias a su elevada superficie específica.

Page 47: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

25

Figura 10. Mecanismo de acción de los aditivos hidrófugos de masa

En definitiva, la formación de la película hidrofóbica depende de la naturaleza del

hidrofugante y permite su vinculación a cada uno de los tres mecanismos de formación

de película hidrofóbica expuestos, relacionados en la Fig. 11 e incluyendo productos más

comunes.

La influencia de los hidrofugantes en los morteros de cal se ha estudiado

someramente mediante compuestos orgánicos duales, con un resto polar (generalmente

un grupo carboxílico) y una cola hidrófoba, como el estearato de calcio y el oleato de

sodio [60,90,91]. Se destaca la importancia de la hidro–repelencia para minimizar la

absorción de agua por capilaridad donde la permeabilidad no se ve afectada. Además,

queda patente la prevención de la disolución de sales que da lugar las eflorescencias y

previene los severos daños mecánicos en la mampostería provocados por los ciclos de

congelación–descongelación. La hidrofobicidad impartida por los aditivos hidrófugos

mejora la resistencia a largo plazo de las lechadas [60].

Figura 11. Productos químicos hidrofugantes

Page 48: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

26

a) b) c) d)

Figura 12. a) Suciedad causada por deposición de material carbonáceo (Fuerte de San

Bartolomé, siglo XVIII, Pamplona, España; b) microalgas and c,d) líquenes y depósitos

de suciedad (Iglesia de San Miguel, siglo XII, Cizur, España)

3.2.4. Aditivos fotocatalíticos

Estos aditivos, usualmente semiconductores basados en óxidos de los elementos

de transición, mediante la acción de luz (en el caso del TiO2 en el espectro ultravioleta,

UV), permiten la descomposición/oxidación química de contaminantes y depósitos de

materia orgánica facilitando su eliminación [92,93]. Además, estos aditivos muestran

eficacia biocida, evitando la colonización biológica sobre los morteros, tanto de algas,

como por ejemplo de líquenes o cianobacterias [73].

La deposición de partículas atmosféricas, aerosoles o incluso la formación

irreversible de incrustaciones negruzcas (depósitos de partículas de carbón, muchas veces

sulfatadas), y, en general, depósitos de compuestos hidrocarbonados, así como la

aparición de colonización biológica, causan daños estéticos en los materiales

constructivos de las obras del Patrimonio Edificado (Fig. 12), y son una vía de inicio de

alteraciones severas, a veces irreversibles, en estos materiales (piedra y mortero,

fundamentalmente). Además, la aparición de estos depósitos obliga a elevados costes de

mantenimiento, eliminándolos mediante procesos de ablación por láser o por chorro de

arena, que pueden generar daños irreparables en la obra patrimonial [94,95].

En el caso de depósitos biológicos sobre el Patrimonio Edificado, debe tenerse en

cuenta que algas y cianobacterias están presentes en las superficies expuestas al exterior

y permiten la colonización sobre diversos sustratos, en función de su composición

química y de su estructura porosa, que afecta a la retención de agua sobre dichas

superficies. Posteriormente, tras la invasión de algas y cianobacterias surge el crecimiento

de líquenes y musgos, llegando a acumularse notables cantidades de materia biológica.

El biodeterioro en los materiales constructivos se debe a la producción de metabolitos

Page 49: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

27

(ácidos orgánicos, pigmentos y metabolitos ) que los dañan, incluso comprometiendo su

durabilidad [96]. Ciertos tratamientos disponibles en el mercado para prevenir la

colonización biológica no aseguran la protección a largo plazo y obligan a renovar la

aplicación cada cierto tiempo [73].

Por tanto, el uso de fotocatalizadores tiene un campo de aplicación especialmente

relevante, con objeto de reducir la suciedad y el depósito de contaminantes y de

microorganismos y sus consiguientes efectos perjudiciales en los morteros de cal. Por

acción de la luz, la reacción fotoquímica que tiene lugar en la superficie del

fotocatalizador permite la descomposición química y eliminación de los contaminantes,

además de destruir los enlaces formados entre los microorganismos y los sustratos

(piedras y morteros) [62,92,97].

En el caso del TiO2, la activación química se alcanza por luz ultravioleta (<387

nm), cuya incidencia genera en la estructura del semiconductor pares hueco positivo –

electrón (h+ e–) (Fig. 13). En presencia de agua (humedad), los huecos son atrapados por

los iones OH– o moléculas de H2O presente sobre las superficies y los electrones reducen

el oxígeno adsorbido dando lugar a la aparición de radicales fuertemente oxidantes como

el hidroxilo (OH–•), el hidroperóxido (HO2•) y el ion superóxido (O2−•), responsables de

la oxidación de las especies químicas adyacentes. Es necesario fijar o adsorber el

fotocatalizador para permitir su acción [92,98].

La elección de TiO2 como fotocatalizador se basa en su baja toxicidad, elevada

compatibilidad con materiales de construcción y gran actividad fotocatalítica en

comparación con otros óxidos metálicos [99–101].

Figura 13. Actividad fotocatalítica del TiO2 bajo radiación UV

Page 50: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

28

Las partículas contaminantes como los óxidos de nitrógeno (NOx) que se

encuentran presentes en la atmósfera, reaccionan con estos agentes oxidantes a través de

una cascada de reacciones (Ec. 7–13):

TiO2 + h → e− + h+ Ec. 7

H2O + h+ → H+ + OH• Ec. 8

O2 + e– → O2•− Ec. 9

NO + O2•− → NO3− Ec. 10

NO + OH• → HNO2 Ec. 11

HNO2 + OH• → NO2 + H2O Ec. 12

NO2 + OH• → NO3− + H+ Ec. 13

Cuando la luz UV irradia al TiO2, se forman los huecos par–electrón (Ec. 7).

Posteriormente las moléculas de oxígeno y agua presentes en el medio formarán radicales

oxidantes tras reaccionar con los electrones y los huecos positivos existentes en la

estructura interna del fotocatalizador (Ec. 8–9). Dichos radicales pasarán a oxidar las

especies de NO y NO2 presentes en el medio, que reaccionarán hasta producir iones nitrito

y nitrato (Ec 10–13) [102–104].

Investigaciones anteriores han reportado que la generación de radicales hidroxilo

mejora la actividad y eficiencia fotocatalítica [39,44]. Asimismo, se ha demostrado que

la anatasa es más activa como fotocatalizador que el rutilo debido al tipo de radicales OH·

que genera cada poliformo. La anatasa genera radicales móviles, mientras que el rutilo

solo es capaz de producir radicales a partir de las sustancias adsorbidas [105].

Cabe mencionar que existe la posibilidad de que, en ausencia de agentes aceptores

de electrones, el electrón excitado se recombine volviendo a su banda original. Esto afecta

al rendimiento cuántico de la reacción, así como a su eficiencia [106].

Los aglutinantes, como morteros, yesos o lechadas, se han explorado como

materiales capaces de alojar fotocatalizadores añadidos a granel. El uso de mortero de cal

presenta varias ventajas potenciales en cuanto al desarrollo sostenible de estos materiales:

se ha informado que su producción produce una menor huella ambiental, debido a un

Page 51: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

29

menor consumo de energía y emisiones de CO2 en comparación con el cemento [107–

109].

Además, en la literatura, las mezclas binarias de Cal–TiO2 debido al aumento de

la concentración de dióxido de carbono, resultante de la fotocatálisis (fotooxidación) de

los contaminantes orgánicos han exhibido una aceleración considerable en la tasa de

carbonatación, tanto en el laboratorio como en ambientes exteriores. La adición de TiO2

a los morteros de cal asegura que cuando se logra la fotocatálisis, se logra una mayor

concentración de CO2 en forma de gas en la superficie del material [62].

Si bien la fotocatálisis es un fenómeno de superficie, el CO2 producido se disuelve

en vapores de agua y se absorbe en la masa de mortero por capilaridad hasta

profundidades superiores a 2 mm. Además, la adición de TiO2 en toda la masa asegura el

potencial de descomposición de contaminantes orgánicos incluso después de la

degradación de la superficie inicial de los morteros [62].

Por tanto, está claro que la adición de TiO2 en los morteros de reparación a base

de cal es beneficiosa, ya que puede asegurar una mayor durabilidad frente a

contaminantes orgánicos, mejores características estéticas, mayor profundidad de

carbonatación y una velocidad de carbonatación acelerada [32,110].

3.2.5. Incrementadores de la viscosidad

La mayoría de estos aditivos son polímeros orgánicos hidrófilos solubles en agua,

siendo los más utilizados los basados en éteres de celulosa, a saber,

hidroxipropilmetilcelulosa (HPMC) e hidroxietilmetilcelulosa (HEMC), aunque el uso de

almidones y gomas ha aumentado en los últimos años [77]. Este tipo de aditivos actúan

fijando moléculas de agua en su estructura, reduciendo así la cantidad de agua libre en la

mezcla y provocando un aumento de la viscosidad. Además, las cadenas de polímeros

pueden sufrir un proceso de entrelazado y pueden adsorberse en partículas de aglutinante

vecinas, manteniéndolas físicamente juntas, lo que aumenta aún más la viscosidad Los

aditivos modificadores de la viscosidad se utilizan frecuentemente en morteros de

cemento para mejorar sus propiedades en estado fresco, especialmente en productos

premezclados, con consecuencias para sus propiedades de endurecimiento. Sin embargo,

el conocimiento sobre la influencia de estos aditivos sobre los materiales a base de cal es

aún incipiente. Cuando son usados en morteros de cal estos aditivos conducen a un

espesamiento de la suspensión de cal en estado fresco.

Page 52: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

30

Además, algunos de estos aditivos tienen la capacidad de retener agua dentro del

mortero, lo que puede ser útil para morteros de restauración ya que las mamposterías

antiguas están hechas con materiales altamente porosos que pueden absorber el agua del

mortero, deshidratarlo y dificultar la carbonatación [30]. Sin embargo, también se sabe

que tienen una acción retardadora del fraguado, y que muestran un fuerte comportamiento

dependiente de la dosis: pueden tener efectos espesantes o dispersantes según la dosis

utilizada [111–113].

Algunos estudios, como el de Seabra et al. [61], llegaron a la conclusión de que la

presencia de HPMC provocó inicialmente un efecto espesante seguido, luego de un

tiempo de agitación, por un efecto fluidificante debido a la alineación de las cadenas de

polímero en la dirección del flujo y la acción de incorporación de aire del aditivo.

Izaguirre et al. [30] compararon el efecto de dos de estos aditivos: uno a base de éter de

celulosa (HPMC) y otro a base de goma guar. En estado fresco, se necesitaron mayores

cantidades de agua para obtener la consistencia requerida en los morteros con estos

aditivos. Los autores concluyeron que la goma guar se comportó como espesante para

dosis de hasta 0.3% (del peso total de los morteros secos), es decir, condujo a una

disminución de los valores de flujo. Sin embargo, actuó como plastificante por encima de

ese valor [61,114].

Estos aditivos también influyen en las propiedades del estado endurecido. Por

ejemplo, la mejora de la trabajabilidad se puede atribuir a la acción de incorporación de

aire de estas sustancias que reduce la fricción entre las partículas. A su vez, estos vacíos

de aire pueden reducir la resistencia mecánica, lo que en los morteros de cal ya débiles

puede ser un problema; pero también pueden cortar la red capilar y, por tanto, reducir la

absorción de agua y mejorar la resistencia de los morteros a los ciclos de hielo– deshielo

y la cristalización de sales [30]. Con base en los resultados obtenidos, los autores

concluyeron que los éteres de celulosa no eran tan adecuados como los éteres de quitosano

o la goma guar para ser utilizados como aditivo modificador de viscosidad en morteros

de cal.

Esta acción potenciadora de la viscosidad podría ser de gran utilidad para mejorar

los morteros de cal aérea a efectos de revoque. Además, al usar estos aditivos, el

contenido de aire aumenta en los morteros, cambiando la distribución del tamaño de los

poros y dando lugar a algunos aspectos positivos, como una disminución de la absorción

de agua y una mejora de la durabilidad mediante ciclos de hielo–deshielo. Sin embargo,

Page 53: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

31

se deben tener en cuenta algunos efectos no deseables relacionados con su acción de

retención de agua, como el retraso en el tiempo de fraguado, ya que pueden afectar

negativamente su desempeño en los morteros de cal [25,30].

Su principal función en los morteros de cal es evitar la desecación rápida, mejorar

la hidratación y evitar fisuras por retracción. Estos aditivos como la goma de guar

presentan mayor cantidad de grupos ionizados a pH alcalino, debido a su gran densidad

de carga, reducen su capacidad de adsorción sobre partículas de Ca(OH)2. Los de esta

manera los grupos ionizados permiten aumentar la capacidad para la unión del calcio,

dando lugar a un incremento de la viscosidad a través de un fenómeno de reticulación

[115,116].

En la revisión de la literatura se señala al almidón de patata como posiblemente el

modificador de viscosidad más útil para los morteros de cal: además de poder mejorar sus

propiedades en estado fresco, fue capaz de incrementar las bajas resistencias mecánicas

propias de estos morteros y mantener sus propiedades físicas, minimizando así los

problemas de compatibilidad [61,114,117,118].

3.2.6. Mejoradores de adherencia

La adherencia del mortero de cal sobre un sustrato depende de la humedad y de la

porosidad abierta en la interfaz sustrato/mortero [28]. Algunos de los principales

problemas pueden ser: agrietamiento por tracción a través del espesor del mortero y

cizallamiento en la interfaz entre los dos materiales. El agrietamiento por secado de los

morteros de revestimiento depende en gran medida de las condiciones ambientales y del

soporte donde se aplica (rugosidad, porosidad, etc.). Si la absorción de agua del sustrato

es demasiado alta, el mortero secará rápidamente, lo que perjudica especialmente a los

aglutinantes hidráulicos ya que dificulta las reacciones hidráulicas. Como soluciones para

evitar este efecto, se puede humidificar del sustrato antes de aplicar el mortero o bien

emplear aditivos en el mortero que ayuden a controlar el secado y mejorar la adherencia.

Algunos aditivos ya han sido utilizados en el cemento Portland y el hormigón, y

pueden ser opción para los morteros de cal, como la metilcelulosa y el copolímero de

etileno–acetato de vinilo (EVA), para mejorar las adherencias [78,119]. La metilcelulosa

mejora la dispersión y estabiliza los productos de hidratación y contribuye a la resistencia

a la flexión reduciendo el daño por secado en un mortero [119]; y los EVA se pueden

formular como polvos redispersables aumentando la resistencia a la flexión porque los

Page 54: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

32

grupos activos en sus moléculas también pueden reaccionar con los cationes de los

productos de hidratación del cemento además de mejorar la adhesión entre los agregados

y la matriz del material cementoso, reduciendo el módulo de elasticidad del hormigón y

mejora su capacidad para absorber tensiones en condiciones de temperatura variable

[120–122].

Page 55: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

33

4. Interés del estudio sobre combinaciones de aditivos en

morteros de cal

Como se ha mencionado anteriormente, la mayor parte de la información

disponible se enfoca al estudio del efecto de un único aditivo, sin contemplar el posible

efecto conjunto o incluso sinérgico de las combinaciones más interesantes de dos o más

aditivos y/o puzolanas. Queda por desarrollar el estudio del comportamiento,

interacciones y el mecanismo de acción de diversas combinaciones de aditivos y/o

adiciones minerales puzolánicas que, para morteros de restauración del Patrimonio

Edificado revisten especial relevancia, y que desempeñarán funciones específicas en

restauración.

En particular, en esta memoria de Tesis Doctoral, se presta atención especial al

desarrollo mediante combinaciones adecuadas de aditivos de morteros de inyección,

morteros autolimpiantes y morteros de adherencia mejorada. Esta clasificación puede

ofrecer a los responsables de la intervención en edificaciones del Patrimonio tres gamas

de morteros mejorados de base cal mediante la inclusión de aditivos (incluyendo

puzolanas), con propiedades específicas de interés para acometer, con garantía de éxito,

diversos procesos de restauración de obras del Patrimonio Arquitectónico. Estas tres

gamas de morteros serán el objeto de estudio de este trabajo.

4.1. Morteros de inyección

La bibliografía ha detallado la posibilidad de incrementar en la preparación de

morteros de cal, las resistencias, acortar tiempos de fraguado y permitir el

endurecimiento, aun cuando el acceso del CO2 esté dificultado, mediante la inclusión de

puzolanas a las mezclas. El metacaolín ha sido uno de los aditivos más clásicamente

estudiados, aunque también la nanosílice ha sido objeto de algunas investigaciones.

Existen algunos trabajos que han comprobado la compatibilidad de diversas

combinaciones entre nanosílice y metacaolín con superplastificantes de tipo éteres de

policarboxilato [50], pero no se han realizado estudios de compatibilidad con otros

superplastificantes del mismo tipo y diferente peso molecular ni con otros habituales en

la química de los conglomerantes (lignosulfonatos, condensados de naftaleno, sulfonato

de melanina, ácido poliacrílico, todos ellos reductores de la cantidad de agua de amasado

y mejoradores de la trabajabilidad y muy ventajosos para su uso en morteros de inyección

Page 56: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

34

y de relleno) ni de ellos con agentes hidrofugantes, reductores de la absorción de agua

por capilaridad (entre los que cabe mencionar a los oleatos y estearatos). El empleo de

estos hidrofugantes o repelentes de agua es crucial con objeto de minimizar las vías de

entrada de agua a los morteros, y estas combinaciones entre cal – puzolana –

superplastificante – hidrofugante pueden dar lugar a una gama de morteros de enorme

utilidad en la restauración del Patrimonio, muy particularmente para morteros de

inyección o de relleno [53,57,60].

4.2. Morteros autolimpiantes

Otra de las combinaciones que aún no se ha estudiado y que es de gran importancia

es la que surge al obtener morteros de restauración con capacidad autolimpiante mediante

la inclusión de aditivos fotocatalizadores. Estos morteros podrán ser usados en

monocapas, revocos o rejuntados. La presencia de estos fotocatalizadores, muchas veces

nanoestructurados, obliga a una adecuada dispersión de estos por lo que la combinación

de aditivos fotocatalíticos con aditivos dispersantes o superplastificantes resulta

imprescindible. Por ejemplo, aditivos fotocatalíticos de tamaño nanométrico tienden a

aglomerarse, reduciendo los puntos de contacto activos del fotocatalizador y aumentando

la velocidad de recombinación hueco–electrón, por lo que es necesario un estudio en

profundidad de las interacciones de diversos fotocatalizadores con distintos aditivos

superplastificantes.

Además, debe tenerse en cuenta que, en presencia de aditivos fotocatalíticos como

el TiO2, la acción de autolimpieza se ha relacionado con una superhidrofilicidad

fotoinducida, es decir, la formación de una película acuosa en la superficie del material

tratado con fotocatalizador [123], que permite el paso de la radiación electromagnética

mientras disuelve algunos de los compuestos responsables de la suciedad que es

arrastrado.

Dado que el agua es un factor preeminente de deterioro, recientemente se ha

trabajado en recubrimientos en piedra con materiales hidrofóbicos [94,124]. También los

materiales autolimpiables se fundamentan en algunos casos en la superhidrofobicidad. En

este sentido, para recubrimientos en piedras del Patrimonio, se han avanzado algunas

combinaciones con olígomeros de dióxido de silicio, obteniéndose composites de SiO2

hidrofóbica con TiO2, ofreciendo resistencia a la penetración de agua y propiedades

autolimpiantes (self–cleaning) [125].

Page 57: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

35

En los morteros objeto de preparación y estudio, además del adecuado reparto del

fotocatalizador, las combinaciones de interés a estudiar deberían incluir también aditivos

hidrofugantes, de naturaleza hidrófoba y repelentes de agua, de manera que, en morteros

de cal, donde esta combinación no ha sido estudiada, se consiguiera un efecto

autolimpiante con una alta resistencia a la penetración de agua. Por supuesto, estas

combinaciones deben contemplar, además, la inclusión de las puzolanas mencionadas en

el primer bloque, para casos de interés en los que las resistencias mecánicas elevadas y/o

los cortos tiempos de fraguado sean críticos. Se debería, a su vez, estudiar con detalle la

compatibilidad entre la hidrofilicidad fotoinducida (y, por tanto, el mantenimiento del

efecto self–cleaning) y el aditivo hidrofugante.

Los compuestos fotocatalíticamente activos se plantea que sean incorporados

mediante adición en masa, durante la preparación del mortero en seco. La incorporación

en masa es muy frecuente, tanto en los productos comerciales basados en TiO2 como en

las referencias bibliográficas, ya que permite asegurar la eficacia a largo plazo, evitar

problemas de deterioro superficial del agente activo por abrasión, por ejemplo, y abarata,

en obra nueva, el procedimiento de incorporación del fotocatalizador [97].

4.3. Morteros de adherencia mejorada

Finalmente, otras combinaciones potencialmente interesantes de aditivos para

morteros de restauración con base cal que no se han estudiado hasta la fecha son las

mezclas de morteros incluyendo aditivos para la mejora de adherencia del mortero (tipo

emulsiones de estireno–butadieno o látex) aplicado junto con los otros modificadores de

la consistencia, como pueden ser modificadores de la reología (incrementadores de la

viscosidad, como el hidroxipropilguarán o el almidón) y con hidrofugantes. Estas mezclas

son extremadamente importantes para tareas de restauración que incluyan aplicaciones

en revocos, enlucidos o morteros de revestimiento, ya que la disposición en paramentos

verticales exige una alta adherencia sobre el sustrato además de una reología de la mezcla

en fresco adecuada, para evitar problemas como el escurrimiento del mortero, la

segregación de algunos de sus componentes o la fisuración. Algunos morteros de cal han

mostrado ciertas características no adecuadas en lo relativo a estas propiedades, por lo

que el estudio de combinaciones de estos aditivos (en mortero con de cal aérea pura o con

puzolanas) resulta de gran interés [60,61,114].

Page 58: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

36

Referencias

[1] A. Moropoulou, A. Bakolas, S. Anagnostopoulou, Composite materials in

ancient structures, Cem. Concr. Compos. 27 (2005) 295–300. https://doi.org/

10.1016/ j.cemconcomp.2004.02.018.

[2] V. Chu, L. Regev, S. Weiner, E. Boaretto, Differentiating between

anthropogenic calcite in plaster, ash and natural calcite using infrared

spectroscopy: implications in archaeology, J. Archaeol. Sci. 35 (2008) 905–

911. https://doi.org/10.1016/ j.jas.2007.06.024.

[3] S. Sánchez–Moral, L. Luque, J.C. Cañaveras, V. Soler, J. Garcia–Guinea, A.

Aparicio, Lime–pozzolana mortars in Roman catacombs: Composition,

structures and restoration, Cem. Concr. Res. 35 (2005) 1555–1565.

https://doi.org/10.1016/ j.cemconres.2004.08.009.

[4] C. Martínez–García, B. González–Fonteboa, D. Carro–López, F. Martínez–

Abella, Impact of mussel shell aggregates on air lime mortars. Pore structure

and carbonation, J. Clean. Prod. 215 (2019) 650–668. https://doi.org/10.1016/

j.jclepro.2019.01.121.

[5] F. Pintér, I. Vidovszky, J. Weber, K. Bayer, Mineralogical and microstructural

characteristics of historic Roman cement renders from Budapest, Hungary, J.

Cult. Herit. 15 (2014) 219–226. https://doi.org/10.1016/j.culher.2013.04.007.

[6] E.Y. Gökyiǧit–Arpaci, D. Oktay, N. Yüzer, S. Ulukaya, D. Eksi–Akbulut,

Performance Evaluation of Lime–Based Grout Used for Consolidation of Brick

Masonry Walls, J. Mater. Civ. Eng. 31 (6) (2019). https://doi.org/10.1061/

(ASCE)MT.1943–5533.0002692.

[7] E.A. Laycock, D. Pirrie, F. Clegg, A.M.T. Bell, P. Bidwell, An investigation

to establish the source of the Roman lime mortars used in Wallsend, UK,

Constr. Build. Mater. 196 (2019) 611–625. https://doi.org/10.1016/

j.conbuildmat.2018.11.108.

Page 59: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

37

[8] F. Pacheco–Torgal, J. Faria, S. Jalali, Some considerations about the use of

lime–cement mortars for building conservation purposes in Portugal: A

reprehensible option or a lesser evil?, Constr. Build. Mater. 30 (2012) 488–

494. https://doi.org/10.1016/j.conbuildmat.2011.12.003.

[9] F. Jorne, F.M.A. Henriques, L.G. Baltazar, Evaluation of consolidation of grout

injection with ultrasonic tomography, Constr. Build. Mater. 66 (2014) 494–

506. https://doi.org/10.1016/j.conbuildmat.2014.05.095.

[10] M. del M. Barbero–Barrera, L. Maldonado–Ramos, K. Van Balen, A. García–

Santos, F.J. Neila–González, Lime render layers: An overview of their

properties, J. Cult. Herit. 15 (2014) 326–330. https://doi.org/10.1016/

j.culher.2013.07.004.

[11] E. Salavessa, S. Jalali, L.M.O. Sousa, L. Fernandes, A.M. Duarte, Historical

plasterwork techniques inspire new formulations, Constr. Build. Mater. 48

(2013) 858–867. https://doi.org/10.1016/j.conbuildmat.2013.07.064.

[12] U. Müller, L. Miccoli, P. Fontana, Development of a lime based grout for

cracks repair in earthen constructions, Constr. Build. Mater. 110 (2016) 323–

332. https://doi.org/10.1016/j.conbuildmat.2016.02.030.

[13] European Committee for Standardization, UNE–EN 459–1:2016 Building lime

– Part 1: Definitions, specifications and conformity criteria, EN. (2016).

[14] J. Lanas, J.I. Alvarez, Masonry repair lime–based mortars: Factors affecting

the mechanical behavior, Cem. Concr. Res. 33 (2003) 1867–1876.

https://doi.org/10.1016/S0008–8846(03)00210–2.

[15] C. Rodriguez–Navarro, E. Hansen, W.S. Ginell, Calcium hydroxide crystal

evolution upon aging of lime putty, J. Am. Ceram. Soc. 81 (1998) 3032–3034.

https://doi.org/10.1111/j.1151–2916.1998.tb02735.x.

[16] J.I. Alvarez, Caracterización fisicoquímica, mecánica y de durabilidad de

morteros de cal en monumentos del Románico en Navarra, en: V Jornadas

Técnicas de Restauración y Conservación del Patrimonio, 2006.

Page 60: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

38

[17] D.R. Moorehead, Cementation by the carbonation of hydrated lime, Cem.

Concr. Res. 16 (1986) 700–708. https://doi.org/10.1016/0008–

8846(86)90044–X.

[18] K. Van Balen, D. Van Gemert, Modelling lime mortar carbonation, Mater.

Struct. 27 (1994) 393–398. https://doi.org/10.1007/BF02473442.

[19] M. Arandigoyen, B. Bicer–Simsir, J.I. Alvarez, D.A. Lange, Variation of

microstructure with carbonation in lime and blended pastes, Appl. Surf. Sci.

252 (2006) 7562–7571. https://doi.org/10.1016/j.apsusc.2005.09.007.

[20] O. Cazalla Vázque, Tesis Doctoral: Morteros de cal. Aplicación en el

patrimonio histórico, Univ. Granada. Dep. Mineral. y Petrol. (2002).

[21] R. Nogueira, A.P. Ferreira Pinto, A. Gomes, Design and behavior of traditional

lime–based plasters and renders. Review and critical appraisal of strengths and

weaknesses, Cem. Concr. Compos. 89 (2018) 192–204. https://doi.org/

10.1016/ j.cemconcomp.2018.03.005.

[22] J. Lanas, J.L. Pérez Bernal, M.A. Bello, J.I. Alvarez, Mechanical properties of

masonry repair dolomitic lime–based mortars, Cem. Concr. Res. 36 (2006)

951–960. https://doi.org/10.1016/j.cemconres.2005.10.004.

[23] S. Andrejkovičová, C. Alves, A. Velosa, F. Rocha, Bentonite as a natural

additive for lime and lime–metakaolin mortars used for restoration of adobe

buildings, Cem. Concr. Compos. 60 (2015) 99–110. https://doi.org/10.1016/

j.cemconcomp.2015.04.005.

[24] P.J.P. Gleize, A. Müller, H.R. Roman, Microstructural investigation of a silica

fume–cement–lime mortar, Cem. Concr. Compos. 25 (2003) 171–175.

https://doi.org/10.1016/S0958–9465(02)00006–9.

[25] K.M. Green, M.A. Carter, W.D. Hoff, M.A. Wilson, Effects of lime and

admixtures on the water–retaining properties of cement mortars, Cem. Concr.

Res. 29 (1999) 1743–1747. https://doi.org/10.1016/S0008–8846(99)00162–3.

[26] A. Izaguirre, J. Lanas, J.I. Álvarez, Ageing of lime mortars with admixtures:

Durability and strength assessment, Cem. Concr. Res. 40 (2010) 1081–1095.

https://doi.org/10.1016/j.cemconres.2010.02.013.

Page 61: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

39

[27] A. Fragata, R. Veiga, Air lime mortars: The influence of calcareous aggregate

and filler addition, in: Mater. Sci. Forum, Trans Tech Publications Ltd, 2010:

pp. 1280–1285. https://doi.org/10.4028/www.scientific.net/MSF.636–637

.1280.

[28] M. Stefanidou, I. Papayianni, The role of aggregates on the structure and

properties of lime mortars, Cem. Concr. Compos. 27 (2005) 914–919.

https://doi.org/10.1016/j.cemconcomp.2005.05.001.

[29] M. Fomento, Instrucción de Hormigón Estructural (EHE–08), 2008.

https://doi.org/10.1017/CBO9781107415324.004.

[30] A. Izaguirre, J. Lanas, J.I. Álvarez, Characterization of aerial lime–based

mortars modified by the addition of two different water–retaining agents, Cem.

Concr. Comp. 33 (2011) 309–318. https://doi.org/10.1016/j.cemconcomp.

2010.09.008.

[31] M.M. Alonso, M. Palacios, F. Puertas, A.G. De La Torre, M.A.G. Aranda,

Influencia de la estructura de aditivos basados en policarboxilato sobre el

comportamiento reológico de pastas de cemento, Mater. Constr. 57 (2007) 65–

81. https://doi.org/10.3989/mc.2007.v57.i286.48.

[32] K. Kapetanaki, C. Kapridaki, M. Pagona–Noni, Nano–TiO2 in hydraulic lime–

metakaolin mortars for restoration projects: Physicochemical and mechanical

assessment, Buildings. 9 (11) (2019) 236. https://doi.org/10.3390/

buildings9110236.

[33] J. Grilo, P. Faria, R. Veiga, A. Santos Silva, V. Silva, A. Velosa, New natural

hydraulic lime mortars – Physical and microstructural properties in different

curing conditions, Constr. Build. Mater. 54 (2014) 378–384. https://doi.org/

10.1016/j.conbuildmat.2013.12.078.

[34] B.A. Silva, A.P. Ferreira Pinto, A. Gomes, Influence of natural hydraulic lime

content on the properties of aerial lime–based mortars, Constr. Build. Mater.

72 (2014) 208–218. https://doi.org/10.1016/j.conbuildmat.2014.09.010.

[35] B.L. Marcus, Characterization of historic mortars and earthen building

materials in Abu Dhabi Emirate, ARE, en: IOP Conf. Ser. Mater. Sci. Eng.,

2012. https://doi.org/10.1088/1757–899X/37/1/012004.

Page 62: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

40

[36] J. Lanas, R. Sirera, J.I. Alvarez, Study of the mechanical behavior of masonry

repair lime–based mortars cured and exposed under different conditions, Cem.

Concr. Res. 36 (2006) 961–970. https://doi.org/10.1016/j.cemconres.2005.

12.003.

[37] V. Nežerka, Z. Slížková, P. Tesárek, T. Plachý, D. Frankeová, V. Petráňová,

Comprehensive study on mechanical properties of lime–based pastes with

additions of metakaolin and brick dust, Cem. Concr. Res. 64 (2014) 17–29.

https://doi.org/10.1016/j.cemconres.2014.06.006.

[38] A. Arizzi, G. Cultrone, Aerial lime–based mortars blended with a pozzolanic

additive and different admixtures: A mineralogical, textural and physical–

mechanical study, Constr. Build. Mater. 31 (2012) 135–143.

https://doi.org/10.1016/j.conbuildmat.2011.12.069.

[39] M.D.R. Veiga, V. Abrantes, Improving the cracking resistance of rendering

mortars. Influence of composition factors, Int. J. Hous. Sci. Its Appl. 22 (1998)

245–254.

[40] T.C.D. Gonçalves, Salt crystallization in plastered or rendered walls, 2007.

[41] A. Arrigoni, R. Pelosato, P. Melià, G. Ruggieri, S. Sabbadini, G. Dotelli, Life

cycle assessment of natural building materials: the role of carbonation, mixture

components and transport in the environmental impacts of hempcrete blocks,

J. Cle. Prod. 149 (2017) 1051–1061. https://doi.org/10.1016/j.jclepro.2017.02.

161.

[42] F. Orsini, P. Marrone, Approaches for a low–carbon production of building

materials: A review, J. Clean. Prod. 241 (2019) 18380. https://doi.org/10.1016/

j.jclepro.2019.118380.

[43] M.L. Santarelli, F. Sbardella, M. Zuena, J. Tirillò, F. Sarasini, Basalt fiber

reinforced natural hydraulic lime mortars: A potential bio–based material for

restoration, Mater. Des. 63 (2014) 398–406. https://doi.org/10.1016/j.matdes.

2014.06.041.

Page 63: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

41

[44] J. Grilo, A. Santos Silva, P. Faria, A. Gameiro, R. Veiga, A. Velosa,

Mechanical and mineralogical properties of natural hydraulic lime–metakaolin

mortars in different curing conditions, Constr. Build. Mater. 51 (2014) 287–

294. https://doi.org/10.1016/j.conbuildmat.2013.10.045.

[45] A. Arizzi, G. Cultrone, The difference in behaviour between calcitic and

dolomitic lime mortars set under dry conditions: The relationship between

textural and physical–mechanical properties, Cem. Concr. Res. 42 (2012) 818–

826. https://doi.org/10.1016/j.cemconres.2012.03.008.

[46] A. Duran, I. Navarro–Blasco, J.M. Fernández, J.I. Alvarez, Long–term

mechanical resistance and durability of air lime mortars with large additions of

nanosilica, Constr. Build. Mater. 58 (2014) 147–158. https://doi.org/10.1016/

j.conbuildmat.2014.02.030.

[47] S. Andrejkovičová, A. Velosa, A. Gameiro, E. Ferraz, F. Rocha, Palygorskite

as an admixture to air lime–metakaolin mortars for restoration purposes, Appl.

Clay Sci. 83–84 (2013) 368–374. https://doi.org/10.1016/j.clay.2013.07.020.

[48] A. Duran, J.F. González–Sánchez, J.M. Fernández, R. Sirera, Í. Navarro–

Blasco, J.I. Alvarez, Influence of two polymer–based superplasticizers (poly–

naphthalene sulfonate, PNS, and lignosulfonate, LS) on compressive and

flexural strength, freeze–thaw, and sulphate attack resistance of lime–

metakaolin grouts, Polymers (Basel). 10 8 (2018) 824. https://doi.org/10.3390/

polym10080824.

[49] M. Arandigoyen, J.L.P. Bernal, M.A.B. López, J.I. Alvarez, Lime–pastes with

different kneading water: Pore structure and capillary porosity, Appl. Surf. Sci.

252 (2005) 1449–1459. https://doi.org/10.1016/j.apsusc.2005.02.145.

[50] J.M. Fernández, A. Duran, I. Navarro–Blasco, J. Lanas, R. Sirera, J.I. Alvarez,

Influence of nanosilica and a polycarboxylate ether superplasticizer on the

performance of lime mortars, Cem. Concr. Res. 43 (2013) 12–24.

https://doi.org/10.1016/ j.cemconres.2012.10.007.

[51] M. do Rosário Veiga, Conservation of historic renders and plasters: From

laboratory to site, RILEM Bookseries. 7 (2013) 207–225.

https://doi.org/10.1007/978–94–007–4635–0_16.

Page 64: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

42

[52] A. Kalagri, A. Miltiadou–Fezans, E. Vintzileou, Design and evaluation of

hydraulic lime grouts for the strengthening of stone masonry historic structures,

Mater. Struct. Constr. 43 (2010) 1135–1146. https://doi.org/10.1617/s11527–

009–9572–1.

[53] L.C. Azeiteiro, A. Velosa, H. Paiva, P.Q. Mantas, V.M. Ferreira, R. Veiga,

Development of grouts for consolidation of old renders, Constr. Build. Mater.

50 (2014) 352–360. https://doi.org/10.1016/j.conbuildmat.2013.09.006.

[54] U. Sharma, L.P. Singh, B. Zhan, C.S. Poon, Effect of particle size of nanosilica

on microstructure of C–S–H and its impact on mechanical strength, Cem.

Concr. Comp. 97 (2019) 312–321. https://doi.org/10.1016/j.cemconcomp.

2019.01.007.

[55] J.I. Alvarez, J.M. Fernández, I. Navarro–Blasco, A. Duran, R. Sirera,

Microstructural consequences of nanosilica addition on aerial lime binding

materials: Influence of different drying conditions, Mater. Charact. 80 (2013)

36–49. https://doi.org/10.1016/j.matchar.2013.03.006.

[56] L.G. Baltazar, F.M.A. Henriques, F. Jorne, M.T. Cidade, Combined effect of

superplasticizer, silica fume and temperature in the performance of natural

hydraulic lime grouts, Constr. Build. Mater. 50 (2014) 584–597.

https://doi.org/10.1016/j.conbuildmat.2013.10.005.

[57] L. Falchi, C. Varin, G. Toscano, E. Zendri, Statistical analysis of the physical

properties and durability of water–repellent mortars made with limestone

cement, natural hydraulic lime and pozzolana–lime, Constr. Build. Mater. 78

(2015) 260–270. https://doi.org/10.1016/j.conbuildmat.2014.12.109.

[58] I. Navarro–Blasco, M. Pérez–Nicolás, J.M. Fernández, A. Duran, R. Sirera, J.I.

Alvarez, Assessment of the interaction of polycarboxylate superplasticizers in

hydrated lime pastes modified with nanosilica or metakaolin as pozzolanic

reactives, Constr. Build. Mater. 73 (2014) 1–12. https://doi.org/10.1016/

j.conbuildmat.2014.09.052.

Page 65: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

43

[59] L. Falchi, U. Müller, P. Fontana, F.C. Izzo, E. Zendri, Influence and

effectiveness of water–repellent admixtures on pozzolana–lime mortars for

restoration application, Constr. Build. Mater. 49 (2013) 272–280.

https://doi.org/10.1016/ j.conbuildmat.2013.08.030.

[60] A. Izaguirre, J. Lanas, J.I. Álvarez, Effect of water–repellent admixtures on the

behaviour of aerial lime–based mortars, Cem. Concr. Res. 39 (2009) 1095–

1104. https://doi.org/10.1016/J.CEMCONRES.2009.07.026.

[61] M.P. Seabra, H. Paiva, J.A. Labrincha, V.M. Ferreira, Admixtures effect on

fresh state properties of aerial lime based mortars, Constr. Build. Mater. 23

(2009) 1147–1153. https://doi.org/10.1016/j.conbuildmat.2008.06.008.

[62] I. Karatasios, M.S. Katsiotis, V. Likodimos, A.I. Kontos, G. Papavassiliou, P.

Falaras, V. Kilikoglou, Photo–induced carbonation of lime–TiO2 mortars,

Appl. Catal. B Environ. 95 (2010) 78–86. https://doi.org/10.1016/j.apcatb.

2009.12.011.

[63] M. Pérez–Nicolás, J. Balbuena, M. Cruz–Yusta, L. Sánchez, I. Navarro–

Blasco, J.M. Fernández, J.I. Alvarez, Photocatalytic NOx abatement by

calcium aluminate cements modified with TiO2: Improved NO2 conversion,

Cem. Concr. Res. 70 (2015) 67–76. https://doi.org/10.1016/j.cemconres.

2015.01.011.

[64] E. Ghafari, H. Costa, E. Júlio, A. Portugal, L. Durães, The effect of nanosilica

addition on flowability, strength and transport properties of ultra high

performance concrete, Mater. Des. 59 (2014) 1–9. https://doi.org/10.1016/

j.matdes.2014.02.051.

[65] J.F. González–Sánchez, B. Taşci, J.M. Fernández, Í. Navarro–Blasco, J.I.

Alvarez, Combination of polymeric superplasticizers, water repellents and

pozzolanic agents to improve air lime–based grouts for historic masonry repair,

Polymers (Basel). 12 4 (2020) 887. https://doi.org/10.3390/POLYM12040887.

[66] S.Q. Fang, H. Zhang, B.J. Zhang, Y. Zheng, The identification of organic

additives in traditional lime mortar, J. Cult. Herit. 15 (2014) 144–150.

https://doi.org/10.1016/j.culher.2013.04.001.

Page 66: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

44

[67] L. Ventol, M. Vendrell, P. Giraldez, L. Merino, Traditional organic additives

improve lime mortars: New old materials for restoration and building natural

stone fabrics, Constr. Build. Mater. 25 (2011) 3313–3318.

https://doi.org/10.1016/ j.conbuildmat.2011.03.020.

[68] C. Brumaud, R. Baumann, M. Schmitz, M. Radler, N. Roussel, Cellulose ethers

and yield stress of cement pastes, Cem. Concr. Res. 55 (2014) 14–21.

https://doi.org/10.1016/j.cemconres.2013.06.013.

[69] K.H. Khayat, Viscosity–enhancing admixtures for cement–based materials –

An overview, Cem. Concr. Compos. 20 (1998) 171–188.

https://doi.org/10.1016/ s0958–9465(98)80006–1.

[70] T. Sowoidnich, T. Rachowski, C. Rößler, A. Völkel, H.M. Ludwig, Calcium

complexation and cluster formation as principal modes of action of polymers

used as superplasticizer in cement systems, Cem. Concr. Res. 73 (2015) 42–

50. https://doi.org/10.1016/j.cemconres.2015.01.016.

[71] L. Falchi, E. Zendri, U. Müller, P. Fontana, The influence of water–repellent

admixtures on the behaviour and the effectiveness of Portland limestone

cement mortars, Cem. Concr. Compos. 59 (2015) 107–118.

https://doi.org/10.1016/ j.cemconcomp.2015.02.004.

[72] M.M. Hossain, M.R. Karim, M.K. Hossain, M.N. Islam, M.F.M. Zain,

Durability of mortar and concrete containing alkali–activated binder with

pozzolans: A review, Constr. Build. Mater. 93 (2015) 95–109.

https://doi.org/10.1016/j.conbuildmat.2015.05.094.

[73] P. Munafò, G.B. Goffredo, E. Quagliarini, TiO2–based nanocoatings for

preserving architectural stone surfaces: An overview, Constr. Build. Mater. 84

(2015) 201–218. https://doi.org/10.1016/j.conbuildmat.2015.02.083.

[74] A. Izaguirre, Tesis Doctoral: Comportamiento de morteros de cal con aditivos,

Universidad de Navarra, 2009.

[75] M. Pérez–Nicolás, A. Duran, I. Navarro–Blasco, J.M. Fernández, R. Sirera, J.I.

Alvarez, Study on the effectiveness of PNS and LS superplasticizers in air

lime–based mortars, Cem. Concr. Res. 82 (2016) 11–22.

https://doi.org/10.1016/ j.cemconres.2015.12.006.

Page 67: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

45

[76] F. Puertas, H. Santos, M. Palacios, S. Martínez–Ramírez, Polycarboxylate

superplasticiser admixtures: Effect on hydration, microstructure and

rheological behaviour in cement pastes, Adv. Cem. Res. 17 (2005) 77–89.

https://doi.org/ 10.1680/ adcr.2005.17.2.77.

[77] R.J. Flatt, A. Pierre–Claude, Science and Technology of Concrete Admixtures,

2016. https://doi.org/https://doi.org/10.1016/C2015–0–00150–2.

[78] E. Knapen, D. Van Gemert, Cement hydration and microstructure formation in

the presence of water–soluble polymers, Cem. Concr. Res. 39 (2009) 6–13.

https://doi.org/10.1016/j.cemconres.2008.10.003.

[79] B. Silva, A.P. Ferreira Pinto, A. Gomes, A. Candeias, Fresh and hardened state

behaviour of aerial lime mortars with superplasticizer, Constr. Build. Mater.

225 (2019) 1127–1139. https://doi.org/10.1016/j.conbuildmat.2019.07.275.

[80] Z.Z. Lu, S.Q. Li, J.Y. Xiao, Synergetic Effect of Na–Ca for Enhanced

Photocatalytic Performance in NOX Degradation by g–C3N4, Catal. Letters.

(2020). https://doi.org/10.1007/s10562–020–03318–5.

[81] A. Rodríguez, V. Calderón, S. Gutiérrez–González, J. Gadea, J. Garabito, C.

Junco, Manufacture of masonry mortars with melamine powder waste and

melamine paper from the manufacture of agglomerated particle boards, in Adv.

Mater. Res., 2013: pp. 538–543. https://doi.org/10.4028/www.scientific.net/

AMR.687.538.

[82] B. Sabir, S. Wild, J. Bai, Metakaolin and calcined clays as pozzolans for

concrete: A review, Cem. Concr. Compos. 23 (2001) 441–454.

https://doi.org/10.1016/S0958–9465(00)00092–5.

[83] R. Lewis, P. Fidjestøl, Microsilica as an Addition, 5th ed., Elsevier Ltd., 2019.

https://doi.org/10.1016/b978–0–08–100773–0.00011–3.

[84] N.M. Al–Akhras, Durability of metakaolin concrete to sulfate attack, Cem.

Concr. Res. 36 (2006) 1727–1734. https://doi.org/10.1016/j.cemconres.

2006.03.026.

Page 68: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

46

[85] M. Aly, M.S.J. Hashmi, A.G. Olabi, M. Messeiry, E.F. Abadir, A.I. Hussain,

Effect of colloidal nano–silica on the mechanical and physical behaviour of

waste–glass cement mortar, Mater. Des. 33 (2012) 127–135.

https://doi.org/10.1016/ j.matdes.2011.07.008.

[86] E. Luso, P.B. Lourenço, Experimental laboratory design of lime based grouts

for masonry consolidation, Int. J. Archit. Herit. 11 (2017) 1143–1152.

https://doi.org/10.1080/15583058.2017.1354095.

[87] A. Vavričuk, V. Bokan–Bosiljkov, S. Kramar, The influence of metakaolin on

the properties of natural hydraulic lime–based grouts for historic masonry

repair, Constr. Build. Mater. 172 (2018) 706–716. https://doi.org/10.1016/

j.conbuildmat.2018.04.007.

[88] J.M. Khatib, S. Wild, Sulphate resistance of metakaolin mortar, Cem. Concr.

Res. 28 (1998) 83–92. https://doi.org/10.1016/S0008–8846(97)00210–X.

[89] H.N. Atahan, C. Carlos, S. Chae, P.J.M. Monteiro, J. Bastacky, The

morphology of entrained air voids in hardened cement paste generated with

different anionic surfactants, Cem. Concr. Compos. 30 (2008) 566–575.

https://doi.org/10.1016/ j.cemconcomp.2008.02.003.

[90] L. Falchi, D. Slanzi, L. Speri, I. Poli, E. Zendri, Optimization of sustainable,

NaCl–resistant and water–repellent renders through evolutionary experimental

design, Constr. Build. Mater. 147 (2017) 876–889. https://doi.org/10.1016/

j.conbuildmat.2017.04.168.

[91] C. Nunes, Z. Slížková, Freezing and thawing resistance of aerial lime mortar

with metakaolin and a traditional water–repellent admixture, Constr. Build.

Mater. 114 (2016) 896–905. https://doi.org/10.1016/j.conbuildmat.2016.04.

029.

[92] R. Zouzelka, J. Rathousky, Photocatalytic abatement of NOx pollutants in the

air using commercial functional coating with porous morphology, Appl. Catal.

B Environ. 217 (2017) 466–476. https://doi.org/10.1016/j.apcatb.2017.06.009.

[93] L. Fornasini, L. Bergamonti, F. Bondioli, D. Bersani, L. Lazzarini, Y. Paz, P.P.

Lottici, Photocatalytic N–doped TiO2 for self–cleaning of limestones, Eur.

Phys. J. Plus. 134 10 (2019) 539. https://doi.org/10.1140/epjp/i2019–12981–6.

Page 69: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

47

[94] L. Pinho, M. Rojas, M.J. Mosquera, Ag–SiO2–TiO2 nanocomposite coatings

with enhanced photoactivity for self–cleaning application on building

materials, Appl. Catal. B Environ. 178 (2015) 144–154.

https://doi.org/10.1016/j.apcatb.2014.10.002.

[95] E. Quagliarini, F. Bondioli, G.B. Goffredo, A. Licciulli, P. Munafò, Smart

surfaces for architectural heritage: Preliminary results about the application of

TiO2–based coatings on travertine, J. Cult. Herit. 13 (2012) 204–209.

https://doi.org/10.1016/j.culher.2011.10.002.

[96] S. Johansson, L. Wadsö, K. Sandin, Estimation of mould growth levels on

rendered façades based on surface relative humidity and surface temperature

measurements, Build. Environ. 45 (2010) 1153–1160. https://doi.org/10.1016/

j.buildenv.2009.10.022.

[97] T. Vulic, M. Hadnadjev–Kostic, O. Rudic, M. Radeka, R. Marinkovic–

Neducin, J. Ranogajec, Improvement of cement–based mortars by application

of photocatalytic active Ti–Zn–Al nanocomposites, Cem. Concr. Compos. 36

(2013) 121–127. https://doi.org/10.1016/j.cemconcomp.2012.07.005.

[98] M. Pérez–Nicolás, J. Plank, D. Ruiz–Izuriaga, I. Navarro–Blasco, J.M.

Fernández, J.I. Alvarez, Photocatalytically active coatings for cement and air

lime mortars: Enhancement of the activity by incorporation of

superplasticizers, Constr. Build. Mater. 162 (2018) 628–648.

https://doi.org/10.1016/j.conbuildmat.2017.12.087.

[99] K. Hashimoto, H. Irie, A. Fujishima, TiO2 Photocatalysis: A Historical

Overview and Future Prospects, Assoc. Asia Pacific Phys. Soc. Bull. (2007).

[100] Z. Ai, W. Ho, S. Lee, L. Zhang, Efficient photocatalytic removal of NO in

indoor air with hierarchical bismuth oxybromide nanoplate microspheres under

visible light, Environ. Sci. Technol. 43 (2009) 4143–4150.

https://doi.org/10.1021/es9004366.

[101] L. Yang, A. Hakki, L. Zheng, M.R. Jones, F. Wang, D.E. Macphee,

Photocatalytic concrete for NOx abatement: Supported TiO2 efficiencies and

impacts, Cem. Concr. Res. 116 (2019) 57–64. https://doi.org/10.1016/

j.cemconres.2018.11.002.

Page 70: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

48

[102] J.S. Dalton, P.A. Janes, N.G. Jones, J.A. Nicholson, K.R. Hallam, G.C. Allen,

Photocatalytic oxidation of NOx gases using TiO2: A surface spectroscopic

approach, Environ. Pollut. 120 (2002) 415–422. https://doi.org/10.1016/

S0269–7491(02)00107–0.

[103] A. Folli, C. Pade, T.B. Hansen, T. De Marco, D.E. MacPhee, TiO2

photocatalysis in cementitious systems: Insights into self–cleaning and

depollution chemistry, Cem. Concr. Res. 42 (2012) 539–548.

https://doi.org/10.1016/ j.cemconres.2011.12.001.

[104] J.V.S. de Melo, G. Trichês, Evaluation of the influence of environmental

conditions on the efficiency of photocatalytic coatings in the degradation of

nitrogen oxides (NOx), Build. Environ. 49 (2012) 117–123.

https://doi.org/10.1016/ j.buildenv.2011.09.016.

[105] W. Kim, T. Tachikawa, G.H. Moon, T. Majima, W. Choi, Molecular–level

understanding of the photocatalytic activity difference between anatase and

rutile nanoparticles, Angew. Chemie – Int. Ed. 53 (2014) 14036–14041.

https://doi.org/10.1002/anie.201406625.

[106] W. Choi, A. Termin, M.R. Hoffmann, The role of metal ion dopants in

quantum–sized TiO2: Correlation between photoreactivity and charge carrier

recombination dynamics, J. Phys. Chem. 98 (1994) 13669–13679.

https://doi.org/10.1021/j100102a038.

[107] C. Giosuè, A. Mobili, B. Citterio, F. Biavasco, M.L. Ruello, F. Tittarelli,

Innovative hydraulic lime–based finishes with unconventional aggregates and

TiO2 for the improvement of indoor air quality, Manuf. Rev. 7 (2020) 13.

https://doi.org/10.1051/mfreview/2020010.

[108] M. Pérez–Nicolás, Í. Navarro–Blasco, J.M. Fernández, J.I. Alvarez, The effect

of TiO2 doped photocatalytic nano–additives on the hydration and

microstructure of portland and high alumina cements, Nanomaterials. 7 10

(2017) 329. https://doi.org/10.3390/nano7100329.

Page 71: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

49

[109] B. Ruot, A. Plassais, F. Olive, L. Guillot, L. Bonafous, TiO2–containing cement

pastes and mortars: Measurements of the photocatalytic efficiency using a

rhodamine B–based colourimetric test, Sol. Energy. 83 (2009) 1794–1801.

https://doi.org/10.1016/j.solener.2009.05.017.

[110] J.S. Pozo–Antonio, A. Dionísio, Self–cleaning property of mortars with TiO2

addition using real diesel exhaust soot, J. Clean. Prod. 161 (2017) 850–859.

https://doi.org/10.1016/j.jclepro.2017.05.202.

[111] H. Paiva, L.M. Silva, J.A. Labrincha, V.M. Ferreira, Effects of a water–

retaining agent on the rheological behaviour of a single–coat render mortar,

Cem. Concr. Res. 36 (2006) 1257–1262. https://doi.org/10.1016/

j.cemconres.2006.02.018.

[112] H. Paiva, A. Velosa, R. Veiga, V.M. Ferreira, Effect of maturation time on the

fresh and hardened properties of an air lime mortar, Cem. Concr. Res. 40

(2010) 447–451. https://doi.org/10.1016/j.cemconres.2009.09.016.

[113] A. Izaguirre, J. Lanas, J.I. Álvarez, Effect of a biodegradable natural polymer

on the properties of hardened lime–based mortars, Mater. Constr. 61 (2011)

257–274. https://doi.org/10.3989/mc.2010.56009.

[114] A. Izaguirre, J. Lanas, J.I. Álvarez, Behaviour of a starch as a viscosity modifier

for aerial lime–based mortars, Carbohydr. Polym. 80 (2010) 222–228.

https://doi.org/10.1016/j.carbpol.2009.11.010.

[115] R. Hooton, C. Johnston, R. Rixom, N. Mailvaganam, Chemical Admixtures for

Concrete third edition, 1999. https://doi.org/10.1520/CCA10483J.

[116] O. Rodríguez, Morteros: guía general, Asoc. Nac. Fabr. Mortero. (2003).

[117] B.A. Silva, A.P. Ferreira Pinto, A. Gomes, A. Candeias, Impact of a viscosity–

modifying admixture on the properties of lime mortars, J. Build. Eng. 31 (2020)

101132. https://doi.org/10.1016/j.jobe.2019.101132.

[118] M. Lachemi, K.M.A. Hossain, V. Lambros, P.C. Nkinamubanzi, N.

Bouzoubaâ, Performance of new viscosity modifying admixtures in enhancing

the rheological properties of cement paste, Cem. Concr. Res. 34 (2004) 185–

193. https://doi.org/10.1016/S0008–8846(03)00233–3.

Page 72: Desarrollo de nuevos morteros de restauración de cal con ...

Introducción

50

[119] C. Shi, X. Zou, P. Wang, Influences of ethylene–vinyl acetate and

methylcellulose on the properties of calcium sulfoaluminate cement, Constr.

Build. Mater. 193 (2018) 474–480. https://doi.org/10.1016/

j.conbuildmat.2018.10.218.

[120] D.C. Park, J.C. Ahn, S.G. Oh, H.C. Song, T. Noguchi, Drying effect of

polymer–modified cement for patch–repaired mortar on constraint stress,

Constr. Build. Mater. 23 (2009) 434–447. https://doi.org/10.1016/

j.conbuildmat.2007.11.003.

[121] D. Park, S. Park, Y. Seo, T. Noguchi, Water absorption and constraint stress

analysis of polymer–modified cement mortar used as a patch repair material,

Constr. Build. Mater. 28 (2012) 819–830. https://doi.org/10.1016/

j.conbuildmat.2011.06.081.

[122] Z. Wang, J. Wu, P. Zhao, N. Dai, Z. Zhai, T. Ai, Improving cracking resistance

of cement mortar by thermo–sensitive poly N–isopropyl acrylamide

(PNIPAM) gels, J. Clean. Prod. 176 (2018) 1292–1303.

https://doi.org/10.1016/ j.jclepro.2017.11.242.

[123] S. Banerjee, D.D. Dionysiou, S.C. Pillai, Self–cleaning applications of TiO2 by

photo–induced hydrophilicity and photocatalysis, Appl. Catal. B Environ. 176–

177 (2015) 396–428. https://doi.org/10.1016/j.apcatb.2015.03.058.

[124] D. Colangiuli, A. Calia, N. Bianco, Novel multifunctional coatings with

photocatalytic and hydrophobic properties for the preservation of the stone

building heritage, Constr. Build. Mater. 93 (2015) 189–196.

https://doi.org/10.1016/j.conbuildmat.2015.05.100.

[125] C. Kapridaki, L. Pinho, M.J. Mosquera, P. Maravelaki–Kalaitzaki, Producing

photoactive, transparent and hydrophobic SiO2–crystalline TiO2

nanocomposites at ambient conditions with application as self–cleaning

coatings, Appl. Catal. B Environ. 156–157 (2014) 416–427.

https://doi.org/10.1016/ j.apcatb.2014.03.042.

Page 73: Desarrollo de nuevos morteros de restauración de cal con ...

Objetivos

Page 74: Desarrollo de nuevos morteros de restauración de cal con ...
Page 75: Desarrollo de nuevos morteros de restauración de cal con ...

Objetivos

53

El objetivo principal de este trabajo es obtener morteros de cal aérea con

propiedades mejoradas mediante la incorporación combinada de diferentes aditivos como

agentes puzolánicos (nanosílice, microsílice o metacaolín), superplastificantes (éteres de

policarboxilato, lignosulfonato, condensado de naftaleno–formaldehído y sulfonato de

melamina), hidrofugante (oleato sódico), fotocatalizador (TiO2), aditivo incrementador

de la adherencia (copolímero de etileno–acetato de vinilo, EVA) y modificador de la

reología (almidón). Diferentes combinaciones múltiples de estos aditivos se aplicarán a

matrices de cal aérea para obtener tres gamas de morteros, especialmente enfocados a la

restauración de edificaciones del Patrimonio Cultural.

La primera gama la configuran morteros de inyección de elevada resistencia y

durabilidad; la segunda gama a desarrollar la componen morteros de cal con aditivos

fotocatalíticos de capacidad autolimpiante; y la tercera es una gama de morteros de cal

con adherencia mejorada sobre sustratos, para su aplicación en paramentos verticales

como revocos, enlucidos o monocapas. La investigación sobre las tres gamas de morteros

incluye el estudio de la combinación y diferentes dosis de aditivos, el comportamiento en

estado fresco y endurecido de estos materiales y su aplicación.

Objetivos

Por tanto, los objetivos específicos del trabajo son:

1. Optimizar y obtener morteros de inyección de cal aérea, con propiedades de

elevada resistencia y durabilidad, mejorando su fluidez e inyectabilidad, mediante

la incorporación combinada de puzolanas (metacaolín y microsílice),

superplastificantes (éteres de policarboxilato (PCE), lignosulfonatos (LS),

condensados de naftaleno–formaldehído (PNS) y sulfonato de melamina (SMF))

y un aditivo hidrofugante (oleato sódico).

2. Estudiar morteros de inyección de cal aérea mediante medidas de tiempo de

fraguado, fluidez, inyectabilidad, resistencias mecánicas a compresión a

diferentes tiempos de curado, capacidad de hidro–repelencia, distribución de

tamaño de poro y microestructura. Analizar el mecanismo de acción y la

compatibilidad entre los aditivos utilizados mediante isotermas de adsorción y

medidas de potencial zeta.

3. Preparar una gama de morteros de cal aérea con capacidad autolimpiante,

mediante el uso de un aditivo fotocatalizador nanoestructurado (TiO2), mejorando

Page 76: Desarrollo de nuevos morteros de restauración de cal con ...

Objetivos

54

la eficacia fotocatalítica y de autolimpieza reduciendo la aglomeración del TiO2 y

ralentizando la recombinación hueco positivo–electrón mediante la incorporación

de, agentes dispersantes (superplastificantes). Mejorar las prestaciones mecánicas

y de durabilidad de estos morteros a través de una adición puzolánica (nanosílice)

y un agente hidrofugante (oleato sódico) que reduzca la penetración de agua.

4. Analizar en morteros de cal aérea con capacidad autolimpiante la mejora en la

actividad fotocatalítica en función del dispersante empleado y la compatibilidad

entre aditivos, en particular el mantenimiento de la hidrofilicidad fotoinducida.

Evaluar la capacidad fotocatalítica estudiando la degradación de óxidos de

nitrógeno y la de autolimpieza mediante la degradación de colorantes.

5. Desarrollar morteros de cal aérea con adherencia mejorada sobre sustratos, para

su aplicación en paramentos verticales como revocos, enlucidos o monocapas,

mediante el estudio de compatibilidad y la combinación de aditivos

incrementadores de la adherencia (copolímero de etileno–acetato de vinilo, EVA),

modificadores de la reología (almidón), hidrofugante (oleato sódico) y adiciones

puzolánicas (metacaolín y nanosílice).

6. Evaluar la adherencia y el comportamiento de estos morteros sobre diversos

sustratos (caliza, arenisca, granito y ladrillo). Valorar la compatibilidad en estado

fresco entre los diversos aditivos y la durabilidad de los morteros tras someterlos

a diversas condiciones de envejecimiento acelerado: ciclos de hielo–deshielo y

ataque de sulfatos.

Page 77: Desarrollo de nuevos morteros de restauración de cal con ...

Material y Métodos

Page 78: Desarrollo de nuevos morteros de restauración de cal con ...
Page 79: Desarrollo de nuevos morteros de restauración de cal con ...

Material y métodos

57

1. Materiales empleados

1.1. Materiales generales

En este apartado se describen los materiales que han sido utilizados para llevar a

cabo la experimentación de las distintas gamas morteros preparadas. Posteriormente se

incluirán los diferentes materiales o aditivos específicos para cada una de ellas.

1.1.1. Cal

En las tres gamas de mortero se ha utilizado cal aérea apagada suministrada por

Cal Industrial S.A. (Navarra, España), con una clasificación CL–90 de acuerdo a la

normativa española y europea, con un tamaño de partícula medio de 10 μm y una fracción

> 50 μm inferior al 10% [1].

1.1.2. Árido

El árido de naturaleza caliza empleado fue suministrado por CTH (Navarra,

España). Proviene del procesamiento físico de dicho material con una composición global

de 52.83% (CaO), 2.28% (MgO), 1.14% (sesquióxidos de Fe2O3 y Al2O3), 0.57% (SO3),

0.49% (SiO2), 0.07% (Na2O), 0.05% (K2O) y una pérdida de ignición de 43.10%. Además

contiene un gran porcentaje de finos, representados por su granulometría mostrada en la

Fig. 1[2,3].

Figura 1. Tamaño de partícula del agregado calcáreo

Page 80: Desarrollo de nuevos morteros de restauración de cal con ...

Material y métodos

58

1.1.3. Hidrofugante

Se empleó oleato sódico suministrado por ADI–center S.L.U. (Barcelona, España)

bajo el nombre comercial HISA–A 2388 N®. Se contrastó la composición química y su

estructura de cadena apolar hidrocarbonada y grupo carboxílico polar en su extremo final

referida por el fabricante mediante comparación con los correspondientes productos puros

adquiridos a través de Sigma–Aldrich [4].

1.1.4. Aditivos puzolánicos

• Nanosílice (NS)

Este producto fue suministrado Ulmen Europa S.L. (Castellón, España) en forma

de suspensión al 28% con un pH de 9,68. El tamaño medio de las partículas esféricas de

nanosílice es de aproximadamente 50 nm con una superficie específica de 500 m2g−1

[5,6].

• Microsílice (MS)

Suministrada también por Ulmen Europa S.L. (Castellón, España) con un tamaño

medio de partícula en suspensión acuosa de aproximadamente 380 µm. De acuerdo con

el proveedor, las partículas de microsílice de forma esférica tienen al menos un 85% de

SiO2, con bajo contenido de carbono (Fig. 2) [7].

Figura 2. Apariencia física de la microsílice

Page 81: Desarrollo de nuevos morteros de restauración de cal con ...

Material y métodos

59

• Metacaolín (MK)

Se empleó el producto comercial Metaver® suministrado por Newchem AG

(Pfäffikon, Suiza), con un área de superficie específica de 20.00 m2g−1 y un tamaño de

partícula medio de 3.9 µm (Fig. 3)[8].

Figura 3. Apariencia física del metacaolín

1.1.5. Agua

Todos los morteros fueron preparados utilizando agua de consumo público de la

red de la Mancomunidad de la Comarca de Pamplona.

1.2. Aditivos específicos de la Gama 1: morteros de inyección de cal

con elevada resistencia, durabilidad y buena fluidez

1.2.1. Aditivos superplastificantes

• Sulfonato de naftaleno (PNS)

El plastificante utilizado, sal del ácido naftalen–sulfónico condensado (Fig. 2),

corresponde con el producto comercial Conplast SP430 Polvo suministrado por Fosroc

Euco S.A. (Izurtza, España) [7].

Figura 2. Estructura del sulfonato de naftaleno

Page 82: Desarrollo de nuevos morteros de restauración de cal con ...

Material y métodos

60

• Lignosulfonato (LS)

Se utilizó el producto comercial Lignin DS10 suministrado por Fosroc Euco S.A.

(Izurtza, España) (Fig. 3) [8].

Figura. 3. Estructura del lignosulfonato

• Éter de policarboxilato (PCE)

Se empleó el producto comercial Melfulx®, suministrado por la compañía BASF

Española S.L. (Tarragona, España) Es un policarboxilato sintetizado que consta de una

cadena principal lineal con grupos carboxilato y éter laterales en forma de estrella (Fig.

4) [5].

Figura. 4. Estructura del éter de policarboxilato

SO3-Na+

SO3-Na+

SO3-Na+

Page 83: Desarrollo de nuevos morteros de restauración de cal con ...

Material y métodos

61

• Condensado de melamina–formaldehído sulfonato (SMF)

Se utilizó el producto comercial Melment F10 suministrado por la empresa BASF

(Ludwigshafen, Alemania) (Fig. 5) [7].

Figura. 5. Estructura del condensado de melamina–formaldehído sulfonato

1.3. Aditivos específicos de la Gama 2 de morteros de cal con

capacidad autolimpiante

1.3.1. Aditivos superplastificantes

Cabe mencionar que se han utilizado adicionalmente al éter de policarboxilato

mencionado anteriormente y el sulfonato de naftaleno de la gama anterior, los siguientes

superplastificantes proveídos por el profesor Plank de la Universidad Técnica de Múnich

(TUM), Múnich, Alemania:

• 23APEG

Se trata de un compuesto que contiene macromonómeros de α–alil–ω–metoxi

polietilenglicol, compuestos de 23 unidades de óxido de etileno y una cantidad

equivalente de anhídrido maleico [9].

Page 84: Desarrollo de nuevos morteros de restauración de cal con ...

Material y métodos

62

Figura. 6. Estructura del superplastificante 23APEG

• 45PC6

Este es un polímero compuesto por un macromonómero de un éster de ω–metoxi

polietilenglicolmetacrilato con 45 unidades de óxido de etileno y de ácido metacrílico con

una relación molar 1:6 (Fig. 6) [9].

Figura. 7. Estructura del superplastificante 45PC6

• 52IPEG

Este polímero se basa en la copolimerización por radicales libres de ácido acrílico

y macromonómeros de isoprenil –hidroxipolietilenglicol. En su estructura con 52

unidades de óxido de etileno y la relación de ácido acrílico e isoprenil oxi poli

(etilenglicol) es 5,8. (Fig. 8) [9].

Page 85: Desarrollo de nuevos morteros de restauración de cal con ...

Material y métodos

63

Figura. 8. Estructura del superplastificante 52IPEG

1.3.2. Aditivo fotocatalítico: TiO2

Para esta gama se emplearon nanopartículas de titania suministrada por Evonik

Industries (Alemania) bajo la denominación Aeroxide® P25, la cual tiene una apariencia

física de un polvo blanco y muy fino (Fig. 9) [10].

Figura 9. Apariencia física del TiO2

1.4. Aditivos específicos de la Gama 3 de morteros de cal de reología

controlada y adherencia mejorada

1.4.1. Modificador de reología

Se utilizó un derivado soluble del almidón de patata, de marca comercial Casaplast

KO09 de la casa comercial Nova Casanova (Barcelona, España), eterificado con alto

grado de sustitución. De acuerdo con el fabricante tiene un carácter no iónico lo que le

permite una alta compatibilidad sistemas de alto contenido en iones bivalentes como el

calcio y el magnesio. Así, por tanto, se aplica como aditivo para lograr cierta viscosidad

Page 86: Desarrollo de nuevos morteros de restauración de cal con ...

Material y métodos

64

y/o fluidez en pastas o con función espesante para morteros de cemento y yeso, que no

aporta pegajosidad proporcionando muy buena trabajabilidad [11].

1.5. Potenciador de la adherencia

El aditivo empleado es Elotex MP 2080 proveído por Celanese (Tarragona,

España), es un polvo redispersable en agua que contiene acetato de vinilo y copolímeros

de etileno–vinil–acetato (EVA). Posee propiedades hidrofóbicas aptas para morteros de

cal o cemento. La adición de etileno–acetato de vinilo (EVA) al mortero aumenta la

resistencia a la flexión porque los grupos activos de sus moléculas también pueden

reaccionar con los productos de hidratación para mejorar la estructura física del mortero.

Especialmente recomendado para uso en exteriores donde se requiere alta hidrofobicidad

y baja absorción de agua [12].

Page 87: Desarrollo de nuevos morteros de restauración de cal con ...

Material y métodos

65

2. Caracterización de los materiales

La caracterización de los materiales anteriores se llevó a cabo utilizando las

siguientes técnicas:

2.1. Difracción de Rayos X (XRD)

Para poder determinar las fases cristalinas, y realizar la caracterización tanto de

materiales empleados como de las muestras resultantes, se utilizó un equipo Bruker D8

Advance Eco, de 50 kV, 60 mA y 1 kW de tensión, intensidad de corriente y potencia

máximas, respectivamente. La radiación la suministró un tubo con anticátodo de cobre.

Se estableció que la medida fuese desde 2 hasta 80º 2, con un incremento de 0.02º (2)

y una duración de 1s/step (40 KV y 30 mA). Para el análisis de los difractogramas

obtenidos se utilizó el software de la empresa Bruker llamado DIFFRACplus EVA®

utilizando la base de datos ICDD para realizar su comparación (Fig. 10). [6].

Figura 10. Difractómetro de Rayos X

2.2. Isotermas de adsorción gas–sólido

Para el ensayo de superficie específica se realizaron medidas de isotermas de

adsorción de N2 a 77K, en un equipo ASAP 2020 de Micromeritics, con el software ASAP

2020 V3.01, en el cual se determinó la superficie específica de los distintos aditivos

mediante el método BET.

Page 88: Desarrollo de nuevos morteros de restauración de cal con ...

Material y métodos

66

2.3. Determinación de potencial zeta

Para poder determinar la carga superficial de los diferentes aditivos, así como su

interacción con las partículas de cal se empleó el instrumento ZetaProbe de Colloidal

Dynamics (Fig.11) que determina el potencial zeta basado en una señal electroacústica y

permite la realización de medidas en sistemas muy concentrados, así como llevar a cabo

titulaciones con diversos agentes.

Figura 11. Medidor de potencial zeta

2.4. Determinación de tamaño de partícula

Para conocer la distribución de tamaño de partículas en suspensiones alcalinas

(1% peso/peso) se usó el instrumento Nanozeta Sizer de Malvern.

2.5. Espectroscopía IR

Se utilizó un espectrómetro Shimadzu IRAffinity–1S, con accesorio MKII Golden

Gate de atenuancia total reflejada y software OMNIC ESP. Las medidas se verificaron

con una resolución empleada de 4 cm–1, estableciendo como temperatura de trabajo 20ºC

y los espectros obtenidos fueron resultados de un promedio de 100 barridos en un rango

de 4000–600 cm−1.

2.6. Determinación de adsorción mediante carbono orgánico total

(TOC)

En la gama 2 para conocer la adsorción de superplastificantes sobre TiO2 se

realizó un experimento de adsorción por lotes. Se prepararon cinco muestras de referencia

con 10 mg de cada SP y 5 suspensiones con la misma cantidad de SP más 500 mg de TiO2

y se completaron hasta un volumen final de 50 mL. Las muestras se agitaron

mecánicamente durante 30 min para alcanzar el equilibrio de adsorción y posteriormente

Page 89: Desarrollo de nuevos morteros de restauración de cal con ...

Material y métodos

67

se centrifugaron durante 2 horas a 8000 rpm en un equipo Wobbler Heraeus Biofuge

Stratos. A continuación, se tomó el sobrenadante y se determinó el carbono orgánico total

(TOC) en un analizador de carbono orgánico total TOC–L Shimadzu. Se calculó la

cantidad adsorbida de superplastificante, así como la diferencia entre el contenido de TOC

de las muestras de referencia y el contenido de TOC del sobrenadante de las suspensiones.

Page 90: Desarrollo de nuevos morteros de restauración de cal con ...

Material y métodos

68

3. Preparación y estudio de las mezclas

3.1. Dosificación

En la etapa experimental y para las tres gamas de mortero se mantuvo una relación

de cal: árido 1:1 en masa, equivalente a 1:3 en volumen. Se ha utilizado esta relación

debido a que ya ha sido utilizada con éxito en trabajos previos [7,8].

Para las gama 1 se ajustó el agua al 31 % relación agua/cal y para la 2 se optó por

fijar la proporción agua al 28 % relación agua/cal, y de esta forma se pudo observar el

efecto que tuvo cada uno de los superplastificantes utilizados y se estudió el efecto sobre

la fluidez y la dispersión del aditivo fotocatalítico, respectivamente.

En la gama 3 se fijó el criterio de la consistencia (medida indirecta de la

trabajabilidad del material) para fijar la cantidad de agua necesaria para la mezcla. El

diámetro de escurrimiento en la mesa de sacudidas fue de 145 10 mm.

En cada capítulo de este trabajo se detallarán las diferentes dosificaciones de los

aditivos utilizados en cada caso.

3.2. Mezcla y amasado

Cada uno de los componentes se pesó por separado y se mezclaron en seco.

Posteriormente, se pesó el agua necesaria en cada caso, se incorporó a la mezcla anterior

y se introdujo en la amasadora.

Primero se pesaron los componentes: la cal, la arena y el agua en una balanza

METTLER PC 4000 y posteriormente en una balanza METTLER PC 440 se pesaron los

aditivos.

Acto seguido los componentes en seco se mezclaron utilizando una mezcladora

de sólidos BL–8–CA de Lleal S.A. (Fig. 12), que consta de un tambor principal y un

intensificador que giraron durante cinco minutos, asegurando de esta forma una buena

homogeneización la mezcla; posteriormente, se realizó el mezclado con agua en una

amasadora planetaria ajustada a la norma EN 196–1 [13] IBERTEST IB32–040E durante

90 segundos a velocidad lenta.

Page 91: Desarrollo de nuevos morteros de restauración de cal con ...

Material y métodos

69

Figura 12. Mezcladora de sólidos

3.3. Elaboración de las probetas

Para la gama 1 se realizaron probetas prismáticas de 40x40x160 mm en moldes

tripes de acero PROETI C0090, para las otras dos gamas se elaboraron probetas

cilíndricas de 40 mm de diámetro y 36 mm de altura. Se realizó el llenado en dos capas y

se empleó para compactar cada capa la compactadora IBERTEST iB32–045E–1

automática que proporcionó 60 golpes por capa con una frecuencia de un golpe por

segundo, para eliminar las burbujas de aire presentes en la mezcla, siguiendo la norma

UNE–EN 196–1 [13]. Para finalizar se enrasó con una regla y se eliminó el exceso de

masa de mortero y todas las probetas se desmoldaron a las 24 horas. Posteriormente se

dejaron curar a 20º C y 60% H.R.

3.4. Ensayos del mortero fresco

3.4.1. Determinación de la consistencia (mesa de sacudidas)

Este ensayo consistió en rellenar un molde troncocónico con el mortero fresco en

dos capas, compactando cada una de ellas con 10 golpes. Se enrasaron, se desmoldaron y

se les efectuaron 15 sacudidas con una frecuencia de un golpe por segundo y por último

se realizó la medida del diámetro en dos direcciones perpendiculares entre sí con un

calibre. Este prueba siguió los lineamientos establecidos en la norma EN 1015– 3 [14].

Para los morteros de la gama 1 y 2, el diámetro obtenido en este ensayo fue

considerado un dato en sí mismo (medida del escurrimiento o slump, que dio idea de la

fluidez de la masa), mientras que para la gama 3 este ensayo se tomó como referencia

Page 92: Desarrollo de nuevos morteros de restauración de cal con ...

Material y métodos

70

para determinar la cantidad de agua necesaria en cada caso para obtener el diámetro de

escurrimiento fijado: 145 10 mm.

3.4.2. Determinación de la densidad y el contenido de aire ocluido

Este ensayo se utilizó recipiente metálico con capacidad de un litro y una tapa

provista de una cámara de aire estanca y un manómetro. En primer lugar, se determinó la

densidad, por lo que se pesó el recipiente vacío, después se llenó con el mortero en fresco

y se volvió a pesar. De esta manera por diferencia de masas y conociendo el volumen del

recipiente se pudo calcular la densidad aparente de cada mezcla. Para la determinación

del contenido de aire se colocó la tapa, se cerró herméticamente el recipiente, se agregó

agua a través de la válvula de la tapa sobre la superficie del mortero considerando su

nivel. Con ayuda de presión de aire, se forzó la introducción del agua en el mortero,

desplazando de esta manera el aire contenido en los poros, lo que provocó una

disminución del nivel de agua con el cual se conoció el volumen de aire extraído del

mortero. Estos dos ensayos fueron realizados acorde con las normas EN 1015–6 [15] y

EN 1015–7 [16], respectivamente.

3.4.3. Determinación del periodo de trabajabilidad

Para esta prueba se llenó un molde cilíndrico vertiendo en él 10 capas de mortero,

sacudiendo 4 veces tras cada adición y tras su llenado se enrasó. Posteriormente el

recipiente fue colocado sobre una balanza y ésta fue tarada. Y como se muestra en la Fig.

13 se introdujo una sonda de penetración cada 15 minutos, se registró el peso y el tiempo

hasta que el peso fue superior a 1500 g, terminando de esta forma el ensayo. Este método

fue realizado de acuerdo con la norma EN 1015–9 [17].

Figura 13. Determinación del periodo de trabajabilidad del material

Page 93: Desarrollo de nuevos morteros de restauración de cal con ...

Material y métodos

71

3.4.4. Estudio del proceso de hidratación

Se ha utilizado un equipo TAM Air (Fig. 14) para determinar los cambios del

proceso de hidratación en las diferentes mezclas, por lo que se prepararon pastas de cal

de alrededor de 3 gramos, en unos recipientes de cristal con tapa metálica aptos para este

equipo, que se introdujeron durante al menos 24 horas a 25º C para obtener sus curvas de

calorimetría isotérmica.

Figura 14. Calorímetro isotérmico

3.4.5. Determinación de la capacidad de retención de agua

Para esta determinación se llenaron con mortero moldes cilíndricos previamente

pesados, se enrasaron y se volvieron a pesar para determinar la cantidad de mortero.

Posteriormente se colocaron dos capas de gasa fina de algodón y 8 discos de papel de

filtro previamente pesados, encima se colocó un disco de vidrio donde se colocaron 2 Kg

de pesas durante 5 minutos. Finalmente se desmontó el sistema y se pesaron las gasas y

los discos de papel para calcular el agua que éstos absorbieron y se calculó la retención

de agua de cada mezcla con los datos obtenidos. Para este ensayo se utilizó la norma

UNE 83–816–93 [18].

3.4.6. Evolución del extendido sobre diferentes superficies

Este ensayo se realizó extendiendo una capa de mortero de 15 mm de espesor

sobre la superficie de un arenisca, caliza, granito y ladrillo (Fig. 15), previamente lavados

y humedecidos y se estudió la evolución del mortero durante 1, 2, 7, y 30 días de fraguado,

con el fin de observar la aparición de fisuras, posibles descuelgues del mortero, faltas de

adherencia, etc.

Page 94: Desarrollo de nuevos morteros de restauración de cal con ...

Material y métodos

72

Figura 15. Sustratos utilizados para realizar la prueba de evolución del extendido

3.4.7. Inyectabilidad

Se llevó a cabo una prueba de inyectabilidad a presión constante en una columna

de metacrilato transparente con una altura de 390 mm y un diámetro interior de 21 mm,

sostenida verticalmente desde su parte inferior. La columna se llenó con material granular

(travertino) con una tamaño de partícula de 2–4 mm. Esta prueba es una adaptación de la

prueba de columna de arena (EN 1771: Determinación de la inyectabilidad mediante la

prueba de columna de arena [19]). Se utilizó una presión constante de 0.075 MPa para

inyectar el mortero durante 60 s y se registró el tiempo necesario para el llenado completo

de los cilindros (Fig. 16).

Figura 16. Sistema para ensayar la inyectabilidad del mortero

Page 95: Desarrollo de nuevos morteros de restauración de cal con ...

Material y métodos

73

Figura 16 (continuación). Sistema para ensayar la inyectabilidad del mortero

3.5. Ensayos del mortero endurecido

3.5.1. Determinación de la resistencia a compresión

Para determinar la resistencia a la compresión de las diferentes mezclas se utilizó

una prensa Frank/Controls 81565 con un dispositivo de rotura a compresión Proeti ETI

26.0052 y a una velocidad de rotura 5–50 Kp·s–1 con un intervalo de tiempo entre 30 y

90 segundos. Para la gama 1 se determinó este valor tras 28, 91, 182 y 365 días de curado,

para observar las posibles modificaciones con el tiempo; se rompieron 3 probetas, con el

fin de conseguir valores representativos. Para la gama dos y tres se realizó este ensayo a

28 y 91 días por triplicado.

Page 96: Desarrollo de nuevos morteros de restauración de cal con ...

Material y métodos

74

3.5.2. Estudio de la estructura porosa

Se utilizo un porosímetro de intrusión de mercurio (MIP) Micromeritics AutoPore

IV 9500 con un intervalo de presiones de 0.0015–207 MPa, que registró automáticamente

la presión, el diámetro de poro y el volumen de intrusión de mercurio, de esta manera se

pudo determinar la estructura porosa del material.

3.5.3. Estudio químico y mineralógico

Se estudió la composición de cada una de las muestras por medio de: difracción

de rayos X (descrito en el apartado 2.1) y espectroscopía IR (descrito en el apartado 2.5).

3.5.4. Análisis térmico

Para esta prueba se trabajó con un equipo simultáneo TGA–sDTA 851 Mettler

Toledo con muestreador automático Mettler Toledo TSO 801 RO y controlador de gases

Mettler Toledo TSO 800 GC1 conectado a un refrigerador JULABO FP 50, introduciendo

las muestras pulverizadas en crisoles de alúmina de 70 μL con tapa perforada. El

calentamiento se realizó desde 20 hasta 1000ºC, a una velocidad de 20ºC·min–1 bajo una

atmósfera de aire estático, nitrógeno como gas de purga (20 mL/min).

3.5.5. Estudio del ángulo de contacto

Se utilizó un instrumento de medición del ángulo de contacto OCA 15EC

Dataphysics (Fig. 17), con el cual se determinó el ángulo de contacto a través de 5 gotas

de 3 L de volumen de agua depositada sobre diferentes superficies de la muestra con el

fin de obtener una medida representativa, así como el tiempo para la absorción de esta

por el material. Cuando se estudió el efecto de la hidrofilicidad fotoinducida de la gama

dos se determinó el ángulo de contacto a 1, 2, 5, 8 y 30 minutos de radiación ultravioleta,

con la lampara OSRAM Vitalux de 300 W.

Page 97: Desarrollo de nuevos morteros de restauración de cal con ...

Material y métodos

75

Figura 17. Instrumento de medición del ángulo de contacto y algunos ejemplos de

muestras medidas

3.5.6. Estudio de actividad fotocatalítica

• Abatimiento de NO

Se llevó a cabo para los morteros de la gama 2, en un fotorreactor de forma

cilíndrica con 12 centímetros de altura y 14 centímetros de diámetro alimentado con un

flujo de NO de 500 ppb de concentración, que, tras pasar por el mismo, era analizado por

un detector quimioluminiscente (Environment AC32CM) que determina las

concentraciones de NO y NO2 en continuo (Fig. 18). Las condiciones experimentales

fueron de 50 10% H.R. y 25 2º C. Las muestras se introdujeron dentro del reactor y

se mantuvieron durante 10 minutos en oscuridad con el flujo de NOx atravesando el

reactor para conseguir una concentración estable de NO, posteriormente fueron

iluminadas por la lampara Osram Ultravitalux 300W durante 30 minutos en los cuales la

concentración de NO disminuía hasta un mínimo y finalmente se apagó la lampara y las

muestras se dejaron 10 minutos más dentro del reactor para permitir que los niveles de

concentración de NO recuperaran los valores iniciales.

Figura 18. Dispositivo de medida de NO

a)

b)

c)

d)

e)

f)

Page 98: Desarrollo de nuevos morteros de restauración de cal con ...

Material y métodos

76

• Test de autolimpieza: degradación de un colorante orgánico

Este estudio también fue realizado para la gama 2 y se utilizó una disolución de

rodamina B de concentración 1 mM, recubriendo con 3 capas la superficie con la ayuda

de un pincel. Se expusieron a una radiación UV–vis de la lampara Osram Ultravitalux

300W a una distancia de 20 cm. Mediante un espectrofotómetro Konica–Minolta CR–

300 se tomaron datos de la variación de color a las 5, 20, 80, 140 y 310 minutos midiendo

las tres coordenadas CIELab: L (luminosidad), a (rango entre rojo y verde) y b (rango

entre azul y amarillo) según la Commission Internationale de l’Eclairage [20], a partir de

las cuales se determinó la variación de color (C), con la ayuda de la ecuación[20]:

∆Cn=√[at

*– a0*]

2+[bt

*– b0*]

2

[aC* – a0

*]2+[bC

* – bt*]

2 Ec. 1

donde at* y bt

*son las coordenadas en el tiempo de irradiación t, mientras que aC

* y bC* se

miden en las piedras limpias antes de teñir con la rodamina B.

3.5.7. Estudio de la durabilidad

• Ciclos de hielo–deshielo

Se estudió esta durabilidad sometiendo a las muestras hasta 28 ciclos de dos

etapas: una primera durante la cual las probetas se sumergían en agua a temperatura

ambiente, y una segunda en la que se congelaban en un arcón CARAVELL 521–102 a

–10ºC.

• Resistencia al ataque de sulfatos

Las muestras se sumergieron completamente en una solución acuosa saturada de

MgSO4 a 20ºC y 95% HR durante 24 h. Después de este proceso, las muestras se secaron

en estufa a 65ºC durante 24 h y se sumergieron en agua durante 24 h a 20ºC y 95% HR.

Para concluir el ciclo, las muestras se secaron nuevamente como se describió

anteriormente. Los ciclos se repitieron continuamente hasta 28 ciclos o hasta la

destrucción total de las muestras.

Page 99: Desarrollo de nuevos morteros de restauración de cal con ...

Material y métodos

77

3.5.8. Estudio biocida

Para desarrollar este experimento, se utilizó una cepa ambiental de Pseudomonas

fluorescens. Se obtuvieron cultivos frescos de stocks a –80ºC almacenados en leche

desnatada al 10% y propagados en placas de medio de cultivo Luria Bertani (LB). El

crecimiento bacteriano en medio líquido se realizó en caldo LB en un horno a 37°C y con

agitación orbital (180 rpm). Para preparar el inóculo bacteriano, primero se obtuvieron

células frescas en una placa de agar LB cultivada durante 18 horas. Con estas células se

preparó una suspensión que se ajustó con solución salina estéril (NaCl al 0.9% en agua

destilada) a una densidad óptica de 0.04 m–1 a 600 nm, equivalente a 5.107 unidades

formadoras de colonias (UFC) por mL, aproximadamente. El día del experimento, los

cilindros se hidrataron durante 2 horas en LB y luego cada cilindro se inoculó en su

superficie superior con 200 L (microlitros) de la suspensión, equivalente a 1.106 CFU /

mL (es decir, un millón de UFC), aproximadamente. Después de la incubación en la

cámara durante 5 días a 37°C, la superficie superior de los cilindros se raspó de manera

homogénea con una espátula estéril y el material se resuspendió en 1 mL de solución

salina estéril. La cantidad de material desprendido de los cilindros (mg) se determinó

pesando el tubo antes y después de colocar el material del cilindro en el mismo. Después

de homogeneizar vigorosamente esta suspensión en un agitador mecánico, se determinó

el número de bacterias presentes en la suspensión mediante recuento de viables. Para ello,

se realizaron sucesivas diluciones de la suspensión en tubos que contenían suero salino

estéril y se transfirieron 50 µL a placas de agar LB que se incubaron a 37°C durante 48

horas.

Page 100: Desarrollo de nuevos morteros de restauración de cal con ...

Material y métodos

78

4. Metodología de Estudio

Se expone un esquema (Fig. 19) que resume la metodología de estudio básica

seguida para todas las gamas de mortero estudiadas. Los experimentos específicos

realizados, así como sus características y especificaciones para determinar el mecanismo

de acción de cada tipo de aditivo se detallan en los trabajos de investigación

correspondientes.

Figura 19. Diagrama de la metodología de estudio básico seguido

Page 101: Desarrollo de nuevos morteros de restauración de cal con ...

Material y métodos

79

Referencias

[1] European Committee for Standardization, UNE–EN 459–1:2016 Building lime

– Part 1: Definitions, specifications and conformity criteria, EN. (2016).

[2] J. Lanas, R. Sirera, J.I. Alvarez, Study of the mechanical behavior of masonry

repair lime–based mortars cured and exposed under different conditions, Cem.

Concr. Res. 36 (2006) 961–970. https://doi.org/10.1016/j.cemconres.

2005.12.003.

[3] J. Lanas, M. Arandigoyen, J.I. Alvarez, J.L. Perez Bernal, M. Angel Bello,

Mechanical Behavior of Masonry Repair Mortars: Aerial and Hydraulic Lime–

based Mixtures, in: Proc. 10th Int. Congr. Deterior. Conserv. Stone Stock. June

27–July 2, 2004, 2004.

[4] A. Izaguirre, J. Lanas, J.I. Álvarez, Effect of water–repellent admixtures on the

behaviour of aerial lime–based mortars, Cem. Concr. Res. 39 (2009) 1095–

1104. https://doi.org/10.1016/J.CEMCONRES.2009.07.026.

[5] J.M. Fernández, A. Duran, I. Navarro–Blasco, J. Lanas, R. Sirera, J.I. Alvarez,

Influence of nanosilica and a polycarboxylate ether superplasticizer on the

performance of lime mortars, Cem. Concr. Res. 43 (2013) 12–24.

https://doi.org/10.1016/j.cemconres.2012.10.007.

[6] I. Navarro–Blasco, M. Pérez–Nicolás, J.M. Fernández, A. Duran, R. Sirera, J.I.

Alvarez, Assessment of the interaction of polycarboxylate superplasticizers in

hydrated lime pastes modified with nanosilica or metakaolin as pozzolanic

reactives, Constr. Build. Mater. 73 (2014) 1–12. https://doi.org/10.1016/

j.conbuildmat.2014.09.052.

[7] J.F. González–Sánchez, B. Taşci, J.M. Fernández, Í. Navarro–Blasco, J.I.

Alvarez, Combination of polymeric superplasticizers, water repellents and

pozzolanic agents to improve air lime–based grouts for historic masonry repair,

Polymers (Basel). 12 4 (2020). https://doi.org/10.3390/POLYM12040887.

Page 102: Desarrollo de nuevos morteros de restauración de cal con ...

Material y métodos

80

[8] A. Duran, J.F. González–Sánchez, J.M. Fernández, R. Sirera, Í. Navarro–

Blasco, J.I. Alvarez, Influence of two polymer–based superplasticizers (poly–

naphthalene sulfonate, PNS, and lignosulfonate, LS) on compressive and

flexural strength, freeze–thaw, and sulphate attack resistance of lime–

metakaolin grouts, Polymers (Basel). 10 8 (2018). https://doi.org/10.3390/

polym10080824.

[9] M. Pérez–Nicolás, J. Plank, D. Ruiz–Izuriaga, I. Navarro–Blasco, J.M.

Fernández, J.I. Alvarez, Photocatalytically active coatings for cement and air

lime mortars: Enhancement of the activity by incorporation of

superplasticizers, Constr. Build. Mater. 162 (2018) 628–648.

https://doi.org/10.1016/j.conbuildmat.2017.12.087.

[10] M. Pérez–Nicolás, J. Balbuena, M. Cruz–Yusta, L. Sánchez, I. Navarro–

Blasco, J.M. Fernández, J.I. Alvarez, Photocatalytic NOx abatement by

calcium aluminate cements modified with TiO2: Improved NO2 conversion,

Cem. Concr. Res. 70 (2015) 67–76. https://doi.org/10.1016/j.cemconres.

2015.01.011.

[11] A. Izaguirre, J. Lanas, J.I. Álvarez, Behaviour of a starch as a viscosity modifier

for aerial lime–based mortars, Carbohydr. Polym. 80 (2010) 222–228.

https://doi.org/10.1016/j.carbpol.2009.11.010.

[12] C. Shi, X. Zou, P. Wang, Influences of ethylene–vinyl acetate and

methylcellulose on the properties of calcium sulfoaluminate cement, Constr.

Build. Mater. 193 (2018) 474–480. https://doi.org/10.1016/j.conbuildmat.

2018.10.218.

[13] European Committee for Standardization, UNE–EN 196–1 Methods of testing

cement. Part 1: Determination of strength, EN. (2005).

[14] European Committee for Standardization, UNE–EN 1015–3:2000 Methods of

test for mortar for masonry —Part 3: Determination of consistence of fresh

mortar (by flow table), EN. (2006).

[15] European Committee for Standardization, UNE–EN 1015–6:1999 Methods of

Test for Mortar for Masonry. Part 6: Determination of Bulk Density of Fresh

Mortar, EN. (1999).

Page 103: Desarrollo de nuevos morteros de restauración de cal con ...

Material y métodos

81

[16] European Committee for Standardization, UNE–EN 1015–7:1999 Methods of

Test for Mortar for Masonry. Part 7: Determination of Air Content of Fresh

Mortar, EN. (1999).

[17] European Committee for Standardization, UNE–EN 1015–9:1999 Methods of

Test for Mortar for Masonry, Part 9: Determination of Workable Life and

Correction Time of Fresh Mortar, EN. (1999).

[18] European Committee for Standardization, UNE–EN 83–816–93. Test methods.

Mortars. Fresh mortars. Determination of water retentivity, EN. (1993).

[19] European Committee for Standardization, UNE–EN 1771:2005 Products and

systems for the protection and repair of concrete structures – Test methods –

Determination of injectability and splitting test, EN. (2005).

[20] L. Fornasini, L. Bergamonti, F. Bondioli, D. Bersani, L. Lazzarini, Y. Paz, P.P.

Lottici, Photocatalytic N–doped TiO2 for self–cleaning of limestones, Eur.

Phys. J. Plus. 134 539 (2019). https://doi.org/10.1140/epjp/i2019–12981–6.

Page 104: Desarrollo de nuevos morteros de restauración de cal con ...
Page 105: Desarrollo de nuevos morteros de restauración de cal con ...

Resultados y discusión

Page 106: Desarrollo de nuevos morteros de restauración de cal con ...
Page 107: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I: Desarrollo de

morteros de cal de inyección

(grouts) Parte A. Polymer–based superplasticizers to prepare

lime–metakaolin grouts: mechanical performance

and durability assessment

Publicado en Polymers 2018, 10(8), 824

Parte B. Combination of polymeric superplasticizers,

water repellents and pozzolanic agents to improve air

lime–based grouts for historic masonry repair

Publicado en Polymers 2020, 12(4), 887

Page 108: Desarrollo de nuevos morteros de restauración de cal con ...
Page 109: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

87

Polymer–based superplasticizers to prepare lime–metakaolin grouts:

mechanical performance and durability assessment

Adrián Duran 1, Jesús F. González–Sánchez 1, José M. Fernández 1, Rafael Sirera 1, Íñigo

Navarro–Blasco 1 and José I. Álvarez 1,*

1 Heritage, Materials & Environment MIMED Research Group, Departamento de Química, Facultad de

Ciencias, Universidad de Navarra, Irunlarrea, 1, 31008 Pamplona, Spain; [email protected] (A.D.);

[email protected] (J.F.G–S), [email protected] (J.M.F), [email protected] (R.S),

[email protected] (Í.N.–B.); [email protected] (J.I.A)

* Correspondence: [email protected] or [email protected] ; Tel.: +34948425600

Received: 5 July 2018 / Revised: 20 July 2018 / Accepted: 25 July 2018 / Published: 26 July

2018

Abstract

A new range of grouts prepared by air lime and metakaolin (MK) as a pozzolanic admixture

has been obtained by using as dispersing agents two polymers, namely poly–naphthalene

sulfonate (PNS) and lignosulfonate (LS), with the aim of improving the fluidity of the fresh

grouts. Fluidity and setting times of the grouts were assessed. Differences in the molecular

architecture and in the anionic charge density explained the different adsorption of the

polymers and the different performance. The higher anionic charge of PNS and its linear

shape explained its better adsorption and effectiveness. The pozzolanic reaction was

favoured in grouts with PNS, achieving the highest values of compressive strength (4.8 MPa

after 182 curing days). The addition of PNS on lime grouts slightly decreased the frost

resistance of the grouts (from 24 freeze–thaw cycles for the polymer–free samples to 19 or

20 cycles with 0.5 or 1 wt % of PNS). After the magnesium sulphate attack, grouts were

altered by decalcification of hydrated phases and by formation of hexahydrite and gypsum.

A protective role of portlandite against magnesium sulphate attack was clearly identified.

Accordingly, the polymer LS, which preserves a significant amount of Ca(OH)2, could be

an alternative for the obtaining of grouts requiring high sulphate attack resistance.

Keywords: lime–based grouts; metakaolin; polymer–based superplasticizers; freeze–thaw

cycles; magnesium sulphate attack

Page 110: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

88

1. Introduction

Lime–based mortars play an important role in conservation and restoration procedures

thanks to their high compatibility with the raw materials employed in the artefacts comprising

the Built Heritage [1,2,3]. Grouts based in lime (either air or hydraulic lime) have, in the first

approach, an adequate chemical and mechanical compatibility with ancient supports, but may

need several additions in order to provide a suitable flowability to fill all the cracks and voids

[4,5,6]. In addition, these grouts should fulfil mechanical and durability requirements to

guarantee their safe applicability [7,8].

The addition of pozzolanic admixtures is a way of increasing both the final mechanical

strength and durability. Specifically, the utilisation of metakaolin (MK) as a pozzolanic

addition for mortar and concrete has received extensive attention in the last years. MK is

usually processed by calcination of high–purity kaolin clay at temperatures ranging between

650 and 800 °C [9]. It contains silica and alumina in an active form which react with the

calcium hydroxide (Ca(OH)2, CH) yielding hydrated calcium silicate (C–S–H) phases, and

also C2ASH8 and C4AH13 as, respectively, hydrated silicoaluminate and hydrated aluminate

phases [10,11]. The filler effect of MK and the production of new hydrated phases provide

the enhancement of several properties of air–lime based mortars and pastes, such as their

setting time or compressive strength, and also reduce microcraking [12].

To provide suitable injectability, polymeric additives (such as superplasticizers, SPs) can

be incorporated into the mixture of the fresh grout [12,13]. Superplasticizers enhance the

fluidity of the fresh grouts preventing particles from agglomeration, i.e., acting as dispersive

agents. In cement–based materials, water–soluble anionic polyelectrolytes, such as

polycarboxylate ethers, poly–naphthalene sulfonate (PNS), and lignosulfonate (LS) can be

quoted as the most widely used SPs. The chemical structure of the two latter SPs contains

hydrophilic (sulfonic groups in both, and also, methoxyl and hydroxyl groups in LS) and

hydrophobic parts (naphthalene for PNS and alkylbenzene for LS) [14]. The interaction

mechanisms of these polymers are related with the electrostatic and steric forces and also

with the adsorption onto surfaces [13,14,15,16,17]. The polymer molecules adsorbed onto

binder particles could be able to modify the surface charge (zeta potential) of the particles.

Zeta potential values exceeding the range of ±30 mV can lead to electrostatic repulsions

between particles avoiding their agglomeration. In addition, electrosteric repulsions between

these attached polymer molecules also contribute to the dispersing action [18,19,20]. PNS

has been described as a water–reducer agent more efficient than LS [21]. However, LS shows

Page 111: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

89

a better plasticizing effect than PNS in some systems [14]. Many works dealt with the effect

of these polymers, PNS and LS, in cement systems [16,17,22,23,24,25,26], although there

are few articles regarding the performance of these superplasticizers within lime–based

mortars [14].

The composition and the relative proportions of each of the components of the grouts

affect the fresh as well as the microstructure and mechanical properties of the hardened

mortars [2]. This paper focuses on a new range of grouts prepared by air lime, MK as

pozzolanic admixture and a polymer–based SP (either PNS or LS). PNS and LS interactions

are proposed and fresh and hardened state properties are assessed. The long–term mechanical

resistance (compressive and flexural strength) was studied, as well as the durability of the

obtained grouts against freeze–thaw cycles and magnesium sulphate attack.

2. Materials and Methods

2.1. Materials

CL 90–S class slaked lime (ECOBAT Type) in powder form was used for making pastes

and grouts. Lime was provided by CALINSA (group Lhoist) (Tiebas, Spain). A limestone

aggregate with particle size lower than 2 mm was employed. Aggregate was supplied by CTH

(Huarte, Navarra, Spain) and its chemical composition was 52.83% (CaO), 2.28% (MgO),

1.14% (Fe2O3 + Al2O3), 0.57% (SO3), 0.49% (SiO2), 0.07% (Na2O), 0.05% (K2O), 43.10%

(ignition loss). The ratio lime/aggregate was 1:3 by weight. Metakaolin (MK, supplied by

METAVER, Pfäffikon, Switzerland) was used as pozzolanic admixture. The MK employed

had a specific surface area of 20 m·g−1, as measured by the BET method after N2 adsorption

isotherms (ASAP 2020, Micromeritics, Norcross, GA, USA) and an average particle size of

4.5 µm (particle size distribution determined by laser diffraction in a Malvern Mastersizer,

Malvern Instruments, Ltd., Malvern, UK) [13]. Different weight percentages of MK (0, 6,

10, and 20 wt %) with respect to the weight of lime were added.

Two polymers, poly–napthalene sulfonate (PNS) and lignosulfonate (LS) (supplied by

FOSROC EUCO S.A., Izurtza, Spain), were assessed as SPs. The characterization of the two

polymers focused on the molecular weight, the elemental composition and the anionic charge

density of the two polyelectrolytes [11]. The molecular weights, as determined by size–

exclusion chromatography (SEC), were 8620 Da for PNS and 8650 Da for LS. Elemental

composition (LECO analyser, LECO Corporation, St Joseph, MI, USA) yielded similar

values for C (ca. 50%), whereas clear differences were found for sulphur contents: 12.3% for

Page 112: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

90

PNS, 6.2% for LS. Titration with Poly–DADMAC allowed obtaining the anionic charge

density of the polymers mainly caused by the deprotonation of sulfonate groups. The values,

expressed as meq of anionic charge/g of polymer, were 2.44 for PNS and 1.04 for LS, in good

agreement with the larger S content determined for PNS.

For testing the properties of the grouts, SPs were added in 0.5 and 1 wt % with respect

to the weight of lime. Dosages were selected according to previous values reported in the

literature [13,14,27]. To properly assess the effect of the different SPs and their dosages,

mixing water was added in a fixed 1:1 water/lime ratio by weight. This ratio of mixing water

provided an adequate workability (measured slump in the flow table test within the range 175

± 5 mm) in the control sample. Table 1 collects the grouts composition.

Table 1. Composition of the different grouts (all of them were prepared with 500 g of

air lime, 1500 g of calcitic sand, and 500 g of mixing water).

Samples Air lime

(g)

Calcitic sand

(g)

Mixing water

(g)

MK

(g)

LS

(g)

PNS

(g)

S0MK (control group) 500 1500 500 0 0 0

S0MK0.5LS 500 1500 500 0 2.5 0

S0MK0.5PNS 500 1500 500 0 0 2.5

S0MK1LS 500 1500 500 0 5 0

S0MK1PNS 500 1500 500 0 0 5

S6MK 500 1500 500 30 0 0

S6MK0.5LS 500 1500 500 30 2.5 0

S6MK0.5PNS 500 1500 500 30 0 2.5

S6MK1LS 500 1500 500 30 5 0

S6MK1PNS 500 1500 500 30 0 5

S10MK 500 1500 500 50 0 0

S10MK0.5LS 500 1500 500 50 2.5 0

S10MK0.5PNS 500 1500 500 50 0 2.5

S10MK1LS 500 1500 500 50 5 0

S10MK1PNS 500 1500 500 50 0 5

S20MK 500 1500 500 100 0 0

S20MK0.5LS 500 1500 500 100 2.5 0

S20MK0.5PNS 500 1500 500 100 0 2.5

S20MK1LS 500 1500 500 100 5 0

S20MK1PNS 500 1500 500 100 0 5

Page 113: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

91

2.2 Experimental methods

For the preparation of the fresh grouts, lime, metakaolin, and the required amount of SPs

(all of them in a dry condition) were blended for 5 min using a solid additives mixer BL–8–

CA (Lleal, S.A., Granollers, Spain) to guarantee a proper homogeneity of the components.

Mixing water was then added and mixed for 90 s at low speed, in a Proeti ETI 26.0072 (Proeti,

Madrid, Spain) mixer. The fluidity of the fresh grouts was measured by using the mini slump

flow test according to the norm [28], in which a truncated metallic cone was filled in with

the samples and then removed. The slump measurements were recorded after 15 strokes of

the flow table, 1 per second, in line with previous works [29]. Density and air content of the

fresh grouts were also measured according to the European norms [30,31]. The setting time

of the pastes was calculated according to the workable life following the European norm EN

1015–9 [32]. All these experiments were carried out by triplicate and the depicted values are

an average value of all the recorded measurements.

Sorption experiments for both SPs (PNS and LS) were carried out following previously

referenced processes [13,14,22,33,34] in batch reactors for plain lime pastes (1 g of lime per

25 mL of water) and for lime–MK pastes (5 g of lime and pozzolanic admixture at 6, 10, and

20 wt % with respect to lime in 25 mL of water). The mixtures were stirred for 1 h and,

subsequently, centrifuged at 8000× g for 15 min. After this, the supernatant was collected

and filtered through 0.45 µm PTFE filters. The amount of both SPs adsorbed onto the

particles was determined by the difference between the concentration initially added and the

final remaining concentration of SP, as quantified by UV–VIS spectrophotometry (maxima

at λ = 296 nm for PNS and at λ = 285 nm for LS). The mathematical fitting of the adsorption

data was calculated for Langmuir, as well as Freundlich, models.

Regarding the hardened state study, prismatic specimens with dimensions of 160 × 40 ×

40 mm were prepared in a Proeti C00901966 mould. The as–prepared grouts were cured at

20 °C and 60% RH and demoulded 7 days later, and stored under those very same conditions

that had previously been established for these lime–based mortars [35,36]. Flexural strengths

were determined by triplicate in the prismatic specimens using an Ibertest STIB–200 device

(Madrid, Spain) at low loading rates of ca. 10 N·m−1. Subsequently, compressive strength

experiments were executed on the two fragments of each specimen resulting from the flexural

tests; the compressive strength experiments were conducted at a rate of loading of ca. 50

N·m−1, so that specimens broke between 30 and 90 s. All these tests were carried out

according to the European norm [37].

Page 114: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

92

In hardened specimens different characterization methods were performed. For thermal

analysis, a simultaneous TG–sDTA 851 Mettler Toledo thermoanalyzer device

(Schwerzenbach, Switzerland) was used under the following experimental conditions:

alumina crucibles, a temperature range from 25 to 1000 °C, and a heating rate of 10 °C·min−1

and static air atmosphere. Fourier transform infrared spectroscopy—attenuated total

reflectance (FTIR–ATR) experiments were done in a Shimadzu IRAffinity–1S apparatus

(Shimadzu, Japan). The infrared spectra were registered at 100 scans over a wavelength range

of 4000–600 cm−1, with resolution of 4 cm−1. X–ray diffraction (XRD) experiments were

performed in a Bruker D8 Advance diffractometer (Bruker, Karslruhe, Germany) with a Cu

Kα1 radiation, from 2° to 80° (2θ), 1 s per step, and a step size of 0.04°. A Micromeritics

AutoPore IV 9500 apparatus (Micromeritics, Norcross, GA, USA), with a pressure range

between 0.0015 and 207 MPa, was used for mercury intrusion porosimetry (MIP)

experiments.

For the durability essays, prismatic samples (prepared and cured 28 days as described

before) were tested to assess the durability. Hardened grouts were subjected to different

processes:

(a) Frost resistance was determined by means of freezing–thawing cycles. The cycles

consisted of water immersion of the samples for 24 h and subsequently freezing at −10 °C

for 24 h. For these experiments, a CARAVELL 521–102 freezer was used.

(b) Sulphate attack resistance: the monolithic samples were completely submerged in

a MgSO4 saturated aqueous solution at 20 °C and 95% HR for 24 h. After this process, the

samples were dried in an oven at 65 °C for 24 h and submerged in water for 24 h at 20 °C

and 95%HR. To conclude the cycle, the specimens were again dried as described above. The

cycles were continuously repeated until the total destruction of the specimens.

In order to evaluate the survival of the samples after the ageing cycles, two parameters

were considered, following that previously mentioned in other papers [35,36]: (i)

compressive strength tests after 7, 14, and 28 cycles when the integrity of the samples allowed

them; and (ii) qualitative evaluation based on visual appearance after each cycle; the criterion

was the following: degree 0 (samples with no evidence of decay), degree 1 (samples showing

a slight degree of deterioration due to some short or thin cracks on surface), degree 2 (altered

samples showing some deeper cracks), degree 3 (heavily altered specimens with deep cracks

and certain swelling), degree 4 (samples with severe decay due to large and deep cracks and

also partial loss or swelling), and degree 5 (completely destroyed samples).

Page 115: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

93

3. Results and discussion

3.1. Fresh state properties

3.1.1. Fluidity

Figure 1 shows the fluidity values as a function of the different contents of MK, PNS

and LS in the lime–based grouts (spread values as measured by the flow table test).

The addition of both polymer–based SPs in the plain lime grouts increased the fluidity

of the pastes, the incorporation of the PNS being, on average, more effective than that of the

LS. The highest dosage of PNS turned out to be the most effective and the two polymers

showed a dosage–dependant pattern. The improvement in flowability of the two polymeric

dispersive agents supports the interest of the study of these compounds for lime–based grouts.

The presence of MK for polymer–free grouts yielded lower spread values although

results did not fit to a dosage–pattern response. In grouts with dispersing polymers, the

fluidity was clearly enhanced in the presence of MK. The better efficiency was seen for PNS.

The observed results were dissimilar depending on the amount of MK. Two counteracting

factors can be taken into account to explain this behaviour: (i) the pozzolanic reaction, giving

rise to C–S–H phases and their irreversible agglomeration, resulting in a fluidity decrease;

and (ii) the lubricant effect provided by MK that allows the particles to reduce their friction

forces, thus increasing the fluidity and workability [4,38]. The increase in MK could lead to

an intensification of the pozzolanic reaction, particularly for the highest additions of MK.

Figure 1. Fluidity values (slump measured in the flow table test) of the different grouts

Page 116: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

94

The absence of a clear trend can be explained considering that the mixing water has been

kept constant throughout the work. Samples with high percentages of MK and intensified

pozzolanic reaction would require larger mixing water content due to the fast consumption

of water. In the case of low amounts of mixing water added, a fluidity decrease would take

plce. For both superplasticizers, the addition of increasing dosages of MK at the highest SP

dosage provoked a reduction in fluidity values. This can be related to the consumption of the

polymers during the pozzolanic reaction. Similarly to cement–based materials, the polymers

can be adsorbed onto the newly formed hydrates, being then covered by the growing

hydration products. These polymer molecules would be unable to act as dispersing agents.

The formation of these organo–mineral inactive compounds has been described in the

literature [34].

Due to the concurrence of many different factors affecting the fluidity, a careful design

of the mix proportions should be considered in order to obtain the most appropriate grouts.

The experimental values of density and air content of the fresh pastes were also

determined and collected in Table 2. Although values underwent small variations, there is a

consistent slight density reduction as a function of the MK incorporation. This fact can be

explained as a consequence of the fixed water/binder ratio, which was kept constant for all

the tested grouts. The fast consumption of water on account of the pozzolanic reaction would

lead to less–dense packing systems.

Furthermore, the presence of the polymers (PNS and LS) exerted an influence on the

density and air–entrained values. LS increased the air–entrained during the mixing process

as a result of its surfactant characteristics (with both hydrophobic and hydrophilic segments

within the same molecule). Conversely, incorporation of PNS gave rise to lower levels of air

content, thus achieving a denser packing system. The excess in the air–entrained together

with the low density of the fresh paste could involve a porosity increase after the hardening

of the sample, as will be discussed below.

Page 117: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

95

Table 2. Bulk density and air content of the fresh grouts.

Samples Bulk Density of the Fresh Paste

(g·mL−1)

Air

Content

(%)

S0MK (control group) 1.89 3.2

S0MK0.5LS 1.9 3.4

S0MK0.5PNS 1.9 2.6

S0MK1LS 1.89 3.4

S0MK1PNS 1.93 1.6

S6MK 1.89 3

S6MK0.5LS 1.89 3.2

S6MK0.5PNS 1.88 3

S6MK1LS 1.89 3.3

S6MK1PNS 1.9 2.2

S10MK 1.89 3.3

S10MK0.5LS 1.89 3.2

S10MK0.5PNS 1.89 2.7

S10MK1LS 1.88 3.4

S10MK1PNS 1.89 2.5

S20MK 1.87 3.1

S20MK0.5LS 1.87 3.4

S20MK0.5PNS 1.89 3

S20MK1LS 1.87 3.2

S20MK1PNS 1.89 3

3.1.2. Setting times

In Figure 2 it can be seen that the addition of LS slowed down the setting time of the

fresh grouts. LS caused the strongest delays, especially at the largest dosage tested (Figure

2). The high values of setting times of the binding materials is a frequent inconvenient that

arises when using superplasticizers [39,40] and can be due to the interference of the SPs with

the growth of the hydration products of the pozzolanic reaction and/or with the carbonation

process for pure lime systems.

Page 118: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

96

Figure 2. Setting time of the different grouts

The setting times did not adjust to a clear pattern. For some grouts, the increasing amount

of MK resulted in shorter values of setting times (for example, samples with the largest

dosages of LS, Figure 2). This was in line with previous works with other pozzolanic

admixtures [14].

For PNS, on average, the increasing amounts of MK, from 6 to 20 wt %, resulted in a

setting time delay. The water availability may account on this fact. These fresh grouts were

prepared with a fixed water/lime ratio 1:1, obtained from the amount of mixing water

required for the control group yielding a consistency of 175 mm (measured in the flow table

test). Keeping constant the water/lime ratio and owing to the small particle size of the

pozzolanic admixture, the increasing percentages of MK reduced the water availability for

the pozzolanic reaction, which should account for a rapid hardening of the fresh mixture.

The main conclusions are that LS caused strong delays in the setting times of lime–MK

grouts, whereas PNS was found to be more appropriate when taking into account this

parameter. The observed delays for both SPs could reasonably be managed in practical

applications.

3.1.3. Adsorption

Adsorption isotherms were done in order to measure the affinity of PNS and LS for the

binder particles in both air lime and MK–air lime media. Particles of air lime and MK–air

lime were dispersed in an aqueous media, in which the polymers were then incorporated.

After a stirring time, it is expected that some of the polymer molecules had been attached to

Page 119: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

97

the particles, whereas some others remain free in the solution, showing a different affinity

for the absorbent substrate. Experimental results (Figure 3) showed that PNS was better

retained than LS in the tested lime media. In the presence of different percentages of MK

only slight differences could be observed for each one of the SPs.

Mathematical treatment of experimental adsorption data have been collected in Table 3.

The maximum sorption capacity (qm) of PNS was 51.2 mg·g−1 for plain lime and 44.7 mg·g−1

for lime with 20 wt % of MK. For LS, the maximum sorption capacity value was 32.1 mg·g−1

for plain lime and 29.1 mg·g−1 for lime with 20 wt % of MK (Table 3). Both SPs showed a

better adjustment to a Freundlich model, following a multilayer adsorption model (Table 3)

[41,42]. These experimental results, as well as the molecular architecture of the two SPs, can

be related to their dispersing effectiveness.

Figure 3. Adsorption isotherms of the SPs onto lime pastes (6, 10, and 20 wt % of

pozzolanic admixture). PNS adsorption (top); LS adsorption (bottom).

Page 120: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

98

Table 3. Results of adsorption isotherms onto air lime suspensions at different MK

percentages: Langmuir and Freundlich adsorption parameters for both SPs.

Polynaphthalene sulfonate (PNS)

Langmuir Freundlich

qm b R2 K 1/n R2

S0MK 51.2 0.00011 0.7738 0.01210 0.8658 0.9757

S6MK 46.9 0.00011 0.8019 0.01215 0.8582 0.9768

S10MK 43.4 0.00012 0.8469 0.01247 0.8490 0.9775

S20MK 44.7 0.00010 0.7458 0.00986 0.8708 0.9766

Lignosulfonate (LS)

Langmuir Freundlich

qm b R2 K 1/n R2

S0MK 32.1 0.00016 0.9509 0.01983 0.7812 0.9775

S6MK 28.7 0.00018 0.9242 0.01837 0.7830 0.9735

S10MK 31.5 0.00015 0.9647 0.01582 0.7977 0.9825

S20MK 29.1 0.00015 0.9400 0.01346 0.8076 0.9809

The molecular architecture of the LS (Figure 4), with a branchy structure, suggests the

steric hindrance as the predominant mechanism. In this work, LS was seen to be less adsorbed

[23,43] and to show slightly less plasticizing effects than PNS, which is a linear–shaped SP,

but with higher anionic charge density [44,45] (Figure 4). LS has been reported to easily form

Ca2+ complexes [46,47] and in a previous work the higher ability of LS to bind Ca2+ ions has

been established [14]. The formation of these LS–Ca2+ complexes prevented some LS

molecules from being attached to the portlandite, C–S–H, C–S–A–H or C–A–H particles.

Furthermore, considering that the anchorage of the polymer onto the active particles takes

place by means of favourable electrostatic interaction on the double ionic layer, the higher

anionic charge, the more intense the adsorption of the polymer. These facts could explain the

lower adsorption of this LS polymer. The adsorption of the polyelectrolyte onto the active

particles has been reported to be critical for the dispersing action [47], so that PNS showed

higher adsorption and better effectiveness as a dispersing agent in the tested systems..

Page 121: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

99

Figure 4. Molecular structure of the two tested polymers: PNS (left) and LS (right)

Finally, the strong Ca2+ complexation of the LS would explain its influence on the setting

time, preventing lime grouts from carbonation, or even from C–S–H formation.

Figure 5. Compressive strength results of the grouts. PNS (top); and LS (bottom).

CH2H

H

SO3-Na+

n

SO3-Na+

SO3-Na+

SO3-Na+

Page 122: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

100

3.2. Hardened state properties

3.2.1. Mechanical strength

Carbonation has a significant influence in the hardening process along time in lime–

based systems [48,49]. The mechanical strengths increase over time due to the carbonation

process, resulting in the formation of CaCO3. Accordingly, on average, the highest values of

compressive strength were obtained at long term curing times, usually after one curing year

(Figure 5). For plain lime mortars (0% MK), the addition of the SPs caused a drop in the

compressive strength values (Figure 5), which can be ascribed to the interference with the

lime carbonation process.

The pozzolanic reaction that takes place between CH particles and reactive MK was

responsible for the observed mechanical strength improvement at short term in the presence

of pozzolanic admixture. This reaction yields C–S–H, C–S–A–H, and C–A–H, according to

the data referred in literature [49,50,51] (Figure 5).

The average value of compressive strength was 2.5 MPa for PNS–samples, whereas 1.8

MPa was determined for LS–samples. In the current study, sample S20MK0.5PNS offered

the largest values, reaching 4.8 MPa after 182 curing days.

Flexural strength values were also measured (Figure 6). The stiffening of the sample due

to the C–S–H formation caused a decrease in the flexural strength when MK was

incorporated. Polymers were seen to confer different flexural resistance: LS increased the

flexural strength, particularly in samples with the highest MK proportions, whereas PNS

generally involved a reduction in the flexural strength. Differences in the extent of

carbonation and/or pozzolanic reaction could explain these findings, as will be discussed

below.

Page 123: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

101

Figure 6. Flexural strength results of the grouts. PNS (top); and LS (bottom).

3.2.2. TG–DTA, FTIR–ATR and XRD studies

The rate of carbonation and the pozzolanic reaction at the different curing times of the

SPs–MK–lime mortars was followed by TG–DTA, FTIR–ATR, and XRD experiments.

Previous works also correlated the structure of the materials with the TG measurements [52].

Figure 7 and Figure 8 depict the percentages of Ca(OH)2 and CaCO3 calculated from TG

(weight loss due to dehydroxylation of portlandite at ca. 450 °C, and weight loss owing to

the calcite decomposition at ca. 800 °C [53]. The weight loss between 25–300 °C (Table 4)

was assigned to the dehydration processes of the calcium silicate (C–S–H), calcium

silicoaluminate (C–S–A–H) and calcium aluminate (C–A–H) hydrated phases derived from

the pozzolanic reaction, according to some authors [14,54,55,56], and also to residual

dehydration of adsorbed water.

Page 124: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

102

Figure 7. Percentages of Ca(OH)2 for mortars at different curing times.

Figure 8. Percentages of CaCO3 for mortars at different curing times.

For example, the addition of 20% MK (sample S20MK) to the plain lime (sample S0MK)

provoked the reduction in the Ca(OH)2 content and the increase in the amount of C–S–H, C–

A–H and C–S–A–H phases generated by the pozzolanic reaction, as proven by the mass loss

increment between 25–300 °C (Table 4). Pozzolanic compounds were identified at the early

stages of curing (7 and 28 days) (Table 4), in line with previous results [54]. The highest

percentages of CaCO3 were found in sample S20MK studied at 91 days and in S0MK and

S6MK samples after 365 days. It can be determined that the pozzolanic reaction took place

mainly at early stages of curing (7 and 28 days), whereas the carbonation process was

significant at longer curing times. This fact could represent a practical advantage in materials

used as grouts which will be in contact with water [49,55].

0 5 10 15 20

7 days

28 days

91 days

182 days

365 days

Portlandite (%)

Curing days S20MK1LS

S20MK1PNS

S20MK

S0MK1LS

S0MK1PNS

S0MK

0 20 40 60 80 100

7 días

28 días

91 días

182 días

365 días

Calcite (%)

Curing days

S20MK1LS

S20MK1PNS

S20MK

S0MK1LS

S0MK1PNS

S0MK

Page 125: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

103

Table 4. TG results of weight loss between 25–300ºC, assigned to dehydration of

pozzolanic compounds.

Samples Weight loss (%)

7 days 28 days 91 days 182 days 365 days

S0MK (Plain lime) 0.38 0.74 0.45 0.30 0.31

S20MK 1.03 0.88 0.57 0.73 0.66

S20MK1PNS 0.76 1.00 0.75 0.93 0.58

S20MK1LS 0.51 0.70 0.61 0.76 0.80

Regarding the presence of SPs, the carbonation rate was lower for lime–MK mortars

with LS in comparison with samples with PNS. The presence of LS hindered the carbonation

process, resulting in higher amounts of unreacted Ca(OH)2 and correspondingly lower

amounts of CaCO3 formed. This was confirmed by the FTIR spectra of lime–based samples

containing the highest percentages of LS (1%) and MK (20%) (S20MK1LS). These spectra

showed an intense and sharp absorption band at 3600 cm−1 ascribed to –OH groups of

portlandite, which remained after 91 days (Figure 9, dotted area on the left side of the figure).

Conversely, the samples containing PNS (for example S20MK1PNS) did not show the band

ascribed to portlandite (Figure 9), due to the higher extent of the carbonation process.

Absorption bands at ca. 1400 cm−1, 875 cm−1, and 712 cm−1 were respectively assigned to ν3

asymmetric CO3 stretching, ν2 asymmetric CO3 deformation, and ν4 symmetric CO3

deformation modes [57], and associated to the presence of calcium carbonate (calcite). These

results matched with those provided by thermal analysis and were also helpful to justify the

compressive strength experiments (values of 1.3 MPa for S20MK1LS and 3.1 MPa for

S20MK1PNS at 91 curing days due to a larger carbonation process for the latter).

Figure 9. FTIR spectra of different samples after 91 curing days.

Page 126: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

104

With respect to the pozzolanic reaction extent, for the higher percentages of MK (20%),

the formation of C–S–H, C–S–A–H, and C–A–H compounds, according to the TG values,

was also favoured on average for PNS–bearing samples (weight loss of 0.99% for

S20MK1PNS sample tested at 28 days and 0.93% at 182 days) in comparison with LS

samples (weight loss of.0.70% for S20MK1LS sample tested at 28 days and 0.76% at 182

days) (Table 4). These results explain the higher compressive strengths observed for PNS

samples. At the same time, the increase in the stiffening of the sample could result in poorer

flexural strengths. The formation of these hydraulic compounds was detected in samples with

MK by FTIR measurements. However, spectroscopic results did not offer clear evidence

about the comparative rate of formation of hydrated pozzolanic compounds (silicate bands at

ca. 1000 cm−1, which revealed the presence of C–S–H compounds, the dotted area on the

right part of Figure 9) [14,27,35].

In spite of these evidences of the pozzolanic reaction, the identification of the crystalline

aluminate and/or silicate phases in the XRD diffractograms was hardly possible. Traces of

stratlingite Ca2Al(AlSi)O2(OH)10·2.25H2O and cowlesite CaAl2Si3O10.6H2O were only

detected in samples S20MK and S20MK1PNS (with PNS as SP) (diffraction patterns not

shown). Both hydrated compounds have been reported to improve the mechanical

strengthening of the samples [54]. The relatively low ratio of pozzolanic admixture, the

curing conditions (room temperature and low relative humidity) and the low crystallinity of

these hydrated compounds would explain their difficult identification by XRD.

For example, in previous studies larger mass ratios MK:lime were used and curing

conditions that favour the pozzolanic reaction (high T/HR) were applied [11,54,58]. In these

works, calcium silicate hydrate gel (CSH), stratlingite (C2ASH8), tetracalcium aluminate

hydrate (C4AH13), monocarboaluminate (C4AC−CH11), katoite (Ca3Al2(SiO4)(OH)8), and

calcium aluminium hydroxide hydrate (Ca2Al(OH)7·6.5H2O) were identified as phases

formed after the lime–MK reaction.

3.2.3. Porosity measurements

The consumption of CH, due to the carbonation progression, and the formation of C–S–

H, C–S–A–H, and C–A–H phases gave rise to a refinement of the pore structure, which was

studied by mercury intrusion porosimetry (MIP). This technique has been applied in cement–

based materials [59]. The addition of MK (S20MK) to the plain lime mortars (S0MK)

reduced the mean pore size diameter from 0.83 µm to 0.56 µm in samples tested at 91 curing

days (depicted as an example) (Figure 10a). This mean pore size reduction was ascribed to

Page 127: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

105

the occurrence of the pozzolanic reaction and also to the filler effect of MK. The filler effect

of MK was previously studied, showing that the addition of MK in ordinary Portland cement

(OPC) exhibited an important reduction of the permeability and of the porosity when

compared with control samples (plain OPC mortars) [60]. In lime mortars this filler effect

has also be reported to take place after the incorporation of other pozzolanic compounds, like

NS [14,35]. The formation of the new phases by pozzolanic reaction could also contribute to

this pore size reduction. These results are in line with the increase in compressive strength

observed for MK4 mortars.

The addition of high dosages of PNS to lime mortars did not provoke changes regarding

the mean pore size diameter (Figure 10a) but samples showed higher porosity values in the

experiments after 91 curing days and, subsequently, lower compressive strength values than

those reported for SP–free MK–lime mortars (3.1 MPa for S20MK1PNS vs. 3.4 MPa for

S20MK) (Figure 5). The dosage of 0.5% of PNS (S20MK0.5PNS), however, yielded

hardened grouts of lower porosity, thus providing higher compressive strength values (4

MPa). The adjustment of the dosage of the SP appears to be imperative to guarantee the

mechanical performance of the grouts.

Figure 10. Pore size distribution of different samples tested after 91 curing days. (a)

control sample, 20 S20MK and samples with PNS, (b) control sample, S20MK and samples

with LS, (c) comparison between samples with 0.5 wt. % of PNS and LS.

Page 128: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

106

Furthermore, in comparison with LS–bearing grouts (Figure 10b), a higher population

of pores in the pore range 0.1–0.01 µm was observed for the grouts containing PNS (Figure

10a). This pore range has been ascribed to the C–S–H pores [61], confirming the extent of

the pozzolanic reaction in the presence of PNS.

The incorporation of the LS as a superplasticizer caused an increase in the mean pore

size diameter of the grouts (0.56 µm for sample S20MK; 0.68 µm for sample S20MK0.5LS;

0.83 µm for sample S20MK1LS, as depicted in Figure 10b for 91–aged samples). This

increase in the pore size explained the compressive strength fall (3.4 MPa for S20MK vs. 3

MPa for S20MK0.5LS vs. 1.3 MPa for sample S20MK1LS) (Figure 5). This fact can be

partially related to the air content excess found for this additive in the fresh grouts (Table 2).

The graphical comparison between the pore size distributions of the grouts with both SPs

clearly depicts the increment in the main pore size diameter and also in the area under the

curve for LS mortars (Figure 10c). At the same time, the smallest diameter pore population

related to the C–S–H formation was higher for PNS grouts.

3.3. Durability experiments

3.3.1. Freezing–thawing

Figure 11. Alteration degrees of grouts after freeze–thaw cycles.

Page 129: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

107

The control group samples subjected to frost resistance test (freezing–thawing F–T

cycles) underwent serious decay leading to the total destruction of the sample after just one

cycle (Figure 11), in agreement with the poor frost resistance of pure air lime mortars [62].

Fitting itself to a dosage–response pattern, the incorporation of MK clearly enhanced the F–

T durability of the grouts. It can be observed that S20MK sample can endure up to 24 F–T

cycles displaying serious decays only in the last cycle (Figure 11). The positive F–T

endurance provided by the pozzolanic admixture included in lime mortars is in line with the

reported incorporation of NS [35]. Nunes and Slizkova [63] assigned this favourable

behaviour of mortars comprising of lime + MK to the enhancement of the pozzolanic reaction

in wet conditions. Another concomitant factor is the reduction in the mean pore size diameter

observed for MK–lime grouts compared with plain lime samples. The decrease in the mean

pore size hindered the absorption of liquid water, preventing its later freezing and expansion

damage and, consequently, increasing the durability of this type of mortar. Table 5 collects

the numerical values corresponding to the different damages observed in the tested samples

after 5, 10, 15, and 20 F–T cycles. The numerical value 5 corresponds to the total decay of

the specimen and appears marked in red in the Table. Beyond this value, the specimen was

totally destroyed and no longer tested.

Table 5. Visual alteration after 5, 10, 15, and 20 freezing–thawing (FT) cycles showing

numerical values of the damage scale *.

Number of FT Cycles

Samples 5 10 15 20

S20MK1LS 2 4 5 –

S10MK1LS 5 – – –

S6MK1LS 5 – – –

S20MK0.5LS 3 5 – –

S10MK0.5LS 3 5 – –

S6MK0.5LS 4 5 – –

S20MK1PNS 2 3 4 5

S10MK1PNS 3 5 – –

S6MK1PNS 4 5 – –

S20MK0.5PNS 0 2 4 5

S10MK0.5PNS 3 5 – –

S6MK0.5PNS 5 – – –

S0MK0.5PNS 5 – – –

S20MK 0 1 2 3

S10MK 3 4 5 –

S6MK 5 – – –

S0MK (control group) 5 – – –

Page 130: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

108

Compressive strength values (after 7 and 14 F–T cycles) were found to remain

appreciable (2.5 and 2.4 MPa, respectively) for grouts with the largest additions of MK

(S20MK). In contrast, the flexural strength was significantly affected (values below 0.6

MPa). The fissures observed on S20MK mainly appeared on the side faces. The compressive

strength is parallel to the longitudinal cracks so it is unaffected. However, the flexural

strength is significantly affected by the cracks [63].

The addition of PNS in the MK–air lime was only slightly detrimental for the durability

of the samples, i.e., S20MK1PNS grouts suffered total decay after 19 F–T cycles, and

S20MK0.5PNS (with lower porosity) after 20 cycles. Figure 12 showed images of three

hardened grouts, S20MK, S20MK0.5PNS, and S20MK1PNS, after 10 F–T cycles. The

fissures are clearly visible in S20MK0.5PNS and in S20MK1PNS.

Conversely, the use of LS significantly harmed the F–T durability of the grouts, with

total decay after only 10 and 12 F–T cycles, respectively, for S20MK0.5LS and S20MK1LS

grouts. The highest increase in mean pore size of the LS–bearing samples, providing a higher

absorption of liquid water during the durability test, may contribute to clarifying this

experimental finding.

In order to visually compare the durability performance with both SPs, Figure 12

depicted images corresponding to samples S20MK0.5PNS, S20MK0.5LS, S20MK1PNS,

and S20MK1LS after 10 F–T cycles. As mentioned before, at that stage, the highest decay

was found for S20MK0.5LS. Important deterioration was also observed for S20MK1LS and

S20MK1PNS, in which surface fissures were obvious.

Figure 12. Appearance of different grouts after 10 freeze–thaw cycles.

Page 131: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

109

3.3.2. Magnesium sulfate attack

Figure 13. Alteration degrees of grouts after sulfate attack cycles.

The assessment of the resistance of sulphate attack of MgSO4 was also carried out.

Results are gathered in Figure 13. Table 6 displays the numerical values corresponding to the

different damages observed in the tested samples after 5, 10, 15, 20 and 25 sulphate attack

cycles. The numerical value 5 corresponds to the total decay of the specimen and appears

marked in red in the Table. Beyond this value, the specimen was totally destroyed and no

longer tested.

Opposite to F–T resistance, the increase in wt % MK addition damage the sulphate attack

resistance of the grouts. Whilst samples with 6 wt % MK (S6MK) lasted 27 cycles with an

intermediate alteration degree (degree 3), samples with 10 wt %MK (S10MK) only lasted 12

cycles before reaching a complete decay, and samples with 20 wt % (S20MK) reached a total

decay after 6 cycles.

In this sense, Figure 14 showed images of S6MK, S10MK and S20MK grouts after 5

sulphate cycles. In the sample S20MK, the spalling of the superficial part of the specimens

and partial disintegration took place [35]. This result suggested the presence of sulphate

compounds at the surfaces [35,62,63,64].

Page 132: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

110

Table 6. Visual alteration after 5, 10, 15, 20, and 25 magnesium sulphate attack cycles,

showing the numerical values of the damage scale * Number of Sulphate Attack Cycles

Samples 5 10 15 20 25

S20MK1LS 1 3 3 4 5

S10MK1LS 4 4 4 5 –

S6MK1LS 4 5 – – –

S20MK0.5LS 0 1 2 3 3

S10MK0.5LS 1 2 4 4 4

S6MK0.5LS 1 2 4 4 4

S20MK1PNS 4 5 – – –

S10MK1PNS 1 4 4 5 –

S6MK1PNS 0 1 2 3 4

S20MK0.5PNS 2 5 – – –

S10MK0.5PNS 1 2 4 4 5

S6MK0.5PNS 3 5 – – –

S0MK0.5PNS 0 2 4 5 –

S20MK 3 5 – – –

S10MK 4 4 5 – –

S6MK 1 2 2 3 3

S0MK (control group) 1 5 – – –

Figure 14. Appearance of different grouts after 5 sulfate crystallization cycles.

Page 133: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

111

The PNS addition in a 0.5% dosage yielded the highest tolerance to the sulphate attack

for S10MK0.5PNS. When the percentage of PNS was increased to 1%, the highest endurance

was found for the lower percentage of MK (S6MK1PNS). In the case of the addition of LS

on MK–lime mortars, a linear behaviour was observed: the larger the amount of MK, the

higher the durability against sulphate attack cycles. To illustrate these results, Figure 14

depicts images corresponding to samples S6MK1PNS, S6MK1LS, S20MK1PNS,

S20MK1LS after 5 sulphate attack cycles. Severe decays and losses of a part of the mortars

were observed for grouts S20MK1PNS and S6MK1LS at this stage.

In the same line of the detrimental presence of MK, owing to the enhancement of C–S–

H, C–S–A–H, and C–A–H phases when PNS was present, PNS–bearing grouts showed a

worse sulphate attack resistance. The literature has shown that Mg2+ ions (in case of

magnesium sulphate attack) cause decalcification of C–S–H, increasing the degree of

alteration [65]. This is in line with the observed stronger damage in samples S20MK and

S20MK1PNS, which presented a large amount of C–S–H, as discussed before.

A detailed examination by XRD of the grouts after three cycles of the sulphate attack

revealed the formation of expansive hydrated compounds and soluble salts, such as

hexahydrite and gypsum (MgSO4·6H2O and CaSO4·2H2O). These compounds were

responsible for the degradation of the samples. Furthermore, it was seen that the lower the

amount of uncarbonated portlandite, the stronger the formation of degradation salts. The

presence of portlandite hindered the formation of these sulphates, possibly by the

precipitation of magnesium hydroxide (brucite) that was also detected in some of the XRD

patterns.

A quantitative phase analysis was carried out by means of a Rietveld refinement of the

XRD patterns with TOPAS software. As an example, comparative percentages of the samples

with 20% MK are collected in Table 7.

Table 7. Results of the Rietveld quantitative phase analysis of the XRD after 3 sulfate

attack cycles. Percentages of the different phases.

Samples Phase (wt. %)

Calcite Portlandite Brucite Quartz Gypsum Hexahydrite

S20MK 86.2 – – 0.7 5.6 7.5

S20MK1PNS 82.6 0.4 1.0 0.4 10.3 5.3

S20MK1LS 81.1 4.3 3.0 0.4 9.1 2.1

Page 134: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

112

These results are in complete agreement with the presence of portlandite reported in

Figure 7. Samples with the lowest percentages of portlandite (S20MK and S20MK1PNS)

showed the highest percentages of expansive and soluble sulphate salts. The grout with the

highest percentage of portlandite (S20MK1LS) yielded the lower amount of expansive

hexahydrite. At the same time, this grout showed the highest percentage of brucite,

confirming the protective role of the portlandite, which trapped Mg2+ ions delaying their

decay activity [66,67].

Although in previous works the growth of expansive phases, such as ettringite and

thaumasite, had been reported to constitute an important mechanism of degradation [64] of

cementitious samples subjected to sulphate attack, in this work there was no evidence of the

formation of these compounds in the tested grouts.

Two different mechanisms took place concerning the durability of the tested grouts. The

refinement of the pore structure caused by the presence of MK and PNS (filler effect and

pozzolanic reaction) enhanced the frost resistance of the mortars by hindering the water

access. However, the appearance of C–S–H, C–A–H, and C–S–A–H impaired the sulphate

attack resistance that caused decalcification of these phases. The presence of Ca(OH)2 had a

protective effect delaying the decay induced by Mg2+ by precipitation of Mg(OH)2. The

sulphate attack was seen to be strongly dependent of the chemical and mineralogical

composition of the grouts [64,68].

Page 135: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

113

4. Conclusions

The fluidity of the lime grouts that also contained MK as a pozzolanic admixture was

clearly increased upon the addition of the two tested polymer–based superplasticizers (LS

and PNS). Among the two tested polymers, PNS showed higher dispersing effect than LS on

account of its higher adsorption onto portlandite, C–S–H, C–S–A–H, and C–A–H particles.

The higher anionic charge of the polyelectrolyte PNS and its linear molecular architecture

explained its better adsorption. Setting times were less affected for PNS addition than for LS

incorporation. LS was seen to cause delays in the setting time.

The pozzolanic reaction was favoured in grouts with PNS, consequently the highest

values of compressive strength were reached when this polymer was employed, i.e., 4.8 MPa

after 182 days in samples with 20% MK and 0.5% PNS.

The incorporation of MK enhanced the freezing–thawing durability of the grouts due to

the decrease in the mean pore size that consequently hampered the absorption of liquid water

and reduced the damage by freezing and expansion of the retained water in pores. The

addition of PNS on lime grouts slightly decreased the F–T durability of the grouts (from

enduring 24 F–T (0% PNS) to 19 F–T or 20 F–T, with 0.5 and 1 wt % of PNS, respectively),

so that the enhancement in fluidity, compressive strength, and frost resistance provided by

this polymer supports its use for lime–based grouts.

However, the formation of C–S–H, C–S–A–H, and C–A–H was preferred in the presence

of PNS as polymer, and the appearance of these phases results in a weaker resistance against

sulphate attack. Grouts were altered by decalcification of hydrated phases and by formation

of hexahydrite and gypsum. A protective role of portlandite against magnesium sulphate

attack was clearly identified. Accordingly, the polymer LS, which preserve a significant

amount of Ca(OH)2, could be an alternative for the obtaining of grouts requiring high

sulphate attack resistance.

Author Contributions

Data curation, conceptualización and formal analysis: main contributor J.F.G.–S;

assisted by J.I.A., A.D. and J.M.F.; funding acquisition: J.I.A.; investigation: only

contribution by J.F.G.–S.; methodology: J.F.G.–S. and Í.N.–B.; project administration:

Í.N.–B.; supervision: J.I.A.; validation and visualization: Í.N.–B. and R.S.; writing—

preliminar, draft, review and editing: main contributor J.F.G.–S. ,assisted by A.D. J.M.F.

and J.I.A.

Page 136: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

114

Funding

This study was funded by Spanish Ministry of Economy and Competitiveness

(MINECO), grant number MAT2015–70728–P, and by the Government of Navarra

(Gobierno de Navarra) under the title “Ayudas a Centros tecnológicos y Organismos de

investigación y difusión de conocimientos para la realización de proyectos de I+D para el

año 2018”, grant number Exp. 0011–1383–2018–000005, project PC065 RECURBAN. The

second author thanks the Friends of the University of Navarra, Inc., for a pre–doctoral grant.

Acknowledgments

The authors thank the technical support provided by Cristina Luzuriaga.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Duran, A.; Robador, M.D.; Perez–Rodriguez, J.L. Degradation of two historic buildings

in Northern Spain by formation of oxalate and sulphate–based compounds. Int. J. Archit.

Herit. 2012, 6, 342–358. [Google Scholar] [CrossRef]

2. Amenta, M.; Karatasios, I.; Maravelaki–Kalaitzaki, P.; Kilikoglou, V. The role of

aggregate characteristics on the performance optimization of high hydraulicity

restoration mortars. Constr. Build. Mater. 2017, 153, 527–534. [Google Scholar]

[CrossRef]

3. Borsoi, G.; Lubelli, B.; Van Hees, R.; Veiga, R.; Silva, A.S. Evaluation of the

effectiveness and compatibility of nanolime consolidants with improved properties.

Constr. Build. Mater. 2017, 142, 385–394. [Google Scholar] [CrossRef]

4. Azeiteiro, L.C.; Velosa, A.; Paiva, H.; Mantas, P.Q.; Ferreira, V.M.; Veiga, R.

Development of grouts for consolidation of old renders. Constr. Build. Mater. 2014, 50,

352–360. [Google Scholar] [CrossRef]

5. Bras, A.; Henriques, F.M.A. Natural hydraulic lime based grouts—The selection of grout

injection parameters for masonry consolidation. Constr. Build. Mater. 2012, 26, 135–

144. [Google Scholar] [CrossRef]

Page 137: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

115

6. Baltazar, L.G.; Henriques, F.M.A.; Jorne, F.; Cidade, M.T. Combined effect of

superplasticizer, silica fume and temperature in the performance of natural hydraulic

lime grouts. Constr. Build. Mater. 2014, 50, 584–597. [Google Scholar] [CrossRef]

7. Baltazar, L.G.; Henriques, F.M.A.; Cidade, M.T. Experimental study and modeling of

rheological and mechanical properties of NHL grouts. J. Mater. Civ. Eng. 2015, 27,

04015055. [Google Scholar] [CrossRef]

8. Baltazar, L.G.; Henriques, F.M.A.; Jorne, F.; Cidade, M.T. The use of rheology in the

study of the composition effects on the fresh behaviour of hydraulic lime grouts for

injection of masonry walls. Rheol. Acta 2013, 52, 127–138. [Google Scholar] [CrossRef]

9. Sabir, B.B.; Wild, S.; Bai, J. Metakaolin and calcined clays as pozzolans for concrete: A

review. Cem. Concr. Comp. 2001, 23, 441–454. [Google Scholar] [CrossRef]

10. Vejmelkova, E.; Keppert, M.; Kersner, Z.; Rovnanikova, P.; Cerny, R. Mechanical,

fracture–mechanical, hydric, thermal, and durability properties of lime–metakaolin

plasters for renovation of historical buildings. Constr. Build. Mater. 2012, 31, 22–28.

[Google Scholar] [CrossRef]

11. Frías Rojas, M.; Cabrera, J. The effect of temperature on the hydration rate and stability

of the hydration phases of metakaolin–lime–water systems. Cem. Concr. Res. 2002, 32,

133–138. [Google Scholar] [CrossRef]

12. Forne, F.; Henriques, F.M.A.; Baltazar, L.G. Influence of superplasticizer, temperature,

resting time and injection pressure on hydraulic lime grout injectability. Correlation

analysis between fresh grout parameters and grout injectability. J. Build. Eng. 2015, 4,

140–151. [Google Scholar] [CrossRef]

13. Navarro–Blasco, I.; Perez–Nicolas, M.; Fenrandez, J.M.; Duran, A.; Sirera, R.; Alvarez,

J.I. Assessment of the interaction of polycarboxylate superplasticizers in hydrated lime

pastes modified with nanosilica or metakaolin as pozzolanic reactives. Constr. Build.

Mater. 2014, 73, 1–12. [Google Scholar] [CrossRef][Green Version]

14. Pérez–Nicolás, M.; Duran, A.; Navarro–Blasco, I.; Fernandez, J.M.; Sirera, R.; Alvarez,

J.I. Study on the effectiveness of PNS and LS superplasticizers in aire lime–based

mortars. Cem. Concr. Res. 2016, 82, 11–22. [Google Scholar] [CrossRef]

Page 138: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

116

15. Zapata, L.E.; Portela, G.; Suarez, O.M.; Carrasquillo, O. Rheological performance and

compressive strength of superplasticized cementitious mixtures with micro/nano–SiO2

additions. Constr. Build. Mater. 2013, 41, 708–716. [Google Scholar] [CrossRef]

16. Ng, S.; Justness, H. Influence of plasticizers on the rheology and early heat of hydration

of blended cements with high content of fly ash. Cem. Concr. Comp. 2016, 65, 41–54.

[Google Scholar] [CrossRef]

17. Hallal, A.; Kadri, E.H.; Ezziane, K.; Kadri, A.; Khelafi, H. Combined effect of mineral

admixtures with superplasticizers on the fluidity of the blended cement paste. Constr.

Build. Mater. 2010, 24, 1418–1423. [Google Scholar] [CrossRef]

18. Landrou, G.; Brumaud, C.; Plötze, M.L.; Winnefeld, F.; Habert, G. A fresh look at dense

clay paste: Deflocculation and thixotropy mechanisms. Colloid Surf. A 2018, 539, 252–

260. [Google Scholar] [CrossRef]

19. Brumaud, C.; Baumann, R.; Schmitz, M.; Radler, M.; Roussel, N. Cellulose ethers and

yield stress of cement pastes. Cem. Concr. Res. 2014, 55, 14–21. [Google Scholar]

[CrossRef]

20. Bucher, R.; Diederich, P.; Mouret, M.; Escadeillas, G.; Cyr, M. Self–compacting

concrete using flash–metakaolin: Design method. Mater. Struct. 2015, 48, 1717–1737.

[Google Scholar] [CrossRef]

21. Ouyang, X.; Qiu, X.; Chen, P. Physicochemical characterization of calcium

lignosulfonate–a potentially useful water reducer. Colloid Surf. A 2006, 282–283, 489–

497. [Google Scholar] [CrossRef]

22. Zhang, Y.; Kong, X. Correlations of the dispersing capability of NSF and PCE types of

superplasticizer and their impacts on cement hydration with the adsorption in fresh

cement pastes. Cem. Concr. Res. 2015, 69, 1–9. [Google Scholar] [CrossRef]

23. Danner, T.; Justnes, H.; Geiker, M.; Lauten, R.A. Phase changes during the early

hydration of Portland cement with Ca–lignosulfonates. Cem. Concr. Res. 2015, 69, 50–

60. [Google Scholar] [CrossRef]

24. Shi, C.; He, T.–S.; Zhang, G.; Wang, X.; Hu, Y. Effects of superplasticizers on

carbonation resistance of concrete. Constr. Build. Mater. 2016, 108, 48–55. [Google

Scholar] [CrossRef]

Page 139: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

117

25. Topçu, I.B.; Atesin, O. Effect of high dosage lignosulphonate and naphthalene

sulphonate based plasticizer usage on micro concrete properties. Constr. Build. Mater.

2016, 120, 189–197. [Google Scholar] [CrossRef]

26. Arel, H.S.; Aydin, E. Effects of Ca–, Mg–, K–, and Na–lignosulfonates on the behaviour

of fresh concrete. Constr. Build. Mater. 2017, 157, 1084–1091. [Google Scholar]

[CrossRef]

27. Fernández, J.M.; Duran, A.; Navarro–Blasco, I.; Lanas, J.; Sirera, R.; Alvarez, J.I.

Influence of nanosilica and a polycarboxylate ether superplasticizer on the performance

of lime mortars. Cem. Concr. Res. 2013, 43, 12–24. [Google Scholar] [CrossRef][Green

Version]

28. European Committee for Standardization EN 1015–3. Methods of Test for Mortar for

Masonry, Part 3: Determination of Consistence of Fresh Mortar (by Flow Table); CEN:

Brussels, Belgium, 2000. [Google Scholar]

29. Messina, F.; Ferone, C.; Colangelo, F.; Cioffi, R. Low temperature alkaline activation of

weathered fly ash: Influence of mineral admixtures on early age performance. Constr.

Build. Mater. 2015, 86, 169–177. [Google Scholar] [CrossRef]

30. European Committee for Standardization EN 1015–6. Methods of Test for Mortar for

Masonry. Part 6: Determination of Bulk Density of Fresh Mortar; CEN: Brussels,

Belgium, 1999. [Google Scholar]

31. European Committee for Standardization EN 1015–7. Methods of Test for Mortar for

Masonry. Part 7: Determination of Air Content of Fresh Mortar; CEN: Brussels,

Belgium, 1999. [Google Scholar]

32. European Committee for Standardization EN 1015–9. Methods of Test for Mortar for

Masonry, Part 9: Determination of Workable Life and Correction Time of Fresh Mortar;

CEN: Brussels, Belgium, 2000. [Google Scholar]

33. Ferrari, L.; Kaufmann, J.; Winnefeld, F.; Plank, J. Interaction of cement model systems

with superplasticizers investigated by atomic force microscopy, zeta potential, and

adsorption measurements. J. Colloid Interface Sci. 2010, 347, 15–24. [Google Scholar]

[CrossRef] [PubMed]

Page 140: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

118

34. Alonso, M.M.; Puertas, F. Adsorption of PCE and PNS superplasticisers on cubic and

orthorhombic C3A. Effect of sulfate. Constr. Build. Mater. 2015, 78, 324–332. [Google

Scholar] [CrossRef]

35. Duran, A.; Navarro–Blasco, I.; Fernandez, J.M.; Alvarez, J.I. Long–term mechanical

resistance and durability of air lime mortars. Constr. Build. Mater. 2014, 58, 147–158.

[Google Scholar] [CrossRef]

36. Lanas, J.; Sirera, R.; Alvarez, J.I. Study of the mechanical behavior of masonry repair

lime–based mortars cured and exposed under different conditions. Cem. Concr. Res.

2006, 36, 961–970. [Google Scholar] [CrossRef][Green Version]

37. European Committee for Standardization EN 1015–11. Methods of Test for Mortar for

Masonry. Part 11—Determination of Flexural and Compressive Strength of Hardened

Mortars; CEN: Brussels, Belgium, 2007. [Google Scholar]

38. Sonebi, M. Rheological properties of grouts with viscosity modifying agents as diutan

gum and welan gum incorporating pulverised fly ash. Cem. Concr. Res. 2006, 36, 1609–

1618. [Google Scholar] [CrossRef]

39. Janowska–Renkas, E. The effect of superplasticizers’ chemical structure on their

efficiency in cement pastes. Constr. Build. Mater. 2013, 38, 1204–1210. [Google

Scholar] [CrossRef]

40. Zhang, M.–H.; Sisomphon, K.; Ng, T.S.; Sun, D.J. Effect of superplasticizers on

workability retention and initial setting time of cement pastes. Constr. Build. Mater.

2010, 24, 1700–1707. [Google Scholar] [CrossRef]

41. Blank, B.; Rossington, D.R.; Weinland, L.A. Adsorption of Admixtures on Portland

Cement. J. Am. Ceram. Soc. 1963, 46, 395–399. [Google Scholar] [CrossRef]

42. Mittal, A.; Kurup, L.; Mittal, J. Freundlich and Langmuir adsorption isotherms and

kinetics for the removal of Tartrazine from aqueous solutions using hen feathers. J.

Hazard Mater. 2007, 146, 243–248. [Google Scholar] [CrossRef] [PubMed][Green

Version]

43. Recalde–Lummer, N.; Plank, J. Combination of lignosulfonate and AMPS–co–NNDMA

water retention agent—An example for dual synergistic interaction between admixtures

in cement. Cem. Concr. Res. 2012, 42, 728–735. [Google Scholar] [CrossRef]

Page 141: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

119

44. Li, Y.; Zhang, Y.; Zheng, J.; Guo, H.; Yang, C.; Li, Z.; Lu, M. Dispersion and rheological

properties of concentrated kaolin suspensions with polycarboxylate copolymers bearing

comb–like side chains. J. Eur. Ceram. Soc. 2014, 34, 137–146. [Google Scholar]

[CrossRef]

45. Pickelmann, J.; Plank, J. A mechanistic study explaining the synergistic viscosity

increase obtained from polyethylene oxide (PEO) and β–naphthalene sulfonate (BNS) in

shotcrete. Cem. Concr. Res. 2012, 42, 1409–1416. [Google Scholar] [CrossRef]

46. Uchikawa, H.; Hanehara, S.; Shirasaka, T.; Sawaki, D. Effect of admixture on hydration

of cement, adsorptive behaviour of admixture and fluidity and setting of fresh cement

paste. Cem. Concr. Res. 1992, 22, 1115–1129. [Google Scholar] [CrossRef]

47. Vikan, H.; Justnes, H.; Figi, R. Adsorption of plasticizers—Influence of plasticizer and

cement type. Ann. Trans. Nord. Rheol. Soc. 2005, 13, 127–134. [Google Scholar]

48. Rodriguez–Navarro, C.; Ruiz–Agudo, E.; Ortega–Huertas, M.; Hansen, E.

Nanostructure and irreversible coloidal behavior of Ca(OH)2: Implications in cultural

heritage conservation. Langmuir 2005, 21, 10948–10957. [Google Scholar] [CrossRef]

[PubMed]

49. Gameiro, A.; Santos Silva, A.; Faria, P.; Grilo, J.; Branco, T.; Veiga, R.; Velosa, A.

Physical and chemical assessment of lime–metakaolin mortars: Influence of

binder:aggregate ratio. Cem. Concr. Comp. 2014, 45, 264–271. [Google Scholar]

[CrossRef]

50. El–Gamal, S.M.A.; Amin, M.S.; Ramadan, M. Hydration characteristics and

compressive strength of hardened cement pastes containing nano–metakaolin. HRB J.

2017, 13, 114–121. [Google Scholar] [CrossRef]

51. Abbas, R.; Abo–El–Enein, S.A.; Ezzat, E.–S. Properties and durability of metakaolin

blended cements: Mortar and concrete. Mater. Construct. 2010, 60, 33–49. [Google

Scholar] [CrossRef]

52. Aguilar–Penagos, A.; Gómez–Soberón, J.M.; Rojas–Valencia, M.N. Physicochemical,

Mineralogical and Microscopic Evaluation of Sustainable Bricks Manufactured with

Construction Wastes. Appl. Sci. 2017, 7, 1012. [Google Scholar] [CrossRef]

Page 142: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

120

53. Lanas, J.; Sirera, R.; Alvarez, J.I. Compositional changes in lime–based mortars exposed

to different environments. Thermochim. Acta 2005, 429, 219–226. [Google Scholar]

[CrossRef][Green Version]

54. Gameiro, A.; Santos Silva, A.; Veiga, R.; Velosa, A. Hydration products of lime–

metakaolin pastes at ambient temperature with ageing. Thermochim. Acta 2012, 535,

36–41. [Google Scholar] [CrossRef]

55. Santos Silva, A.; Gameiro, A.; Grilo, J.; Veiga, R.; Velosa, A. Long–term behavior of

lime–metakaolin pastes at ambient temperature and humid curing condition. Appl. Clay

Sci. 2014, 88–89, 49–55. [Google Scholar] [CrossRef]

56. Singh, L.P.; Bhattacharyya, S.K.; Shah, S.P.; Mishra, G.; Ahalawat, S.; Sharma, U.

Studies on early stage hydration of tricalcium silicate incorporating silica nanoparticles:

Part I. Constr. Build. Mater. 2015, 74, 278–286. [Google Scholar] [CrossRef]

57. Gunasekaran, S.; Anbalagan, G.; Pandi, S. Raman and infrared spectra of carbonates of

calcite structure. J. Raman Spectrosc. 2006, 37, 892–899. [Google Scholar] [CrossRef]

58. Frías Rojas, M. Study of hydrated phases present in a MK–lime system cured at 60 ºC

and 60 months of reaction. Cem. Concr. Res. 2006, 36, 827–831. [Google Scholar]

[CrossRef]

59. Mendivil–Escalante, J.M.; Gómez–Soberón, J.M.; Almaral–Sánchez, J.L.; Cabrera–

Covarrubias, F.G. Metamorphosis in the Porosity of Recycled Concretes Through the

Use of a Recycled Polyethylene Terephthalate (PET) Additive. Correlations between the

Porous Network and Concrete Properties. Materials 2017, 10, 176. [Google Scholar]

[CrossRef] [PubMed]

60. Dinakar, P.; Sahoo, P.K.; Sriram, G. Effect of metakaolin content on the properties of

high strength concrete. Int. J. Concr. Struct. Mater. 2013, 7, 215–223. [Google Scholar]

[CrossRef]

61. Drouet, E.; Poyet, S.; Torrenti, J.–M. Temperature influence on water transport in

hardened cement pastes. Cem. Concr. Res. 2015, 76, 37–50. [Google Scholar]

[CrossRef][Green Version]

62. Izaguirre, A.; Lanas, J.; Alvarez, J.I. Ageing of lime mortars with admixtures: Durability

and strength assessment. Cem. Concr. Res. 2010, 40, 1081–1095. [Google Scholar]

[CrossRef][Green Version]

Page 143: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte A

121

63. Nunes, C.; Slizkova, Z. Freezing and thawing resistance of aerial lime mortar with

metakaolin and a traditional water–repellent admixture. Constr. Build. Mater. 2016, 114,

896–905. [Google Scholar] [CrossRef]

64. Skaropoulou, A.; Tsivilis, S.; Kakali, G.; Sharp, J.H.; Swamy, R.N. Long–term

behaviour of Portland limestone cement mortars exposed to magnesium sulfate attack.

Cem. Concr. Comp. 2009, 31, 628–636. [Google Scholar] [CrossRef]

65. Aziez, M.N.; Bezzar, A. Magnesium Sulphate Attacks on Mortars—Influence of

Temperature, Type of Sand and Type of Cement. J. Eng. Sci. Technol. Rev. 2017, 10,

41–50. [Google Scholar] [CrossRef]

66. Lee, S.T.; Moon, H.Y.; Swamy, R.N. Sulfate attack and role of silica fume in resisting

strength loss. Cem. Concr. Comp. 2005, 27, 65–76. [Google Scholar] [CrossRef]

67. Ganjian, E.; Pouya, H.S. Effect of magnesium and sulfate ions on durability of silica

fume blended mixes exposed to the seawater tidal zone. Cem. Concr. Res. 2005, 35,

1332–1343. [Google Scholar] [CrossRef]

68. Diab, H.M.; Abd Elmoaty, M.; Abd Elmoaty, M.A.E. Long term study of mechanical

properties, durability and environmental impact of limestone cement concrete.

Alexandria Eng. J. 2016, 55, 1465–1482. [Google Scholar] [CrossRef]

© 2018 by the authors. Submitted for possible open access publication

under the terms and conditions of the Creative Commons Attribution (CC

BY) license (http://creativecommons.org/licenses/by/4.0/).

Page 144: Desarrollo de nuevos morteros de restauración de cal con ...
Page 145: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

123

Combination of Polymeric Superplasticizers, Water Repellents and

Pozzolanic Agents to Improve Air Lime–Based Grouts for Historic

Masonry Repair

Jesús Fidel González–Sánchez1, Burcu Taşcı2, José M. Fernández1, Íñigo Navarro–Blasco1,

José Ignacio Álvarez1*

1 MATCH Research Group, Chemistry Department, School of Sciences, University of Navarra, 31008

Pamplona, Spain; [email protected], [email protected], [email protected], [email protected]

2 Deparment of Architecture, Izmir Katip Çelebi University, 35620 Izmir, Turkey; [email protected]

* Correspondence: [email protected] or [email protected] ; Tel.: +34948425600

Received: 12 March 2020 / Revised: 7 April 2020 / Accepted: 10 April 2020 / Published: 11 April 2020

Abstract

This paper presents the experimental procedure to develop air lime–based injection grouts,

including polymeric superplasticizers, a water repellent agent and pozzolanic agents as

additives. Our research focuses on the development of grouts to improve various

characteristics simultaneously by combining different additions and admixtures. Aiming to

improve the injectability of the grouts, in this study, different polymeric superplasticizers

were added, namely polycarboxylated–ether derivative (PCE), polynaphthalene sulfonate

(PNS) and condensate of melamine–formaldehyde sulfonate (SMFC). As a water–repellent

agent, sodium oleate was used to reduce the water absorption. The enhancement of the

strength and setting time was intended by using microsilica and metakaolin as pozzolanic

mineral additions. Compatibility between the different admixtures and action mechanism of

the different polymers were studied by means of zeta potential and adsorption isotherms

measurements. Diverse grout mixtures were produced and investigated by assessing their

injectability, fluidity, stability, compressive strength, hydrophobicity and durability. This

research led to several suitable mixtures produced by using more than one component, to

enhance efficiency and to provide better performance of grouts. According to the results,

the grout composed of air lime, metakaolin, sodium oleate and PCE was found to be the

most effective composition, improving the mechanical strength, injectability and

hydrophobicity.

Keywords: polymeric superplasticizers; zeta potential; adsorption isotherms; steric

hindrance; grouts; injectability; hydrorepellency; freeze–thaw cycles

Page 146: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

124

1. Introduction

One of the most widely used methods addressed to repair different masonry defects and

cavities in the preservation of the Built Heritage is the injection of grouts [1,2,3]. Grouts,

fluid mixtures made of water, binder and additives, must properly flow—under an

appropriate pressure—into a masonry wall in a fresh state [4,5]. The literature has pointed

out some requirements for grouts in fresh state, such as high penetrability (i.e., injectability)

and good stability of the suspension (meaning no, or at least limited, segregation and

bleeding) [6,7]. In addition, the grout must be chemically compatible with the ancient

masonry, in order to prevent the historic structure from damages caused, for example, by

high contents in soluble salts. Mechanical compatibility is another requirement; for instance,

repair materials with too–high stiffness are not compatible with the old masonry [8,9].

Taking into account these aspects, natural hydraulic lime (NHL) and hydraulic lime (as

obtained by air lime with pozzolana) have been the most widely used binders for repair grouts

of the Architectural Heritage, as they offer suitable chemical and mechanical compatibility

[1,3,4,6,7,9,10,11,12,13,14]. Pure air lime grouts face up to the poor water retention,

excessive drying and subsequent shrinkage [9,15] and have been mainly tested for non–

structural applications [14], whereas cement–based grouts or organic grouts are not

chemically compatible, and excessive stiffness is also observed for the former [16].

Therefore, one of the main challenges concerning the research on these materials is the

design of tailored grouts [4]. Additives and admixtures are very useful to enhance different

properties of the grouts: For example, polymers behaving as superplasticizers would promote

injectability, as a critical parameter for the applicability of the grouts, which will also improve

due to the mixing water reduction in the final hardened microstructure [11,12,14,17]; water–

repellent agents would impart hydrophobicity to the hardened grouts, reducing the water

uptake [18,19,20]; and pozzolans additions would increase the mechanical resistance and

accelerate the setting time [11,15,21,22,23].

Some previous works have highlighted the advantages of these additives/admixtures,

individually added to binding materials. For example, various advantages of using polymers

acting as superplasticizers (SPs) in lime grouts have been ascertained

[6,7,10,11,12,13,14,17,22,23,24,25]. As polymeric admixtures, the superplasticizers increase

the fluidity of the fresh grouts, promote suitable injectability and improve the workability at

a constant water/binder ratio. When these polymers are added into the grout mixture, they

prevent particles from agglomeration acting as dispersing agents and thus reducing the water

Page 147: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

125

demand [21,26]. Most works have addressed lime–based grouts with the addition of a

superplasticizer (commonly polycarboxylated ether) [11,12,14,17,23,25,27]. Much more

limited information has been produced on the effect in lime grouts of other SPs such as

polynaphthalene sulfonate (PNS) and poly–melamine sulfonate (SMFC), commonly tested

in the cement chemistry [24,25,28].

The use of water–repellents is of importance to minimize the uptake of water in grouts

and mortars. The access of water to the inner part of hardened grouts and mortars is largely

detrimental for the structural integrity of the masonry: Water dissolves soluble salts, giving

rise to efflorescences. Furthermore, it takes part in freeze–thaw cycles, provoking severe

mechanical damages to the masonry. Hydrophobicity imparted by water–repellent

admixtures would enhance the long–term resistance of the grouts. Dual organic compounds,

with a polar moiety (usually a carboxylic group) and a hydrophobic tail, such as calcium

stearate and calcium oleate, have been studied [18,19,20].

The use of pozzolans has been widely reported, and some studies have described the

possibility of improving resistance, accelerating setting times and permitting hardening—

even when CO2 is scarcely available—by adding pozzolana to mixtures [29], which is

noteworthy for injection grouts applied in deep fissures and cavities with restricted CO2

access. Metakaolin (MK) has been one of the most widespread studied pozzolans, although

nanosilica has also been the target in some research works [21,30,31,32]. MK is usually

processed by calcination of high–purity kaolin clay at temperatures ranging between 650 and

800 °C. It contains silica and alumina in an active form, and they react with the calcium

hydroxide of the air lime (Ca(OH)2, CH), yielding hydrated calcium silicate (C–S–H) phases,

and also C2ASH8 and C4AH13 as hydrated silico–aluminate and hydrated aluminate phases,

respectively. The filler effect of metakaolin, together with the production of new hydrated

phases, results in improved air lime–based grouts’ properties, such as setting time and

compressive strength, while also preventing hardened grouts from microcracking [21]. The

effect of the increasing replacement of NHL by metakaolin has also been studied [15].

Another pozzolana tested in binding materials is microsilica (MS), generally comprised of

amorphous silicon dioxide as a fine powder. The material is a product of the silicon and

ferrosilicon, and it is produced in smelting industries. Studies with MS in concrete showed

favorable results for strength–supporting sulphate exposure [33,34].

A promising way of modulating the characteristics of the grouts is the simultaneous

combination of different admixtures and mineral additions. Only a few works have dealt with

Page 148: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

126

the obtainment of grouts by combining, for example, a superplasticizer and a water retainer

[9,16,21], or a superplasticizer together with a pozzolana (metakaolin, nanosilica or silica

fume) [17,25], but a systematic study on quaternary mixtures, analyzing the effect of air lime

as binder with polymeric superplasticizers, a water–repellent agent and pozzolanic additions,

is not available.

Accordingly, the context and the rationale of the current work is that synergistic

simultaneous combinations between air lime, a superplasticizer, a water–repellent agent and

pozzolana would make it possible to obtain tailored injection grouts suitable for restoration

of the Built Heritage.

The following raw materials were used for the combinations: calcitic air lime, three

different polymer–based admixtures, which are superplasticizers: polycarboxylate ether

(PCE), polynaphthalene sulfonate (PNS) and poly–melamine sulfonate (SMFC); a water–

repellent agent (sodium oleate); and two types of pozzolanic addition (metakaolin and

microsilica). Fresh state properties of the grouts, such as injectability, bleeding and fluidity

(as measured by the slump test), were determined. Action mechanisms, interactions and

compatibility between the tested admixtures were assessed by measuring zeta potential of the

suspensions and adsorption isotherms of the admixtures. Hardened state was also assessed,

by evaluating the compressive strengths, carbonation rate, hydrophobicity and pore structure,

and the durability of the grouts was finally studied by exposing the samples to freezing–

thawing cycles. The influence of the different additives/admixtures of the grout compositions

on these parameters is later discussed.

2. Materials and Methods

2.1. Materials and Composition of the Grouts

Mixing proportion of the grouts was 1:3 binder/aggregate weight ratio, according to

previous prescriptions [1]. Binder was CL–90 hydrated calcitic lime (Cal Industrial S.A.

Navarra, Spain) (CaO percentage 68.53%, with major impurities of MgO (3.29%), SO3

(1.37%) and SiO2 (1.03%)). Mean particle size was 10 μm (less than 10% > 50 μm). A very

fine limestone aggregate, with particle size lower than 2 mm, was used and supplied by CTH

(Huarte, Navarra, Spain).

For the different mixtures, the following components were added, with respect to lime,

when necessary:

Page 149: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

127

• Polymer–based superplasticizer (SP) (two different dosages 0.5% and 1% by weight

of lime (bwol)): polycarboxylate ether (PCE), commercialized by BASF as Melflux;

condensate of melamine–formaldehyde sulfonate (SMFC), commercialized by BASF

as Melment F10 (Ludwigshafen, Germany); polynaphthalene sulfonate (PNS),

commercialized by FOSROC International as Conplast SP340 Fa (Fosroc Euco S.A.,

Izurtza, Spain).

• Water–repellent agent (0.5% bwol): sodium oleate (O), provided as a commercial

product: HISA A 2388 N by ADI–Center–S.L.U (Barcelona, Spain).

• Pozzolanic additions (20% bwol): Metakaolin (MK) (Metaver, supplied by,

NEWCHEM, Pfäffikon, Switzerland) and microsilica (MS), supplied by ULMEN

Europa (Castellón, Spain).

The first polymer–based superplasticizer used was PCE (Figure 1A), which consists of

one main linear backbone with side carboxylate and ether groups. The carboxylate groups

are the anchoring groups by which the adsorption of these admixtures to cement particles

takes place [17,26].

The second polymeric SP belongs to the family of the sulfonated melamine

formaldehyde condensates (SMFC) (Figure 1B). In this synthetic polymer, each repeating

unit contains one sulfonate group. The condensation number (n) is usually in the 50–60 range,

giving a molecular weight in the order of 12,000–15,000 [35].

The third employed polymer was PNS (Figure 1C), in which its molecular structure is

characterized by a hydrophobic moiety (naphthalene) and a hydrophilic part (sulfonate

groups).

Figure 1. Structures of different superplasticizer a) PCE b) SMFC c) PNS.

AR

OM

OH

(EO)n

Me

R

OH

n mM = Metal

Me = Methyl

EO = Oxyethylene

R = Me, H

B

N+

N

N+

NH

CH2

SO3

-

NHCH2H NH CH2 OH

Na+

n

C

H

CH2

H

SO3-Na

+

n

Page 150: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

128

Table 1. Characteristics of the polymers.

Admixture Mw

(Da)

Anionic

charge

density

(meq g–1)

Elemental composition

C (%) H (%) O (%) N (%) S (%) Na (%)

PCE 8000 0.43±0.05 47.62±0.80 7.65±0.13 42.2±0.05 – – 2.53±0.01

SMCF 12302 2.26±0.04 20.80±0.04 3.71±0.05 31.83±0.30 23.60±0.24 10.7±0.12 9.36±0.20

PNS 8620 2.44±0.07 43.92±0.46 3.79±0.01 29.03±0.45 – 12.3±0.19 10.96±0.03

Oleate n.d.* 3.32±0.13 69.97±0.03 10.50±0.01 11.30±0.20 – – 8.30±0.21

* not determined

In some previous works, the most relevant properties of these polymers, such as

molecular weight, anionic charge density and elemental composition, as well as the methods

to assess these values, were reported [11,27]. The molecular weights (Mw) of the polymers

were determined by size–exclusion chromatography. Anionic charge densities of each one of

these polyelectrolytes were obtained by titration, using the positively charged Poly–

DADMAC (acid–base titration for oleate). A LECO analyzer (LECO Corporation, St Joseph,

MI, USA) was used to determine the elemental composition of the polymers. Table 1 gathers

these values.

Sodium oleate was added as a water–repellent agent (O) (see characteristics in Table 1).

This compound is characterized by a long non–polar hydrocarbon chain and a polar

carboxylate group at one end, having a bipolar nature. Therefore, it may be adsorbed and

concentrate at the air–paste interface, usually in the air bubble surface. This fact causes

reinforcement of the air bubbles and avoids coalescence [27]. This admixture has also been

reported in the scientific literature on cement mortars as AEAs [29,30,31,32]. The dosage

was 0.5% of the total dried mortar weight, in agreement with a previous work that reported

the enhancement lime–based mortars at that dosage [27].

Specific surface areas, as measured by the BET method after N2 adsorption isotherms

(ASAP 2020, Micromeritics, Norcross, GA, USA), for MK and MS were of 20.00 and 15.70

m2·g−1, respectively. According to the supplier, microsilica particles are spherical, main

range of primary particle sizes between 0.2 and 1 µm, and the MS composition is at least

85% SiO2 content, with low carbon content [36]. The average particle sizes in aqueous

suspensions were of ca. 3.9 µm for MK and 380 µm for MS (particle size distribution

determined by laser diffraction in a Malvern Mastersizer, Malvern Instruments, Ltd.,

Page 151: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

129

Malvern, UK, depicted in Figure 2), evidencing a clear agglomeration of the MS in

comparison with the particle size of the primary particles [11,36].

With the aim of assessing the effect of the different admixtures in the properties of

grouts, particularly in the injectability, a 31% of mixing water was established for all samples.

This value was reached after carrying out an adjustment of the water demand of the control

mortar (additives/admixtures–free) to obtain a spread flow diameter of 185 mm as measured

in the flow table test. The different compositions of the 24 prepared and tested mixes are

collected in Table 2.

2.2. Preparation Procedure and Curing Conditions

The grouts were prepared mixing the powdered hydrated calcitic lime, the sand and,

when necessary, the pozzolanic addition and the solid admixtures (water–repellent and

superplasticizers) for 5 min, using a solid–admixtures mixer BL–8–CA (Lleal, S.A., Spain).

After this step, the mixing water was added and mixed for 90 s, at low speed, and adjusted

according to UNE–EN 196–1, in a Proeti ETI 26.0072 (Proeti, Madrid, Spain) mixer [37].

Prismatic molds of 40 × 40 × 160 mm were used for casting fresh grouts. Standard EN

196–1 was followed for the filling in two layers and for the compaction using an automatic

compactor (IBERTEST iB32–045E–1, S.A.E. Ibertest, Madrid, Spain), with the aim of

removing the air bubbles present in the mixture. Molds were stored at lab conditions (20 °C

and 60% RH), and hardened grouts were demolded 5 days later. Hardened state properties

were studied after different curing ages: 7, 28, 91, 182 and 365 days. Representativeness of

the results was guaranteed by testing three replicates of the grouts per each curing time.

Figure 2. Particle size distribution of the pozzolans

Page 152: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

130

Table 2. Composition of the grouts (% values).

Name Lime Sand Pozzolanic addition* Water

repellent*

Oleate

Superplasticizer*

Microsilica Metakaolin PCE SMFC PNS

Control samples

(without

polymeric

superplasticizers)

C 25 75 – – – – – –

C–MS 25 75 20 – – – – –

C–MK 25 75 – 20 – – – –

C–O 25 75 – – 0.5 – – –

C–O–MS 25 75 20 – 0.5 – – –

C–O–MK 25 75 – 20 0.5 – – –

Samples without

pozzolanic

addition

O–PCE0.5 25 75 – – 0.5 0.5 – –

O–SMFC0.5 25 75 – – 0.5 – 0.5 –

O–PNS0.5 25 75 – – 0.5 – – 0.5

O–PCE1 25 75 – – 0.5 1.0 – –

O–SMFC1 25 75 – – 0.5 – 1.0 –

O–PNS1 25 75 – – 0.5 – – 1.0

Samples with

Microsilica

O–MS–

PCE0.5 25 75 20 – 0.5 0.5 – –

O–MS–

SMFC0.5 25 75 20 – 0.5 – 0.5 –

O–MS–

PNS0.5 25 75 20 – 0.5 – – 0.5

O–MS–

PCE1 25 75 20 – 0.5 1.0 – –

O–MS–

SMFC1 25 75 20 – 0.5 – 1.0 –

O–MS–

PNS1 25 75 20 – 0.5 – – 1.0

Samples with

Metakaolin

O–MK–

PCE0.5 25 75 – 20 0.5 0.5 – –

O–MK–

SMFC0.5 25 75 – 20 0.5 – 0.5 –

O–MK–

PNS0.5 25 75 – 20 0.5 – – 0.5

O–MK–

PCE1 25 75 – 20 0.5 1.0 – –

O–MK–

SMFC1 25 75 – 20 0.5 – 1.0 –

O–MK–

PNS1 25 75 – 20 0.5 – – 1.0

* % by weight of lime

2.3. Fresh–State Tests and Analyses

For all the following tests, at least three replicates were carried out for each one of the

performed tests, and each one of the grouts’ compositions, so that the depicted values are an

average value of all the recorded measurements.

• The flow table test (according to the EN 1015–3 [38]) was followed, to monitor the

slump flow measurements, after 15 strokes of the flow table. The larger the spread

diameter, the higher the fluidity of the grout.

Page 153: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

131

• Workability was determined as the period in which the degree of stiffness of the grout

hinders the penetration of a piston. Workability can be related to the setting time of

the grouting mixture (the shorter the workability time, the shorter the setting time).

According to the standard EN 1015–9 [39], every 15 min, a probe was slowly

introduced into the fresh grout, scoring the weight, which was gradually increasing

due to the hardening of the grout. When this weight reached 1500 g, the assay was

concluded.

• A Zeta potential electroacoustic analyzer (ZetaProbe Analyzer, Colloidal Dynamics,

Ponte Vedra Beach, FL, USA) was used to determine the surface charge of the

suspensions of the air lime with the additives. Two batches of experiments were

carried out:

(a) Initial media of air lime, water and, when necessary, pozzolanic additives and

sodium oleate were prepared by following the same compositions detailed in

Table 2. Solutions of polymer–based superplasticizers (1% w/w) were then used

as titrant media, and zeta potential values were continuously monitored.

(b) Initial media of air lime, water and, when necessary, pozzolanic additives and SP

were prepared by following the same compositions detailed in Table 2. Solution

of sodium oleate (1% w/w) was, in this case, used as titrant media, monitoring

the zeta potential values.

• Adsorption isotherms were obtained after carrying out different sorption assays.

Different batches of flasks were prepared: one, with 5 g of air lime per 25 mL of

water; two more batches with also pozzolanic additive (either MS or MK, 20 wt.%

with respect to the lime). In some flasks, when required, pre–adsorption of some

admixtures was also carried out incorporating either SP or oleate (1 wt.% or 0.5 wt.%

with respect to the lime, according to the proportions reported in Table 2) and mixing

the dispersions for 30 min. The adsorption of the admixtures, either sodium oleate or

SPs, was studied adding increasing amounts of the admixture (0.0125, 0.0250,

0.0375, 0.0500, 0.1000, 0.1500, 0.2000 g) to the different flasks. Dispersions were

magnetically stirred for 30 min and then centrifuged at 8000× g for 15 min. The

supernatant was collected and filtered (0.45 µm PTFE filters). The difference between

the initial (added) and final concentration (remaining solution concentration) was

deemed to be the admixture adsorbed amount. UV–VIS spectrophotometry was used

to measure the concentration of the admixture in the solution (maxima at λ = 221, 222

Page 154: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

132

and 296 nm for PCE, SMFC and PNS). The mathematical fitting of the adsorption

data was calculated for Langmuir and Freundlich models.

• Bleeding test refers to the determination of a water layer that could appear on the

surface with a clear separation line between water and grout [4]. Bleeding tests were

carried out in a graduated cylinder, where grout was placed, and the accumulation of

bled water and the expansion volume were measured over 15, 30, 45, 60, 120 and 180

min. The tests were performed according to EN 447 and adapting of ASTM C940

[40,41]. Final bleeding (after 180 min) should be lower than 5%.

• Grouts must be suitable for injection through a syringe or tubing, to fill internal cracks

and voids. An injectability test was carried out by injecting the grout at constant

pressure to a vertically held column, from its bottom part (column was a transparent

methacrylate tube height 390 mm and inner diameter 21 mm) (see experimental setup

in Figure S1, Supplementary Materials). The column was filled with granular material

whose characteristics are explained below (Table 3). This test is an adaptation of the

sand column test (EN 1771: Determination of Injectability Using the Sand Column

Test [42]), to be used for injection grouts. Injectability of a grouting mixture in a

capillary network under predefined pressure is defined by the distance traveled by the

grout as a function of time according to EN 1771. In this work, (according to the

recommendations reported in Evaluation of Lime–Based Hydraulic Injection Grouts

for the Conservation of Architectural Surfaces [43]), the material suggested in the

standard for achieving a flow into a 0.2 mm crack in concrete is replaced by crushed

travertine with grain sizes of 2–4 mm, a size that simulates an approximately 0.3–0.6

mm crack width. Each grout was prepared by mixing for exactly 3 min, using the

same procedure adopted in the fluidity tests. The pressure used for filling the cylinders

(0.075 MPa) was constant due to the use of an equipment of injection known as

“pressure pot”, for 60 s. The time required for the complete filling of the cylinders

was recorded.

Table 3. Porous media characteristics (travertine).

Characteristic Value

d (90) 3.8 mm

d (10) 2.9 mm

Porous media porosity 47%

Water Absorption 6.6%

Page 155: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

133

For these tests, high water/binder ratio of 1.24 was applied constantly due to the high

water demand of the air lime and to the use of pozzolans [32,44].

Several characteristics of the porous media were determined (Table 3): (a) parameters

d(90) and d(10), which are respectively the diameter through which 90% and 10% of

the total mass pass; (b) the total porosity, which was evaluated by measuring the

volume of water which could be filled inside each cylinder, to know the available

voids inside the column; and (c) the water absorption of the travertine.

During injectability tests, identical conditions were applied to the mixing procedure, and

environmental conditions were kept constant. Pre–wetting was not applied due to the low

water absorption of the travertine (6.6%) and to the detrimental effect on the adherence

between the filler and the grout and on the mechanical strength reported [6].

Injectability rate was defined for numerical comparison, by using the time for the grout

to reach the top of the cylinder, the quantity of injected grout, height of introduced grout and

amount of the voids with the formula [6] given below:

where I is the grout injectability (s−1), t the grout injection time to fill the injected height

(s), m the injected mass during the injection process (g), ρ the density of grout (g/mL) and

VV is the voids volume of porous media (mL).

After the injectability experiments, the cylindrical methacrylate tubes with the fresh

grouts were laid on a horizontal position and cured under lab conditions for at least 28 days.

Slices extracted from the central part of the columns were cut, to assess the filling of the

voids.

2.4. Hardened–State Tests

• Compressive strengths were measured after 7, 28, 91, 182 and 365 curing days in the

4 × 4 × 16 cm prismatic specimens. A device Proeti ETI 26.0052 (Proeti, Madrid,

Spain) was used at a breaking speed 5–50 KP s−1 with a time interval between 30 and

90 s in the compressive strength tests.

Page 156: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

134

• Thermal analysis of the hardened grouts was carried out with a simultaneous TG–

sDTA 851 Mettler Toledo thermoanalyzer device (Schwerzenbach, Switzerland),

using alumina crucibles. Samples were heated from 25 to 1000 °C, at a rate of 10

°C·min−1, under static air atmosphere.

• The porous structure of the hardened grouts was studied by Mercury Intrusion

Porosimetry (MIP), using a Micromeritics AutoPore IV 9500 equipment

(Micromeritics Instrument Corporation, Norcross, GA, USA) (pressure range

0.0015–207 MPa).

• The evaluation of the wettability of the hardened grouts was performed by measuring

hydrophobicity through the static water contact angle of the samples, with an

equipment OCA 15EC (DataPhysics Instruments GmbH, Filderstadt, Germany). Five

water droplets at five different points of 5 μL were put onto the surface of the

hardened grouts, and the reported results are averages of these measurements.

2.5. Durability

Prismatic specimens of the hardened grouts–prepared and cured 28 days as described

before—were tested to assess the durability in the face of freezing–thawing cycles. The

cycles for the evaluation of the frost resistance consisted of water immersion of the samples

for 24 h and a subsequent freezing at −10°C for 24 h. For these experiments, a CARAVELL

521–102 freezer (Caravell Ltd., Buckingham, UK) was used.

The structural integrity of the samples was visually assessed after the finishing of each

freeze–thaw cycle, according to a previously reported criterion [22], which ascribes the

following alteration state of the treated specimens:

• None: alteration for those samples with no evidence of decay.

• Scarce: for samples showing a slight degree of deterioration (some thin, short,

shallow cracks on the surface of the specimens).

• Moderate: for altered samples, showing several deeper cracks.

• Large: for heavily altered specimens presenting deep cracks and a certain degree of

swelling.

• Very large for samples with severe decay, large deep cracks, partial weight loss and

large swelling.

Page 157: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

135

• Total for destroyed samples, with only some parts remaining.

3. Results

3.1. Properties of the Fresh Grouts

3.1.1. Fluidity (Spread Diameter)

All mixtures without superplasticizers (control samples) presented similar fluidity values

as compared to that of the control grouts (sample C), as measured by the spread diameter in

the flow table test (Figure 3). The pozzolanic additions showed a gradual spread reduction of

the fresh grouts, the pattern being: free–pozzolan > microsilica > metakaolin. This finding

may be explained by considering the increased water demand of the samples with pozzolanic

addition due to the high specific surface area of the pozzolans. This is in line with the

observed spread diameter reduction in air lime pastes with pozzolanic agents [11].

Differences between the two pozzolanic additions can be ascribed to the different particle

size. In spite of the relatively small surface area differences and to the similarities in reactivity

and particle size reported in the literature for these additions [45,46], in the current work, as

observed in Figure 2, MS particles exhibited a strong tendency to flocculate in the used

aqueous systems, thus giving rise to large and less reactive agglomerates.

The influence of the superplasticizers on the spread values of fresh grouts with these

admixtures was as follows. PCE addition resulted in a sharp fluidity increment, with spread

diameter values higher than 300 mm, irrespective of the mix composition. Thus, PCE was

seen to yield high–fluidity grouts, in good agreement with the previously reported

effectiveness of the polycarboxylate ether derivatives both in lime and cement–based systems

[11,14,26].

Figure 3. Spread diameter values of the different mixtures

Page 158: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

136

Figure 4. Zeta potential values of the binary lime + oleate and ternary lime + oleate +

pozzolan systems titrated with the three SPs (PCE, SMFC and PNS).

PNS and SMFC showed a similar behavior in all mixtures, for each one of the two tested

dosages. The effectiveness of the dispersing action, as measured by the spread, was not as

good for these SPs as it was for PCE. The similarity between PNS and SMFC arises from the

likenesses in their linear molecular structure, in line with the general structure of these

admixtures reported by Gelardi et al. [47]. These SPs exhibit mainly an electrostatic repulsion

mechanism, due to their flat adsorption onto the binder particles and to their high anionic

charge density (see Table 1), whereas steric hindrance was seen to play a minor role, as

described by Pérez–Nicolás et al. [27]. This action mechanism has been proven to be less

efficient than the steric hindrance action (prevalent for PCE).

Zeta potential measurements were carried out, upon titration with the different polymer–

based SPs, for the lime–oleate pastes, as well as for the same pastes with the two pozzolanic

additions (Figure 4).

As it can be seen, the pastes initially (before the addition of SPs) yielded positive zeta

potential values (40–50 mV). Pérez–Nicolás et al. [27] indicated that air lime particles

exhibited positive zeta potential values due to the positive charge of the portlandite crystals.

In the presence of pozzolanic addition, the expected formation of C–S–H compounds has

also been observed to yield high positive values of zeta potential: The negative charge caused

by the silanol groups’ (Si–O–H) deprotonation in the C–S–H phases is strongly sheltered by

Page 159: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

137

the adsorption of the Ca2+ ions [27], recognized as potential–determining species [48],

leading to a positive overcharging phenomenon.

Consistently, zeta potential values remained practically unaltered after the first 3 to 5

additions of SPs (Figure 4). After that, a dramatic increase in the zeta potential was observed

irrespective of the SP tested, and then a gradual decrease toward lower zeta potential values

was observed. The formation of a second adsorption layer accounts for this finding.

In the presence of the oleate chains, and owed to the addition of the SP, the adsorption

saturation dosage of the first layer was quickly achieved, and a second layer of calcium ions

sheltered the first polymer adsorption layer, thus resulting in a sharp increase of the zeta

potential values. A second layer of adsorbed polymer started on top of the calcium ions’

layer, explaining the gradual decrease as a consequence of the negatively charged polymeric

molecules (due to the deprotonation of the active groups at the alkaline pH) and of the

displacement of the shear plane of the outer Helmholtz layer [11].

In support of these assertions, several experimental findings can be argued:

(i) Adsorption isotherms of sodium oleate onto lime particles (with and without

pozzolanic additives) revealed a very strong adsorption of oleate onto these

particles, making it reasonable achieving the saturation dosage of the first layer

(Figure 5). Almost–negligible adsorption was observed for aqueous suspensions of

pozzolans, confirming the strong influence of Ca2+ ions on the oleate adsorption, in

agreement with the reported values in previous works by Wang, Z. et al. and Wang,

Y. et al. [49,50] that described a sharp oleate adsorption onto minerals in the

presence of calcium cations.

Figure 5. Adsorption isotherms of the oleate onto systems of lime, pozzolans

and lime with pozzolanic additives (MK or MS).

Page 160: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

138

Table 4. Parameters of the mathematical adjustment to Langmuir and Freundlich

algorithms for the adsorption isotherms of SPs onto lime with pre–adsorbed oleate.

System SP Langmuir Freundlich

qm (mg g−1) b (dm3 mg− 1) R2

K (mg1 − 1/ndm3/ng−1) 1/n R2

Lime–oleate PCE 43.2 0.00001 0.1091 0.00186 0.8475 0.9485

Lime–oleate SMFC 28.2 0.00026 0.9347 0.01615 0.8239 0.9763

Lime–oleate PNS 36.8 0.00019 0.9056 0.02251 0.7790 0.9530

Notes: qm: maximum sorption capacity. b: the Langmuir constant. K, 1/n: the Freundlich

constants. R2: correlation coefficient of the linear regression.

(ii) Adsorption isotherms of the superplasticizers onto lime particles, in which oleate

was previously adsorbed, also showed the ability of the SPs to be adsorbed in a

similar amount to the one that took place in the plain lime systems (Figure 6). This

adsorption onto lime particles in which oleate molecules were pre–adsorbed can

only be explained by assuming a double–layer adsorption. Isotherms also fit well

into a Freundlich model (see high R2 values in Table 4).

(iii) Zeta potential curves obtained for lime systems (with or without pozzolanic agent)

with pre–adsorbed superplasticizer, upon titration with a sodium oleate solution,

were totally different (Figure 7): All curves showed a slight and continuous increase

toward more positive values, without any sharp change in the curves. The zeta

potential curves followed the same pattern as that of the SP–free systems titrated

with sodium oleate. These curves could correspond to a simple monolayer

adsorption process, in which oleate was adsorbed onto (a) free active sites and (b)

in the sites previously occupied by SP molecules, which were removed due to a

competition process.

Figure 6. Adsorption isotherms of the three tested SPs onto systems of lime and lime

with pre–adsorbed oleate.

Page 161: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

139

Figure 7. Zeta potential of simple lime systems, binary systems of lime with pozzolanic

additives (MS, left diagram; MK, right diagram), and ternary systems with pozzolanic

additives and pre–adsorbed SP. All the systems were titrated with a sodium oleate (1 wt. %)

solution.

This assumption was later confirmed by adsorption isotherms studies of oleate in

lime systems with pre–adsorbed superplasticizer. It was seen that all added oleate

remained fully adsorbed, whereas the concentration of SP in the supernatant solution

increased as more oleate was added. For example, this system yielded a 100.0 ±

0.9% of PCE in solution (that is, all the PCE was released), whereas the adsorption

of PCE in a system with pre–adsorbed oleate resulted in a lower non–adsorbed

polymer percentage of 92.94 ± 0.2% (that is, 7.06% of PCE remained adsorbed),

thus confirming, as explained in (ii), the double–layer adsorption. This strong and

competitive adsorption of oleate can be understood when considering its higher

anionic charge density in comparison with the SPs.

(iv) Furthermore, the literature has described the multilayer adsorption of polymers onto

mineral particles, as, for example, in the case of oleate (forming calcium dioleate

layers) [50] and in the case of other superplasticizers [27,51].

Different patterns were observed in the zeta potential curves from the point of highest

value onward, upon further additions of the three tested SPs, as can be seen in Figure 4:

(a) For PCE, zeta potential moved slightly toward lower positive values. The adsorption

of the PCE (depicted in this second part of the curves of zeta potential) did not cause

a substantial surface charge modification, confirming the weak influence of the

anionic charge of this SP (which was the lowest, as reported in Table 1). The strong

steric hindrance of the side chains of this polymer is more effective than the

electrostatic repulsions of the negatively charged carboxylated groups. The

Page 162: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

140

predominant effect of the steric hindrance in this polymeric SP was confirmed by

its high impact in fluidity (Figure 3), while it simultaneously did not dramatically

modify the surface charge of the particles. The literature agrees about the prevalence

of the steric hindrance mechanism for similar polymer molecules [51,52,53].

(b) For SMFC and PNS, the adsorption of the SP caused a clear decrease in the zeta

potential values (sharper in the case of SMFC), finally resulting in a charge reversal

into negative values of the zeta potential (Figure 4). The action mechanism of these

two polymers can be linked to the electrostatic repulsions, particularly under

alkaline conditions that fostered the ionization of the sulfonic groups [51,54]. The

dosage at which the IEP was achieved would be the optimum dosage of the SP.

SMFC inverted the sign of the surface charge at lower dosages and should be

expected to be more effective than PNS. The higher molecular weight of this SMFC

polymer (Table 1) contributes to enhance the predominantly efficient steric

repulsions, thus explaining these experimental findings.

3.1.2. Workability

The use of PCE induced noticeable changes in workability for almost all mixtures

(Figure 8). The addition of the PCE in microsilica–bearing samples gave rise to a delay in

the stiffening of the grouts. This well–known effect has been pointed out in previous works

and can be ascribed to the attachment of the PCE onto binding particles, which hinders their

irreversible agglomeration, avoiding the early hardening of the grouts [11,55]. This delay

was not observed for samples with MK at the highest dosage of PCE and can be explained

by considering the fast pozzolanic reaction of the MK, as compared with microsilica.

Stiffening time was shortened when SMFC and PNS were added as SPs. In almost all cases,

for these two SPs (SMFC and PNS), the use of a 0.5% dosage yielded a sharper shortening

of the stiffening time, which is directly linked to the poorer dispersing action of the lowest

SP dosage due to the lower amount of adsorbed polymers.

Page 163: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

141

Figure 8. Workability of the different mixtures

3.1.3. Bleeding

Bleeding of a fresh grout affects the quality of injection, since it causes clogging during

application. A high bleeding value is an indicator of the absence of stability of the grout and

can be due to the presence of admixtures of different hydrophilic character in the mixture.

This segregation could increase along time, at least in the initial steps of the process. During

the grout injection, bleeding undermines the effectiveness of the grout, because the upper

part of the pores cannot be filled, due to the excess of water [4]. To assess the stability of the

designed lime grouts, percentages of volumetric changes and bleeding of the different

mixtures were determined (Table 5). All assayed samples presented very small volumetric

changes, always below 1% (results not shown). The bleeding percentages were also low, and

the obtained results fell within the tolerable limits (below the threshold value of 5%), as

reported elsewhere [13,40].

Different percentages of segregation were obtained for each group of studied mortars.

Samples without pozzolanic addition exhibited the lowest bleeding values. Samples with

pozzolanic additions yielded higher bleeding values, although all of them were below the

limit value. Accordingly, the designed grouts do not present excess of free water and can be

considered as stable [12].

PCE as admixture with pozzolanic materials presented the lowest bleeding percentages,

except for samples with microsilica. This fact can also be related to the setting time delay,

since PCE hindered the irreversible agglomeration of the binding particles, thus causing

segregation [11].

Page 164: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

142

Table 5. Bleeding and injectability values (fresh grouts).

Sample Bleeding * (%) Injectability (s−1)

Control samples (without polymeric superplasticizers)

C – 0.006

C–MS <1% 0.016

C–MK <1% 0

C–O <1% 0.005

C–O–MS 2 0

C–O–MK 2 0

Samples without pozzolanic addition

O–PCE0.5 1 0.04

O–SMFC0.5 <1% 0.015

O–PNS0.5 2 0.022

O–PCE1 2 0.05

O–SMFC1 <1% 0.036

O–PNS1 2 0.033

Samples with microsilica

O–MS–PCE0.5 <1% 0

O–MS–SMFC0.5 <1% 0

O–MS–PNS0.5 <1% 0

O–MS–PCE1 4 0

O–MS–SMFC1 2 0

O–MS–PNS1 4 0

Samples with metakaolin

O–MK–PCE0.5 <1% 0.059

O–MK–SMFC0.5 1 0.005

O–MK–PNS0.5 2 0.01

O–MK–PCE1 <1% 0.08

O–MK–SMFC1 4 0.022

O–MK–PNS1 4 0

* Values obtained according to EN 447 three hours after initial mixing.

3.1.4. Injectability

Water/binder ratio, the type and percentage of superplasticizer, the mixing procedure,

grain size, pore size, total porosity and water absorption capacity of the filling material can

be mentioned among the parameters influencing the quality of a grout injection [1,6,13,15].

Historic masonries were simulated by using methacrylate cylinders filled with travertine,

in order to reproduce the inner part of historic walls. Cylinders were filled with the 2–4 mm

fraction travertine type. With the aim of providing a reliable model of injectability, the use

of just stable filling materials was selected rather than using filling material combinations.

Furthermore, we did ascertain that filling particles had the same size distribution and their

water absorption capacities were also the same to each other, avoiding variability due to the

moisture content of the particles [1,56].

Page 165: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

143

Figure 9. Injection height values and time of injection in the cylindrical columns for the

different grouts

The injectability was measured for the designed grouts, including the two dosages of the

SPs. The time of filling and the height reached by the grouts, upward from the bottom of the

cylinders, were measured and are displayed in Figure 9. The injectability (s−1) was calculated

as detailed in Section 2.3 and values are collected in Table 5.

Grouts without microsilica addition (control samples) were able to flow through the

column, at least partially. Plain lime grout (C) reached a height of 55 mm, and oleate–lime

grout (C–O) went up to a height of 100 mm, both taking ca. 16 s in the excursion. Slump

measurements showed very similar results for these two grouts, although injectability differs,

possibly owing to the air–entraining action of the oleate, since small air bubbles could

contribute to enhance the injectability, as previously reported [18].

The addition of pozzolans did complicate the injectability of grouts. The mixture C–MK

reached 25 mm in 16 s, in good agreement with the fluidity observed during the flow table

test (Figure 3). However, the simultaneous presence of oleate and metakaolin hindered the

injectability of the grout. On the other hand, the addition of microsilica was fully detrimental

for the injectability of the grouts. All the microsilica–containing mixtures, including the

controls (C–MS and C–O–MS), were incapable of flowing through the column. The

microsilica particles acted as a barrier, because of their well–known cohesive forces,

preventing the grout injection [57]. This finding is in very good agreement with the large

Page 166: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

144

particle size of the microsilica agglomerates earlier measured (Figure 2), complicating the

achievement of the necessary yield stress at the injection front and making it difficult to flow

through the fine voids of the travertine particles filling the cylinder. In the end, this resulted

in a blockage of the grout penetration and in an injectability obstruction [6]. Accordingly, the

addition of a maximum 10% by weight dosage of this kind of pozzolanic materials is

recommended to improve injectability and to increase mechanical strength in the hardened

state [25].

The addition of the three tested polymeric superplasticizers resulted in different

performances with respect to the injectability of the grouts. The simultaneous presence of

sodium oleate appeared not to foster the injectability (as is the case for samples with PNS

and SMFC in comparison with pure air lime grout control and oleate–containing control).

This result is an expression of a certain incompatibility between the two admixtures (water–

repellent and superplasticizer): As discussed previously, in Section 3.1.2, the strong

adsorption of oleate onto lime particles restricts the attachment of the superplasticizers onto

these particles, thus reducing the SP effectiveness. This fact seems to be of the utmost

importance for the two superplasticizers whose action mechanism is mainly based on

electrostatic repulsions (PNS and SMFC). The dosage of 1% (O–SMFC1 and O–PNS1)

showed very similar values to those published by other authors (which were between 0.016

and 0.038 s−1) [1,6,12,44].

For PCE, its electrosteric repulsion mechanism allowed a better effectiveness, even with

a reduced number of attached molecules of SP. In addition, the favorable plasticizing effect

of non–adsorbed molecules of polycarboxylate ether derivatives, which remain in the

interstitial solution, must be considered, in line with previous findings [58,59,60].

The addition of metakaolin depicted a very different performance pattern between the

SPs, according to their respective main action mechanisms. The addition of MK worsened

the injectability for samples with SMFC and PNS. These results are in line with those

obtained from the flow table test and can be explained by considering the increase in the

water demand due to the pozzolanic agent and the consumption of SP due to the progressive

formation of C–S–H phases. The latter effect has been well described for cement–based

materials in the case of flat polymeric admixtures [58,61].

Page 167: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

145

Figure 10. Section images of cylinders filled with grouts after 28 curing days.

Page 168: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

146

Conversely, for grouts with PCE, the presence of MK enhanced the injectability, and the

grout filled the whole column in a very short period (less than 10 s). The addition of a material

with high surface area led to an increase in the anchorage active sites for PCE. The branched

molecular architecture of this polymer, together with the recognized activity of the non–

attached molecules, clearly improved the injectability of these PCE–MK grouts. The

effectiveness of the dispersing action of polycarboxylate ethers in lime–based systems has

been noticed in previous works [11,14,17,21] and confirmed in the current research. Grouts,

including PCE as superplasticizer, exhibited the highest injectability values in all cases. The

O–MK–PCE grout showed the best injectability, 0.08 s−1, which is larger than results reported

by other authors [1,6,12,44].

In general, the increase in the dosage of the superplasticizer enhanced the grout injection.

A dosage increase of up to 1% of PNS and SMFC in the C–O mixtures caused the rate of

injectability to double (Table 5). Additionally, the low measured bleeding (below the limit

of 5%) guaranteed the absence of the instability phenomena that are pointed out in the

literature due to an excessive dosage of SP [6].

After 28 curing days, slices from the central part of the columns were extracted and

scrutinized, to assess the filling of the voids (Figure 10).

3.2. Hardened Grout Properties

3.2.1. Compressive Strength

During the hardening process, plain lime–based systems exhibited an increase in

mechanical properties, thanks to the carbonation process in which CaCO3 is formed over

time. Therefore, the values of compressive strength after long–term curing times—182 and

365 days—were greater on average (Figure 11). Pozzolanic reaction and formation of C–S–

H phases in grouts with pozzolans also contributed to the strength of the hardened grouts.

The addition of metakaolin increased the compressive strength, and the highest

mechanical strength was obtained in the control mixture O–MK after 365 curing days (Figure

11). Microsilica was not so effective in increasing the strength. Its pozzolanic activity was

lower as compared with MK, due to the larger particle size of the microsilica. TG–DTA

analysis (Figure S2, Supplementary Materials) confirmed the differences: The percentages

of Ca(OH)2 were lower for MK–bearing grouts (values after 182–365 curing days were on

average below 4%, whereas samples with microsilica exhibited higher percentages of

Ca(OH)2), suggesting a greater consumption of Ca(OH)2 during the pozzolanic reaction with

Page 169: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

147

MK. A Pearson correlation (coefficient 0.654, p < 0.01**) between the compressive strength

and the percentage of portlandite was established: The higher the percentage of portlandite,

the lower the compressive strength (Figure 12). It can be seen that most samples with

percentages of portlandite below 4% yielded compressive strengths higher than 3 MPa,

whereas samples with Ca(OH)2 percentages > 4%, in general, resulted in compressive

strengths below 3 MPa.

The use of superplasticizers was, in general, favorable in order to increase the final

mechanical strength of the grouts, PCE and SMFC, yielding the highest values. This finding

is ascribed to the refinement of the pore structure caused by the superplasticizer, especially

by PCE. The assessment of the pore size distributions (Figure 13) of the grouts showed the

following:

Figure 11. Compressive strength of grouts at different curing times (SP dosages: 0.5 and

1%)

Page 170: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

148

Figure 12. Correlation between compressive strength and portlandite (% calculated

from TG results) in grouts after 182 and 365 curing days.

• The addition of the pozzolanic additive (microsilica or metakaolin) reduced porosity

by about 1 μm in diameter, due to the filling effect of the microsilica and the

pozzolanic reaction (Figure 8, reduction in the area under the curve of the mercury

differential intrusion).

• The addition of PCE caused a sharp drop in the number of pores, of about 1 μm. In

addition, the main pore size shifted toward lower diameters (between 0.5 and 0.8 μm).

Figure 13. Pore size distributions of different paste samples after 365 days of curing

Page 171: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

149

3.2.2. Hydrophobicity

The static water contact angle and the time for the water–drop absorption are shown in

Table 6. Measurements were carried out in grouts after 365 curing days. This parameter

provides information about the real effect of the water–repellent agent, sodium oleate, and

its compatibility with the SPs.

Table 6. Results of the static water contact angle measurements (WCA) and of the time

interval for the water drop absorption.

Sample WCA

Time interval for the full absorption of the

drop of water

t < 5s 5s < t < 10s t > 10s

Control samples

(without polymeric

superplasticizers)

C –

C–MS –

C–MK –

C–O 84±2.1

C–O–MS 59±2.1

C–O–MK 35±2.3

Samples without

pozzolanic addition

O–PCE0.5 70±3.1

O–SMFC0.5 86±2.6

O–PNS0.5 105±2.8

O–PCE1 68±2.1

O–SMFC1 54±2.9

O–PNS1 40±3.2

Samples with

Microsilica

O–MS–PCE0.5

44±2.5

O–MS–SMFC0.5

72±2.2

O–MS–PNS0.5

83±2.6

O–MS–PCE1

98±2.8

O–MS–SMFC1

40±2.4

O–MS–PNS1 37±2.5

Samples with

Metakaolin

O–MK–PCE0.5

44±3.4

O–MK–SMFC0.5

112±2.0

O–MK–PNS0.5

89±2.8

O–MK–PCE1

124±2.5

O–MK–SMFC1

44±2.7

O–MK–PNS1

56±2.4

Page 172: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

150

One of the intended characteristics of these grouts formulations was the hydrorepellency.

The hydrorepellency is a superficial phenomenon caused by the tensioactive character of the

sodium oleate. During the mixing process in an aqueous dispersion, the hydrophobic (non–

polar) part of the molecule is oriented toward the aerial phase, whereas the polar segment is

in the aqueous system. The combined effect of the pore size distribution (with small pores)

and the active water–repellent agent led to suitable hydrorepellency. The O–MK–PCE1 grout

exhibited the best hydrorepellency, thanks to its low total porosity (see Figure 13) and to the

availability of molecules of the water–repellent agent (even assuming that most of the oleate

molecules will be adsorbed onto lime particles). In this sense, previous discussions in Section

3.1.2, on the zeta potential values and on the adsorption of the SPs in the designed grouts,

have shown the lowest interaction, and consequently the best compatibility, between the

sodium oleate and the PCE. On the other hand, polymers SMFC and PNS yielded higher

adsorption values onto lime particles, as reported in Figure 6.

3.2.2. Durability

The control grout formulations without a water–repellent agent were fully decayed after

just one F–T cycle (total destruction of the specimens). The addition of sodium oleate

definitely improved the freeze–thaw durability of the grouts, in accordance with our previous

report on the positive effect of this admixture in lime–based mortars [18]. For instance, the

control sample (C–O) resisted up to 18 freezing–thawing cycles (Figure 14).

The presence of pozzolanic admixtures in the grouts displayed different results: The

addition of microsilica resulted in an adverse effect on the freeze–thaw durability, as can be

seen in the control samples with microsilica (sample C–O–MS), showing serious decay after

just two cycles (Figure 14). Conversely, the addition of metakaolin improved the resistance

in the face of freezing–thawing cycles. According to the results, the reduction in the mean

pore size prevented the absorption of liquid water, blocking its later freezing and expansion

damage and thus providing better resistance against freezing–thawing cycles.

Metakaolin–containing samples showed a better durability when treated with SPs.

Formulations with PCE and SMFC as SPs yielded the highest resistances.

Page 173: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

151

Figure 14. Values in the damage scale of grouts after freeze–thaw cycles.

4. Conclusions

Quaternary mixtures of air lime, polymer–based superplasticizers, a water–repellent

agent and pozzolanic additives were studied as grouts to be used as repair materials for Built

Heritage. The compatibility between the different admixtures was assessed.

Results showed that PCE was much more effective in increasing both the injectability

and fluidity of the grouts than SMFC and PNS. The action mechanism of this polymeric

superplasticizer was confirmed to be mainly steric, whereas SMFC and PNS acted through

an electrostatic repulsion mechanism. The molecular architecture of these polymers was

critical to explain their performance.

Interactions with sodium oleate were found: The adsorption of sodium oleate onto lime

particles was evident and caused a reduction in the superplasticizing effectiveness of the SPs,

particularly of SMFC and PNS, as proved by the zeta potential measurements and adsorption

Page 174: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

152

isotherms. At the same time, the large adsorption of SMFC and PNS onto the oleate layer

reduced the hydrorepellency of the treated grouts, as confirmed by the static water contact

angle. The use of PCE was seen to be more favorable in terms of the highest injectability and

hydrorepellency.

As for the pozzolanic additives, metakaolin imparted better characteristics to the grouts

than microsilica, particularly in combination with SPs: higher injectability, better adherence

and wrapping of the particles during injection, as well as higher mechanical strengths.

Durability, in the face of freezing–thawing cycles, was also outstandingly increased due to

the presence of MK. Microsilica showed a marked tendency to agglomerate in aqueous

dispersions, which was strongly detrimental for the injectability of the grouts prepared with

this pozzolanic additive. Besides, low mechanical strengths and poor durability were

observed for grouts, including MS.

According to the results, the grout composed of air lime, metakaolin, sodium oleate and

PCE, in its largest dosage of 1 wt.%, was found to be the most effective composition,

improving the mechanical strength, the injectability and the hydrophobicity.

Supplementary Materials

The following are available online at https://www.mdpi.com/2073–4360/12/4/887/s1,

Figure S1: Setup of the injectability determination. Graduated methacrylate column filled

with travertine porous medium; Figure S2: Percentages of portlandite (Ca(OH)2) of grouts at

different curing times (TG results).

Author Contributions

Conceptualization, J.I.A. and Í.N.–B.; data curation: J.M.F.; formal analysis: J.F.G.–S.

and B.T.; funding acquisition: J.I.A.; investigation: J.F.G.–S. and B.T.; methodology:

J.F.G.–S., Í.N.–B. and B.T.; project administration: J.I.A. and Í.N.–B.; supervision: J.I.A.;

validation: J.M.F.; visualization: Í.N.–B.; writing—original draft: Í.N.–B. and J.I.A.;

writing—review and editing: J.M.F. and J.I.A. All authors have read and agreed to the

published version of the manuscript.

Funding

This study was funded by Spanish Ministry of Economy and Competitiveness

(MINECO), grant number MAT2015–70728–P. The first author thanks the Friends of the

University of Navarra, Inc., for a pre–doctoral grant.

Page 175: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

153

Acknowledgments

The authors thank the technical support provided by Cristina Luzuriaga and Marta

Yárnoz.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Gökyiǧit–Arpaci, E.Y.; Oktay, D.; Yüzer, N.; Ulukaya, S.; Eksi–Akbulut, D.

Performance evaluation of lime–based grout used for consolidation of brick masonry

walls. J. Mater. Civil. Eng. 2019, 31, 04019059. [Google Scholar] [CrossRef]

2. Silva, R.A.; Domínguez–Martínez, O.; Oliveira, D.V.; Pereira, E.B. Comparison of the

performance of hydraulic lime– and clay–based grouts in the repair of rammed earth.

Constr. Build. Mater. 2018, 193, 384–394. [Google Scholar] [CrossRef]

3. Pasian, C.; Secco, M.; Piqué, F.; Rickerby, S.; Cather, S. Lime–based injection grouts

with reduced water content: An assessment of the effects of the water–reducing agents

ovalbumin and ethanol on the mineralogical evolution and properties of grouts. J. Cult.

Herit. 2018, 30, 70–80. [Google Scholar] [CrossRef]

4. Luso, E.; Lourenço, P.B. Experimental laboratory design of lime based grouts for

masonry consolidation. Int. J. Archit. Herit. 2017, 11, 1143–1152. [Google Scholar]

[CrossRef]

5. Rossi–Doria, P.R. Report on the RILEM Workshop ‘Ancient Mortars and Mortars for

Restoration’ Ravello, 9–11 November 1988. Mater. Struct. 1990, 23, 235–238. [Google

Scholar] [CrossRef]

6. Jorne, F.; Henriques, F.M.A.; Baltazar, L.G. Evaluation of consolidation of grout

injection with ultrasonic tomography. Constr. Build. Mater. 2014, 66, 494–506. [Google

Scholar] [CrossRef]

7. Jorne, F.; Henriques, F.M.A.; Baltazar, L.G. Evaluation of consolidation of different

porous media with hydraulic lime grout injection. J. Cult. Herit. 2015, 16, 438–451.

[Google Scholar] [CrossRef]

Page 176: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

154

8. Silva, R.A.; Schueremans, L.; Oliveira, D.V.; Dekoning, K.; Gyssels, T. On the

development of unmodified mud grouts for repairing earth constructions: Rheology,

strength and adhesion. Mater. Struct. 2012, 45, 1497–1512. [Google Scholar] [CrossRef]

9. Müller, U.; Miccoli, L.; Fontana, P. Development of a lime based grout for cracks repair

in earthen constructions. Constr. Build. Mater. 2016, 110, 323–332. [Google Scholar]

[CrossRef]

10. Jorne, F.; Henriques, F.M.A. Evaluation of the grout injectability and types of resistance

to grout flow. Constr. Build. Mater. 2016, 122, 171–183. [Google Scholar] [CrossRef]

11. Navarro–Blasco, I.; Pérez–Nicolás, M.; Fernández, J.M.; Duran, A.; Sirera, R.; Alvarez,

J.I. Assessment of the interaction of polycarboxylate superplasticizers in hydrated lime

pastures modified with nanosilica or metakaolin as pozzolanic. Constr. Build. Mater.

2014, 73, 1–12. [Google Scholar] [CrossRef]

12. Jorne, F.; Henriques, F.M.A.; Baltazar, L.G. Influence of superplasticizer, temperature,

resting time and injection pressure on hydraulic lime grout injectability. Correlation

analysis between fresh grout parameters and grout injectability. J. Build. Eng. 2015, 4,

140–151. [Google Scholar] [CrossRef]

13. Kalagri, A.; Miltiadou–Fezans, A.; Vintzileou, E. Design and evaluation of hydraulic

lime grouts for the strengthening of stone masonry historic structures. Mater. Struct.

2010, 43, 1135–1146. [Google Scholar] [CrossRef]

14. Padovnik, A.; Piqué, F.; Jornet, A.; Bokan–Bosiljkov, V. Injection grouts for the re–

attachment of architectural surfaces with historic value–measures to improve the

properties of hydrated lime grouts in Slovenia. Int. J. Archit. Herit. 2016, 10, 993–1007.

[Google Scholar] [CrossRef]

15. Vavričuk, A.; Bokan–Bosiljkov, V.; Kramar, S. The influence of metakaolin on the

properties of natural hydraulic lime–based grouts for historic masonry repair. Constr.

Build. Mater. 2018, 172, 706–716. [Google Scholar] [CrossRef]

16. Valluzzi, M.R. Requirements for the choice of mortar and grouts for consolidation of

three–leaf stone masonry walls. In Workshop Repair Mortars for Historic Masonry;

Groot, C., Ed.; RILEM Publications SARL: Delft, The Netherlands, 2009; Volume 3,

pp. 382–397. [Google Scholar]

Page 177: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

155

17. Fernández, J.M.; Duran, A.; Navarro–Blasco, I.; Sirera, R.; Alvarez, J.I. Influence of

nanosilica and a polycarboxylate ether superplasticizer on the performance of lime

mortars. Cem. Concr. Res. 2013, 43, 12–24. [Google Scholar] [CrossRef]

18. Izaguirre, A.; Lanas, J.; Álvarez, J.I. Effect of water–repellent admixtures on the

behaviour of aerial lime–based mortars. Cem. Concr. Res. 2009, 39, 1095–1104.

[Google Scholar] [CrossRef]

19. Falchi, L.; Slanzi, D.; Speri, L.; Poli, I.; Zendri, E. Optimization of sustainable, NaCl–

resistant and water–repellent renders through evolutionary experimental design. Constr.

Build. Mater. 2017, 147, 876–889. [Google Scholar] [CrossRef]

20. Nunes, C.; Slížková, Z. Freezing and thawing resistance of aerial lime mortar with

metakaolin and a traditional water–repellent admixture. Constr. Build. Mater. 2016, 114,

896–905. [Google Scholar] [CrossRef]

21. Arizzi, A.; Cultrone, G. Aerial Lime–based mortars blended with a pozzolanic additive

and different admixtures: A mineralogical, textural and physical–mechanical study.

Constr. Build. Mater. 2012, 31, 135–143. [Google Scholar] [CrossRef]

22. Duran, A.; Navarro–Blasco, I.; Fernández, J.M.; Alvarez, J.I. Long–term mechanical

resistance and durability of air lime mortars with large additions of nanosilica. Constr.

Build. Mater. 2014, 58, 147–158. [Google Scholar] [CrossRef]

23. Baltazar, L.G.; Henriques, F.M.A.; Jorne, F.; Cidade, M.T. Combined effect of

superplasticizer, silica fume and temperature in the performance of natural hydraulic

lime grouts. Constr. Build. Mater. 2014, 50, 584–597. [Google Scholar] [CrossRef]

24. Duran, A.; González–Sánchez, J.F.; Fernández, J.M.; Sirera, R.; Navarro–Blasco, Í.;

Álvarez, J.I. Influence of two polymer–based superplasticizers (poly–naphthalene

sulfonate, PNS, and lignosulfonate, LS) on compressive and flexural strength, freeze–

thaw, and sulphate attack resistance of lime–metakaolin grouts. Polymers 2018, 10, 824.

[Google Scholar] [CrossRef] [PubMed]

25. Baltazar, L.G.; Henriques, F.M.A.; Jorne, F.; Cidade, M.T. The use of rheology in the

study of the composition effects on the fresh behaviour of hydraulic lime grouts for

injection of masonry walls. Rheol. Acta 2013, 52, 127–138. [Google Scholar] [CrossRef]

26. Puertas, F.; Santos, H.; Palacios, M.; Martínez–Ramírez, S. Polycarboxylate

superplasticiser admixtures: Effect on hydration, microstructure and rheological

Page 178: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

156

behaviour in cement pastes. Adv. Cem. Res. 2005, 17, 77–89. [Google Scholar]

[CrossRef]

27. Baltazar, L.G.; Henriques, F.M.A.; Rocha, D.; Cidade, M.T. Experimental

characterization of injection grouts incorporating hydrophobic silica fume. J. Mater.

Civil. Eng. 2017, 29, 04017167. [Google Scholar] [CrossRef]

28. Pérez–Nicolás, M.; Duran, A.; Navarro–Blasco, I.; Fernández, J.M.; Sirera, R.; Alvarez,

J.I. Study on the effectiveness of PNS and LS superplasticizers in air lime–based mortars.

Cem. Concr. Res. 2016, 82, 11–22. [Google Scholar] [CrossRef]

29. Toumbakari, E. Lime–Pozzolan–Cement Grouts and Their Structural Effects on

Composite Masonry Walls. Ph.D. Thesis, Katholieke Universiteit, Leuven, Belgium,

2002. [Google Scholar]

30. Silva, B.A.; Ferreira Pinto, A.P.; Gomes, A. Influence of natural hydraulic lime content

on the properties of aerial lime–based mortars. Constr. Build. Mater. 2014, 72, 208–218.

[Google Scholar] [CrossRef]

31. Nežerka, V.; Slížková, P.; Tesárek, T.; Plachý, T.; Frankeová, D.; Petráňová, V.

Comprehensive study on mechanical properties of lime–based pastes with additions of

metakaolin and brick dust. Cem. Concr. Res. 2014, 64, 17–29. [Google Scholar]

[CrossRef]

32. Gameiro, A.; Santos Silva, A.; Veiga, R.; Velosa, A. Hydration products of lime–

metakaolin pastes at ambient temperature with ageing. Thermochim. Acta 2012, 535,

36–41. [Google Scholar] [CrossRef]

33. Ghafor, K.; Mahmood, W.; Qadir, W.; Mohammed, A. Effect of particle size distribution

of sand on mechanical properties of cement mortar modified with microsilica. ACI

Mater. J. 2020, 117, 47–60. [Google Scholar] [CrossRef]

34. Hendi, A.; Behravan, A.; Mostofinejad, D.; Akhavan Kharazian, H.; Sedaghatdoost, A.

Performance of two types of concrete containing waste silica sources under MgSO4

attack evaluated by durability index. Constr. Build. Mater. 2020, 241, 118140. [Google

Scholar] [CrossRef]

35. Edmeades, R.M.; Hewlett, P.C. Cement Admixtures. In Lea’s Chemistry of Cement and

Concrete, 4th ed.; Hewlett, P.C., Ed.; Butterworth–Heinemann Elsevier Ltd.: Oxford,

UK, 1998; pp. 841–905. [Google Scholar]

Page 179: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

157

36. Ulmen Industries Europe. Ficha Técnica Gaia Ns Compact; Ulmen Industries Europe

S.L.: Castellón, Spain, 2009. [Google Scholar]

37. UNE–EN 196–1. Determination of Mechanical Resistances; CEN: Brussels, Belgium,

2005. [Google Scholar]

38. UNE–EN 1015–3. Methods of Testing Mortars for Masonry; Part 3: Determination of

Fresh Mortar Consistency (by Shaking Table); CEN: Brussels, Belgium, 2000. [Google

Scholar]

39. UNE–EN 1015–9. Methods of Testing Mortars for Masonry; Part 9: Determination of

the Period of Workability and Open Time of Fresh Mortar; CEN: Brussels, Belgium,

2000. [Google Scholar]

40. UNE–EN 447. Grout for Prestressing Tendons—Basic Requirements; CEN: Brussels,

Belgium, 2009. [Google Scholar]

41. ASTM C940–10a. Standard Test Method for Expansion and Bleeding of Freshly. Mixed

Grouts for Preplaced–Aggregate Concrete in the Laboratory; ASTM International: West

Conshohocken, PA, USA, 2010. [Google Scholar]

42. UNE–EN 1771. Determination of Injectability Using the Sand Column Test; CEN:

Brussels, Belgium, 2004. [Google Scholar]

43. Biçer–Simşir, B.; Rainer, L. Evaluation of Lime–Based Hydraulic Injection Grouts for

the Conservation of Architectural Surfaces. In A Manual of Laboratory and Field Test

Methods; The Getty Conservation Institute: Los Angeles, CA, USA, 2011. [Google

Scholar]

44. Bras, A.; Henriques, F.M.A. Natural hydraulic lime based grouts—The selection of grout

injection parameters for masonry consolidation. Constr. Build. Mater. 2012, 26, 135–

144. [Google Scholar] [CrossRef]

45. Naber, C.; Stegmeyer, S.; Jansen, D.; Goetz–Neunhoeffer, F.; Neubauer, J. The

PONKCS method applied for time resolved XRD quantification of supplementary

cementitious material reactivity in hydrating mixtures with ordinary Portland cement.

Constr. Build. Mater. 2019, 214, 449–457. [Google Scholar] [CrossRef]

46. Ding, J.–T.; Li, Z. Effects of metakaolin and silica fume on properties of concrete. ACI

Mater. J. 2002, 99, 393–398. [Google Scholar]

Page 180: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

158

47. Gelardi, G.; Mantellato, S.; Marchon, D.; Palacios, M.; Eberhardt, A.B.; Flatt, R.J.

Chemistry of chemical admixtures. In Science and Technology of Concrete Admixtures;

Aïtcin, P.C., Flatt, R.J., Eds.; Woodhead Publishing: Sawston, UK, 2016; pp. 149–218.

[Google Scholar]

48. Lowke, D.; Gehlen, C. The zeta potential of cement and additions in cementitious

suspensions with high solid fraction. Cem. Concr. Res. 2017, 95, 195–204. [Google

Scholar] [CrossRef]

49. Wang, Z.; Wu, H.; Xu, Y.; Shu, K.; Yang, J.; Luo, L.; Xu, L. Effect of dissolved fluorite

and barite species on the flotation and adsorption behavior of bastnaesite. Sep. Purif.

Technol. 2020, 237, 116387. [Google Scholar] [CrossRef]

50. Wang, Y.; Khoso, S.A.; Luo, X.; Tian, M. Understanding the depression mechanism of

citric acid in sodium oleate flotation of Ca2+–activated quartz: Experimental and DFT

study. Miner. Eng. 2019, 140, 105878. [Google Scholar] [CrossRef]

51. Zhang, Y.; Kong, X. Correlations of the dispersing capability of NSF and PCE types of

superplasticizer and their impacts on cement hydration with the adsorption in fresh

cement pastes. Cem. Concr. Res. 2015, 69, 1–9. [Google Scholar] [CrossRef]

52. Pourchet, S.; Liautaud, S.; Rinaldi, D.; Pochard, I. Effect of the repartition of the PEG

side chains on the adsorption and dispersion behaviors of PCP in presence of sulfate.

Cem. Concr. Res. 2012, 42, 431–439. [Google Scholar] [CrossRef]

53. Plank, J.; Vlad, D.; Brand, A.; Chatziagorastou, P. Colloidal chemistry examination of

the steric effect of polycarboxylate superplasticizers. Cem. Int. 2005, 3, 100–110.

[Google Scholar]

54. Vikan, H.; Justnes, H.; Figi, R. Adsorption of plasticizers–Influence of plasticizer and

cement type. Ann. Trans. Nord. Rheol. Soc. 2005, 13, 127–134. [Google Scholar]

55. Rodriguez–Navarro, C.; Ruiz–Agudo, E.; Ortega–Huertas, M.; Hansen, E.

Nanostructure and irreversible colloidal behavior of Ca(OH)2: Implications in cultural

heritage conservation. Langmuir 2005, 21, 10948–10957. [Google Scholar] [CrossRef]

[PubMed]

56. Ma, B.; Peng, Y.; Tan, H.; Lv, Z.; Deng, X. Effect of polyacrylic acid on rheology of

cement paste plasticized by polycarboxylate superplasticizer. Materials 2018, 11, 1081.

[Google Scholar] [CrossRef]

Page 181: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo I. Parte B

159

57. Lewis, R.; Fidjestøl, P. Microsilica as an Addition. In Lea’s Chemistry of Cement and

Concrete, 5th ed.; Hewlett, P.C., Liska, M., Eds.; Butterworth–Heinemann Elsevier Ltd.:

Oxford, UK, 2019; pp. 509–535. [Google Scholar]

58. Kim, B.G.; Jiang, S.; Jolicoeur, C.; Aïtcin, P.C. The adsorption behavior of PNS

superplasticizer and its relation to fluidity of cement paste. Cem. Concr. Res. 2000, 30,

887–893. [Google Scholar] [CrossRef]

59. Yamada, K.; Hanehara, S.; Honma, K. Effects of naphthalene sulfonate–type and

polycarboxylate–type superplasticizers on the fluidity of belite–rich cement concrete. In

Proceeding of Self–Compacting Concrete Workshop; Ozawa, K., Ed.; Tokyo JSCE:

Kochi, Japan, 1998; pp. 201–210. [Google Scholar]

60. Pérez–Nicolás, M.; Plank, J.; Ruiz–Izuriaga, D.; Navarro–Blasco, I.; Fernández, J.M.;

Alvarez, J.I. Photocatalytically active coatings for cement and air lime mortars:

Enhancement of the activity by incorporation of superplasticizers. Constr. Build. Mater.

2018, 162, 628–648. [Google Scholar] [CrossRef]

61. Alonso, M.M.; Puertas, F. Adsorption of PCE and PNS superplasticisers on cubic and

orthorhombic C3A. Effect of sulphate. Constr. Build. Mater. 2015, 78, 324–333. [Google

Scholar] [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

Page 182: Desarrollo de nuevos morteros de restauración de cal con ...
Page 183: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II: Desarrollo de

morteros de cal con actividad

fotocatalítica mejorada y

autolimpiables

Improvement of the depolluting and self–cleaning

abilities of air lime mortars with dispersing admixtures

Enviado a Journal of Cleaner Production (En proceso de revisión,

octubre, 2020)

Page 184: Desarrollo de nuevos morteros de restauración de cal con ...
Page 185: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

163

Improvement of the depolluting and self–cleaning abilities of air lime mortars with dispersing admixtures

J.F. González–Sáncheza, B. Taşcıb, J.M. Fernándeza, Í. Navarro–Blascoa, J.I.

Alvareza*

a Materials and Cultural Heritage, MATCH, Research Group, Department of Chemistry, University of

Navarra, 31008 Pamplona, Spain

b Deparment of Architecture, Izmir Katip Çelebi University, 35620 Izmir, Turkey *Author to whom correspondence should be addressed.

Abstract

The aim of this study is to develop new durable air lime mortars with enhanced

photocatalytic depolluting and self–cleaning abilities. Nanosilica, as pozzolanic mineral

admixture, was used to improve the strength of mortars, whereas nanotitania (TiO2) was

added to impart photocatalytic properties. At the same time, five different dispersing

admixtures –superplasticizers– were added in bulk to the mortars to enhance the

photocatalytic activity by reducing the rate of charge carrier recombination. Four

polycarboxylate–based derivatives and a polynaphthalene sulfonate were tested aiming

to achieve an efficient charge separation. In order to increase the lasting of the mortars

subjected to water movements, sodium oleate was also added as a water repellent agent.

Since the photoinduced hydrophilicity, responsible for the self–cleaning effect, might be

affected by the water repellent, the compatibility between this admixture and the

photocatalytic performance of the nanotitania was also investigated. Results showed that

photocatalytic activity was improved due to the action of the superplasticizers as indicated

by an average 33% increase of NO degradation, which is significant to the depolluting

activity of these mortars. Furthermore, these mortars also showed a greatly reduced

release of intermediate toxic compounds, mainly NO2: the selectivity factor (NOx/NO)

reached values up to 87%. The self–cleaning ability, studied through dye degradation, of

the mortars with SPs was also enhanced around 1.2 times. Three of the polycarboxylate–

based superplasticizers enhanced the photosensitization of the dye under visible light

irradiation, resulting in faster decolouring kinetics. In connection with the self–cleaning

performance, these same SPs preserved the photoinduced hydrophilicity of the lime

mortars, reaching good wettability of the surface of the mortars (water contact angles of

ca. 10º), even in the presence of the sodium oleate, proving the compatible characteristics

of the admixtures and allowing obtaining a new range of actively depolluting lime

mortars.

Keywords: lime mortar, photocatalyst, superplasticizer, depolluting, TiO2,

dispersion, NO removal, selectivity, self–cleaning

Page 186: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

164

1. Introduction

Air pollution is known to be responsible for a wide range of problems and some

efforts are being devoted to resolve these issues by taking practical steps (Khin et al.,

2012). Chemical compounds such as NOx, SOx, CO, H2S, NH3, other nitrogenous

compounds, sulphur–containing compounds, hydrocarbons, and volatile organic

compounds (VOC) (benzene, toluene, etc.) have been reported as the most common

hazardous components (Colls, 2002). Concerning the building materials, a severe

problem generated by the air pollution is the deposition of atmospheric particles on the

surface of these materials. Deposited particles can form black crusts (sulphated carbon

particles) giving rise to aesthetic and structural problems in both modern and historical

buildings (Krishnan et al., 2018; Pozo–Antonio and Dionísio, 2017). The removal of these

dirt deposits also involves the use of chemicals, which implies both environmental and

economic concerns (Dalton et al., 2002; Pérez–Nicolás et al., 2015; Pozo–Antonio and

Dionísio, 2017).

To deal with these challenging problems, different strategies may be adopted to

reduce the atmospheric pollutants and to avoid the dirt accumulation and the subsequent

deterioration of the construction materials (Luna et al., 2019; Pérez–Nicolás et al., 2018;

Saeli et al., 2018; Xia et al., 2020). Among them, the design of photocatalytic materials

with depolluting and self–cleaning abilities is one of the most promising ways (Krishnan

et al., 2018; Luna et al., 2020; Munafò et al., 2015).

The use of photocatalysts offers several advantages and they have been efficiently

employed for the removal of gaseous contaminants with harmless end products (Folli et

al., 2012; Lucas et al., 2013; Pérez–Nicolás et al., 2018). Due to the superficial character

of the photocatalytic reaction, photocatalytic agents must be immobilized onto supporting

materials, so that their incorporation in construction materials is one valuable option. The

exposed areas of building materials facilitate the interaction between atmospheric

pollutants and photocatalysts, reducing the concentration of pollutants in the surrounding

environment (Luna et al., 2019). At the same time, the reaction of the photocatalytic

oxidation degrades the dirt deposits allowing the building material to display a self–

cleaning behaviour. This self–cleaning effect is also observed in superhydrophilic

surfaces (i.e. water contact angle < 5º), in which the drops of water spread on the surface

of the material, giving rise to a flowing aqueous film capable to sweep along dirt and dust

Page 187: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

165

(Son et al., 2012). Under illumination, photocatalysts exhibit photo–induced

hydrophilicity, which, together with their photocatalytic activity, yield proved self–

cleaning materials.

These building materials, incorporating photocatalysts, may become a good

alternative for their use as new construction materials. In that way, the recourse to

construction materials will reduce the air pollutants in the vicinity of the buildings and

will circumvent the problems related to the dirt and dust accumulation, preserving the

structure from damages, keeping the aesthetics of the edifications, particularly those of

the Cultural Heritage, and leading to a reduction in maintenance and cleaning costs

(Kapridaki et al., 2019, 2018; Luna et al., 2019; Pérez–Nicolás et al., 2018).

Binders, such as mortars, renders or grouts have been explored as materials able to

accommodate photocatalysts added in bulk (Pérez–Nicolás et al., 2017; Ruot et al., 2009).

The current work pursues the design of new lime mortars, which are attracting the interest

of the scientific community as valuable repair materials (Azeiteiro et al., 2014; Salavessa

et al., 2013). The use of lime mortar exhibits several potential advantages in terms of the

sustainable development of these materials: their production has been reported to produce

less environmental footprints, due to the lower energy consumption and CO2 emissions

as compared with cement (Giosuè et al., 2020). Some lime–based binders have been

found to be carbon–negative building materials, such as hemp–lime concrete (Arehart et

al., 2020; Arrigoni et al., 2017; Walker and Pavía, 2014). In addition, the use of pozzolans

(to partially substitute the binder) has been said to have a positive effect in lowering the

initial emissions associated to the binder production (Arehart et al., 2020). The local

availability, low processing level, capacity of recovering traditional methods of

construction and the healthy nature of the compound can be also mentioned as

advantageous aspects of the use of lime (Arrigoni et al., 2017; Deng et al., 2020; Orsini

and Marrone, 2019).

Furthermore, the use of lime may be effective in reducing the NO2 release, which has

been pointed out as one of the drawbacks of the photocatalytic NO abatement (Bloh et

al., 2014). NO2 toxicity is higher than that of the NO and may act as precursor of other

harmful components (Yang et al., 2018). The proved high NO2 adsorption of the

portlandite confirms the lime binders as suitable hosting matrices for photocatalysts, with

ability to increase the selectivity of the NO removal (Kaja et al., 2019; Krou et al., 2013;

Zhang et al., 2008).

Page 188: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

166

These mortars could be applied as one–coat rendering mortars, as multilayer renders

or as repointing materials, both in modern buildings and in repair works of the Cultural

Heritage (Giosuè et al., 2018). These new finishing mortars, which offer large exposed

areas favourable for depolluting purposes, should at the same time be durable and show

self–cleaning ability. To this aim, different admixtures were simultaneously combined,

including: (i) a mineral admixture (pozzolanic nanosilica), which imparts strength and

durability (Nunes et al., 2016; Sharma et al., 2019; Tsardaka and Stefanidou, 2020); (ii)

a waterproofing agent (sodium oleate) to reduce the water absorption and the detrimental

effects of the water movements (Falchi et al., 2015; Silva et al., 2020); (iii) nano–TiO2,

as the most popular metallic oxide semiconductor photocatalyst (Crupi et al., 2018; Folli

et al., 2012; Haider et al., 2019; Zouzelka and Rathousky, 2017); and (iv) a

superplasticizer (up to five different ones were assayed: four based on polycarboxylated–

ether derivatives and one poly–naphthalene sulfonate (Padovnik et al., 2016; Padovnik

and Bokan–Bosiljkov, 2020; Puertas et al., 2005; Silva et al., 2019)). The compatibility

between all these types of admixtures in lime mortars is still pending of investigation and

some of the admixtures might ruin the expected action of others. This work focuses on

the two main following approaches.

On the one hand, the role of the superplasticizers was studied. These dispersing

admixtures were added with the purpose of overcoming one of the problems related to

the use of photocatalysts, which is the charge carriers recombination that results in a low

quantum efficiency and, accordingly, a low depolluting effectiveness (Araña et al., 2019;

Mamaghani et al., 2017; Wang et al., 2020; Zouzelka and Rathousky, 2017). The

electron–positive hole coupling due to the proximity between active sites is a major

drawback, jeopardizing the efficiency of the photocatalytic action. This vicinity may be

a direct consequence of the choice of nano–sized compounds, which, while being positive

because they offer more surface area and thus active sites, show at the same time a sharp

trend to agglomerate reducing the catalyst area (Yang et al., 2019). The calcium–rich and

highly alkaline environment in lime or cement mortars has been reported as an additional

factor explaining the efficiency drop, since the precipitation of Ca(OH)2 and CaCO3 may

cover TiO2 active sites (Yang et al., 2019). The use of suitable superplasticizers can lead

to an effective separation of the TiO2 nanoparticles increasing the photocatalytic activity.

Compatible superplasticizers with air lime, which had been proved to be effective when

applied as coatings (Pérez–Nicolás et al., 2018), were thus tested in these new mortars in

Page 189: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

167

bulk addition. The depolluting activity of the mortars was assessed by monitoring the

NOx degradation in a closed reactor. The release of intermediate toxic NO2 was also

assessed and the selectivity values of the new mortars were calculated. The self–cleaning

ability was determined by dye–degradation measurements.

On the other hand, the influence of the admixtures, particularly the waterproofing

one, on the photo–induced hydrophilicity was also investigated. Whilst the addition of a

water repellent is positive for increasing the frost resistance of the mortars (Falchi et al.,

2013; Nunes and Slížková, 2016; Silva et al., 2020) by reducing the water uptake (Silva

et al., 2020), its presence might interfere with the hydrophilicity, thus endangering the

self–cleaning performance. The compatibility between the presence of the waterproofing

admixture and the self–cleaning effect was therefore studied.

2. Materials and methods

2.1 Materials and composition of mixtures

For the preparation of the mortars, hydrated calcitic lime CL–90 was used as a

powder, supplied by CALINSA, Navarra, Spain. This lime has a composition of 68.5%

CaO, 3.3% MgO, 1.4% SO3 and 1.0% SiO2. The particle size of the powdered lime was

10 µm (less than 10% > 50 µm). A fine limestone aggregate supplied by CTH (Huarte,

Navarra, Spain) with a particle size less than 2 mm was also used. The granulometry of

the aggregate has been published elsewhere (González–Sánchez et al., 2020). The

preparation of the mortars was made using a 1 to 3 weight ratio of binder/aggregate

(González–Sánchez et al., 2020; Izaguirre et al., 2011). In order to separate and to identify

the effect of the admixtures, the mixing water was fixed at a 28% water/lime ratio, which

was the percentage able to yield a settlement diameter of 165 mm in the control sample,

as measured in the flow table test according to EN 1015–3 (European Committee for

Standardization, 2006). Slump values of each sample are provided in the Supplementary

material (Table S1).

The following admixtures were also added to prepare the mortars. Detailed

composition of each one of the samples is displayed in Table 1. The percentages of

admixtures are expressed by weight of lime (bwol):

- Pozzolanic mineral admixture (20%): Nanosilica (NS), provided by ULMEN

Europa S.L. as a colloidal superplasticizer–free silica suspension. Fig. 1 shows the TEM

Page 190: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

168

analysis of this admixture, with average particle size of ca. 50 nm and a specific surface

area of ca. 500 m2g−1 (established by BET nitrogen adsorption isotherms) (Fernández et

al., 2013; Navarro–Blasco et al., 2014).

- Waterproofing agent (0.5%): Sodium oleate (O) (HISA A 2388 N). Its molecular

weight is of 304 g mol−1. The structure and performance of this admixture has been

described by Izaguirre et al. (Izaguirre et al., 2009).

- Photocatalytic agent (T) (2.5%): Nanoparticles of bare titanium dioxide (TiO2) as

photocatalyst supplied by Aeroxide P25, Evonik. The particle size of the photocatalyst,

21 nm, was ascertained in previous research by Pérez–Nicolás et al. (Pérez–Nicolás et

al., 2017). Fig. 1 shows the TEM micrograph of this admixture, evidencing its tendency

to agglomerate.

- Superplasticizer (SP) (added in two different dosages 0.5% and 1%): the following

superplasticizers were tested: four different polycarboxylate–based polymers and a

polynaphthalene sulfonate PNS were used. A complete characterization of their structures

was reported in previous works (González–Sánchez et al., 2020; Pérez–Nicolás et al.,

2018). Most relevant characteristics are summarised below:

▪ PCE–A, molar mass 8.00 × 103 and specific anionic charge 920 μeq/g

▪ PCE–B, molar mass 4.60 × 104 and specific anionic charge 1695 μeq/g

▪ PCE–C, molar mass 3.84 × 104 and specific anionic charge 2740 μeq/g

▪ PCE–D, molar mass 3.16 × 104 and specific anionic charge 1895 μeq/g

▪ PNS, molar mass 1.40× 105 and specific anionic charge 4089 μeq/g

Fig. 1. TEM micrographs of nanosilica (left) and nano–TiO2 (right)

200 nm 200 nm

Page 191: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

169

Table 1. Assayed samples: percentage composition of the admixtures

Name Nanosilica

(NS)

Sodium

oleate

(O)

TiO2

(T) Superplasticizer

Control L – – – –

Superplasticizer–free

samples

O–T – 0.5 2.5 –

NS–T 20 – 2.5 –

O–NS–T 20 0.5 2.5 –

PCE–A

A0.5 – 0.5 2.5 0.5

A1 – 0.5 2.5 1.0

A0.5–NS 20 0.5 2.5 0.5

A1–NS 20 0.5 2.5 1.0

PCE–B

B0.5 – 0.5 2.5 0.5

B1 – 0.5 2.5 1.0

B0.5–NS 20 0.5 2.5 0.5

B1–NS 20 0.5 2.5 1.0

PCE–C

C0.5 – 0.5 2.5 0.5

C1 – 0.5 2.5 1.0

C0.5–NS 20 0.5 2.5 0.5

C1–NS 20 0.5 2.5 1.0

PCE–D

D0.5 – 0.5 2.5 0.5

D1 – 0.5 2.5 1.0

D0.5–NS 20 0.5 2.5 0.5

D1–NS 20 0.5 2.5 1.0

PNS

P0.5 – 0.5 2.5 0.5

P1 – 0.5 2.5 1.0

P0.5–NS 20 0.5 2.5 0.5

P1–NS 20 0.5 2.5 1.0

2.2. Preparation of mixtures

All raw materials (lime, aggregates and admixtures) in the planned proportions were

mixed for 5 minutes in a solid–admixtures mixer BL–8–CA (Lleal, S.A.). Afterwards, the

resulting mixture was poured into a different Proeti ETI 26.0072 mixer (Proeti) and water

was added and mixed for 90 s at low speed and adjusted according to EN 196–1

(European Committee for Standardization, 2005).

Cylindrical moulds (36 mm height and 40 mm diameter) were used to prepare the

hardened specimens. Samples were demoulded after 7 days and stored at the same curing

conditions (20 °C and 60% RH). Curing ages were 28 and 91 days. Properties were then

investigated. At least three replicates of the mortars were tested per curing age and per

studied property to obtain representative results. For some analyses, a Struers cutting–

Page 192: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

170

polishing machine was used to obtain slices (10 mm height and 40 mm diameter) from

the cylindrical specimens.

2.3. Methods

2.3.1. Photocatalytic activity: NOx abatement

A continuous flow experiment adapted from an ISO standard method was used for

this assay (Draft International Standard, 2007). The experimental system includes a

cylindrical photoreactor (height 12 cm; diameter 14 cm), fed by a 0.78 L min–1 flow of

nitrogen and air with an initial concentration of 500 ppb NO and around 20 ppb of NO2

(in all instances accurately and continuously monitored by means of a Environnement

AC32M chemiluminescence detector). The conditions established were 50 ± 5% RH and

25 ± 2 °C; a Osram Ultra Vitalux 300W lamp was used to supply UV–vis illumination

(Corrêa, 2015). The nominal irradiance of the lamp after 1 h and at a 0.5 m of distance

was of 41.4 W m–2 (780–380 nm), 13.6 W m–2 (400–315 nm) and 3.0 W m–2 (315–280

nm). This lamp combines visible, UVA and UVB radiation achieving a good simulation

of the solar light (Heikkilä et al., 2009; Prieto and Lagaron, 2020). Experiments were

carried out for each sample discs of 91 days–cured mortars, with 25.14 cm2 of total

exposed area. While the sample was inside of the reactor and the lamp off, the NOx stream

was flowed 10 minutes to stabilize the NO concentration in the reactor, allowing reaching

the adsorption equilibrium between the NOx and the sample. Afterwards, lamp was

switched on for 30 minutes. Then, the lamp was turned off for 10 min, allowing the

recovering of the initial NO concentration value. The selectivity values were calculated

as the percentage ratio NOx/NO, high values meaning a very limited NO2 release and thus

a more effective total NOx degradation. The error analysis of the experimental, expressed

in terms of relative standard deviation, was calculated under reproducibility conditions at

3.3% from the repeated analysis of at least three identical samples.

2.3.2. Determination of density, air content, workable life, pore size distribution

and compressive strength of the mortars

In the fresh mixtures, the density, air content and workable life (expressed as the time

needed to reach stiffness in the mortar) were determined according to the standards EN

1015–6, 1015–7 and 1015–9 (European Committee for Standardization, 1999a, 1999b,

1999c). Values are collected in the Supplementary material (Table S1).

Page 193: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

171

Mercury intrusion porosimetry (MIP) measurements (Micromeritics–AutoPoreIV–

9500) were used to establish the pore size distributions of the hardened mortars after both

curing ages. The samples were analyzed at a pressure range of 0.0015–207 MPa.

A Proeti ETI 26.0052 compression machine (Proeti) was utilized to measure

compressive strengths after 28 and 91 curing days of the cylindrical mortars. The assays

were executed at a breaking speed 5–50 KP s−1 and a time interval between 30 and 90 s.

2.3.3 Adsorption of the superplasticizers and zeta potential studies

In order to know the adsorption of superplasticizers on TiO2, a batch adsorption

experiment was carried out. Five reference samples with 10 mg of each SP and 5

suspensions with the same amount of SP plus 500 mg of TiO2 were prepared and made

up to a final volume of 50 mL. Samples were mechanically stirred for 30 min to reach the

adsorption equilibrium and were subsequently centrifuged for 2 hours at 8000 rpm in a

Heraeus Biofuge Stratos wobbler. Then the supernatant was taken, and the total organic

carbon (TOC) was determined in a TOC–L Shimadzu total organic carbon analyzer. The

adsorbed amount of superplasticizer was thus calculated as the difference between the

TOC content of the reference samples and the TOC content of the supernatant of the

suspensions.

The surface charge of the different suspensions was monitored with a Zeta potential

electroacoustic analyzer (ZetaProbe Analyzer, Colloidal Dynamics). First, two different

initial media were prepared: one, a suspension in water of nano–TiO2 particles; other, a

mixture of air lime, water, NS and sodium oleate, using the same relative compositions

described in Table 1. The media were stirred for 30 minutes. Then, different polymer–

based superplasticizers solutions (1% w/v) were used as titrant media solutions, and zeta

potential values were continuously monitored.

2.3.4. TG studies

The rate of carbonation of hardened samples was analyzed at 28 and 91 curing days

using alumina crucibles by thermogravimetric studies in a simultaneous TG–sDTA 851

Mettler Toledo thermoanalyzer device at 10 °C min−1 heating rate, under static air

atmosphere were heated from 25 until 1000 °C. The percentages of weight losses around

450–480ºC were ascribed to the dehydroxylation of the uncarbonated portlandite,

Page 194: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

172

whereas the weight losses at ca. 800–900ºC were attributed to the CO2 release from the

calcium carbonate.

2.3.5. Self–cleaning test

The self–cleaning capacity of all samples was evaluated by studying the dye

degradation in mortars exposed to UV–Vis light. First, the surface of the discs was stained

with three layers of an aqueous solution of organic dye rhodamine B (1 mM) applied by

brushing. Samples were left to dry in an oven at 50ºC for 60 min. Subsequently, the discs

were irradiated under the Osram Ultra Vitalux UV–Vis lamp of 300 W (data of irradiance

above mentioned in section 2.3.1). The photodegradation activity (discoloration of the

surface of the mortars) was evaluated at 5 time intervals (5, 20, 80, 140 and 310 min)

using a Konica–Minolta CM–2300d colorimeter. Measurements were carried out in 9

circular regions (diameter 3 mm) for each stained sample surface and the color variations

over time were obtained by the chromatic coordinates a∗ and b∗. With the data obtained,

the normalized color change (ΔCn) as Chroma variation was calculated with follow

equation (Fornasini et al., 2019):

∆Cn=√[at

*– a0*]

2+[bt

*– b0*]

2

[aC* – a0

*]2+[bC

* – bt*]

2

Eq. 1

where at* and bt

* are the coordinates at irradiation time t, whereas aC

* and bC* are

measured on the clean stones before staining with dye. The value 1 would correspond to

the complete dye degradation. Finally, results were reported as a function of the

irradiation time.

2.3.6. Surface wettability and photo–induced hydrophilicity

The evaluation of the surface wettability and the photo–induced hydrophilicity of the

different samples was performed by OCA 15EC (DataPhysics Instruments GmbH)

equipment measuring the static water contact angle (CA) of the samples under

illumination with an Osram Ultra Vitalux 300 W lamp at 0, 1, 3, 5, 8 and 30 min. Onto

the surface of the hardened grouts, five water droplets of 5 μL were put at five different

points, and the results were expressed as averages of these measurements.

Page 195: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

173

3 Results and discussion

3.1 NOX removal: effect of the porosity and role of the superplasticizers

The photocatalytic activity was assessed by monitoring the nitrogen oxide removal

ability of the mortars after 91 curing days in a closed reactor and the percentages of the

NO and NOx removal are depicted in Fig. 2. The patterns of the NO abatement tests

followed the general trend reported in previous works (Ângelo et al., 2013; Pérez–Nicolás

et al., 2018, 2017) and showed in Fig. S1 (Supplementary material): in dark conditions,

NO values were left to stabilize in order to drive out the adsorption phenomenon. When

the light was switch on, a quick decrease of the NO concentration was observed. Samples

reached a plateau, which also showed a slight trend to decrease along the time of

exposure, unlike some other results that showed a tendency to increase (Jin et al., 2019).

This finding can be ascribed to an unsaturation state, suggesting the presence of free

active sites able to degrade more NO molecules.

As it can be seen in Fig. 2, the addition of nano–TiO2 dramatically increased the NO

abatement, in comparison with the control sample (L, TiO2–free). The removal of up to

6% of NO in the control sample is ascribed to the photolysis of the pollutant and to the

sorption and conversion of NO into nitrous acid (not measured) (Gandolfo et al., 2015;

Zouzelka and Rathousky, 2017). The addition of the nano–structured photocatalytic

admixture increased the NO removal up to a 28–37% range (for samples O–T, NS–T and

O–NS–T). In comparison with these samples, the use of dispersing admixtures sharply

increased by 33% the NO abatement (the percentage of NO removal of mortars with

superplasticizers was 44% on average). These results are a clear evidence of the

usefulness of incorporating superplasticizers in lime mortars to achieve a suitable

dispersion of the TiO2 within the binding matrix, which had been highlighted as one of

the challenging issues in cementitious binders (Yang et al., 2019).

3.1.1 Influence of the porosity

The effect of the pozzolanic admixture addition was found to be dependent on the

composition of the mortar. For superplasticizer–free mortars, the addition of NS enhanced

the NO removal. The refinement of the pore structure accounts for this finding: the

prevalence of capillary pores between 10 and 100 nm for samples with NS (NS–T and

O–NS–T) was observed in the pore size distribution graphs of mortars (91 curing days),

depicted in Fig. 3. These pores act as a booster of the photocatalytic activity, as stated by

Page 196: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

174

Kaja et al. (Kaja et al., 2019) in cement mortars with TiO2. These authors concluded that

the formation of capillary pores in the range 10–50 nm was critical for the enhancement

of the photocatalytic activity (NO abatement). In the current work, sample O–T without

NS showed negligible porosity in that pore range, yielding a 28% of NO removal. The

samples with NS (NS–T and O–NS–T), with an outstanding increase of capillary pores

in that pore range, increased the NO degradation 1.2–1.3 times.

Fig. 2. NO and NOx abatements for different samples under UV–Vis irradiation.

Fig. 3. Pore size distribution of superplasticizer free samples (91 curing days)

Page 197: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

175

However, in samples with SPs, the addition of nanosilica depicted a different

performance. As a general tendency, samples with NS showed a lower abatement of NO.

The porous structure contributes to clarify the reasons for this lesser performance. The

addition of SPs modified the pore size distribution of the samples with NS, nano–TiO2

and lime. Instead of increasing the capillary pores between 0.01 and 0.1 m (as reported

for air lime mortars with additions of NS (Duran et al., 2014)), the presence of the

superplasticizers caused a clear decrease of the population of the pores of this range

(Fig.4). This fact had been also observed in previous works dealing with NS and SPs

(Fernández et al., 2013; Pérez–Nicolás et al., 2016) and was related to the inhibition of

the pozzolanic reaction (Pérez–Nicolás et al., 2016) and to the enhancement of the filling

effect of the better dispersed NS within the network of lime particles (Alvarez et al.,

2013).

Fig. 4. Pore size distribution of samples with different superplasticizers (91 curing days)

Page 198: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

176

Due to the use of the same ratio of mixing water (see section 2.1), the presence of a

high–range water–reducer, a superplasticizer, produced a large excess of water which in

the end evaporated causing the main contribution to the pore size distribution (main pore

peak at around 1–2 m, which is larger than the most commonly reported 0.5 to 0.8 m

for air lime mortars (Duran et al., 2018; González–Sánchez et al., 2020; Lanas and

Alvarez, 2003; Martínez–García et al., 2019; Santos et al., 2018). This shift of the critical

pore diameter towards higher diameters and the increase observed in the area under the

curve (meaning higher total porosity) influenced the values of the compressive strengths,

which showed an expected drop with respect to the control (Fig. S2, Supplementary

material).

Despite the absence of the capillary pores from 10 to 100 nm, the NO abatement of

these mortars was higher than that of the SP–free mortars (Fig. 2). This finding can be

tentatively ascribed to the combination of the following factors: (i) the macroporosity

increase, in line with the work by Sugrañez et al. (Sugrañez et al., 2013). These authors

reported a better photoactivity and thus a higher NO degradation in cement mortars with

a greater amount of macropores > 2 m. (ii) The achievement of an efficient TiO2

dispersion because of the presence of superplasticizing admixture.

Concerning the first factor and ruling out the influence of the 10–100 nanometer–

sized pores for samples with SP, the effect of the total porosity was considered. Fig. 5

shows the influence of the total porosity on the NO abatement (photocatalytic activity)

for SP–free samples and for mortars with each one of the tested SPs. The results showed

that there is not a clear correlation between these parameters. A high porosity of the

mortar (> 38%) does not necessarily involve a high NO removal rate. This can be noticed,

for example, for P1–NS, P0.5 and samples with PCE–D, which despite their high total

porosity exhibited NO removal percentages around 40% or lower. The opposite is also

true. Mortars with comparatively lower total porosity (32–36%) yielded high NO

abatements (> 45%). The small slopes of the correlations confirm the absence of any

significant influence of the total porosity.

Page 199: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

177

Fig. 5. Influence of the total porosity (%) on the NO abatement (%).

The influence of the macroporosity (pores ≥ 1 m) on the NO abatement was also

studied. The graph is presented in Fig. 6 and a significant correlation (p < 0.01) was

identified altogether, confirming the influence of the macropores ≥ 1 m in the

photoactivity of mortars with TiO2 (Sugrañez et al., 2013).

However, it is evident that the changes in the region of the critical pore diameter and

in the macropores within the mortars with SPs are not enough by themselves to explain

the photocatalytic activity. There are some acute NO abatement differences among

samples with similar macroporosity ≥ 1 m, as for example samples P1–NS and B0.5

(with 29 and 43%, respectively, of NO abatement) or samples B1–NS and C1 (46 and

57% of NO abatement). Therefore, the second factor, i.e. the effectiveness of the

dispersion of TiO2 by the SPs, should be then taken into account to understand the

photocatalytic activity of the tested mortars. Their different performance can be explained

considering the molecular architecture of the superplasticizers and their action

mechanism.

Page 200: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

178

Fig. 6. Influence of the macroporosity (pores ≥ 1 m, expressed as volume of

intruded mercury per g of mortar) on the NO abatement (%).

3.1.2 Role of the superplasticizers

The NO degradation values (Fig. 2) showed that the lime mortars with

polycarboxylate–based SPs yielded better NO removal percentages than those with PNS.

Mortars with PCEs resulted in average NO removal values from 43% to 50%, while the

average percentage for PNS was 39%. Among the tested PCEs, PCE–C degraded on

average 50% of NO resulting in the highest rates of NO removal. PCE–A and PCE–B

exhibited the same NO abatement percentages (average values of 45%), while the

percentage for PCE–D was slightly lower (43%).

The different polymeric structures of the superplasticizers have a clear influence on

their dispersing ability. In previous studies it has been pointed out that the

polynaphthalene sulfonate has a linear structure, with a high number of anionic groups

(sulfonates), which allow the PNS to be strongly adsorbed onto the different particles

(Crépy et al., 2014; Duran et al., 2018; González–Sánchez et al., 2020; Mezhov et al.,

2020). In Fig. 7 the zeta potential titration of aqueous nano–TiO2 dispersion with PNS

depicts the charge reversal phenomenon (according to the double–layer model, from

positive zeta potential values to negative ones) caused by the intense PNS adsorption

(experimentally determined to be 77% onto these particles) and its high anionic charge

density.

Page 201: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

179

Fig. 7. Zeta potential titration of aqueous nano–TiO2 dispersion with different

superplasticizers.

On the other hand, polycarboxylated etherified admixtures have been described as

branched polymers, with a main central backbone with ionizable carboxylate groups and

side chains with variable length (Fediuk et al., 2019; Puertas et al., 2005; Zhang and

Kong, 2015). As reported in the characteristics of the admixtures (section 2.1), the anionic

charge densities of these PCEs are lower than that of the PNS, explaining why their zeta

potential curves are quite different. In Fig. 8, the charge reversal only took place for PCE–

C, which has more carboxylate groups than the other PCEs and shows more adsorption

onto TiO2 particles (76%) than, for example PCE–B and PCE–D (adsorption values of

68% and 52%, respectively). However, the IEP (isoelectric point) for PCE–C was

achieved after the addition of higher amounts of SP in comparison with the PNS. The

addition of PCE–A hardly changed zeta potential because, despite its 79% of adsorption,

its low number of carboxylate groups did not substantially modify the charge at the

surface of the TiO2 particles.

It is generally assumed that at pH of the assay the adsorption is mainly driven by

hydrogen bonds between the SPs and the TiOH/TiOH2+ groups at the surface of the TiO2

particles, influenced also by the molecular weight of the polymers (Liao et al., 2009; Liufu

et al., 2005).

However, the effectiveness in the dispersion of the nano–TiO2 particles in the

complex medium of the fresh lime mortar does not depend mainly on an electrostatic

repulsion action. Whilst the PNS shows a working mechanism based on electrostatic

repulsions (Mezhov et al., 2020), the PCEs have been proved to combine electrostatic

repulsions with steric hindrance (Baltazar et al., 2013; Crépy et al., 2014; Puertas et al.,

Page 202: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

180

2005; Silva et al., 2019). In the literature, this electro–steric working mechanism was

confirmed by far as more efficient in lime systems than the mere electrostatic one

(González–Sánchez et al., 2020; Yoshioka et al., 1997). Other factors that must be

considered are the anchorage of the SPs onto the particles, necessary for an effective

dispersion (Plank and Yu, 2010; Seabra et al., 2007), and the length of the side chains of

the PCEs, responsible for the steric–based dispersion (Plank and Yu, 2010; Yoshioka et

al., 1997).

Fig. 8 shows the zeta potential curves of titration of the simulated complex systems

of the mortars (lime, nano–TiO2, sodium oleate and NS) with the SPs. In order to interpret

these curves, it must be considered that, at the highly alkaline pH of the lime medium, the

following groups at the surface of the different particles should be ionized and thus

negatively charged: portlandite particles, C–S–H phases (formed because of the

pozzolanic reaction between lime and NS) and the nano–TiO2 particles. These negatives

surfaces were expected to be strongly sheltered by a layer of positive calcium counter–

ions, potential determining ions, explaining the positive zeta potential values at the

beginning of the experiment and promoting the adsorption of negatively charged

polymers (González–Sánchez et al., 2020; Pérez–Nicolás et al., 2018; Plank and Winter,

2008; Zhang and Kong, 2015). As it can be observed in Fig. 8, the gradual addition of

PNS led to the systems to reach the IEP (zeta potential 0 mV). This finding implies that

the dispersing action of PNS was inhibited, because this admixture has an electrostatic

working mechanism (Mezhov et al., 2020).

Fig. 8. Zeta potential curves of titration of the simulated complex systems of the

mortars (lime, nano–TiO2, sodium oleate and NS) with different SPs.

Page 203: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

181

Among the PCEs, Fig. 8 shows, in agreement with the higher NO abatement observed

in mortars with this SP, how the titration with PCE–C allowed obtaining faster the

positive zeta potential responsible for the electrostatic stabilization of the particles, which,

together with the steric hindrance, is responsible for the effective dispersion in the assayed

media. Similarly, the poorest photocatalytic performance in mortars with PCEs was

observed for PCE–D, which in Fig. 8 was seen to present a severe delay (high amount of

SP required) in the achievement of the stabilization of the particles.

The length of the lateral chains varies as follows: PCE–D > PCE–C > PCE–A ≈ PCE–

B (L. Dvorkin, N. Lushnikova, M. Sonebi, 2017). The best efficiency in NO removal of

the mortars with PCE–C can be thus explained considering its better dispersion of the

TiO2 particles in the lime systems due to (i) its higher adsorption onto these particles, (ii)

its highest anionic charge among the PCEs at the pH of the mortar and (iii) the noticeable

length of its side chains (including 45 units of ethylene oxide) (Pérez–Nicolás et al.,

2018).

In spite of having longer side chains (52 units), PCE–D showed lower adsorption and

lower anionic charge, thus being not as effective as the PCE–C. The mortars with PCE–

A and PCE–B showed similar NO abatement results due to the steric hindrance

similarities. The highest adsorption of the PCE–A, mainly due to its lower molecular

weight, resulted in a slightly faster stabilization of the nanoparticles.

These results were, in terms of dispersion of TiO2, different from those reported in

the work by Pérez–Nicolás et al. (Pérez–Nicolás et al., 2018), who confirmed a better

dispersion of PCE–B and PCE–D. In the cited paper, the systems were aqueous coatings

of TiO2, whereas in the current work the SPs were added in bulk to a complex lime matrix,

including nano–TiO2, a water repellent, aggregate, lime particles and NS in some cases.

There is agreement in the relatively poor performance of PNS: its working mechanism is

not adequate for lime systems and due to its flat adsorption the growing of hydration and

carbonation compounds (deposits of calcium hydroxide, C–S–H, calcium carbonate)

inactivates its dispersion ability (Pérez–Nicolás et al., 2018; Puertas et al., 2005).

The effect of the dosage of the superplasticizers was clear only for PCE–B and PCE–

C, while for the others (PCE–A, PCE–D and PNS) there was not a clear dosage–response

pattern. The complexity of the system, including different adsorption surfaces (lime

Page 204: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

182

particles, aggregate, TiO2, in some cases nanosilica and the presence of oleate molecules)

may explain this outcome (Plank and Winter, 2008).

Another outstanding issue considering the depolluting activity of these new mortars

is the fact that the use of SPs also resulted in the enhancement of selectivity values

(percentage ratio NOx/NO), which were found to be 81.2% on average (Fig. 9). SP–free

mortars yielded a mean value of 74.2% of selectivity, whereas a clear enhancement was

seen for the mortars with the different SPs: 79.1% for PCE–A, 78.8% for PCE–B, 81.4%

for PCE–C, 85.1% for PCE–D and 81.7% for PNS. From an environmental point of view,

these results are relevant, since only a small fraction of the oxidized NO was released as

NO2 (a more dangerous and toxic pollutant) (Yang et al., 2019; Zouzelka and Rathousky,

2017). These selectivity values are close to the ones achieved by new synthesized

photocatalysts designed to reduce the NO2 release (Yuan et al., 2020) and much higher

than other selectivity values reported in the literature (Ambre et al., 2016; Balbuena et al.,

2016; Luna et al., 2020). It must be highlighted that these high selectivity values were

achieved in samples almost fully carbonated, which is a valuable result due to the reported

decrease in selectivity as a consequence of the carbonation of either cement or lime (Kaja

et al., 2019). According to the thermogravimetric analyses, the degree of carbonation after

91 curing days was 88.4 for SP–free samples, whereas reached a 92.3% for mortars with

SPs.

Two main reasons can be argued to explain the low release of NO2. On the one hand,

the chemical composition of the binding matrix. This composition includes the presence

of alkaline–earth metallic ion (Ca2+–rich system) that have been reported to adsorb NO2

molecules (Papailias et al., 2018, 2017; Pérez–Nicolás et al., 2015) and, through a

chemisorption process onto calcium carbonate, give rise to the formation of nitrate (Lu et

al., 2020); furthermore, the alkaline pH of the lime mortar matrix is able to allow the

disproportionation of the NO2 (Araña et al., 2019) and enhances the interaction with TiO2,

yielding an improvement of the photocatalytic performance (Jin et al., 2019). The increase

in the surface adsorbed water, promoted by the alkaline hydrolysis of TiO2 and by the

hydrophilicity of the Ca(OH)2 in this matrix, has been also reported to enhance the

selectivity (Yang et al., 2018, 2017). On the other hand, the presence of SPs provides an

effective TiO2 separation, offering more possibilities for NO2 adsorption and degradation

onto TiO2 particles (Sivachandiran et al., 2013). This was particularly significant to

explain the differences with the free–SP mortars.

Page 205: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

183

Fig. 9. Selectivity values (Percentage ratio NOx/NO) of different samples

3.2. Self–cleaning effect and photoinduced hydrophilicity

3.2.1 Self–cleaning performance

The degradation of the dye deposited onto the surface of the mortars was studied as

indicative of the self–cleaning ability of the mortars. In order to monitor the decoloring

efficiency, each one the superficially stained mortars (mortars after 91 curing days) were

compared with their bared counterparts and accordingly the influence of the porosity was

to a certain extent attenuated. The discoloration along time under light exposure was

recorded and expressed as Cn (Fig. 10). The mortars without nano–TiO2 were able to

degrade the dye (Rhodamine B, RhB) up to ca. 44%. This result can be ascribed to the

self–degradation of the dye (Fornasini et al., 2019), also fostered by the alkaline

hydrolysis of the pigment (Zhan et al., 2000; Zhu et al., 2012) due to the alkaline

conditions of the lime mortars. The TiO2–free mortars were able to discolor the dye in

values slightly higher to those reported for limestones (Fornasini et al., 2019) because of

the latter aforementioned reason.

Page 206: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

184

Fig. 10. Normalized chroma change (ΔCn) (discoloration) for Rh–B stained

samples at different UV–Vis exposure time.

Page 207: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

185

In the presence of the nano–TiO2 admixture, the lime mortars were able to remove

up to ca. 54% of the RhB over 310 minutes. The increase in the dye degradation (10%)

and the final values were in line with previously reported self–cleaning abilities of TiO2–

bearing coatings (Fornasini et al., 2019). The role of the superplasticizers was also

studied. The PCEs B, C and D enhanced the discoloration of the stained mortar, reaching

degradation values close to 70% in many samples, and therefore increasing the self–

cleaning ability of the lime mortars with respect to the SP–free specimens. In comparison

with TiO2–free mortars and SP–free mortars, respectively, PCE–B enhanced the

decoloring efficiency 1.43 and 1.20 times on average; PCE–C, 1.45 and 1.22 times; and

PCE–D 1.40 and 1.18 times. As in the case of the photocatalytic activity (NO

abatements), the mortars with PCE–C yielded the highest efficiency, followed by PCE–

B and PCE–D. The decomposition kinetics was also fast for these samples, yielding

between 30 and 45% of dye degradation in just 20 minutes of illumination. Samples

without SPs only reached 11% of discoloration in the same period of time.

Mortars with PNS also yielded dye degradation in the range of 60–70%, except for

the poor performance of sample P1–NS (with just 50% of discoloration). It should be

borne in mind that this sample also showed a low percentage of nitric oxide abatement

(Fig. 10). These results can be attributed to the fact that this sample presented the lowest

macroporosity (pores > 1 m) among all the SP–bearing mortars. For the other samples

with PNS, in comparison with the samples with PCEs B, C and D, the kinetics of the

degradation was more sluggish. After 20 minutes of irradiation, only a 15% to 30% of the

dye was degraded.

The PCE–A, in spite of yielding acceptable NO abatement results, did not show a

good self–cleaning performance: only the mortar A0.5–NS was able to degrade up to 60%

of RhB. The degradation kinetics for these samples was extremely sluggish (on average

just 15% of degradation during the first 20 min of irradiation). The reasons for such

performance are not easy to elucidate. Since the pore size distribution of these mortars

was similar to the others with PCEs (Fig. 4) and the NO abatement was effective (Fig. 2),

some interaction of the dye with the superplasticizer should be hypothesized as the cause

of the poor self–cleaning performance. Under the UV–Vis irradiation, two ways of the

Rhodamine B degradation can be expected (Ahmed et al., 2017; Bera et al., 2020; Lei et

al., 2005; Rochkind et al., 2015): 1) a photosensitization mechanism, in which the dye

absorbs the visible light reaching the excited state. The excited dye then transfers charge

Page 208: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

186

to the conduction band of the semiconductor (TiO2 in this case) and reactive ·OH radical

is formed, which in its turn is responsible for the degradation of the dye molecule (Wu et

al., 1998); 2) a direct photocatalytic mechanism, in which upon absorption of the UV

photons by the TiO2, charge separation and formation of active species occur on the

semiconductor, which will end up degrading the dye.

The second mechanism with TiO2 only works under UV irradiation which energy

matches the band–gap of the semiconductor, and understandably the NO abatement is

also strictly dependent on it (Rochkind et al., 2015; Yu et al., 2014). However, if the first

mechanism prevails, some interference during the charge donation from the dye to the

semiconductor might block the dye degradation, and this reason can be postulated to

explain the poor self–cleaning performance of the mortars with PCE–A.

In support of this argument, besides the similarities of the PCE–A mortars concerning

the pore size distribution and the NO abatement, two additional considerations can be

made: i) previous works have shown that the contribution of the visible light illumination

to the dye degradation is higher than that of the UV light, irrespective of the intensity of

the irradiation, remarking the significance of the photosensitization process in the

decoloring efficiency (Kuo and Ho, 2001; Rochkind et al., 2015; Wu et al., 1998); ii) the

experimental results show the differences in the kinetics of the degradation, being the

PCE–A mortars the samples with the slowest degradation. With undoped TiO2, the

photosensitization has been confirmed to exhibit faster discoloration kinetics than that of

the direct photocatalytic degradation (Rochkind et al., 2015), so that the later appears as

prevalent in PCE–A mortars (slow kinetics), whereas the former is predominant in the

others PCEs (fast kinetics) that present good self–cleaning performance.

The different adsorption of this polymer onto semiconductor particles and its low

molecular weight might explain its favored interstitial arrangement between the adsorbed

dye and the semiconductor, hindering the photosensitization mechanism of RhB

degradation (Ojani et al., 2012).

3.2.2 Photoinduced hydrophilicity

In order to have a full understanding of the influence of the different admixtures in

the self–cleaning performance of the lime mortars, the second approach of this research

work was to study if the addition of the waterproofing admixture (sodium oleate) might

Page 209: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

187

interfere with that property. Specifically, the waterproofing agent could reduce the

photoinduced hydrophilicity due to its water repelling action. The 91 days–aged lime

mortars were thus exposed to irradiation and the static water contact angle (CA) was

monitored at different times. Fig. 11 shows the different graphs of the surface wettability

of the mortars for each one of the tested SPs.

At time 0 min, before the irradiation, the waterproofing effect of the sodium oleate

was evident. Whilst the CA could not be determined for the control mortar (admixture–

free lime mortar) due to the instantaneous absorption of the water drop, the addition of

sodium oleate (sample O) sharply increased the CA of the mortar (up to ca. 80º), proving

the hydro–repellency imparted to the mortars by the oleate.

The addition of other admixtures, such as NS and nano–TiO2 increased the

wettability of the mortars, because, among other reasons, the dilution effect of the oleate

(owing to the addition of 20% and 2.5% of NS and TiO2 by weight of lime). For example,

in photocatalyst–bearing mortar O–NS–T, continuous irradiation for 30 minutes caused

a CA moderate drop from 51º to 37º (i.e. a 27% of CA reduction).

The presence of the superplasticizers in the mortars induced noticeable changes in

the CA values, proving their ability to favor the photoinduced hydrophilicity owing to the

dispersion of TiO2 active sites. CA values below 10º were obtained for some samples

after 30 min of irradiation. The lowest CA values were achieved in mortars with PCE–D,

PCE–C and PNS. On average, the percentages of CA reduction for samples before and

after 30 minutes irradiation of UV–Vis light were ca. 44% for PCE–A and PCE–B, ca.

52% for PCE–C and PNS and ca. 64% for PCE–D.

Fig. 12 shows the profile of the water drops after deposition on the surface of

different mortars after 3 minutes of irradiation, allowing observing the different

wettability of the specimens.

Page 210: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

188

Fig. 11. Static water contact angle (CA) as a function of the UV–Vis irradiation

time of different samples.

Page 211: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

189

Fig. 12. Water droplets over different samples after 3 minutes of UV–Vis irradiation:

(a) O–NS–T, (b) A0.5–NS, (c) B0.5–NS, (d) C0.5–NS, (e) D0.5–NS and (f) P0.5–NS.

These results are in line with previous results on photocatalytic coatings (Fornasini

et al., 2019), and they confirm that the incorporation of superplasticizers in bulk allowed

the preservation of the photoinduced hydrophilicity in these lime mortars, favoring their

self–cleaning characteristics. While the addition of a waterproofing agent is well known

to increase the durability of the lime mortars (Atahan et al., 2008; Izaguirre et al., 2010;

Silva et al., 2020), its presence has now been proved not to be detrimental for the

photoinduced hydrophilicity and thus for the self–cleaning properties of the lime mortars.

4 Conclusions

The specific target of this paper was to enhance the photocatalytic activity and self–

cleaning effect of lime mortars by using dispersing admixtures. The air lime mortars were

modified upon addition of a waterproofing agent, a pozzolanic admixture (nanosilica), a

photocatalytic agent (nano–TiO2) and superplasticizers.

This study has shown that the addition of superplasticizers resulted in a clear increase

of the depolluting action of the lime mortars by 33% on average as compared with SP–

free mortars, reaching a 44% of NO removal. In these mortars, the effect of the pore size

distribution was ascertained and a certain influence of the macropores > 1 m was

identified. The effective charge carrier separation was found to enhance the photoactivity,

particularly for mortars with PCE–C as superplasticizer. The polycarboxylated SPs

a)

b)

c)

d)

e)

f)

Page 212: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

190

increased more the photoactivity than PNS and this was related to the molecular

architecture of the SPs, which dominated the adsorption of the SPs, the anionic charge

density and the length of the side chains of the PCEs.

NO2 formation as a very toxic intermediate was hampered in a good degree due to

the use of dispersing admixtures, which provided selectivity values as high as 87%. These

good results were ascribed to the positive effect of the superplasticizers and to the

characteristics of the lime matrix, with alkaline pH and alkaline–earth ions.

The self–cleaning ability of the mortars was also improved by the addition of SPs.

The study of the degradation of the Rhodamine B dye deposited onto the surface of the

mortars showed ca. 70% of discoloration after 310 minutes of UV–Vis irradiation With

respect to TiO2–free mortars, PCEs B, C and D enhanced the decoloring efficiency 1.43

times on average. With respect to SP–free TiO2–bearing mortars, the enhancement of the

self–cleaning ability was 1.20 times. The poor performance of PCE–A concerning the

self–cleaning activity was related to the interference with the photosensitization

mechanism of the dye degradation, which was found to be fostered by the other PCEs

that displayed faster kinetics of degradation. This mechanism is dependent on the visible

light excitation of the dye and explains why, despite the poor self–cleaning performance,

the NO abatement of PCE–A samples (UV dependent) was high.

This study demonstrated that the presence of SPs also enhanced the photoinduced

hydrophilicity of the mortars, a mechanism that favors the self–cleaning action. The

presence of a waterproofing agent, sodium oleate, added to increase the durability of the

lime mortars, was compatible with the photoinduced wettability of the surface.

Particularly PCE–D, PCE–C and PNS fostered the achievement of low CA values (ca.

10º) during the irradiation of the mortars.

Due to the positive enhancement of the depolluting and self–cleaning abilities of the

air lime mortars, further studies might be addressed to adjust the dosages and the

water/lime ratio of these mortars depending on their final application as rendering mortars

(one–coat, multilayer or repointing mortars), allowing to obtain interesting

photocatalytically active and self–cleaning materials.

Page 213: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

191

Author Contributions

J.F. González–Sánchez: Main contributor in Investigation, Data curation, Formal

analysis, Writing– Original draft preparation, Writing– Reviewing and Editing. B. Taşcı:

Data curation, Formal analysis. J.M. Fernández: Writing– Reviewing and Editing. Í.

Navarro–Blasco: Investigation, Conceptualization, Visualization, Validation, Project

administration. J.I. Alvarez: Methodology, Supervision, Writing– Reviewing and

Editing, Funding acquisition.

Funding

This study was funded by Spanish Ministry of Economy and Competitiveness

(MINECO), grant number MAT2015–70728–P. The first author thanks the Friends of the

University of Navarra, Inc., for a pre–doctoral grant.

Acknowledgments

The authors thank the technical support provided by Cristina Luzuriaga.

References

Ahmed, M.A., Abou–Gamra, Z.M., Medien, H.A.A., Hamza, M.A., 2017. Effect of

porphyrin on photocatalytic activity of TiO2 nanoparticles toward Rhodamine B

photodegradation. J. Photochem. Photobiol. B Biol. 176, 25–35.

https://doi.org/10.1016/j.jphotobiol.2017.09.016

Alvarez, J.I., Fernández, J.M., Navarro–Blasco, I., Duran, A., Sirera, R., 2013.

Microstructural consequences of nanosilica addition on aerial lime binding materials:

Influence of different drying conditions. Mater. Charact. 80, 36–49.

https://doi.org/10.1016/j.matchar.2013.03.006

Ambre, R.B., Mane, S.B., Hung, C.H., 2016. Zinc porphyrins possessing three p–

carboxyphenyl groups: Effect of the donor strength of push–groups on the efficiency

of dye sensitized solar cells. Energies 9. https://doi.org/10.3390/en9070513

Ângelo, J., Andrade, L., Madeira, L.M., Mendes, A., 2013. An overview of photocatalysis

phenomena applied to NOx abatement. J. Environ. Manage. 129, 522–539.

https://doi.org/10.1016/j.jenvman.2013.08.006

Araña, J., Garzón Sousa, D., González Díaz, O., Pulido Melián, E., Doña Rodríguez, J.M.,

2019. Effect of NO2 and NO3–/HNO3 adsorption on no photocatalytic conversion.

Appl. Catal. B Environ. 244, 660–670. https://doi.org/10.1016/j.apcatb.2018.12.005

Arehart, J.H., Nelson, W.S., Srubar, W. V., 2020. On the theoretical carbon storage and

carbon sequestration potential of hempcrete. J. Clean. Prod. 266. 121846

https://doi.org/10.1016/j.jclepro.2020.121846

Page 214: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

192

Arrigoni, A., Pelosato, R., Melià, P., Ruggieri, G., Sabbadini, S., Dotelli, G., 2017. Life

cycle assessment of natural building materials: the role of carbonation, mixture

components and transport in the environmental impacts of hempcrete blocks. J.

Clean. Prod. 149, 1051–1061. https://doi.org/10.1016/j.jclepro.2017.02.161

Atahan, H.N., Carlos, C., Chae, S., Monteiro, P.J.M., Bastacky, J., 2008. The morphology

of entrained air voids in hardened cement paste generated with different anionic

surfactants. Cem. Concr. Compos. 30, 566–575. https://doi.org/10.1016/

j.cemconcomp.2008.02.003

Azeiteiro, L.C., Velosa, A., Paiva, H., Mantas, P.Q., Ferreira, V.M., Veiga, R., 2014.

Development of grouts for consolidation of old renders. Constr. Build. Mater. 50,

352–360. https://doi.org/10.1016/j.conbuildmat.2013.09.006

Balbuena, J., Carraro, G., Cruz, M., Gasparotto, A., Maccato, C., Pastor, A., Sada, C.,

Barreca, D., Sánchez, L., 2016. Advances in photocatalytic NOx abatement through

the use of Fe2O3/TiO2 nanocomposites. RSC Adv. 6, 74878–74885.

https://doi.org/10.1039/c6ra15958c

Baltazar, L.G., Henriques, F.M.A., Jorne, F., Cidade, M.T., 2013. The use of rheology in

the study of the composition effects on the fresh behaviour of hydraulic lime grouts

for injection of masonry walls. Rheol. Acta 52, 127–138.

https://doi.org/10.1007/s00397–013–0674–x

Bera, K.K., Chakraborty, M., Mondal, M., Banik, S., Bhattacharya, S.K., 2020. Synthesis

of α–β Bi2O3 heterojunction photocatalyst and evaluation of reaction mechanism for

degradation of RhB dye under natural sunlight. Ceram. Int. 46, 7667–7680.

https://doi.org/10.1016/j.ceramint.2019.11.269

Bloh, J.Z., Folli, A., Macphee, D.E., 2014. Photocatalytic NOx abatement: Why the

selectivity matters. RSC Adv. 4, 45726–45734. https://doi.org/10.1039/c4ra07916g

Colls, J., 2002. Air pollution. Spon press, London.

Corrêa, M.D.P., 2015. Solar ultraviolet radiation: Properties, characteristics and amounts

observed in Brazil and south America. An. Bras. Dermatol. 90, 297–313.

https://doi.org/10.1590/abd1806–4841.20154089

Crépy, L., Petit, J.Y., Wirquin, E., Martin, P., Joly, N., 2014. Synthesis and evaluation of

starch–based polymers as potential dispersants in cement pastes and self leveling

compounds. Cem. Concr. Compos. 45, 29–38.

https://doi.org/10.1016/j.cemconcomp.2013.09.004

Crupi, V., Fazio, B., Gessini, A., Kis, Z., La Russa, M.F., Majolino, D., Masciovecchio,

C., Ricca, M., Rossi, B., Ruffolo, S.A., Venuti, V., 2018. TiO2–SiO2–PDMS

nanocomposite coating with self–cleaning effect for stone material: Finding the

optimal amount of TiO2. Constr. Build. Mater. 166, 464–471.

https://doi.org/10.1016/j.conbuildmat.2018.01.172

Dalton, J.S., Janes, P.A., Jones, N.G., Nicholson, J.A., Hallam, K.R., Allen, G.C., 2002.

Photocatalytic oxidation of NOx gases using TiO2: A surface spectroscopic approach.

Environ. Pollut. 120, 415–422. https://doi.org/10.1016/S0269–7491(02)00107–0

Deng, X., Li, J., Lu, Z., Chen, J., Luo, K., Niu, Y., 2020. Effect of hydrated lime on

structures and properties of decorative rendering mortar. Constr. Build. Mater. 256.

119485 https://doi.org/10.1016/j.conbuildmat.2020.119485

Page 215: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

193

Draft International Standard, 2007. Fine ceramics (advanced ceramics, advanced

technical ceramics) — Test method for air–purification performance of

semiconducting photocatalytic materials — Part 1: Removal of nitric oxide [WWW

Document]. Draft Int. Stand. URL http://www.iso.org/iso/home/store/catalogue_tc/

catalogue_detail.htm?csnumber=40761

Duran, A., González–Sánchez, J.F., Fernández, J.M., Sirera, R., Navarro–Blasco, Í.,

Alvarez, J.I., 2018. Influence of two polymer–based superplasticizers (poly–

naphthalene sulfonate, PNS, and lignosulfonate, LS) on compressive and flexural

strength, freeze–thaw, and sulphate attack resistance of lime–metakaolin grouts.

Polymers (Basel). 10. https://doi.org/10.3390/polym10080824

Duran, A., Navarro–Blasco, I., Fernández, J.M., Alvarez, J.I., 2014. Long–term

mechanical resistance and durability of air lime mortars with large additions of

nanosilica. Constr. Build. Mater. 58, 147–158. https://doi.org/10.1016/

j.conbuildmat.2014.02.030

Dvorkin, L., Lushnikova, N., Sonebi, M., Khatib, J., 2017. Properties of modified

phosphogypsum binder. Academic Journal of Civil Engineering, 35(2), 96–102.

https://doi.org/10.26168/icbbm2017.13.

European Committee for Standardization, 2006. UNE–EN 1015–3:2000 Methods of test

for mortar for masonry —Part 3: Determination of consistence of fresh mortar (by

flow table). EN.

European Committee for Standardization, 2005. UNE–EN 196–1 Methods of testing

cement. Part 1: Determination of strength. EN.

European Committee for Standardization, 1999a. UNE–EN 1015–6:1999 Methods of

Test for Mortar for Masonry. Part 6: Determination of Bulk Density of Fresh Mortar.

EN.

European Committee for Standardization, 1999b. UNE–EN 1015–9:1999 Methods of

Test for Mortar for Masonry, Part 9: Determination of Workable Life and Correction

Time of Fresh Mortar. EN.

European Committee for Standardization, 1999c. UNE–EN 1015–7:1999 Methods of

Test for Mortar for Masonry. Part 7: Determination of Air Content of Fresh Mortar.

EN.

Falchi, L., Müller, U., Fontana, P., Izzo, F.C., Zendri, E., 2013. Influence and

effectiveness of water–repellent admixtures on pozzolana–lime mortars for

restoration application. Constr. Build. Mater. 49, 272–280.

https://doi.org/10.1016/j.conbuildmat.2013.08.030

Falchi, L., Zendri, E., Müller, U., Fontana, P., 2015. The influence of water–repellent

admixtures on the behaviour and the effectiveness of Portland limestone cement

mortars. Cem. Concr. Compos. 59, 107–118.

https://doi.org/10.1016/j.cemconcomp.2015.02.004

Fediuk, R., Timokhin, R., Mochalov, A., Otsokov, K., Lashina, I., 2019. Performance

properties of high–density impermeable cementitious paste. J. Mater. Civ. Eng. 31.

04019013 https://doi.org/10.1061/(ASCE)MT.1943–5533.0002633

Fernández, J.M., Duran, A., Navarro–Blasco, I., Lanas, J., Sirera, R., Alvarez, J.I., 2013.

Influence of nanosilica and a polycarboxylate ether superplasticizer on the

performance of lime mortars. Cem. Concr. Res. 43, 12–24. https://doi.org/

10.1016/j.cemconres.2012.10.007

Page 216: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

194

Folli, A., Pade, C., Hansen, T.B., De Marco, T., MacPhee, D.E., 2012. TiO2

photocatalysis in cementitious systems: Insights into self–cleaning and depollution

chemistry. Cem. Concr. Res. 42, 539–548. https://doi.org/10.1016/

j.cemconres.2011.12.001

Fornasini, L., Bergamonti, L., Bondioli, F., Bersani, D., Lazzarini, L., Paz, Y., Lottici,

P.P., 2019. Photocatalytic N–doped TiO2 for self–cleaning of limestones. Eur. Phys.

J. Plus 134, 539. https://doi.org/10.1140/epjp/i2019–12981–6

Gandolfo, A., Bartolomei, V., Gomez Alvarez, E., Tlili, S., Gligorovski, S., Kleffmann,

J., Wortham, H., 2015. The effectiveness of indoor photocatalytic paints on NOx and

HONO levels. Appl. Catal. B Environ. 166–167, 84–90. https://doi.org/10.1016/

j.apcatb.2014.11.011

Giosuè, C., Mobili, A., Citterio, B., Biavasco, F., Ruello, M.L., Tittarelli, F., 2020.

Innovative hydraulic lime–based finishes with unconventional aggregates and TiO2

for the improvement of indoor air quality. Manuf. Rev. 7.

https://doi.org/10.1051/mfreview/2020010

Giosuè, C., Yu, Q.L., Ruello, M.L., Tittarelli, F., Brouwers, H.J.H., 2018. Effect of pore

structure on the performance of photocatalytic lightweight lime–based finishing

mortar. Constr. Build. Mater. 171, 232–242. https://doi.org/10.1016/

j.conbuildmat.2018.03.106

González–Sánchez, J.F., Taşci, B., Fernández, J.M., Navarro–Blasco, Í., Alvarez, J.I.,

2020. Combination of polymeric superplasticizers, water repellents and pozzolanic

agents to improve air lime–based grouts for historic masonry repair. Polymers

(Basel). 12. https://doi.org/10.3390/POLYM12040887

Haider, A.J., Jameel, Z.N., Al–Hussaini, I.H.M., 2019. Review on: Titanium dioxide

applications, in: Energy Procedia. Elsevier Ltd, pp. 17–29.

https://doi.org/10.1016/j.egypro.2018.11.159

Heikkilä, A., Kärhä, P., Tanskanen, A., Kaunismaa, M., Koskela, T., Kaurola, J., Ture,

T., Syrjälä, S., 2009. Characterizing a UV chamber with mercury lamps for

assessment of comparability to natural UV conditions. Polym. Test. 28, 57–65.

https://doi.org/10.1016/j.polymertesting.2008.10.005

Izaguirre, A., Lanas, J., Álvarez, J.I., 2011. Characterization of aerial lime–based mortars

modified by the addition of two different water–retaining agents. Cem. Concr.

Compos. 33, 309–318. https://doi.org/10.1016/j.cemconcomp.2010.09.008

Izaguirre, A., Lanas, J., Álvarez, J.I., 2010. Ageing of lime mortars with admixtures:

Durability and strength assessment. Cem. Concr. Res. 40, 1081–1095.

https://doi.org/10.1016/j.cemconres.2010.02.013

Izaguirre, A., Lanas, J., Álvarez, J.I., 2009. Effect of water–repellent admixtures on the

behaviour of aerial lime–based mortars. Cem. Concr. Res. 39, 1095–1104.

https://doi.org/10.1016/J.CEMCONRES.2009.07.026

Jin, Q., Saad, E.M., Zhang, W., Tang, Y., Kurtis, K.E., 2019. Quantification of NOx

uptake in plain and TiO2–doped cementitious materials. Cem. Concr. Res. 122, 251–

256. https://doi.org/10.1016/j.cemconres.2019.05.010

Kaja, A.M., Brouwers, H.J.H., Yu, Q.L., 2019. NOx degradation by photocatalytic

mortars: The underlying role of the CH and C–S–H carbonation. Cem. Concr. Res.

125. https://doi.org/10.1016/j.cemconres.2019.105805

Page 217: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

195

Kapridaki, C., Verganelaki, A., Dimitriadou, P., Maravelaki–Kalaitzaki, P., 2018.

Conservation of monuments by a three–layered compatible treatment of TEOS–

Nano–Calcium Oxalate consolidant and TEOS–PDMS–TiO2

hydrophobic/photoactive hybrid nanomaterials. Materials (Basel). 11.

https://doi.org/10.3390/ma11050684

Kapridaki, C., Xynidis, N., Vazgiouraki, E., Kallithrakas–Kontos, N., Maravelaki–

Kalaitzaki, P., 2019. Characterization of photoactive Fe–TiO2 lime coatings for

building protection: The role of Iron content. Materials (Basel). 12.

https://doi.org/10.3390/ma12111847

Khin, M.M., Nair, A.S., Babu, V.J., Murugan, R., Ramakrishna, S., 2012. A review on

nanomaterials for environmental remediation. Energy Environ. Sci. 5, 8075–8109.

https://doi.org/10.1039/c2ee21818f

Krishnan, P., Zhang, M.H., Yu, L.E., 2018. Removal of black carbon using photocatalytic

silicate–based coating: Laboratory and field studies. J. Clean. Prod. 183, 436–448.

https://doi.org/10.1016/j.jclepro.2018.02.149

Krou, N.J., Batonneau–Gener, I., Belin, T., Mignard, S., Horgnies, M., Dubois–Brugger,

I., 2013. Mechanisms of NOx entrapment into hydrated cement paste containing

activated carbon – Influences of the temperature and carbonation. Cem. Concr. Res.

53, 51–58. https://doi.org/10.1016/j.cemconres.2013.06.006

Kuo, W.S., Ho, P.H., 2001. Solar photocatalytic decolorization of methylene blue in

water. Chemosphere 45, 77–83. https://doi.org/10.1016/S0045–6535(01)00008–X

Lanas, J., Alvarez, J.I., 2003. Masonry repair lime–based mortars: Factors affecting the

mechanical behavior. Cem. Concr. Res. 33, 1867–1876.

https://doi.org/10.1016/S0008–8846(03)00210–2

Lei, P., Chen, C., Yang, J., Ma, W., Zhao, J., Zang, L., 2005. Degradation of dye

pollutants by immobilized polyoxometalate with H2O2 under visible–light

irradiation. Environ. Sci. Technol. 39, 8466–8474.

https://doi.org/10.1021/es050321g

Liao, D.L., Wu, G.S., Liao, B.Q., 2009. Zeta potential of shape–controlled TiO2

nanoparticles with surfactants. Colloids Surfaces A Physicochem. Eng. Asp. 348,

270–275. https://doi.org/10.1016/j.colsurfa.2009.07.036

Liufu, S., Xiao, H., Li, Y., 2005. Adsorption of poly(acrylic acid) onto the surface of

titanium dioxide and the colloidal stability of aqueous suspension. J. Colloid

Interface Sci. 281, 155–163. https://doi.org/10.1016/j.jcis.2004.08.075

Lu, Z.Z., Li, S.Q., Xiao, J.Y., 2020. Synergetic Effect of Na–Ca for Enhanced

Photocatalytic Performance in NOx Degradation by g–C3N4. Catal. Lett.

https://doi.org/10.1007/s10562–020–03318–5

Lucas, S.S., Ferreira, V.M., De Aguiar, J.L.B., 2013. Incorporation of titanium dioxide

nanoparticles in mortars – Influence of microstructure in the hardened state

properties and photocatalytic activity. Cem. Concr. Res. 43, 112–120.

https://doi.org/10.1016/j.cemconres.2012.09.007

Luna, M., Gatica, J.M., Vidal, H., Mosquera, M.J., 2020. Use of Au/N–TiO2/SiO2

photocatalysts in building materials with NO depolluting activity. J. Clean. Prod.

243, 118633. https://doi.org/10.1016/j.jclepro.2019.118633

Page 218: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

196

Luna, M., Mosquera, M.J., Vidal, H., Gatica, J.M., 2019. Au–TiO2/SiO2 photocatalysts

for building materials: Self–cleaning and de–polluting performance. Build. Environ.

164, 106347. https://doi.org/10.1016/j.buildenv.2019.106347

Mamaghani, A.H., Haghighat, F., Lee, C.S., 2017. Photocatalytic oxidation technology

for indoor environment air purification: The state–of–the–art. Appl. Catal. B

Environ. 203, 247–269. https://doi.org/10.1016/j.apcatb.2016.10.037

Martínez–García, C., González–Fonteboa, B., Carro–López, D., Martínez–Abella, F.,

2019. Impact of mussel shell aggregates on air lime mortars. Pore structure and

carbonation. J. Clean. Prod. 215, 650–668. https://doi.org/10.1016/j.jclepro.

2019.01.121

Mezhov, A., Ulka, S., Gendel, Y., Diesendruck, C.E., Kovler, K., 2020. The working

mechanisms of low molecular weight polynaphthalene sulfonate superplasticizers.

Constr. Build. Mater. 240, 117891. https://doi.org/10.1016/j.conbuildmat.

2019.117891

Munafò, P., Goffredo, G.B., Quagliarini, E., 2015. TiO2–based nanocoatings for

preserving architectural stone surfaces: An overview. Constr. Build. Mater. 84, 201–

218.https://doi.org/10.1016/j.conbuildmat.2015.02.083

Navarro–Blasco, I., Pérez–Nicolás, M., Fernández, J.M., Duran, A., Sirera, R., Alvarez,

J.I., 2014. Assessment of the interaction of polycarboxylate superplasticizers in

hydrated lime pastes modified with nanosilica or metakaolin as pozzolanic reactives.

Constr. Build. Mater. 73, 1–12. https://doi.org/10.1016/j.conbuildmat.2014.09.052

Nunes, C., Slížková, Z., 2016. Freezing and thawing resistance of aerial lime mortar with

metakaolin and a traditional water–repellent admixture. Constr. Build. Mater. 114,

896–905. https://doi.org/10.1016/j.conbuildmat.2016.04.029

Nunes, C., Slížková, Z., Stefanidou, M., Němeček, J., 2016. Microstructure of lime and

lime–pozzolana pastes with nanosilica. Cem. Concr. Res. 83, 152–163.

https://doi.org/10.1016/j.cemconres.2016.02.004

Ojani, R., Raoof, J.B., Zarei, E., 2012. Electrochemical monitoring of

photoelectrocatalytic degradation of rhodamine B using TiO2 thin film modified

graphite electrode. J. Solid State Electrochem. 16, 2143–2149.

https://doi.org/10.1007/s10008–011–1634–y

Orsini, F., Marrone, P., 2019. Approaches for a low–carbon production of building

materials: A review. J. Clean. Prod. 241, 118380 https://doi.org/10.1016/j.jclepro.

2019.118380

Padovnik, A., Bokan–Bosiljkov, V., 2020. Effect of ultralight filler on the properties of

hydrated lime injection grout for the consolidation of detached historic decorative

plasters. Materials (Basel). 13. https://doi.org/10.3390/ma13153360

Padovnik, A., Piqué, F., Jornet, A., Bokan–Bosiljkov, V., 2016. Injection Grouts for the

Re–Attachment of Architectural Surfaces with Historic Value—Measures to

Improve the Properties of Hydrated Lime Grouts in Slovenia. Int. J. Archit. Herit.

10, 993–1007. https://doi.org/10.1080/15583058.2016.1177747

Papailias, I., Todorova, N., Giannakopoulou, T., Karapati, S., Boukos, N., Dimotikali, D.,

Trapalis, C., 2018. Enhanced NO2 abatement by alkaline–earth modified g–C 3 N 4

nanocomposites for efficient air purification. Appl. Surf. Sci. 430, 225–233.

https://doi.org/10.1016/j.apsusc.2017.08.084

Page 219: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

197

Papailias, I., Todorova, N., Giannakopoulou, T., Yu, J., Dimotikali, D., Trapalis, C.,

2017. Photocatalytic activity of modified g–C3N4/TiO2 nanocomposites for NOx

removal. Catal. Today 280, 37–44. https://doi.org/10.1016/j.cattod.2016.06.032

Pérez–Nicolás, M., Balbuena, J., Cruz–Yusta, M., Sánchez, L., Navarro–Blasco, I.,

Fernández, J.M., Alvarez, J.I., 2015. Photocatalytic NOx abatement by calcium

aluminate cements modified with TiO2: Improved NO2 conversion. Cem. Concr. Res.

70, 67–76. https://doi.org/10.1016/j.cemconres.2015.01.011

Pérez–Nicolás, M., Duran, A., Navarro–Blasco, I., Fernández, J.M., Sirera, R., Alvarez,

J.I., 2016. Study on the effectiveness of PNS and LS superplasticizers in air lime–

based mortars. Cem. Concr. Res. 82, 11–22. https://doi.org/10.1016/j.cemconres.

2015.12.006

Pérez–Nicolás, M., Navarro–Blasco, Í., Fernández, J.M., Alvarez, J.I., 2017. The effect

of TiO2 doped photocatalytic nano–additives on the hydration and microstructure of

portland and high alumina cements. Nanomaterials 7, 7100329. https://doi.org/

10.3390/nano7100329

Pérez–Nicolás, M., Plank, J., Ruiz–Izuriaga, D., Navarro–Blasco, I., Fernández, J.M.,

Alvarez, J.I., 2018. Photocatalytically active coatings for cement and air lime

mortars: Enhancement of the activity by incorporation of superplasticizers. Constr.

Build. Mater. 162, 628–648. https://doi.org/10.1016/j.conbuildmat.2017.12.087

Plank, J., Winter, C., 2008. Competitive adsorption between superplasticizer and retarder

molecules on mineral binder surface. Cem. Concr. Res. 38, 599–605.

https://doi.org/10.1016/j.cemconres.2007.12.003

Plank, J., Yu, B., 2010. Preparation of hydrocalumite–based nanocomposites using

polycarboxylate comb polymers possessing high grafting density as interlayer

spacers. Appl. Clay Sci. 47, 378–383. https://doi.org/10.1016/j.clay.2009.11.057

Pozo–Antonio, J.S., Dionísio, A., 2017. Self–cleaning property of mortars with TiO2

addition using real diesel exhaust soot. J. Clean. Prod. 161, 850–859.

https://doi.org/10.1016/j.jclepro.2017.05.202

Prieto, C., Lagaron, J.M., 2020. Nanodroplets of docosahexaenoic acid–enriched algae

oil encapsulated within microparticles of hydrocolloids by emulsion electrospraying

assisted by pressurized gas. Nanomaterials 10. https://doi.org/10.3390/

nano10020270

Puertas, F., Santos, H., Palacios, M., Martínez–Ramírez, S., 2005. Polycarboxylate

superplasticiser admixtures: Effect on hydration, microstructure and rheological

behaviour in cement pastes. Adv. Cem. Res. 17, 77–89. https://doi.org/10.1680/

adcr.2005.17.2.77

Rochkind, M., Pasternak, S., Paz, Y., 2015. Using dyes for evaluating photocatalytic

properties: A critical review. Molecules 20, 88–110. https://doi.org/10.3390/

molecules20010088

Ruot, B., Plassais, A., Olive, F., Guillot, L., Bonafous, L., 2009. TiO2–containing cement

pastes and mortars: Measurements of the photocatalytic efficiency using a rhodamine

B–based colourimetric test. Sol. Energy 83, 1794–1801. https://doi.org/10.1016/

j.solener.2009.05.017

Saeli, M., Piccirillo, C., Tobaldi, D.M., Binions, R., Castro, P.M.L., Pullar, R.C., 2018.

A sustainable replacement for TiO2 in photocatalyst construction materials:

Hydroxyapatite–based photocatalytic additives, made from the valorisation of food

Page 220: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

198

wastes of marine origin. J. Clean. Prod. 193, 115–127. https://doi.org/10.1016/

j.jclepro.2018.05.030

Salavessa, E., Jalali, S., Sousa, L.M.O., Fernandes, L., Duarte, A.M., 2013. Historical

plasterwork techniques inspire new formulations. Constr. Build. Mater. 48, 858–867.

https://doi.org/10.1016/j.conbuildmat.2013.07.064

Santos, A.R., Veiga, M. do R., Santos Silva, A., de Brito, J., Álvarez, J.I., 2018. Evolution

of the microstructure of lime based mortars and influence on the mechanical

behaviour: The role of the aggregates. Constr. Build. Mater. 187, 907–922.

https://doi.org/10.1016/j.conbuildmat.2018.07.223

Seabra, M.P., Labrincha, J.A., Ferreira, V.M., 2007. Rheological behaviour of hydraulic

lime–based mortars. J. Eur. Ceram. Soc. 27, 1735–1741. https://doi.org/10.1016/

j.jeurceramsoc.2006.04.155

Sharma, U., Singh, L.P., Zhan, B., Poon, C.S., 2019. Effect of particle size of nanosilica

on microstructure of C–S–H and its impact on mechanical strength. Cem. Concr.

Compos. 97, 312–321. https://doi.org/10.1016/j.cemconcomp.2019.01.007

Silva, B., Ferreira Pinto, A.P., Gomes, A., Candeias, A., 2019. Fresh and hardened state

behaviour of aerial lime mortars with superplasticizer. Constr. Build. Mater. 225,

1127–1139. https://doi.org/10.1016/j.conbuildmat.2019.07.275

Silva, B.A., Ferreira Pinto, A.P., Gomes, A., Candeias, A., 2020. Comparative analysis

of the behaviour of integral water–repellents on lime mortars. Constr. Build. Mater.

261, 120344. https://doi.org/10.1016/j.conbuildmat.2020.120344

Sivachandiran, L., Thevenet, F., Gravejat, P., Rousseau, A., 2013. Investigation of NO

and NO2 adsorption mechanisms on TiO2 at room temperature. Appl. Catal. B

Environ. 142–143, 196–204. https://doi.org/10.1016/j.apcatb.2013.04.073

Son, J., Kundu, S., Verma, L.K., Sakhuja, M., Danner, A.J., Bhatia, C.S., Yang, H., 2012.

A practical superhydrophilic self cleaning and antireflective surface for outdoor

photovoltaic applications. Sol. Energy Mater. Sol. Cells 98, 46–51.

https://doi.org/10.1016/j.solmat.2011.10.011

Sugrañez, R., Álvarez, J.I., Cruz–Yusta, M., Mármol, I., Morales, J., Vila, J., Sánchez,

L., 2013. Enhanced photocatalytic degradation of NOx gases by regulating the

microstructure of mortar cement modified with titanium dioxide. Build. Environ. 69,

55–63. https://doi.org/10.1016/j.buildenv.2013.07.014

Tsardaka, E., Stefanidou, M., 2020. The Effects of Single and Combined Nanoparticles

in the Properties of Air Lime Pastes. Int. J. Archit. Herit. 14, 964–976.

https://doi.org/10.1080/15583058.2019.1703152

Walker, R., Pavía, S., 2014. Moisture transfer and thermal properties of hemp–lime

concretes. Constr. Build. Mater. 64, 270–276. https://doi.org/10.1016/j.conbuildmat.

2014.04.081

Wang, Z., Yu, Q., Gauvin, F., Feng, P., Qianping, R., Brouwers, H.J.H., 2020.

Nanodispersed TiO2 hydrosol modified Portland cement paste: The underlying role

of hydration on self–cleaning mechanisms. Cem. Concr. Res. 136, 106156.

https://doi.org/10.1016/j.cemconres.2020.106156

Wu, T., Liu, G., Zhao, J., Hidaka, H., Serpone, N., 1998. Photoassisted degradation of

dye pollutants. V. Self–photosensitized oxidative transformation of Rhodamine B

under visible light irradiation in aqueous TiO2 dispersions. J. Phys. Chem. B 102,

5845–5851. https://doi.org/10.1021/jp980922c

Page 221: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo II

199

Xia, T., Chen, W., Xu, J., 2020. Effect of PEG loading on the rheological stability of

bitumen/PE/PEG blends based on network structure evolution. Constr. Build. Mater.

237, 117696. https://doi.org/10.1016/j.conbuildmat.2019.117696

Yang, L., Hakki, A., Wang, F., Macphee, D.E., 2018. Photocatalyst efficiencies in

concrete technology: The effect of photocatalyst placement. Appl. Catal. B Environ.

222, 200–208. https://doi.org/10.1016/j.apcatb.2017.10.013

Yang, L., Hakki, A., Wang, F., Macphee, D.E., 2017. Different Roles of Water in

Photocatalytic DeNOx Mechanisms on TiO2: Basis for Engineering Nitrate

Selectivity? ACS Appl. Mater. Interfaces 9, 17034–17041.

https://doi.org/10.1021/acsami.7b01989

Yang, L., Hakki, A., Zheng, L., Jones, M.R., Wang, F., Macphee, D.E., 2019.

Photocatalytic concrete for NOx abatement: Supported TiO2 efficiencies and impacts.

Cem. Concr. Res. 116, 57–64. https://doi.org/10.1016/j.cemconres.2018.11.002

Yoshioka, K., Sakai, E., Daimon, M., Kitahara, A., 1997. Role of steric hindrance in the

performance of superplasticizers for concrete. J. Am. Ceram. Soc. 80, 2667–2671.

https://doi.org/10.1111/j.1151–2916.1997.tb03169.x

Yu, W., Liu, X., Pan, L., Li, J., Liu, J., Zhang, J., Li, P., Chen, C., Sun, Z., 2014. Enhanced

visible light photocatalytic degradation of methylene blue by F–doped TiO2. Appl.

Surf. Sci. 319, 107–112. https://doi.org/10.1016/j.apsusc.2014.07.038

Yuan, C., Chen, R., Wang, J., Wu, H., Sheng, J., Dong, F., Sun, Y., 2020. La–doping

induced localized excess electrons on (BiO)2CO3 for efficient photocatalytic NO

removal and toxic intermediates suppression. J. Hazard. Mater. 400, 123174.

https://doi.org/10.1016/j.jhazmat.2020.123174

Zhan, C.G., Landry, D.W., Ornstein, R.L., 2000. Reaction pathways and energy barriers

for alkaline hydrolysis of carboxylic acid esters in water studied by a hybrid

supermolecule–polarizable continuum approach. J. Am. Chem. Soc. 122, 2621–

2627. https://doi.org/10.1021/ja9937932

Zhang, X., Tong, H., Zhang, H., Chen, C., 2008. Nitrogen oxides absorption on calcium

hydroxide at low temperature. Ind. Eng. Chem. Res. 47, 3827–3833.

https://doi.org/10.1021/ie070660d

Zhang, Y., Kong, X., 2015. Correlations of the dispersing capability of NSF and PCE

types of superplasticizer and their impacts on cement hydration with the adsorption

in fresh cement pastes. Cem. Concr. Res. 69, 1–9.

https://doi.org/10.1016/j.cemconres.2014.11.009

Zhu, J., Shu, L., Zhang, F., Li, Z., Wang, Q., He, P., Fang, Y., 2012. Development of a

compact capillary electrophoresis–chemiluminescence system with ultra–fast

peroxyoxalate reaction to monitor the hydrolysis of rhodamine 6G. Luminescence

27, 482–488. https://doi.org/10.1002/bio.1379

Zouzelka, R., Rathousky, J., 2017. Photocatalytic abatement of NOx pollutants in the air

using commercial functional coating with porous morphology. Appl. Catal. B

Environ. 217, 466–476. https://doi.org/10.1016/j.apcatb.2017.06.009

Page 222: Desarrollo de nuevos morteros de restauración de cal con ...
Page 223: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III: Diseño y

obtención de morteros de

revoco con fisuración reducida

y adherencia mejorada Improving lime–Based rendering mortars with

admixtures

Enviado a Construction and Building Materials (En proceso de

revisión, octubre, 2020)

Page 224: Desarrollo de nuevos morteros de restauración de cal con ...
Page 225: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

203

Improving lime-based rendering mortars with admixtures

J.F. González-Sánchez, J.M. Fernández, Í. Navarro-Blasco and J.I. Alvarez *

MATCH Research Group, Chemistry Department, School of Sciences, University of Navarra, 31008

Pamplona, Spain.

*Author to whom correspondence should be addressed.

ABSTRACT

The present work presents focuses on the use of different admixtures for the

development of rendering lime-based mortars with improved adhesion and durability, as

well as reduction of cracking. To this aim, combinations of an adhesion improver

(ethylene-vinyl acetate copolymer, EVA), a water repellent agent (sodium oleate), a

viscosity enhancer (a starch derivative) and a mineral admixture (pozzolanic addition of

nanosilica or metakaolin) were tested. The renders were applied on four different

substrates (sandstone, limestone, granite and brick) to assess their performance.

The influence of the admixtures’ combination on fluidity, stiffening time,

adhesion, cracking, compressive strength, pore structure, frost resistance and durability

against magnesium sulfate attack was evaluated. The EVA admixture was seen to enhance

the adhesion when used in combination with oleate, metakaolin and starch. This

combination also led to a minimized cracking. Opposite trends between adhesion and

cracking were observed as a function of the porosity of the substrates and of the presence

of small-sized capillary pores.

The interferences with the carbonation accounted for the drops observed in

compressive strength for the nanosilica-free tested renders; nanosilica-containing renders

showed good compressive performance, due to the filling effect of the admixture and to

the C-S-H formation. The use of most of the admixtures’ combinations was seen to clearly

enhance the durability of the renders, in the face of freezing-thawing cycles as well as

sulfate attack, proving the applicability of these lime-based renders for repair works of

the Cultural Heritage and for new Civil Engineering applications.

Keywords: renders, air-lime, EVA latex, starch, pozzolanic addition, multiple

admixtures, improved adhesion.

Page 226: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

204

1. INTRODUCTION

When cement renders were applied for cultural heritage repair works, scientific

literature highlighted several drawbacks and incompatibilities [1–3]: efflorescence

phenomena due to the formation of large amounts of soluble salts due to the migration of

alkaline ions, low permeability to water vapor and a coefficient of thermal expansion

higher than most masonry.

The use of lime as binding material for repairing renders helps to improve the

appearance of historical buildings and it is also of great importance since renders act as a

sacrificial layer to protect and preserve old masonry. Rendering mortars could be used

directly to adhere to the vertical wall of the building without other binding materials [4].

The knowledge about the composition and performance of lime renders is basic to repair

and renovate the existing ancient renders as well as to design new compatible ones.

The choice of lime as binder can be upheld according to previous studies [4–9]. It

has been widely applied in the internal or external decoration of buildings due to its

unique aesthetics, texture, high compatibility with the external insulation system,

excellent weather resistance and durability [4]. It is considered one of the healthiest and

most environmentally friendly materials used in modern civil buildings compared to

organic coatings, ceramic tiles, and natural stones [10].

However, the lime-based renders also show some drawbacks: for example, high

sensitivity to deterioration processes due to low internal cohesion and high porosity that

could provoke bad adherence. Furthermore, these factors lead to high rates of water

absorption and a subsequent low mechanical resistance, thus enhancing the susceptibility

to several damaging actions, frost and salt crystallization often being mentioned as the

most damaging [11–14].

In addition, the lime-based renders are very sensitive towards cracking. The

phenomenon of cracking is really heterogeneous and is dependent on drying, hydration

(for renders with hydraulic phases) and creep. Stresses induced by shrinkage due to the

restricted drying can be highlighted as one of the main factors causing cracks, which can

be aggravated under severe drying conditions [14,15]. Shear stresses generated at the

render/substrate interface are also a source of cracking. As a consequence, diffusivity and

permeability to water and to other vapor and liquid compounds is sharply increased,

affecting adhesion and giving rise to detachments [15].

Page 227: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

205

The use of lime as binder entails also some well-known limitations, such as a

much more extended setting time, slow placement and hardening process. The mix design

(that is, binder: aggregate ratio, water content, lime characteristics, type of aggregate,

etc.) influences the carbonation process, involving changes in the microstructure of the

mortar and affecting the setting and hardening of the render. Since the pore structure is

strongly changed, the mechanical properties and the water transport behavior are also

modified [16].

The incorporation of mineral admixtures to the render mix such as pozzolanic

materials (as brick dust, nanosilica or metakaolin [17,18]), admixtures such as water

repellent materials (natural or artificial resins, wax and animal fat), viscosity modifiers

and fibers appear as an alternative to combat the mentioned drawbacks of the lime

renders, increasing their durability and turning these renders into suitable repair materials

for the Built Heritage [19–22].

Among the pozzolans, Alvarez et al. [18] found that the addition of nanosilica

(NS) to a lime-based binding material changed dramatically the distribution of the

mesopores. Besides, the NS incorporation induced C-S-H development, giving rise to an

enriched population of gel pores (< 10 nm), including the microporous range. These two

facts led to an improvement of the compressive strength of air lime mortars [18].

The use of metakaolin imparts considerable strength and the necessary workability

in the fresh state. Vavrijuk et al. [23] observed that mortars achieved higher compressive

and bond strengths more quickly.

Literature has shown the positive effect of waterproofing agents for lime-based

mortars [10,24]. Sodium oleate and other anionic surfactants are the most commonly used

admixtures. The improvement was especially remarkable in terms of reduction of the

water absorption through capillarity, and the subsequent durability enhancement of the

material in the face of freezing–thawing cycles. Furthermore, Izaguirre et al. [10]

confirmed that the maximum compressive strengths were reached in a shorter period of

time.

The use of rheology-modifying admixtures is also worth of consideration for lime-

based binding systems. Literature has reported viscosity modifiers for binding systems

such as starches and their derivatives (ethers and esters), cellulose (also etherified,

hydroxypropylmethyl, hydroxyethyl and carboxymethyl cellulose) or some other

Page 228: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

206

biopolymers ethers (like chitosan or guar gum) [1,25,26]. The thickening action can be

understood considering the water retention ability of these polymeric molecules and the

entanglement between the chains. In lime systems some of these admixtures have shown

a dosage-response pattern also improving the adherence of the binding material [27]. The

water retention may be useful to slow down the drying and thus to minimize the cracking.

It should be noted that the lime render adhesion on a substrate depends on moisture

and open porosity at the substrate/mortar interface [28]. Furthermore, the main modes of

failure in mortar/substrate systems are [15,29]: tensile cracking through the thickness of

the mortar and peeling or shearing at the interface between the two materials. Cracking

due to drying of the coating mortars depends largely on the boundary conditions (external

RH, wind speed, etc.) and the substrate (roughness, Young's modulus, etc.). If the water

absorption of the substrate is too high, the mortar can dry out, which is unfavorable

especially for hydraulic binders since it hinders hydraulic reactions. A proposed solution

to avoid this effect is the substrate humidification before applying the mortar. The use of

admixtures may also help to control the drying and to enhance the adherence.

Some admixtures, such as methylcellulose and ethylene-vinyl acetate (EVA)

copolymer, are currently used as modifiers in Portland cement and concrete for improving

the adherences [27,30]. Methylcellulose contributes to flexural strength, improves the

dispersion and stability of hydration products, thus reducing the strength regression of

cement in late stage [30]. The addition of EVA to concrete and mortar increases flexural

strength because the active groups in their molecules can also react with the cations of

cement hydration products to improve the physical structure of the mortar [27,31,32].

EVA can be formulated as redispersible powders to form a latex dispersion responsible

for its properties [33]. EVA also improves the adhesion between the aggregates and the

matrix of the cementitious material, reduce the modulus of elasticity of the concrete and

improve its ability to absorb stresses under variable temperature conditions [34–36].

To obtain lime-based renders that can be efficiently used as repair materials for

the Architectural Heritage, the design of mixes with combination of multiple admixtures

is explored in the current work. Air lime as binding phase is combined with: a pozzolanic

addition (to increase the strength, durability and binding capacity), a waterproofing agent

(sodium oleate, to reduce the water absorption), a viscosity enhancer (a starch derivative,

to improve the application in the fresh state and to avoid a damaging quick drying) and

Page 229: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

207

an adhesion booster (ethylene-vinyl acetate copolymer). The compatibility between the

admixtures in the light of their effects is investigated. The renders are applied onto four

different substrates (sandstone, limestone, granite and brick), analyzing the effect on

adherence, cracking and durability among other properties. The final performance of the

renders is assessed providing valuable information about the potential use of these mixes

as repair materials.

2. MATERIALS AND METHODS

2.1. Materials and composition of the renders

Air lime supplied by CALINSA, Spain, CL 90-S class, in powder, was used for

preparing the renders. Mean particle size was 10 μm (less than 10% > 50 μm). The lime

presented a CaO percentage of 68.53%, with major impurities of MgO (3.29%), SO3

(1.37%) and SiO2 (1.03%). As aggregate, a very fine limestone with particle size lower

than 2 mm, supplied by CTH (Huarte, Navarra, Spain) was used, its chemical composition

was 52.83% (CaO), 2.28% (MgO), 1.14% (Fe2O3 + Al2O3), 0.57% (SO3), 0.49% (SiO2),

0.07% (Na2O), 0.05% (K2O), 43.10% (ignition loss) [17] and its particle size distribution

is displayed in Fig.1. Mixing proportion of renders was 1:3 binder/aggregate (air

lime/aggregate) weight ratio [25].

The detailed composition of the different combinations of admixtures for the

renders was reported in Table 1.

Fig. 1 Grain size distribution of the aggregate

Page 230: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

208

Table 1. Percentage of admixtures of the renders expressed as percentage by

weight of lime

The description of the different admixtures was:

• Mineral admixture (pozzolanic addition, 20% by weight of lime, bwol):

nanosilica (NS) or metakaolin (MK). Nanosilica (NS) (ULMEN Europa

S.L.) was supplied as a colloidal, superplasticizer-free silica suspension,

solid/liquid ratio of 0.28 and pH = 9.68. Its specific surface area was ca.

500 m2 g− 1 and the average particle size was around 50 nm. Metakaolin

(MK) (Metaver, supplied by, NEWCHEM, Pfäffikon, Switzerland), with a

specific surface area of 20 m2 g− 1 and the average particle sizes in aqueous

suspensions were of ca. 3.9 µm. Detailed characterization of these two

mineral admixtures has been published elsewhere [37].

Name

Pozzolanic addition Water

repellent

(sodium

oleate)

Rheology

modifier

(starch

derivative)

Adhesion

enhancer

(EVA) Nanosilica Metakaolin

Control samples

C - - - - -

C-NS 20 - - - -

C-MK - 20 - - -

C-O - - 0.5 - -

C-O-NS 20 - 0.5 - -

C-O-MK - 20 0.5 - -

Samples without

rheology modifier

O-E5 - - 0.5 - 5

O-E10 - - 0.5 - 10

O-NS-E5 20 - 0.5 - 5

O-NS-E10 20 - 0.5 - 10

O-MK-E5 - 20 0.5 - 5

O-MK-E10 - 20 0.5 - 10

Samples with

rheology modifier

O-S-E5 - - 0.5 0.5 5

O-S-E10 - - 0.5 0.5 10

O-NS-S-E5 20 - 0.5 0.5 5

O-NS-S-E10 20 - 0.5 0.5 10

O-MK-S-E5 - 20 0.5 0.5 5

O-MK-S-E10 - 20 0.5 0.5 10

Page 231: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

209

• Water-repellent agent (0.5% bwol): Sodium oleate (O), provided by

HISA A 2388 N from ADI-Center-S.L.U. The well-known structure of

the oleate, with its long non-polar hydrocarbon chain and its polar

carboxylate group at one end, has been also reported elsewhere [10,24].

• Rheology modifier (0.5% bwol): a potato starch derivative Casaplast

KO09 (S). This is an etherified starch with a high degree of substitution

and soluble in cold water according to the datasheet of the supplier. Due

to its non-ionic character, it is highly compatible with bivalent ions such

as calcium and magnesium. It has been applied as a thickener for

cement and plaster mortars [25]. X-ray diffraction (XRD), FTIR and

TG-DTA studies were used to characterize the structure and functional

groups of the admixture. XRD experiments were performed in a Bruker

D8 Advance diffractometer with a Cu Kα1 radiation, from 5° to 70°

(2θ), 1 s per step, and a step size of 0.04°. The infrared spectra

(Shimadzu IRAffinity-1S apparatus) were registered at 100 scans over

a wavelength range of 4000–600 cm−1, with resolution of 4 cm−1. TG-

DTA (851e Mettler Toledo thermoanalyzer device) used alumina

crucible, temperature range from 25 to 1000 °C, 10 °C·min− 1 heating

rate, and under static air atmosphere.

• Adhesion enhancer (5% and 10% bwol): Elotex MP 2080 (E) which is

a water-redispersible powder of ethylene-vinyl acetate copolymers

(EVA). It has hydrophobic properties suitable for dry mineral mortars

based on calcium or cement according to the producer. The

characterization of the admixture was also carried out using the

methods reported above for the rheology modifier.

2.2. Preparation of the renders

The dry raw materials, lime and aggregate, and the required amounts of the

pozzolan and of the chemical admixtures were blended for 5 min using a solid mixer BL-

8-CA (Lleal S.A.). The fluidity of the fresh samples was adjusted to a slump of

145 ± 10 mm [38] in line with the slump values for single-coat renders [39], and thus the

Page 232: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

210

amount of mixing water was set accordingly. Dry components and mixing water were

mixed in a Proeti ETI 26.0072 mixer for 90 s at low speed mixer. Fresh state properties

were determined as described below.

Fresh renders were cast in cylindrical moulds (40 mm of diameter and 36 mm of

height). Molds were stored at lab conditions (20 °C and 60% RH), and hardened samples

were demolded 7 days later. Hardened state properties were studied after 28 and 91 curing

days. To guarantee the representativeness of the results, three replicates of the samples

per each curing time and per measured property were tested.

2.3 Fresh state

For the fresh state of the renders, the following properties were studied according

to the quoted standardized methods:

• Density and air content, both data being recorded using a receptacle of 1 dm3

previously weighed, which, after being filled with fresh mortar, was

weighed again to obtain the density [40]. In a specific device, the entrained

air was removed and replaced by a measurable amount of introduced water,

which allowed us to determine the air content [41].

Fig. 2. Photographs of the different substrates

Sandstone

Limestone

Granite

Brick

Page 233: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

211

• Water retention capacity, determined by weighing absorbent materials

placed on the fresh sample before and after 5 min of contact under pressure

[42]; workable life, obtained from a specific device provided with a bradawl,

which pushed the fresh sample until the strength exerted to introduce it into

the sample was larger than 15 N (EN1015-9) [43].

• And finally, the evolution of the renders when applied on different

substrates was assessed. This last test consisted of spreading a monolayer of

fresh render of ca. 15 mm according to EN 998-1 [44] on four different pre-

wetted substrates (limestone, sandstone, granite and brick) and observing

any developments (cracking and/or detachments) at different ages after

application: 1 day, 2 days, 1 week, 1 month and 2 months. The substrates

were prepared cutting them in monoliths of 5x5 cm, with a thickness of 3

cm (Fig. 2). The pre-wetting was carried out spraying tap water on the

surface of the substrates. Semi-quantitative mineralogical composition of

the stony substrates was ascertained by X-ray diffraction:

− sandstone (density 2.30 g cm-3, from Lleida, Spain, 41% dolomite, 39%

calcite, 20% quartz);

− limestone (density 2.67 g cm-3, type Marbella, from Murcia, Spain, 100%

calcite);

− granite (density 2.72 g cm-3, from Porriño, Spain, 26% pyroxene, 22%

andesine, 17% albite, 15% microcline, 11% quartz, 9% calcite);

− brick (density 1.14 g cm-3, 39% quartz, 32% diopside, 18% feldspar, 11%

calcium aluminosilicate).

Fig. 3. Pore size distribution of the different substrates

Page 234: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

212

The total porosity of the substrates was determined by Mercury Intrusion

Porosimetry (MIP) with a Micromeritics Auto Pore IV 9500 equipment (Micromeritics

Instrument Corporation) (pressure range 0.0015–207 MPa). The obtained results were as

follows: 20.85% (sandstone), 8.61% (limestone), 1.69% (granite) and 35.8% (brick). It

can be seen that brick was a really porous substrate but with a ribbed surface. Sandstone

and limestone exhibited a lower porosity and granite was a really low porous substrate.

The analyses of the pore size distribution of these substrates depicted the patterns

displayed in Fig. 3. The area under the curve perfectly matches the values of the total

porosity of the substrates. A detailed effect of these pore size distributions is presented

below in section 3.3.

2.4 Hardened-State

• The adherence of the plaster was determined according to the UNE 83 22 EX

regulation [45].

• Compressive strengths were measured after 28 and 91 curing days in the

cylindrical specimens. The rate of loading was 50 N s− 1 in a device Proeti ETI

26.0052.

• The pore size distribution was ascertained by MIP as indicated in the previous

section.

• The thermal decomposition of the hardened samples was monitored by TG-DTA

analysis (equipment and conditions detailed above).

• The permeance was obtained to get the permeability value, according to the

standard EN1015-19 [46]. The permeance is the water vapor flow that passes

through one area unit under equilibrium conditions for each unit of vapor pressure

difference on both sides of the plaster. Then, water vapor permeability is

calculated as the result of multiplying permeance by the thickness of the test

specimen.

• Water absorption through capillarity of different renders according to the

EN1015-18 standard [47].

Page 235: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

213

• Frost resistance was determined by means of freezing-thawing cycles. The cycles

consisted of water immersion of the samples for 24 h and subsequently freezing

at −10 °C for 24 h (CARAVELL 521-102 freezer).

• For the assessment of the sulfate attack resistance, the monolithic samples were

completely submerged in an aqueous solution saturated with MgSO4 at 20 °C and

95% RH for 24 h. After this step, the samples were dried in an oven at 65 °C for

24 h and submerged in water for 24 h at 20 °C and 95% RH. To conclude the

cycle, the specimens were again dried as described above. The cycles were

continuously repeated until the destruction of the specimens or a maximum of 28

cycles.

3. RESULTS AND DISCUSSION

3.1. Characterization of the admixtures

The starch derivative (S) and the ethylene-vinyl acetate copolymer (EVA)

admixtures were fully characterized. The other admixtures, including the mineral

admixtures (nanosilica and metakaolin), and the sodium oleate had already been

previously characterized as reported elsewhere [24].

The XRD pattern of the starch-based admixture is displayed in Fig. 4. The

halo between 15 and 25º 2 corresponds to the modified starch, due to its amorphous

condition. The sharp diffraction peaks identified in the pattern are ascribed to sodium

sulfate (files of the ICDD PDF 89-4751, thenardite, anhydrous sodium sulfate

mineral, and PDF 37-1465, sodium sulfate). This salt was most likely added during

the obtaining of the starch derivative as coadjuvant of the cross-linking process [48–

52].

Fig. 4. XRD pattern from starch

Page 236: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

214

Table 2. FTIR band assignment for starch (Casaplast KO09) and EVA (Elotex MP 2080).

Starch EVA

Wavenumber

(cm 1)

Functional

group

Wavenumber

(cm 1)

Functional

group

Wavenumber

(cm 1)

Functional

group

3403-3200 O-H

3630-3620 CH2

(ethylene) 1105-1100 C-O

2926-2860 C-H 2900-2850 C-H 1030-1020 C-O, CH3

1683-1500 C=O 1730-1725 C=O 950-940 C-C

1156-937 C-O 1470-1440 C=O 750-720 CH2

(ethylene)

1083-1023 O-C 1370-1380 CH3 635-625 O-C-O

1275-1200 C-O 610-600 C=O

The FTIR spectrum of this admixture is shown in Fig. 5 and the assignment of

the absorption bands is summarized in Table 2. The predominant presence of –OH

groups is denoted by the intense absorption band at 3403 cm-1

The XRD pattern of the adhesion enhancer Elotex MP 2080 (E) shows the halo

suggesting the amorphous character of the polymer between 18 and 28º 2 (Fig. 6). Some

crystalline peaks are also observed associated with inorganic materials (dolomite,

kaolinite, and calcite) and diethylene glycol. These materials are usually added as

anticaking agents to redispersible powders formulation in order to prevent the adhesion

between polymer particles during manufacturing, transporting and storage, some of them

with surfactant properties [25,30,53]. FTIR spectrum of the EVA admixture (Fig. 5) was

recorded and the bands assignment (Table 2) was ascribed to the specific peaks of

polyethylene and polyvinyl acetate.

Fig. 5. FTIR spectra obtained for starch (Casaplast KO09) and EVA (Elotex MP 2080)

Page 237: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

215

Fig. 6. XRD pattern of EVA admixture

The content of copolymer vinyl acetate and the ethylene part of the EVA was

ascertained by thermogravimetric (TG) analysis. The TG curve (Fig. 7) shows the weight

loss as a function of temperature. Several sections that can be associated with the presence

of the different components of the sample were observed: a) from room temperature to

280 ºC, the sample undergoes no thermal transformation; b) thermal decomposition

occurs in two stages: the first one ends around 400 ºC and the second one runs from 400

ºC to 500 ºC, approximately; c) at elevated temperatures, 500 - 600 ºC, the entire sample

burnt.The first step of the curve corresponds to the loss of vinyl acetate in the copolymer,

while the second decomposition is due to that of the ethylene part [54]. The quantification

of the TG weight loss of the decomposition process allows to determine the vinyl acetate

content of the EVA copolymer. For the calculation, it must be taken into account that the

decomposition of the acetate groups takes place through the formation of acetic acid [54].

Percentage of 65.3% vinyl acetate and 34.7% ethylene part were obtained.

Fig. 7. TG curve of EVA admixture

Page 238: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

216

3.2. Effect of the admixtures on the mixing water requirements

As shown in Table 3, the use of EVA admixture (abbreviated E in the

nomenclature of the samples) slightly increases fluidity compared with the control sample

or with the samples with just the waterproofing agent, sodium oleate, with the same

percentage of mixing water. This result can be explained due to the “ball bearing” effect

of the polymer particles, to the entrained air and to the dispersing effect of the tensioactive

compounds used in the formulation of the EVA powders [55]. The presence of small

amounts of surfactants, a common practice during the EVA preparation, was seen to have

a clear influence in the fresh state performance of the renders with EVA: the entrained air

increased particularly at high EVA dosages.

The addition of pozzolans increased the water demand to reach the set flow value:

this is a well-known effect of the pozzolans which can be ascribed to the large surface

area and to their reactivity. Among the pozzolans, the water requirements were higher for

nanosilica, as proved by the control samples (C-NS and C-MK) and by the samples with

EVA and starch.

The sharpest increase of the water demand was observed upon the addition of the

viscosity enhancer, the starch derivative. This admixture behaves as a thickening agent

that requires a greater amount of water to achieve a certain level of fluidity [25,56].

Regarding the workable life, the adhesion enhancer at 5% does not substantially

modify this value in comparison to the plain control sample (C), as observed for samples

O-E5 and O-MK-E5. At the largest dosage tested in the current work (10%), regardless

of whether another additive is in the mixture, the stiffening time increased. In these cases,

the admixture at larger dosages exhibited a water retaining action that can be related to

the hydrophilicity of the particles of the polymeric latexes at a colloidal state, to the

increase in viscosity of the aqueous phase and to the inhibition of the water loss due to

the filling and sealing effect of the polymers [33–35].

The effect of the starch-based admixture on the workable life of the samples was

pronounced owing to the water retaining action of the starch derivative molecules and to

the viscosity increase of the liquid phase [25],which can be ascribed to the high number

of –OH functional groups (absorption band identified in the FTIR spectrum Fig. 5).

Page 239: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

217

Table 3. Mixing water, fluidity and workability, air content and bulk density

values of different mixtures (spread values as measured by the flow table test, which were

fixed at 145 ± 10 mm).

*percentages with respect to the weight of lime and sand

These groups enhance the water retention and the cross-linking phenomenon

(and thus the viscosity) between polymer chains by hydrogen bonds. Therefore, the

drying of the renders was delayed and the access of CO2 to the inner part of the

renders hindered, resulting in a prolonged stiffening time. In this sense, it should be

noticed that the water holding capacity of mortars influences drying. More water

retention leads to lower drying rates, both by evaporation and by suction of the

substrate. This effect naturally promotes better hydration, in the case of lime binders

with a hydraulic phase, and can also produce good conditions for carbonation,

ensuring sufficient moisture content, however moderate, for a long period, even in

dry external conditions [57,58].

Sample Mixing water*

(%)

Fluidity

(mm)

Stiffening time

(min)

Air Content

(%)

Density

(g cm-3)

C 28% 148 69 4.4 0.87

C-NS 30% 145 475 2.7 0.91

C-MK 29% 146 117 3.1 0.81

C-O 28% 155 95 3.2 0.90

C-O-NS 28% 135 360 2.6 0.91

C-O-MK 28% 146 330 3.7 0.85

O-E5 28% 155 62 4.9 0.87

O-E10 28% 152 138 5.2 0.86

O-NS-E5 31% 135 747 4.2 0.87

O-NS-E10 33% 135 912 4.8 0.86

O-MK-E5 28% 145 80 4.2 0.81

O-MK-E10 30% 146 139 4.6 0.80

O-S-E5 37% 147 1435 4.0 0.86

O-S-E10 39% 147 2540 4.2 0.88

O-NS-S-E5 37% 141 1342 4.2 0.86

O-NS-S-E10 39% 142 1749 5.2 0.88

O-MK-S-E5 37% 135 1440 3.6 0.82

O-MK-S-E10 41% 155 1850 3.6 0.81

Page 240: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

218

3.3. Application of the renders on different substrates

Fig. 8 and 9 show the qualitative evaluation of the adherence and cracking

occurrence, respectively, of the renders when applied as one-coat mortar on the four

different substrates: sandstone, limestone, granite and brick. The evaluation of

adherence (Fig. 8) was made observing the applied renders at different ages and

assigning a description following this criterion: (i) detachment in different zones was

assigned to samples that showed detachment of the monolayer render in different

zones; (ii) detachment in the edge for the samples that only showed detachments in

the borders of the substrates; and (iii) good adherence for the samples that presented

no evidences of detachments. It must be pointed out that all the observed detachments

were adhesive failures, confirming the relevance of the mortar-substrate interface.

The cracking assessment (Fig. 9) was made observing the applied renders at

the same ages and comparing the quantity of cracks over the different mixes’

monolayers and the absence of cracking, according to: (i) severe cracking assigned

to the sample that showed the entire or almost full area of monolayer with cracking;

(ii) evident cracking for the samples with many areas showing cracking; (iii)

moderate cracking for renders with limited cracking; and (iv) little or no cracking

for the samples that visually presented no cracking in almost all or all the monolayer

area.

To illustrate the criteria for the qualitative assessment, Fig. 10 shows several

examples of samples with cracking or adherence problems and their qualification.

Page 241: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

219

Fig. 8. Qualitative evaluation of adhesion of lime renders on different substrates: a)

sandstone, b) limestone, c) granite and d) brick

Page 242: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

220

Fig. 9. Qualitative evaluation of the cracking of lime renders on different substrates: a)

sandstone, b) limestone, c) granite and d) brick

Page 243: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

221

Sample O-MK-E10 applied onto sandstone (left) and granite (right) with no cracking. A

small detachment was identified in a corner of the granite specimen.

Sample O-NS-S-E5 onto sandstone, with detachment in the edge (left bottom part) and

evident cracking

Sample O-MK-E10 onto limestone, with good adherence and moderate-evident

cracking

Sample O-MK-S-E5 onto sandstone, with good adherence and no cracking

Fig. 10. Examples of different samples and their qualitative assessment of adherence

and cracking

O-MK-E10

O-NS-S-E5

O-MK-E10

O-MK-S-E5

Page 244: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

222

The evolution of the renders applied on the different substrates showed the

following behavior:

• Sandstone: the control samples with only pozzolanic or starch

admixtures showed in general a moderate to poor adherence. The

cracking was intense particularly in the control samples with oleate (C-

O and C-O-NS, particularly). The EVA admixture induced a good

adherence of the renders and the absence of cracking, as it was observed

in O-MK samples with 5 and 10% adhesion enhancer and also O-MK-

S-E5 mix, which, after 2 months, presented a good visual appearance

(Fig. 11). In comparison with control samples C-MK and C-O-MK, the

EVA admixture in samples with MK increased the adherence and

reduced the cracking.

Fig. 11. Renders without cracking and good adherence after two months applied on

sandstone

Good adherence

O-MK-E5

Good adherence

O-MK-E10

Good adherence

O-MK-S-E5

O-MK-E5

O-MK-E10

O-MK-S-E5

Page 245: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

223

On the contrary, renders without pozzolanic mineral admixture and with the

starch-based admixture failed, showing cracks and adhesive detachments

(O-S-E5 and O-S-E10) (Fig. 12).

Fig. 12. Renders applied on sandstone with cracks and detachment after two months

O-S-E5

O-S-E10

Detachment

O-S-E5

Moderate

cracking

O-S-E10

Page 246: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

224

• Limestone: the application of the renders on the limestone was not as

successful as in the case of the sandstone. Most control samples showed

poor adherence, detachments and evident to intense cracking (Fig. 8 and

9), in line with previous works in the literature [10,18]. Most renders

including admixtures showed cracks and -in some cases- detachments. For

example, renders O-E10 and O-S-E5 evidenced detachments and most of

areas with visible cracking (Fig. 13). Sample O-MK-S-E5, in spite of small

cracks, exhibited the best adherence on this surface (Fig. 13). As in the

case of the sandstone substrate, renders with MK and EVA together

yielded the best performance.

Fig. 13. Photographs of renders applied on limestone after two months.

Good

adherence

O-MK-S-E5

O-MK-S-E5

O-E10

O-S-E5

Detachment

areas

O-E10 O-S-E5

Page 247: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

225

• Granite: all the set of the control samples applied on this substrate showed poor

adherence (Fig. 8). The addition of the EVA admixture clearly enhanced the

adherence. However, the cracking in the renders applied on granite was not as

strong as in other substrates like limestone or brick. The render showing the best

performance was O-MK-S-E10 (no detachments, no cracks, good aesthetic

appearance) (Fig. 14). In comparison with control samples, the simultaneous

presence of pozzolanic agent, starch and EVA enhanced the adherence. The

absence of MK was detrimental, as can be seen in sample O-E10 that showed

cracks on the whole surface as well as material detachment observed in the borders

of the substrate monolith (Fig. 14).

Fig. 14. Photographs of renders applied on granite after two months.

O-MK-S-E10

O-E10

Detachment

O-E10

Intense

cracking

Page 248: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

226

Fig. 15. Photographs of renders applied on brick after two months.

• Brick: the use of any of the admixtures was not favorable for renders applied on

bricks. Severe cracking was observed (Fig. 15). This finding is related to the

absorptivity of the substrate, as will be explained below. The adherence was

however improved due to the addition of the EVA admixture in combination with

MK (see the good adherence of sample O-MK-S-E5), although not so much for

combinations with NS that showed several detachments (Fig. 15).

Quantitative assessment of the bond strength was also carried out (Table 4). In

some cases the equipment was not able to quantify due to the low bond strength of the

material (values indicated as ND, not detected).

Detachment

O-NS-S-E10

Good

adherence

O-MK-S-E5

Detachment,

intense cracking

O-NS-S-E5

Detached fragment due

to the adhesive failure

Detachment

C Intense cracking

Page 249: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

227

Table 4. Adherence of different mixes over different substrates

Sample Sandstone (N/mm2) Limestone (N/mm2) Granite (N/mm2) Brick (N/mm2)

C 0.0067 ND 0.0022 0.0225

C-NS ND ND ND 0.0199

C-MK 0.0065 ND 0.0028 0.0212

C-O ND ND ND 0.0118

C-O-NS ND ND ND 0.0221

C-O-MK ND ND 0.0025 0.0232

O-E5 0.0134 ND 0.0312 0.0223

O-E10 0.0179 ND 0.0202 0.0291

O-NS-E5 ND ND ND 0.0272

O-NS-E10 ND 0.0115 ND 0.0504

O-MK-E5 0.0198 ND 0.0440 0.0857

O-MK-E10 0.0066 0.0462 0.0088 ND

O-S-E5 0.0477 0.0295 ND 0.0091

O-S-E10 0.0163 ND ND 0.0418

O-NS-S-E5 ND ND ND 0.0463

O-NS-S-E10 ND ND ND 0.0481

O-MK-S-E5 ND 0.0092 ND 0.0253

O-MK-S-E10 ND 0.0069 0.0069 0.0207

In line with the results shown in the qualitative assessment of the adherence,

the bond strength evaluation indicates that the addition of the EVA admixture,

particularly in positive combination with MK and starch admixtures, resulted in an

enhancement of the adherence. Table 4 shows the higher values of adherence of most

samples with EVA as compared with the control samples. This was mainly applicable

to renders applied onto brick, in which the bond strength was generally able to be

measured. In renders onto limestone, the adherence of the control samples could not

be detected. Finally, in some control samples applied on granite or sandstone, the

adherence values were in general lower than those measured for samples with EVA

admixture.

The performance of the renders was dependent on two main factors: the pore

structure of the substrate and the combination of the admixtures of the renders. These

two factors are tightly connected with the drying of the renders, which plays a crucial

role to understand the cracking and the bond strength.

Page 250: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

228

The fluctuation of the internal humidity of the render can be attributed to:

i) Drying shrinkage, caused by external evaporation, responsible for the water

removal from the render. This causes significant volumetric shrinkage of the

material.

ii) Chemical shrinkage, only for lime renders with hydraulic components

(either renders prepared with hydraulic limes and/or mixed with pozzolans).

This phenomenon takes place during hydration of hydraulic compounds (the

lower the water/binder ratio, <0.40, the more intense the shrinkage) and

results in strong capillary pressure and changes in free surface energy which

cause cracking.

iii) Water absorption by the substrate, generated when the render interacts with

different porous media [58].

Concerning the characteristics of the substrate, the absorption of water by the

substrate causes a reduction of water in the mortar, which leads to a decrease in its open

porosity [59]. The greater the water absorption of the substrate, the greater the influence

on its open porosity and bulk density. Furthermore, the suction pressure is another factor

that must be considered. This pressure depends on the relative size of the mortar and

substrate pores: the small pores of the substrate exert a suction pressure that induces the

transport of water from the larger pores of the mortar. This mechanism is particularly

significant for air lime mortars, which, in fact, have a higher population of large pores

[60] and, therefore, a higher percentage of the pores of the substrate will be smaller than

those of the mortars and will be able to apply suction pressure. The influence of substrate

absorption on these mortars refers to drying and microstructural changes [57,59,61]. In

all cases, both external evaporation and suction of the substrate promote microstructural

modification along with possible cracks [59].

Measurements of the total porosity values of the substrates used in the current

work obtained by MIP [62] have been reported in section 2.2. Substrates of very high

porosity, like brick, caused intense water suction and then the cracking of the renders was

severe, confirming the close relationship between drying and cracking. On the other hand,

the application of lime renders on a substrate of low porosity, such as granite, minimized

the cracking.

Page 251: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

229

Fig. 16. Comparison of the pore size distributions of the limestone and sandstone.

The apparently contradictory results between sandstone (with higher total porosity

but with renders showing less cracking) and limestone (less porous substrate but renders

with higher cracking) can be clarified considering a detailed analysis of their pore size

distributions (reported for all the substrates in Fig. 3). As it can be seen in Fig. 16, the

limestone presents a marked population of small pores between 0.013 and 1 microns. Due

to their low diameter, the capillary suction was higher and the induced cracking more

intense (as in the case of the brick, the substrate showing the highest pore population <

0.5 microns).

Concerning the cracking, and irrespective of the substrate, the combination

including metakaolin, oleate, 5% EVA and the starch-based admixture (S), was the most

effective in controlling and minimizing the cracking. Even in renders applied on brick,

the formed cracks were smaller than with other combinations of admixtures.

With respect to the adhesion, however, the porosity of the substrate seems to play

a favorable role. The renders applied on brick yielded the highest bond strength values

(Table 4), followed by the renders on sandstone. Large porosity, and thus large textures,

allowed a better interaction at the interface between the render and the stony substrate,

with more surface of anchorage [63]. This mechanical interlocking increases depending

on the ratio between the effective contact surface and the area which could be potentially

bound [64]. This was confirmed by the good adhesion on the brick, which exhibits a

ribbed surface (Fig. 2). Pore size distribution is also important: the predominant capillary

pores of the substrate obstructed the adhesion and led to detachments, such as those

observed for renders onto limestone. This can be explained due to the impossibility of the

Page 252: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

230

render to penetrate the texture and wet the substrate as a consequence of the low size of

these pores [65]. This fact is also confirmed by the poor adhesion results observed in the

low-porosity substrates of the renders including the viscosity enhancer (starch): the

increase in viscosity hindered the penetration of the fresh render in low-sized pores,

causing a contact failure. The mixes that showed the least adherence on different surfaces

were O-NS-E5, O-NS-S-E5, O-NS-S-E10: only the bond strength on the brick surface

was able to be recorded, which can be ascribed to the ribbed surface.

The use of EVA increased the bond strength after application on sandstone,

granite and brick. This admixture was even more effective in combination with MK,

although in this case EVA should be at 5% dosage. The mix with the best adherence on

brick and granite was O-MK-E5. The presence of the rheology modifier slightly worsened

the bond strength values, for the aforementioned reasons. On balance, the combination of

MK, oleate, EVA (5%) and starch may be selected as the most appropriate considering

the cracking attenuation and the good adherence.

3.4. Influence of the admixtures on the compressive strength and pore

structure

In the lime-based renders an increase in mechanical properties over time due to

carbonation should be expected [17,37]. Fig. 17 depicts the values of compressive

strength after two curing times, 28 and 91 days. In samples with pozzolanic agent, the

pozzolanic reaction yielding C-S-H phases also should contribute to the strength of the

renders. This was evident in the set of control samples: renders with either NS or MK (C-

NS and C-MK) exhibited higher values than those of the pure lime (C). The presence of

oleate showed a certain interference with the carbonation (decrease sharper at 91 curing

days). Detailed effects of the individual influence of NS, MK and sodium oleate have

been reported elsewhere [10,37] Except for samples with NS, the admixtures O, S and

EVA caused a drop in the compressive strength values as compared with the control group

of samples, including C, C-MK and C-O-MK renders. This finding can be ascribed to the

interference with the lime carbonation process and/or microstructural modifications

caused by the admixtures. In the case of hydraulic phases, such as those to be developed

by reaction of hydrated lime with MK, the presence of EVA has been reported to interfere

with the continuous formation of C-S-H phases [30].

Page 253: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

231

The degree of carbonation was determined by thermal analysis and it is expressed

-in Fig. 18- as the ratio CaCO3/Ca(OH)2. The higher the ratio, the higher the carbonation

degree of the render. For samples with pozzolanic agent, the increase in the ratio

simultaneously indicates the consumption of free Ca(OH)2 due to the pozzolanic reaction,

as clearly shown in control renders C-NS, C-MK, C-O-NS and C-O-MK. As it can be

seen, the presence of the admixtures O, S and EVA reduced the carbonation degree and/or

the consumption of portlandite during the pozzolanic reaction (as mentioned before, EVA

interferes with the C-S-H formation). Due to the low ionic character of these admixtures,

the interference cannot be ascribed to Ca2+ complexation, unlike other admixtures

[17,25]. Changes in porosity and water retention might account for modifications in the

CO2 access and in the water availability inside the pores required for the fulfilment of the

carbonation and of the pozzolanic reaction [10,25,30].

Figure 17. Compressive strength results of the renders. a) E5%, and b) E10%.

0

1

2

3

4

5

6

7

8

Com

pre

ssiv

e st

ren

gth

(MP

a)

RC28 RC 91 a)

0

1

2

3

4

5

6

7

8

Co

mp

ress

ive

str

en

gth

(MP

a)

RC28 RC 91 b)

Page 254: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

232

Fig. 18. CaCO3/Ca(OH)2 ratio of different samples

Fig. 19 and 20 show the pore size distribution of the renders after 91 days of

curing. All renders showed a main intrusion volume in the range 0.5 to 1 μm pore

diameter (in accordance with previous works on lime-based mortars [66,67], with an

almost unimodal distribution). The addition of EVA in both dosages (5% and 10%)

increased the volume of intruded mercury at the main peak in the range from 0.6 to 0.8

μm. In these samples the surfactant added with EVA increased the air content [30],

accounting for this higher porosity. In all cases, the starch-based admixture shifted the

main pore size towards higher diameters, a finding that can be attributed to the greater

amount of mixing water required because of the addition of the viscosity enhancer.

There was a clear reduction in total porosity (area under the curve) when NS was

added. The filling effect of the NS and its ability to react with calcium hydroxide to form

C-S-H phases explain this finding, which justifies the higher compressive strengths of the

renders with NS (Fig. 17) [see detailed analyses of the pore structure of lime with NS

mortars in 17,24]. Pore size distribution of the renders with NS confirmed the formation

of medium capillaries (between 0.01 and 0.05 microns) and outer C-S-H gel pores (< 0.02

microns) [68]. However, higher compressive strengths do not guarantee a better

performance, as it can be inferred from the severe cracking and poor adhesion of the

renders with NS.

0

5

10

15

20

25C

aCO

3/C

a(O

H) 2

rati

o

28 days 91 days

Page 255: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

233

Fig. 19. Pore size distribution in samples with 5% dosage of EVA after 91 days.

Fig. 20. Pore size distribution in samples with 10% dosage of EVA after 91 days.

3.5. Water vapor permeability and water absorption

Water vapor permeability was measured (Table 5). From a hygrothermal point of

view, this parameter for the renders should be as high as possible to avoid undesirable

water condensation and associated problems [69]. The renders must be breathable and the

effect of the different admixtures on this property must be assessed. As a requirement, the

permeability should increase outwards and be similar or higher than that of the support

[70] to allow the water vapor flow through the constructive system.

The mere addition of EVA was seen to just slightly reduce the permeability only

when used at the highest dosage (10%) as compared with the plain lime render (C) or

Page 256: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

234

with the C-O render. In comparison, other renders including the pozzolanic agents

showed lower permeability values as a consequence of the filling effect and the

subsequent pore size reduction (C-NS, C-MK, C-O-NS, C-O-MK) [18]. If EVA was

combined with the starch-based admixture, permeability increased due to the changes in

the pore size distribution induced by the viscosity enhancer (see values of the renders O-

S-E5 and O-S-E10).

In line with the good correlation observed between the pore size distribution and

the water vapor permeability, samples with NS, which were seen to dramatically reduce

the porosity and the population of large capillary pores (0.05 to 10 microns), exhibited

the lowest permeability. The filling effect of NS and the formation of densified C-S-H

structures of low pore size explain this finding.

Table 5. Water Vapor Permeability

Sample Permeance

(kg / m2 · s · Pa) x10-10

Permeability

(kg / m · s · Pa) x10-12

C 1.32 2.64

C-NS 1.12 2.24

C-MK 1.18 2.36

C-O 1.34 2.68

C-O-NS 1.02 2.04

C-O-MK 1.04 2.08

O-E5 1.49 2.97

O-E10 1.26 2.52

O-S-E5 2.32 4.64

O-S-E10 1.62 3.24

O-NS-E5 1.10 2.20

O-NS-E10 0.71 1.43

O-NS-S-E5 1.07 2.14

O-NS-S-E10 0.94 1.90

O-MK-E5 1.01 2.02

O-MK-E10 1.25 2.51

O-MK-S-E5 1.41 2.82

O-MK-S-E10 1.39 2.77

Page 257: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

235

Water absorption is another important property for the assessment of the

applicability of the renders. As outside renders are usually exposed to environmental

phenomena – such as rain – or in contact with wet elements, high water absorption might

jeopardize the durability of the material. High rates of water absorption mean water

movement inside the building structure as well as an increased risk of efflorescence

phenomena and damages in the renders, stones and bedding mortars [67].

Fig. 21 shows the results of water absorption through capillarity of different

renders. Results evidenced that the adhesion enhancer admixture increased the capillary

coefficient with respect to all the set of control samples. Pore size distribution accounts

for this fact, since the population of the large capillary pores (at ca. 0.6-0.8 m) and the

diameter of these capillaries underwent an increase. Due to the same reasons, the use of

the viscosity enhancer produced an even sharper increase. Besides the changes in the pore

size distribution, the hydrophilicity of the functional groups of the admixtures may also

facilitate the water absorption. Some combinations with pozzolanic agents kept the

capillary coefficient values similar to that of the control renders (C, C-NS, C-MK, C-O-

NS and C-O-MK). Nevertheless, the real influence of these water transportation

properties on the durability of the renders will be assessed below.

Fig. 21. Water absorption through capillarity

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

Cap

illa

ry c

oef

icie

nt (

kg m

-2m

in-½

)

Page 258: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

236

3.6. Durability Experiments

Fig. 22 depicts both numerically and in a color scale the different damages

observed in the tested samples during continuous freezing-thawing F-T cycles. The total

decay of the specimen is displayed in red in the graph. Beyond this value, the specimen

was totally destroyed and thus no longer tested. Y-axis indicates the number of withstood

F-T cycles.

The control render (air lime without admixtures/additives) subjected to frost

resistance test underwent serious decay leading to the total destruction of the sample after

just 6 cycles (Fig. 22), in agreement with the poor frost resistance of pure air lime mortars

[17]. The addition of the sodium oleate, due to its water repellency, clearly enhanced the

F-T durability of the renders [10,24], in sample C-O as well as in the renders with

combination of multiple admixtures. Control renders with either MK or NS also increased

the frost resistance due to the densification of the matrix and to the discussed increase in

strength. It can be seen that the addition of EVA, starch derivative and pozzolanic agents

promoted the frost resistance of the renders in comparison with the plain lime sample (C)

or allowed the preservation of a good resistance (beyond 15 cycles) as compared to the

other control samples (C-NS, C-MK, C-O, C-O-NS and C-O-MK). However, samples

with the combination oleate, MK, EVA and S yielded moderate increase of resistance (up

to 9 F-T cycles) in comparison with C render, in line with their high water absorption

rates caused by the large population and diameter of large capillary pores.

Fig. 22. Alteration degrees of grouts after freeze-thaw cycles.

0

5

10

15

20

25

30

Fre

eze

-th

aw c

ycle

s

None Scarce Moderate Large Very Large Total

Page 259: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

237

With similar criteria, Fig. 23 presents the assessment of the resistance of the

renders in the face of MgSO4 sulphate attack. In control samples the addition of NS, oleate

or a combination of both admixtures increased the sulfate attack resistances in comparison

with plain lime render (C). However, the presence of MK resulted in a lower number of

cycles endurance (as observed in samples C-MK and C-O-MK). For samples with

multiple admixtures, the addition of NS, starch and EVA produced the highest tolerance

to sulfate attack compared with the control samples containing MK, being the samples O-

NS-S-E5, O-E10, O-NS-E10 and O-NS-S-E10 the ones which lasted 28 cycles of the test.

The poorer resistance of some of the MK-bearing samples (except O-MK-E5, in which

the positive effect of oleate and EVA increased its sulfate attack resistance) is due to the

chemical composition of the MK, which in reaction with the hydrated lime leads to the

formation of aluminate phases, C-S-A-H and C-A-H, besides the C-S-H phases as

common products of the pozzolanic reaction of both NS and MK [17,37].

Two main mechanisms explain the decay caused by the sulfate attack. On one

hand, sulfate ions react with portlandite and C-A-H, giving rise to the formation of

voluminous and thus expansive gypsum and ettringite. The expansion of these

crystallized compounds results in cracking and disruption of the hardened matrix [71].

On the other hand, the leaching of the calcium from the C-S-H phases leads to the loss of

the mechanical resistance of the paste. The literature has shown that the presence of Mg2+

ions (in case of attack by magnesium sulfate) cause decalcification of C-S-H (by ion

substitution), increasing the degree of alteration [72].

Therefore, the increase in aluminate compounds due to the MK addition favors

the formation of expansive salts, explaining the strongest damage observed, for example,

in the O-MK-S-E5 sample.

The higher MgSO4-attack resistance of the renders with EVA can be correlated

with the inhibition of the carbonation reported in Fig. 18. The presence of non-carbonated

portlandite prevents the formation of expansive sulfates, possibly due to the precipitation

of magnesium hydroxide (brucite) and avoiding the Ca-leaching of the C-S-H gel. As a

consequence, the lasting of the samples increased [71–73].

It must be noticed that the durability assays were carried out with pure render

samples. However, further works should be conducted to study the durability of the joint

stone-render systems.

Page 260: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

238

Fig. 23. Alteration degrees of grouts after sulfate attack cycles.

3.7. Overall assessment

To provide a comprehensive understanding of the performance of the different

renders and considering six of the most relevant characteristics measured in this study, a

comparison is presented (Fig. 24). For this assessment, a scale from 1 to 3 for each

parameter has been assigned, as described below:

• Adherence: according to Table 4, rate 1 was given to samples in which it was only

possible to quantitatively measure this value in just one type of employed

substrates; a rating of 2 was ascribed to samples in which this property could be

measured in two of employed substrates; and 3 to samples in which this property

was able to be measured in at least 3 of the substrates.

• Cracking: the rating was assigned by comparison with the control sample C,

establishing an average value with all substrates. The renders that showed more

cracking than that of the control sample were scored with 1; a score of 2 for the

samples that showed a similar behavior to the control sample and 3 for renders

showing a better visual appearance and less cracking in comparison with the

control render.

• Compressive strength: the results at 91 days were taken into account. It was

established a grade of 1 for samples with lower resistance than that of the control

sample C; 2 for samples with similar values of strength and 3 for the samples that

had a resistance greater than that of the control sample.

0

5

10

15

20

25

30M

agn

esi

um

Su

lph

ate

att

ack

cycl

es

None Scarce Moderate Large Very Large Total

Page 261: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

239

• Permeability: the assigned rating of 1 was attributed to samples that had lower

permeability than the control sample C, 2 to samples that had a value less or equal

to 1.5 times than the control sample, and 3 to the samples that had a value greater

than 1.5 times of the control sample.

• Frost resistance: A rating of 1 was set for samples that have endured less than 5

more cycles than the control sample C, 2 for samples that have endured 6 more

cycles than the control sample, but less than 16 cycles of this test, and a score of

3 for samples that have endured more than 16 cycles of this test.

• Durability to sulfate attack: The scale is the same as that applied for the resistance

to freeze-thaw cycles.

It is clearly observed that the compressive strength increased in all renders with

nanosilica. Furthermore, the use of the admixtures S and EVA improved adherence and

visual appearance by reducing cracking, except in samples such as O-NS-E5 and O-NS-

S-E5.

There was a clear improvement in resistance to freeze-thaw cycles and sulfate

attack, being optimal in the O-NS-S-E5 mixture. Samples O-MK-S-E5 and O-MK-S-E10

exhibited frost resistance similar to that of the control sample.

With regard to water vapor permeability, the renders without NS showed a higher

permeability. Inasmuch as the renders formulation includes oleate, starch and EVA, it

may be concluded that, whilst the NS addition sharply enhanced strength and durability,

the addition of MK enhanced adherence and cracking. These conclusions are useful to

design tailored renders, which may be prepared according to the specific requirements of

different repair works.

Page 262: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

240

Fig. 24. Overall assessment of the different renders

Page 263: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

241

4. CONCLUSIONS

New air lime-based renders were prepared combining different admixtures: a

water repellent agent (sodium oleate), an adhesion improver (ethylene-vinyl acetate

copolymer, EVA), a rheology modifier (modified starch), and pozzolanic mineral

admixtures (metakaolin or nanosilica) in order to enhance the performance of the renders

when applied on different substrates, particularly adhesion, cracking reduction and

durability.

The results showed that the nature and pore structure of the substrates exerted an

outstanding influence on the performance of the renders: very porous substrates (like

brick) favored the cracking of the renders, whilst the adherence was jeopardized when the

rendering mortars were applied onto substrates with very low porosity and smooth

surfaces (granite and limestone).

The addition of some of the combinations of the admixtures improved some

characteristics of the renderings with respect to a set of control samples including lime

with individual admixtures or combinations of pozzolanic admixture and sodium oleate.

The EVA addition, combined with oleate, MK and starch enhanced the adhesion

on most of substrates and minimized the cracking. For areas in which the renders are not

exposed to aggressive environmental conditions (indoor or protected walls), the use of

these combinations might be useful, for instance O-MK-S-E10.

If the environmental conditions after the application of the renders are expected

to be aggressive – freeze-thawing cycles and/or marine environment -, the presence of

nanosilica improves the mechanical strength and durability in combination with EVA,

oleate and starch (O-NS-S-E10). However, it must be borne in mind that the adhesion and

cracking were not so much enhanced in the combinations including NS studied in the

present work. The study of combinations of starch, EVA and sodium oleate with a lower

percentage of NS could be of interest for further works.

The use of the assayed combinations of admixtures has been proved to be useful

to obtain durable lime-based renders in which the adherence is enhanced and the cracking

formation reduced. The validity of some of these renders for different substrates favors

their application as repair materials of the Built Heritage and also for new works of civil

constructions.

Page 264: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

242

Author Contributions

J.F. González–Sánchez: Main contributor in Investigation, Data curation,

Conceptualization, Formal analysis, Writing– Original draft preparation, Writing–

Reviewing and Editing. J.M. Fernández: Writing– Reviewing and Editing. Í. Navarro–

Blasco: Methodology, Supervision, Visualization, Validation, Project administration. J.I.

Alvarez: Methodology, Supervision, Writing– Reviewing and Editing, Funding

acquisition

Funding

This study was funded by Spanish Ministry of Economy and Competitiveness

(MINECO), grant number MAT2015-70728-P. The first author thanks the Friends of the

University of Navarra, Inc., for a pre-doctoral grant.

Acknowledgments

The authors thank the technical support provided by Cristina Luzuriaga.

REFERENCES

[1] M.P. Seabra, H. Paiva, J.A. Labrincha, V.M. Ferreira, Admixtures effect on fresh

state properties of aerial lime based mortars, Constr. Build. Mater. 23 (2009)

1147–1153. https://doi.org/10.1016/j.conbuildmat.2008.06.008.

[2] A. Gameiro, A. Santos Silva, R. Veiga, A. Velosa, Hydration products of lime–

metakaolin pastes at ambient temperature with ageing, Thermochim. Acta. 535

(2012) 36–41. https://doi.org/10.1016/J.TCA.2012.02.013.

[3] J. Lanas, J.I. Alvarez, Masonry repair lime-based mortars: Factors affecting the

mechanical behavior, Cem. Concr. Res. 33 (2003) 1867–1876. https://doi.org/

10.1016/S0008-8846(03)00210-2.

[4] M. del M. Barbero-Barrera, L. Maldonado-Ramos, K. Van Balen, A. García-

Santos, F.J. Neila-González, Lime render layers: An overview of their properties,

J. Cult. Herit. 15 (2014) 326–330. https://doi.org/10.1016/ j.culher.2013.07.004.

[5] C. Borges, A. Santos Silva, R. Veiga, Durability of ancient lime mortars in humid

environment, Constr. Build. Mater. 66 (2014) 606–620. https://doi.org/10.1016/

j.conbuildmat.2014.05.019.

Page 265: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

243

[6] D. Ergenç, R.F. Gonzálezv, Preliminary investigation of the preparation of repair

mortars for the Temple Of Diana, Mérida, Spain, Ge-Conservacion. 1 (2017) 42–

49.

[7] F.J.J. Maestre, M.P. Quiles, I.M. Mira, E.V. Ortego, El uso de la cal en la

construcción durante la Prehistoria reciente: nuevas aportaciones para el levante

de la península Ibérica, Arqueol. La Arquit. 13 (2016) 1695–2731.

https://doi.org/10.3989/arq.arqt.2016.005.

[8] E. Luso, P.B. Lourenço, Experimental characterization of commercial lime based

grouts for stone masonry consolidation, Constr. Build. Mater. 102 (2016) 216–

225. https://doi.org/10.1016/j.conbuildmat.2015.10.096.

[9] E. Salavessa, S. Jalali, L.M.O. Sousa, L. Fernandes, A.M. Duarte, Historical

plasterwork techniques inspire new formulations, Constr. Build. Mater. 48 (2013)

858–867. https://doi.org/10.1016/j.conbuildmat.2013.07.064.

[10] A. Izaguirre, J. Lanas, J.I. Álvarez, Effect of water-repellent admixtures on the

behaviour of aerial lime-based mortars, Cem. Concr. Res. 39 (2009) 1095–1104.

https://doi.org/10.1016/J.CEMCONRES.2009.07.026.

[11] C. Groot, R. van Hees, T. Wijffels, Selection of plasters and renders for salt laden

masonry substrates, Constr. Build. Mater. 23 (2009) 1743–1750.

https://doi.org/10.1016/j.conbuildmat.2008.09.013.

[12] A.E. Charola, Salts in the deterioration of porous materials: An overview, J. Am.

Inst. Conserv. 39 (2000) 327–343. https://doi.org/10.1179/01971360080

6113176.

[13] C. Groot, J.J. Hughes, RILEM TC 203-RHM : Repair mortars for historic

masonry : Performance requirements for renders and plasters RILEM

TECHNICAL COMMITTEE RILEM TC 203-RHM : Repair mortars for historic

masonry, (2012). https://doi.org/10.1617/s11527-012-9916-0.

[14] G. Zacharopoulou, The renascence of lime based mortar technology. An appraisal

of a bibliographic study, in: Compat. Mater. Prot. Eur. Cult. Herit. - PACT 55,

1998: pp. 89–114.

Page 266: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

244

[15] T. Mauroux, F. Benboudjema, P. Turcry, A. Aït-Mokhtar, O. Deves, Study of

cracking due to drying in coating mortars by digital image correlation, Cem.

Concr. Res. 42 (2012) 1014–1023. https://doi.org/10.1016/j.cemconres.

2012.04.002.

[16] A.R. Santos, M. do R. Veiga, A. Santos Silva, J. de Brito, J.I. Álvarez, Evolution

of the microstructure of lime based mortars and influence on the mechanical

behaviour: The role of the aggregates, Constr. Build. Mater. 187 (2018) 907–922.

https://doi.org/10.1016/j.conbuildmat.2018.07.223.

[17] A. Duran, J.F. González-Sánchez, J.M. Fernández, R. Sirera, Í. Navarro-Blasco,

J.I. Alvarez, Influence of two polymer-based superplasticizers (poly-naphthalene

sulfonate, PNS, and lignosulfonate, LS) on compressive and flexural strength,

freeze-thaw, and sulphate attack resistance of lime-metakaolin grouts, Polymers

(Basel). 10 (2018). https://doi.org/10.3390/polym10080824.

[18] J.I. Alvarez, J.M. Fernández, I. Navarro-Blasco, A. Duran, R. Sirera,

Microstructural consequences of nanosilica addition on aerial lime binding

materials: Influence of different drying conditions, Mater. Charact. 80 (2013) 36–

49. https://doi.org/10.1016/j.matchar.2013.03.006.

[19] J. Grilo, P. Faria, R. Veiga, A. Santos Silva, V. Silva, A. Velosa, New natural

hydraulic lime mortars - Physical and microstructural properties in different

curing conditions, Constr. Build. Mater. 54 (2014) 378–384.

https://doi.org/10.1016/j.conbuildmat.2013.12.078.

[20] S.Q. Fang, H. Zhang, B.J. Zhang, Y. Zheng, The identification of organic

additives in traditional lime mortar, J. Cult. Herit. 15 (2014) 144–150.

https://doi.org/10.1016/j.culher.2013.04.001.

[21] L. Ventolá, M. Vendrell, P. Giraldez, L. Merino, Traditional organic additives

improve lime mortars: New old materials for restoration and building natural stone

fabrics, Constr. Build. Mater. 25 (2011) 3313–3318. https://doi.org/

10.1016/j.conbuildmat.2011.03.020.

Page 267: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

245

[22] S. Sánchez-Moral, L. Luque, J.C. Cañaveras, V. Soler, J. Garcia-Guinea, A.

Aparicio, Lime-pozzolana mortars in Roman catacombs: Composition, structures

and restoration, Cem. Concr. Res. 35 (2005) 1555–1565. https://doi.org/10.1016/

j.cemconres.2004.08.009.

[23] A. Vavričuk, V. Bokan-Bosiljkov, S. Kramar, The influence of metakaolin on the

properties of natural hydraulic lime-based grouts for historic masonry repair,

Constr. Build. Mater. 172 (2018) 706–716. https://doi.org/10.1016/ j.conbuildmat.

2018.04.007.

[24] J.F. González-Sánchez, B. Taşci, J.M. Fernández, Í. Navarro-Blasco, J.I. Alvarez,

Combination of polymeric superplasticizers, water repellents and pozzolanic

agents to improve air lime-based grouts for historic masonry repair, Polymers

(Basel). 12 (2020). https://doi.org/10.3390/POLYM12040887.

[25] A. Izaguirre, J. Lanas, J.I. Álvarez, Behaviour of a starch as a viscosity modifier

for aerial lime-based mortars, Carbohydr. Polym. 80 (2010) 222–228.

https://doi.org/10.1016/j.carbpol.2009.11.010.

[26] J. Pourchez, A. Govin, P. Grosseau, R. Guyonnet, B. Guilhot, B. Ruot, Alkaline

stability of cellulose ethers and impact of their degradation products on cement

hydration, Cem. Concr. Res. 36 (2006) 1252–1256. https://doi.org/10.1016/

j.cemconres.2006.03.028.

[27] E. Knapen, D. Van Gemert, Cement hydration and microstructure formation in

the presence of water-soluble polymers, Cem. Concr. Res. 39 (2009) 6–13.

https://doi.org/10.1016/j.cemconres.2008.10.003.

[28] S.M. dos S. Botas, M. do R.S. Veiga, A.L. Velosa, Adhesion of Air Lime–Based

Mortars to Old Tiles: Moisture and Open Porosity Influence in Tile/Mortar

Interfaces, J. Mater. Civ. Eng. 27 (2015). https://doi.org/10.1061/(ASCE)MT.

1943-5533.0001108.

[29] M.D.R. Veiga, V. Abrantes, Improving the cracking resistance of rendering

mortars. Influence of composition factors, Int. J. Hous. Sci. Its Appl. 22 (1998)

245–254.

Page 268: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

246

[30] C. Shi, X. Zou, P. Wang, Influences of ethylene-vinyl acetate and methylcellulose

on the properties of calcium sulfoaluminate cement, Constr. Build. Mater. 193

(2018) 474–480. https://doi.org/10.1016/j.conbuildmat. 2018.10.218.

[31] G. Barluenga, F. Hernández-Olivares, SBR latex modified mortar rheology and

mechanical behaviour, Cem. Concr. Res. 34 (2004) 527–535. https://doi.org/

10.1016/j.cemconres.2003.09.006.

[32] S. Zhong, Z. Chen, Properties of latex blends and its modified cement mortars,

Cem. Concr. Res. 32 (2002) 1515–1524. https://doi.org/10.1016/S0008-

8846(02)00813-X.

[33] G. Akay, L. Tong, H. Bakr, R.A. Choudhery, K. Murray, J. Watkins, Preparation

of ethylene vinyl acetate copolymer latex by flow induced phase inversion

emulsification, J. Mater. Sci. 37 (2002) 4811–4818. https://doi.org/10.1023/

A:1020878600815.

[34] D.C. Park, J.C. Ahn, S.G. Oh, H.C. Song, T. Noguchi, Drying effect of polymer-

modified cement for patch-repaired mortar on constraint stress, Constr. Build.

Mater. 23 (2009) 434–447. https://doi.org/10.1016/j.conbuildmat.2007.11.003.

[35] D. Park, S. Park, Y. Seo, T. Noguchi, Water absorption and constraint stress

analysis of polymer-modified cement mortar used as a patch repair material,

Constr. Build. Mater. 28 (2012) 819–830. https://doi.org/10.1016/j.conbuildmat.

2011.06.081.

[36] Z. Wang, J. Wu, P. Zhao, N. Dai, Z. Zhai, T. Ai, Improving cracking resistance of

cement mortar by thermo-sensitive poly N-isopropyl acrylamide (PNIPAM) gels,

J. Clean. Prod. 176 (2018) 1292–1303. https://doi.org/10.1016/j.jclepro.

2017.11.242.

[37] I. Navarro-Blasco, M. Pérez-Nicolás, J.M. Fernández, A. Duran, R. Sirera, J.I.

Alvarez, Assessment of the interaction of polycarboxylate superplasticizers in

hydrated lime pastes modified with nanosilica or metakaolin as pozzolanic

reactives, Constr. Build. Mater. 73 (2014) 1–12. https://doi.org/10.1016/

j.conbuildmat.2014.09.052.

Page 269: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

247

[38] European Committee for Standardization, UNE-EN 1015-3:2000 Methods of test

for mortar for masonry —Part 3: Determination of consistence of fresh mortar (by

flow table), EN. (2006).

[39] H. Paiva, L.P. Esteves, P.B. Cachim, V.M. Ferreira, Rheology and hardened

properties of single-coat render mortars with different types of water retaining

agents, Constr. Build. Mater. 23 (2009) 1141–1146. https://doi.org/10.1016/

j.conbuildmat.2008.06.001.

[40] European Committee for Standardization, UNE-EN 1015-6:1999 Methods of Test

for Mortar for Masonry. Part 6: Determination of Bulk Density of Fresh Mortar,

EN. (1999).

[41] European Committee for Standardization, UNE-EN 1015-7:1999 Methods of Test

for Mortar for Masonry. Part 7: Determination of Air Content of Fresh Mortar,

EN. (1999).

[42] European Committee for Standardization, UNE-EN 83-816-93. Test methods.

Mortars. Fresh mortars. Determination of water retentivity, EN. (1993).

[43] European Committee for Standardization, UNE-EN 1015-9:1999 Methods of Test

for Mortar for Masonry, Part 9: Determination of Workable Life and Correction

Time of Fresh Mortar, EN. (1999).

[44] European Committee for Standardization, UNE-EN 998-1:2018 Specification for

mortar for masonry - Part 1: Rendering and plastering mortar, EN. (2018).

[45] UNE-EN 83.822:1995 Ex. Mortars. Test Methods. Hardened Mortars.

Determination of adhesion of rendering and plastering mortars, (1995).

[46] European Committee for Standardization, UNE-EN 1015-19:1999: Methods of

test for mortar for masonry - part 19: determination of water vapour permeability

of hardened rendering and plastering mortars, EN. (1999).

[47] European Committee for Standardization, UNE EN 1015-18:2002 Methods of test

for mortar for masonry - Part 18: Determination of water absorption coefficient

due to capillary action of hardened mortar, EN. (2002).

[48] M. Silvana, Caracterización de almidones de maíz: nativo y modificados (Master

Thesis), Universidad Católica de Córdoba, 2012.

Page 270: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

248

[49] I. Sánchez, Propiedades fisicoquímicas de almidones catiónicos elaborados por

extrusión, PhD Dissertation, IPN, 2007.

[50] H. Wang, Q. Yang, U. Ferdinand, X. Gong, Y. Qu, W. Gao, A. Ivanistau, B. Feng,

M. Liu, Isolation and characterization of starch from light yellow, orange, and

purple sweet potatoes, Int. J. Biol. Macromol. 160 (2020) 660–668.

https://doi.org/10.1016/j.ijbiomac.2020.05.259.

[51] S. Wang, X. Hu, Z. Wang, Q. Bao, B. Zhou, T. Li, S. Li, Preparation and

characterization of highly lipophilic modified potato starch by ultrasound and

freeze-thaw treatments, Ultrason. Sonochem. 64 (2020) 105054.

https://doi.org/10.1016/j.ultsonch.2020.105054.

[52] O. Iván, P. Contreras, J. Ernesto, P. Perilla, N. Ariel, A. Enciso, A review of using

organic acids to chemically modify starch. Ing. Investig. 28 (2008) 47-52.

[53] A.A.P. Mansur, O.L. Do Nascimento, H.S. Mansur, Characterization of

Copolymers Poly(Ethylene-Co-Vinyl Acetate) and Evaluation of Their Effects in

the Modified Mortars Properties, QUALICER08 (World Congr. Ceram. Tile

Qual. (2008) 107–116.

[54] A. Martínez-García, Tratamiento de copolímeros EVA mediante descarga corona:

influencia de la naturaleza y contenido de diferentes cargas, PhD dissertation,

Universitat d’Alacant, 1999.

[55] N. Tarannum, K. Pooja, R. Khan, Preparation and applications of hydrophobic

multicomponent based redispersible polymer powder: A review, Constr. Build.

Mater. 247 (2020) 118579. https://doi.org/10.1016/j.conbuildmat.2020.118579.

[56] A. Peschard, A. Govin, J. Pourchez, E. Fredon, L. Bertrand, S. Maximilien, B.

Guilhot, Effect of polysaccharides on the hydration of cement suspension, J. Eur.

Ceram. Soc. 26 (2006) 1439–1445. https://doi.org/10.1016/j.jeurceramsoc.

2005.02.005.

[57] C. GROOT, Effects of water on mortar-brick bond, Heron (Delft). 40 (1995) 57–

70.

Page 271: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

249

[58] J.N. Eiras, J.S. Popovics, M. V. Borrachero, J. Monzó, J. Payá, The effects of

moisture and micro-structural modifications in drying mortars on vibration-based

NDT methods, Constr. Build. Mater. 94 (2015) 565–571. https://doi.org/

10.1016/j.conbuildmat.2015.07.078.

[59] I. Torres, R. Veiga, V. Freitas, Influence of substrate characteristics on behavior

of applied mortar, J. Mater. Civ. Eng. 30 (2018) 04018254 https://doi.org/

10.1061/(ASCE)MT.1943-5533.0002339.

[60] M. Arandigoyen, J.I. Alvarez, Blended pastes of cement and lime: Pore structure

and capillary porosity, Appl. Surf. Sci. 252 (2006) 8077–8085. https://doi.org/

10.1016/j.apsusc.2005.10.019.

[61] M. Moukwa, P.C. Aitcin, The effect of drying on cement pastes pore structure as

determined by mercury porosimetry, Cem. Concr. Res. 18 (1988) 745–752.

https://doi.org/10.1016/0008-8846(88)90098-1.

[62] A. Speziale, J.F. González-Sánchez, B. Taşcı, A. Pastor, L. Sánchez, C.

Fernández-Acevedo, T. Oroz-Mateo, C. Salazar, I. Navarro-Blasco, J.M.

Fernández, J.I. Alvarez, Development of Multifunctional Coatings for Protecting

Stones and Lime Mortars of the Architectural Heritage, Int. J. Archit. Herit. 14

(2020) 1008–1029. https://doi.org/10.1080/15583058.2020.1728594.

[63] J. Vázquez Romero, Adherencia al hormigón de morteros de diferentes bases

químicas, PhD Dissertation, Universidad Politécnica de Madrid, 2010.

[64] H. Carasek, O. Cascudo, L.M. Scartezini, Importância do Materiais na Aderência

os Revestimentos de Argamassa, in: IV Simpoósio Bras. Tecnoloia Das

Argamassas, Brasília, 2001: pp. 43–67.

[65] A. Kondo, S. Takanashi, K. Maeda, New insight into mesoporous silica for nano

metal-organic framework, J. Colloid Interface Sci. 384 (2012) 110–115.

https://doi.org/10.1016/j.jcis.2012.06.040.

[66] F. Collet, M. Bart, L. Serres, J. Miriel, Porous structure and water vapour sorption

of hemp-based materials, Constr. Build. Mater. 22 (2008) 1271–1280.

https://doi.org/10.1016/j.conbuildmat.2007.01.018.

Page 272: Desarrollo de nuevos morteros de restauración de cal con ...

Capítulo III

250

[67] M. Arandigoyen, J.L.P. Bernal, M.A.B. López, J.I. Alvarez, Lime-pastes with

different kneading water: Pore structure and capillary porosity, Appl. Surf. Sci.

252 (2005) 1449–1459. https://doi.org/10.1016/j.apsusc.2005.02.145.

[68] D.D. Sidney Mindess, J. Francis Young, Concrete Second edition, 2003.

https://doi.org/10.1017/CBO9781107415324.004.

[69] R. Nogueira, A.P. Ferreira Pinto, A. Gomes, Design and behavior of traditional

lime-based plasters and renders. Review and critical appraisal of strengths and

weaknesses, Cem. Concr. Compos. 89 (2018) 192–204. https://doi.org/

10.1016/j.cemconcomp.2018.03.005.

[70] E. Marie-Victorie, P. Bromblet, a New Generation of Cement-Based Renderings:

an Alternative To Traditional Lime Based Mortars?, Proc. Int. (2000) 371–393.

[71] N.M. Al-Akhras, Durability of metakaolin concrete to sulfate attack, Cem. Concr.

Res. 36 (2006) 1727–1734. https://doi.org/10.1016/j.cemconres. 2006.03.026.

[72] M.N. Aziez, A. Bezzar, Magnesium sulphate attacks on mortars - Influence of

temperature, type of sand and type of cement, J. Eng. Sci. Technol. Rev. 10 (2017)

41–50. https://doi.org/10.25103/jestr.101.07.

[73] S.T. Lee, H.Y. Moon, R.N. Swamy, Sulfate attack and role of silica fume in

resisting strength loss, Cem. Concr. Compos. 27 (2005) 65–76. https://doi.org/

10.1016/j.cemconcomp.2003.11.003.

Page 273: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

Page 274: Desarrollo de nuevos morteros de restauración de cal con ...
Page 275: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

253

Este trabajo de tesis doctoral pretendió analizar el posible efecto conjunto o

incluso sinérgico de las combinaciones más interesantes de dos o más aditivos en el

comportamiento de morteros de cal, con especial enfoque en la obtención de morteros de

restauración del Patrimonio Edificado.

Se han elaborado, en consonancia con los objetivos de la Memoria, tres gamas de

morteros:

• Gama 1: Morteros de inyección o de relleno (grouts), mediante uso de

combinaciones de cal aérea con aditivos puzolánicos, superplastificantes y

agente hidrofugante.

• Gama 2: Morteros con actividad fotocatalítica y propiedad de

autolimpieza mejorada (self–cleaning), mediante combinación de aditivos

fotocatalíticos con aditivos dispersantes o superplastificantes, adición

puzolánica y aditivo hidrofugante.

• Gama 3: Morteros de enlucido o monocapa (renders, one–coat mortars)

incluyendo aditivos para la mejora de adherencia del mortero (copolímero de

etileno–vinil–acetato) aplicado junto con puzolánicos, modificadores de la

consistencia (almidón) e hidrofugante.

Se analizan a continuación las funciones y características aportadas por cada

familia de aditivos en las diversas gamas de morteros.

1. Aditivos puzolánicos

1.1. Microsílice

Este aditivo se ha usado únicamente para la preparación de morteros de inyección.

La adición de microsílice ha mejorado las resistencias de esos morteros, y ha dado lugar

a un aumento de la resistencia de los morteros frente a ciclos hielo deshielo. Sin embargo,

a diferencia de los otros aditivos puzolánicos, la microsílice presentó una fuerte tendencia

a flocular, lo que generó aglomerados grandes y menos reactivos. En la prueba de

inyectabilidad sus partículas actuaron como barrera, debido a sus conocidas fuerzas

cohesivas, impidiendo la inyección de la lechada [1].

Page 276: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

254

Figura 1. Tamaño de partícula de la microsílice y del metacaolín

El gran tamaño de partícula de la microsílice (Fig. 1) complicó la inyección y

dificultó el flujo a través de los finos huecos del relleno de partículas de travertino

empleado en las columnas. Debe tenerse en cuenta que en la prueba de inyectabilidad

realizada se ha empleado un relleno de pequeño tamaño de partícula, que generó espacios

libres de sección reducida, complicando la fluidez del mortero fresco. En aplicaciones

reales, cabría esperar un mejor comportamiento incluso en mezclas de menor

inyectabilidad como las generadas por la microsílice.

Comparativamente, la microsílice no fue tan eficaz para aumentar la resistencia a

la compresión como el metacaolín (MK), y este hecho se ha asociado a su menor actividad

puzolánica, consecuencia directa de su mayor tamaño de partícula. El análisis

termodiferencial y termogravimétrico (TG–DTA, en la Fig. 2) apunta a esta reducida

actividad puzolánica tras la evaluación de los porcentajes de Ca(OH)2 después de 182 y

365 días. Estos valores son mayores para las muestras que contienen microsílice (los

valores en promedio están por encima del 4%), mientras que las muestras con metacaolín

exhiben porcentajes por debajo de esa cifra, evidenciando un mayor consumo de

hidróxido de calcio durante la reacción puzolánica para este último aditivo puzolánico.

Figura 2. Porcentajes de portlandita (Ca(OH)2) de las diferentes muestras a 182 y 365

días de curado

Page 277: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

255

1.2. Metacaolín

La incorporación de este conocido agente puzolánico perseguía los objetivos de

acortar tiempos de fraguado, mejorar la resistencia a la compresión e incrementar la

durabilidad de los morteros de cal. Se ha incorporado en los morteros de inyección y en

los morteros de adherencia mejorada.

Al emplear metacaolín (MK) en morteros de inyección en una cantidad del 20 %

se ha logrado mejorar con claridad la resistencia a la rotura por compresión y la resistencia

a los ciclos hielo deshielo. Como se puede observar en la Fig. 3 el MK ha incrementado

la resistencia 3.1 veces más en promedio, debido a la buena compatibilidad que existe

entre la cal aérea y este agente puzolánico formando fases C–S–H que causan un

fortalecimiento de la matriz conglomerante y una reducción del tamaño de poro medio y

de la porosidad total de la misma [2,3] (Fig. 4).

El uso combinado de este agente puzolánico con el superplastificante PCE en la

prueba de inyección ha permitido un flujo continuo a través de la columna con material

de relleno, configurando a este aditivo puzolánico como la mejor elección si se quiere

aumentar la resistencia de este tipo de morteros [3] combinada con una adecuada

inyectabilidad.

Debe tenerse en cuenta que en los morteros de inyección se ha incluido un 20%

en peso de cal de este aditivo y que, por su tamaño de partícula y por su reactividad,

aumenta la demanda de agua, pudiendo llegar a complicar la fluidez del mortero de

inyección. Esto obliga a ajustar adecuadamente las relaciones agua/cal y la dosis y

naturaleza química de los superplastificantes a emplear.

Figura 3. Efecto comparativo de la adición de metacaolín en la resistencia a la

compresión de morteros de cal a diferentes tiempos de curado

Page 278: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

256

Figura 4. Comparativa de curvas porosimétricas a 365 días entre un mortero de cal vs

un mortero de cal con metacaolín

La interacción de este agente puzolánico con los demás componentes de las

mezclas se ha estudiado principalmente mediante pruebas de adsorción con los

superplastificantes, sin que se hayan constatado grandes cambios, en ausencia o presencia

del puzolánico. La Fig. 5 permite comprobar como, por ejemplo, la adsorción de sulfonato

de naftaleno o de lignosulfonato fue muy parecida en sistemas de cal con o sin metacaolín.

Fig. 5. Adsorción del LS y del PNS en un sistema puro de cal y un sistema cal–MK

Page 279: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

257

En morteros con metacaolín, la reducción del tamaño medio de los poros impidió

la absorción de agua líquida, bloqueando su posterior congelación y daño por expansión

y proporcionando así una mejor resistencia a los ciclos de hielo–deshielo. La mejora de

la durabilidad fue más marcada en muestras de MK con algún superplastificante, producto

del refinamiento de la estructura porosa. Sin embargo, la resistencia a ataque por

cristalización de sulfato de magnesio empeoró debido a la composición química del MK

(con presencia de aluminio) y su formación de C–A–H y de C–S–H. Por un lado, en

presencia de iones sulfato, la portlandita y las fases de aluminatos de calcio hidratados

dan lugar a la formación de fases voluminosas y expansivas de yeso y ettringita. Por otro,

se ha reportado en la literatura que los iones Mg2+ provocan la descalcificación de fases

C–S–H, aumentando el grado de alteración [4].

En morteros de adherencia mejorada, al usar metacaolín también aumentó la

demanda de agua, como en los de inyección. Al usar metacaolín en mezcla con el

copolímero de etileno–vinil–acetato, sin importar la dosis de este último, existió una

interferencia en la formación continua de las fases C–S–H lo que ocasionó una

disminución de la resistencia a compresión de las muestras [5]. Sin embargo, el

metacaolín no interfirió con la adherencia al ser combinado con los demás elementos,

sugiriendo su compatibilidad para este tipo de morteros.

1.3. Nanosílice

Este agente puzolánico se ha utilizado en la preparación de morteros de las gamas

2 y 3 a una dosis del 20 %. La selección de esta cantidad se fundamentó en los buenos

resultados advertidos en trabajos anteriores, con muy buenos resultados en cuanto a la

mejora de las características de un mortero de cal, y cambios relevantes en la distribución

de los mesoporos [6–8]. La presencia de NS se ha descrito en la bibliografía como

impulsora del desarrollo de fases C–S–H, dando lugar a una población enriquecida de

poros gel (<10 nm), en el rango microporoso. Se ha señalado una mejora notable de la

resistencia a la compresión de los morteros de cal aérea [6,7,9].

En este trabajo, en los morteros autolimpiantes, se encontró que el efecto de la

adición del aditivo puzolánico depende de la composición del mortero. Para morteros sin

superplastificantes, la adición de NS mejoró la eliminación de NO. El refinamiento de la

estructura de poros explica este hallazgo, relacionado con la prevalencia de poros

capilares entre 10 y 100 nm para muestras con NS (NS–T y O–NS–T) (Fig. 6).

Page 280: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

258

Figura 6. Distribución de tamaño de poro de diferentes muestras morteros de cal con

actividad fotocatalítica (muestras sin superplastificante)

Estos poros se han descrito como muy relevantes para la actividad fotocatalítica

en morteros de cemento con TiO2 [10]. Esto se pudo confirmar en este trabajo, ya que la

muestra O–T sin NS mostró porosidad insignificante en ese rango de poros, produciendo

un 28% de remoción de NO. Las muestras con NS (NS–T y O–NS–T), con un notable

aumento de poros capilares en ese rango de poros, incrementaron la degradación del NO

hasta cifras del 34 al 37% (Fig. 7).

En estos morteros la presencia de NS promovió la adsorción y la actividad de los

superplastificantes. Al medirse el potencial zeta en el sistema complejo de Cal–Oleato–

NS–Superplastificante, se detectó que ,en presencia de la nanosílice y por un fenómeno

de sobrecarga en el entorno rico en cationes de Ca2+ , se alcanzaron valores fuertemente

positivos de potencial zeta. Esto favoreció la adsorción de los superplastificantes, cuyos

grupos funcionales al pH alcalino del mortero están ionizados con carga negativa.

Figura 7. Abatimiento de NO y NOx de muestras con NS sin superplastificantes

(morteros fotocatalíticos)

Page 281: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

259

En la prueba de hidrofilicidad fotoinducida, al agregar la nanosílice disminuyó el

valor de ángulo de contacto, por tanto, aumentando la humectabilidad de la superficie:

por ejemplo, en la muestra O–NS–T, la irradiación continua durante 30 minutos provocó

una caída moderada del ángulo de contacto de 51º a 37º (es decir, un 27% de reducción

del ángulo): este hecho se relacionó con el efecto de dilución de la nanosílice (20% en

peso respecto a la cal) sobre el agente hidrofugante (oleato sódico) (Fig. 8). Para la

actividad de autolimpieza, el mantenimiento de hidrofilicidad fotoinducida favorece la

eficacia de los morteros al permitir la creación de una capa acuosa de arrastre de suciedad

sobre la superficie de los morteros.

En enlucidos y monocapas de adherencia mejorada, la resistencia a la compresión

aumentó en todos los morteros preparados con nanosílice, sin importar la dosis de aditivo

para mejorar la adherencia (Fig. 9). La adición de nanosílice a la mezcla aumentó la

demanda de agua para alcanzar el valor de flujo establecido incluso más que el

metacaolín. Esta modificación era previsible por la mayor área superficial de NS (500

m2g–1) y su reactividad [11,12]. La mejora en la resistencia mecánica, parámetro de

interés relativo para monocapas, sucedió de forma paralela al aumento de viscosidad de

los monocapas, lo que dificultó la penetración del revoco fresco en poros de reducido

tamaño de los sustratos utilizados, provocando un contacto defectuoso y por tanto una

mala adherencia. La excepción se observó en el ladrillo empleado como sustrato, ya que

su superficie estriada permitió una mejora en la adherencia (Fig. 10).

Figura 8. Ángulo de contacto durante la prueba hidrofilicidad fotoinducida de muestras

sin superplastificante, con y sin nanosílice

Page 282: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

260

Figura 9.Resultados de la resistencia a la compresión de monocapas, con dosis de

0.50% y 1.00% de aditivo (E) para mejorar la adherencia, a 28 y 91 días

Figura10. Adherencia del mortero con NS (muestra O–NS–E), sobre dos sustratos:

a) arenisco y b)ladrillo

Page 283: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

261

La adición de NS, almidón y EVA ha permitido obtener monocapas con notable

resistencia al ataque por sulfatos y a los ciclos hielo deshielo en comparación con las

muestras que contienen MK, siendo las muestras O–NS–S–E5, O–E10, O–NS–E10 y O–

NS–S–E10 las de mayor durabilidad (con el total de 28 ciclos de la prueba) (Fig. 11 y

12).

Figura 11. Resistencia al ataque de sulfatos de monocapas con adherencia mejorada

Figura 12. Resistencia a los ciclos hielo deshielo de monocapas con adherencia

mejorada

Page 284: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

262

2. Superplastificantes

2.1. Lignosulfonato

En morteros de inyección con lignosulfonato se incrementó el aire incorporado

durante el proceso de mezcla como resultado de sus características tensioactivas. Este

aditivo ralentizó el tiempo de fraguado de morteros de cal por la fácil complejación de

iones Ca2+ y la consiguiente interferencia con la carbonatación [13,14]. El anclaje del

polímero sobre las partículas activas se realiza mediante una interacción electrostática

favorable de acuerdo al modelo de doble capa: en los sistemas de cal el apantallamiento

fuerte por iones calcio positivos explica que, cuanto mayor carga aniónica, más intensa

es la adsorción del polímero, en este caso el LS.

Sin embargo, la formación de complejos LS–Ca2+ impidió que algunas moléculas

de LS se adsorbieran sobre algunas de las partículas presentes en los sistemas en fresco:

portlandita, C–S–H, C–S–A–H o C–A–H. Por ello este aditivo tuvo menor eficacia como

agente dispersante en comparación con otros aditivos utilizados.

La Fig. 13 representa la resistencia a compresión de los morteros de inyección con

diversos tipos de superplastificantes. En el caso del LS la dosis de 0.5% presentó un ligero

incremento respecto a la muestra control.

Figura 13. Resistencia a la compresión de los diferentes muestras que contienen

metacaolín y los diferentes superplastificantes

Page 285: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

263

Figura 14. Distribución de tamaño de poro de las muestras de cal–metacaolín con 0.5%

y 1.0% de LS y PNS

En cuanto al efecto en la durabilidad, este aditivo, por su efecto tensioactivo,

generó un incremento en el tamaño de poro (Fig. 14), en comparación con el PNS. La

tasa de absorción de agua se incrementó y por ello los morteros con LS en la prueba de

durabilidad solo soportaron 12 ciclos.

2.2. Éteres de policarboxilato

En morteros de inyección se obtuvo un incremento de la resistencia mecánica

atribuido al refinamiento de la estructura de los poros provocado por este

superplastificante (PCE–1). La adición de PCE provocó una fuerte caída en el número de

poros, de aproximadamente 1 µm. Además, el tamaño del poro principal se desplazó hacia

diámetros inferiores (entre 0.5 y 0.8 μm) como se puede observar en la Fig. 15.

Figura 15. Distribución de tamaño poros de muestras con y sin PCE de los morteros de

inyección

Page 286: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

264

Figura 16. Valores de fluidez (diámetro de dispersión medido en la mesa de sacudidas)

de los diferentes grouts

La adición de PCE dio como resultado un fuerte incremento de fluidez, con

valores de diámetro de dispersión superiores a 300 mm (mesa de sacudidas),

independientemente de la composición de la mezcla y de si se incluía en la mezcla un

agente puzolánico (Fig. 16). Por lo tanto, se confirmó la destacada eficacia de los

derivados de éter de policarboxilato tanto en sistemas a base de cal como de cemento

[8,9,15], siendo la mejor alternativa de los cuatro aditivos probados para incrementar el

valor de esta propiedad. La arquitectura molecular ramificada de este polímero, junto con

la reconocida actividad de las moléculas del mismo no adsorbidas, mejoró claramente la

inyectabilidad. La eficacia de la acción dispersante del PCE en sistemas a base de cal se

ha observado en trabajos anteriores [8,9,16,17] y se confirmó en esta investigación. Por

tanto, las mezclas con este aditivo presentaron los mejores valores inyectabilidad sin

importar si estaba mezclado con aditivo. La mezcla O–MK–PCE mostró la mejor

inyectabilidad con un valor de 0.08 s−1, que es mayor que los resultados reportados por

otros autores [18–20].

En el estudio de potencial zeta de este superplastificante se comprobó que el PCE–

1 no modificó dramáticamente la carga superficial de las partículas, lo que confirma la

débil influencia de la carga aniónica de este superplastificante, apuntando a que el efecto

predominante fue el impedimento estérico de las cadenas laterales de este polímero que

resulta más eficaz que las repulsiones electrostáticas de los grupos carboxilatos cargados

negativamente [21,22]. La hidro–repelencia no se vio afectada debido a los valores de

Page 287: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

265

potencial zeta que muestran poca interacción y mayor compatibilidad con el oleato

sódico.

En el diseño de morteros autolimpiantes y fotocatalíticamente activos se han

utilizado 4 tipos de éteres de policarboxilato: PCE–1, 23APEG, 45PC6 y 52IPEG. En la

prueba de potencial zeta se demostró que todos ellos ayudan a la dispersión de las

partículas de TiO2, no por su carga electrostática sino, fundamentalmente, por su efecto

estérico. Se advirtió este mecanismo en la no negativización de valores de potencial de

superficie en comparación con la curva resultante de la adición de PNS (Fig. 17).

Los morteros con esta familia de aditivos dieron como resultado valores promedio

de degradación de NO entre 43% y 50%, mientras que el porcentaje promedio para PNS

fue un 37%. El 45PC6 degradó en promedio el 50% del NO, lo que resultó ser la tasa más

alta de eliminación de NO. El PCE–1 y el 23APEG exhibieron los mismos porcentajes

de abatimiento de NO (valores promedio de 45%), mientras que el porcentaje para

52IPEG fue levemente menor (43%) (Fig. 18). El fundamento de esta mejora se

circunscribe a la mejor dispersión del TiO2 y a la disminución de la velocidad de

recombinación de los pares hueco positivo–electrón.

Figura 17. Potencial zeta de las diferentes superplastificantes en los morteros

autolimpiantes en el sistema Cal–Nanosílice–Oleato–TiO2–Superplastificante

Page 288: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

266

Figura 18. Abatimiento de NO y NOx promedio de los diferentes superplastificantes

Los morteros con PCE–1, a pesar de arrojar resultados aceptables de abatimiento

de NO, no fueron muy eficaces desde el punto de vista de la autolimpieza (degradación

de depósito de tinta de rodamina B). La cinética de degradación de estas muestras fue la

más lenta (en promedio, solo el 15% de degradación durante los primeros 20 minutos de

irradiación). Los otros tipos de policarboxilatos, empero, fueron mucho mejores en el

desarrollo de esta propiedad. Se puede atribuir a que el PCE interfiere en el mecanismo

de fotosensibilización para la autolimpieza (dependiente de luz visible) utilizando solo el

mecanismo de degradación fotocatalítica (UV), más lento.

Además, la presencia de superplastificantes en los morteros indujo cambios

notables en los valores del ángulo de contacto en la prueba de hidrofilicidad fotoinducida

debido a la dispersión de los sitios activos de TiO2. Se obtuvieron valores inferiores a 10º

para algunas muestras después de 30 min de irradiación. Los valores más bajos se

alcanzaron en morteros con 45PC6 (9º) y 52IPEG (8º). En promedio, los porcentajes de

reducción de ángulo de contacto para las muestras antes y después de 30 minutos de

irradiación de luz UV–Vis fueron de aprox. 44% para PCE–1 y para el 23APEG, 52%

para 45PC6 y 64% para 52IPEG.

2.3. Sulfonato de naftaleno

Con carácter previo al diseño de los morteros de inyección, este aditivo fue

probado primero en conjunto con varias dosis de metacaolín, mostrando mejores

propiedades que el lignosulfonato, tanto en resistencia a la compresión como durabilidad

y compatibilidad con el metacaolín. Al obtener esos resultados se optó por incluirlo en la

Page 289: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

267

mezclas de cal–oleato–MK/NS–superplastificante, donde su inclusión también mostró

mejoras en el mortero de cal. Cabe mencionar que el oleato sódico jugo un papel

importante en la adsorción de los superplastificantes, ya que por la carga electrostática

que contiene compite por la adsorción sobre las partículas de cal con los

superplastificantes que actúan por repulsiones electrostáticas. Esto implicó una limitación

de la actividad del aditivo PNS, de acción esencialmente electrostática. La adsorción de

este superplastificante no varió cuando se añadió el oleato sódico (Fig. 19). La adsorción

provocó una disminución del valor del potencial zeta, resultando una inversión de carga

en valores negativos, lo que prueba que su mecanismo de acción está ligado a las

repulsiones electrostáticas, particularmente en condiciones alcalinas que favorecieron la

ionización de los grupos sulfónicos [14,21].

En la prueba de inyectabilidad el PNS dio resultados deficientes, debido al

fenómeno anterior y a la demanda de agua por parte de los agentes puzolánicos. En el

corte transversal de las columnas de travertino en donde se trató de hacer fluir al mortero

con PNS se pudo observar que el grout preparado con este aditivo no fue capaz de llenar

por completo los huecos y existieron áreas heterogéneas causadas por la limitada

inyectabilidad y la mala adherencia a las partículas de travertino.

En la prueba de resistencia al hielo–deshielo este aditivo mantuvo una buen

comportamiento siempre y cuando estuviera presente simultáneamente el metacaolín. El

papel positivo de ambos aditivos se contrastó por el hecho de que no hubo gran variación

al agregar oleato al sistema, ya que el comportamiento fue similar con y sin oleato,

soportando 18 y 19 ciclos respectivamente.

Figura 19. Adsorción de los superplastificantes en las diferentes muestras

Page 290: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

268

En morteros autolimpiantes, por la naturaleza de este aditivo PNS y su mecanismo

de acción por repulsión electrostática [6,23], fue fuertemente adsorbido por las partículas

de TiO2. En los ensayos de potencial zeta se comprobó que el patrón de la curva es

totalmente diferente al de los éteres de policarboxilato (Fig 17).

Los morteros con PNS también produjeron una degradación de rodamina B en el

rango del 60–70%. Las cinéticas fueron ligeramente más lentas que en morteros con

PCEs: después de 20 minutos de irradiación, se degradó entre un 15% y un 30% de la

tinta, valor inferior al de morteros con PCEs, más eficaces en la dispersión estérica de

TiO2 en matrices de cal.

2.4. Condensado de melamina–formaldehído sulfonato (SMF)

Este superplastificante tiene un mecanismo de acción análogo al del PNS, por lo

que la adsorción es similar como se puede observar en la Fig. 18 y de igual forma el valor

del potencial zeta comienza a negativizarse cuando es añadido al sistema (Fig. 20).

Figura 20. Valores de potencial zeta de los sistemas: a) cal + oleato, b) cal + oleato +

MS y c) cal + oleato + MK titulados con SMF y PNS al 1%

Page 291: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

269

Figura 21. Diferencias de porosimetría entre muestras con PNS y SMF

También el comportamiento del mortero es similar al de los morteros con PNS,

aunque la estructura porosa de las diferentes mezclas presentó una reducción del tamaño

de poro (Fig.21), lo que explica que durante las pruebas de durabilidad las mezclas con

este aditivo presentaran mejor resistencia a los ciclos hielo–deshielo.

Page 292: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

270

3. Aditivo hidrofugante: oleato de sodio

En ensayos previos de adsorción se comprobó que la adsorción de oleato sobre

partículas de agente puzolánico es mínima. En contraste, en morteros de inyección en

estado fresco, se evaluó cómo la adsorción de las partículas de oleato se lleva a cabo

mediada por la influencia de los iones calcio Ca2+, logrando de esta forma una saturación

sobre las partículas de cal creando una primera capa adsorbida [24]. Debido a este

fenómeno, la adsorción de los superplastificantes se verificó en una segunda capa, lo que

disminuyó la eficacia de aquéllos que actúan con repulsión electrostática como el SMF y

el PNS, con valores bajos de inyectabilidad para estos dos superplastificantes. Sin

embargo, el oleato presentó mayor compatibilidad con el PCE, debido a que la dispersión

que éste provoca se debe a su efecto estérico y a su menor tasa de adsorción.

La principal característica debida a este aditivo y prevista en estas formulaciones

fue la hidro–repelencia. Esta fue provocada por el carácter tensioactivo del oleato de

sodio. Durante el proceso de mezclado en una dispersión acuosa, la parte hidrofóbica (no

polar) de la molécula se orienta hacia la fase aérea, mientras que el segmento polar está

en el sistema acuoso. El efecto combinado de la distribución del tamaño de los poros (con

poros pequeños) y el agente hidrófugo activo (repartido a lo largo de la superficie de

contacto del material) condujo a una hidro–repelencia adecuada. La muestra O–MK–

PCE1 presentó la mejor repelencia al agua, gracias a su baja porosidad total y a la mayor

disponibilidad de moléculas del agente hidrofugante (incluso asumiendo que la mayoría

de las moléculas de oleato se adsorberán en partículas de cal), al no presentar tanto

superplastificante adsorbido.

En cuanto a la resistencia a los ciclos hielo–deshielo, la adición de oleato de sodio

mejoró rotundamente la durabilidad: como ejemplos, la muestra Cal–Oleato soportó 18

ciclos mientras que un mortero de cal sin este aditivo soportó solo un ciclo.

En morteros autolimpiantes la hidrofobicidad al agregar este aditivo fue evidente,

ya que en las mezclas que no lo contienen fue imposible determinar el ángulo de contacto

por la instantánea absorción de las gotas de agua.

En estos morteros, aunque se agregó este agente hidrofugante a la mezcla, la

humectabilidad de las muestras sometidas a iluminación (hidrofilicidad fotoinducida) no

Page 293: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

271

se vio afectada, por lo que este aditivo no interfiere en el proceso de autolimpieza pero

mejora la durabilidad de esta gama de morteros.

Debido a la inclusión del oleato sódico en revocos de adherencia mejorada, se

mejoró la durabilidad sin afectar a los valores de permeabilidad al vapor de agua, ni a la

adherencia o a la formación de fisuras que tuvo el mortero al aplicarse sobre los diferentes

sustratos, lo que demuestra su compatibilidad.

Page 294: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

272

4. Fotocatalizador: TiO2

Este aditivo fue agregado en la Gama 2 con el fin de aprovechar las propiedades

fotocatalíticas del TiO2 que ayudan a la autolimpieza de los morteros, así como la

eliminación de bacterias o microalgas que se pueden formar en la superficie de las

edificaciones.

4.1. Estudio biocida

Durante el desarrollo de este trabajo se trató de establecer la metodología para

conocer el efecto biocida del TiO2 en masa. Los ensayos presentaron serias

complicaciones y sólo se lograron resultados cualitativos que han carecido de

repetibilidad. Sólo se constataba cierto crecimiento de Pseudomonas fluorescens en la

muestra control y disminuían (menos unidades formadoras de colonias, UFC) −sin

resultados cuantificables− las colonias en donde se encontraba otro tipo de aditivo,

incluso si no era TiO2 (nanosílice y oleato).

Tabla 1. Crecimiento de Pseudomonas fluorescens en las diferentes muestras de mortero

Muestra Fotografía de las colonias formadas siguiendo el

diseño experimental expuesto Observaciones

Cal

Aparecen colonias

Cal–Oleato

La disminución de

colonias es drástica

comparadas con las

del mortero puro de

cal

Cal–

Oleato–NS

Se observa un

efecto similar a la

muestra sin

nanosílice

Cal–

Oleato–

NS–TiO2

El comportamiento

fue el mismo en

todas las muestras

con TiO2: el

crecimiento de

Pseudomonas

fluorescens se

inhibió por

completo

Page 295: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

273

Se ha postulado que, posiblemente, la hidrofobicidad de la superficie dificultara

la colonización microbiológica. En las muestras que contenían TiO2 −sin importar el uso

superplastificante− no se observó aparición de ninguna colonia bacteriana, por lo que

tampoco fue posible analizar el efecto dispersante en la mejora biocida: el

comportamiento fue el mismo en todas las muestras obtenidas (Tabla 1). Además, el pH

fuertemente alcalino del mortero de cal genera condiciones agresivas para el crecimiento

de las bacterias (naturaleza biocida de la cal). Se sugiere el uso en futuros estudios de

algún otro microorganismo como algas u hongos, menos sensibles al valor de pH del

medio de crecimiento [25].

4.2. Abatimiento de NO y autolimpieza

Este estudio ha demostrado la compatibilidad de los diversos superplastificantes

con el aditivo fotocatalítico, incrementando −como se ha mencionado− en un 33% la

degradación de NO. El TiO2 presenta mayor y mejor compatibilidad con los

superplastificantes policarboxilados que con el PNS.

La capacidad de autolimpieza de los morteros también fue mejorada

evidentemente con la adición de superplastificantes que permitieron una mejor

distribución del TiO2. El estudio de la degradación del colorante rodamina B depositado

sobre la superficie de los morteros mostró aprox. un 70% de decoloración después de 310

minutos de irradiación UV–Vis con respecto a los morteros sin TiO2.

En resumen, el TiO2 ha mostrado buenos resultados tanto en abatimiento como en

autolimpieza demostrando que es compatible en la matriz de cal con superplastificantes

e hidrofugante, con un pH alcalino y la presencia de iones alcalinotérreos.

Page 296: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

274

5. Modificador de la viscosidad: almidón de patata modificado

El efecto del almidón modificado sobre la trabajabilidad de las muestras de

revocos de adherencia mejorada fue pronunciado, debido a la acción de retención de agua

de las moléculas del derivado del almidón y al aumento de la viscosidad de la fase líquida

[26]. Esto puede atribuirse al elevado número de grupos funcionales –OH como se

observa en su espectro FTIR (Fig. 22).

Estos grupos mejoran la retención de agua y el fenómeno de reticulación (y por

tanto la viscosidad) entre las cadenas de polímero mediante enlaces de hidrógeno. Al

retrasarse el secado de los revoques, se dificultó el acceso de CO2 a la parte interior de

los mismos, lo que provocó un tiempo de endurecimiento prolongado. Es importante

recalcar que la capacidad de retención de agua de los morteros influye en el secado. Una

mayor retención de agua conduce a tasas de secado más bajas, tanto por evaporación

como por succión del sustrato. Este efecto promueve naturalmente una mejor hidratación,

en el caso de los ligantes de cal con fase hidráulica, y también puede producir buenas

condiciones para la carbonatación, asegurando un contenido de humedad suficiente,

aunque moderado, durante un largo período, incluso en condiciones externas de baja

humedad relativa [27,28].

Figura 22. Espectro FTIR obtenido para el almidón (Casaplast KO09)

Page 297: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

275

Figura 23. Comparación entre dos muestras: a) Muestra sin almidón (O–E5) y muestra

con almidón (O–S–E5)

Sin embargo, el aumento de viscosidad presentado por las muestras que contienen

a este aditivo dificulta la penetración del revoco fresco en poros de reducido tamaño,

provocando defectos de contacto y, por tanto, mala adherencia (Fig. 23).

Page 298: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

276

6. Modificador de la adherencia: copolímero de etileno– acetato

de vinilo (EVA)

Al añadir el aditivo EVA al mortero se midió un incremento en su fluidez,

comparado con las muestras control. Esto se puede explicar debido a que este aditivo

genera el efecto ”ball bearing” que facilita la fluidez de la mezcla, y al efecto simultáneo

dispersante de los compuestos tensoactivos utilizados en la formulación del aditivo.

Se ha indicado que la adición de EVA al hormigón y al mortero aumenta la

resistencia a la flexión porque los grupos activos en sus moléculas reaccionan con los

cationes de los productos de hidratación del cemento y mejoran la estructura física del

mortero [29–31]. Sin embargo, cuando se agrega metacaolín al sistema existe una

formación continua de fases C–S–H donde, de acuerdo con la literatura, el EVA interfiere

[5], causando que las resistencias a compresión sean menores. Además, con el análisis

termogravimétrico, se observó una disminución en la carbonatación del mortero,

confirmándose la interferencia de este aditivo. A diferencia de otros aditivos de carácter

iónico, esta interferencia no puede atribuirse a la complejación de los cationes de calcio

que aporta la cal [23,26], sino que se debe a los cambios en la porosidad y la retención de

agua, por parte del EVA y del almidón modificado que modificaron el acceso del CO2 y

la disponibilidad de agua dentro de los poros requerida para la carbonatación [5,26,32].

En cementos y hormigones, el EVA también mejoró la adhesión entre los

agregados y la matriz del material cementoso, redujo el módulo de elasticidad del

hormigón y mejoró su capacidad para absorber tensiones en condiciones de temperatura

variable [33–35]. En los revocos de cal preparados en este trabajo, el uso de EVA aumentó

la fuerza de unión después de la aplicación sobre arenisca, granito y ladrillo. Esta mezcla

fue incluso más eficaz en combinación con MK, aunque en este caso el EVA tuvo una

dosis del 5%, siendo la mezcla O–MK–E5 la que presentó mejor adherencia sobre ladrillo

y granito. La presencia del almidón modificado empeoró ligeramente los valores de

resistencia de la unión, por las razones antes mencionadas de interferencia con la

carbonatación. Sin embargo, la combinación de MK, oleato, EVA (5%) y almidón puede

seleccionarse como la más adecuada considerando la atenuación del agrietamiento y la

buena adherencia.

Page 299: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

277

7. Resumen de resultados y recomendaciones de

combinaciones de aditivos

7.1. Morteros de inyección

Los resultados mostraron que el superplastificante PCE ha mejorado la

inyectabilidad y la fluidez más que SMF y PNS. Este estudio confirmó que el mecanismo

de acción estérico funciona mejor que el mecanismo por repulsión electrostática: la

arquitectura molecular de estos polímeros fue fundamental para explicar su desempeño.

En cuanto a los aditivos puzolánicos, el metacaolín impartió mejores

características en las muestras que la microsílice, particularmente cuando se combinó con

algún superplastificante, proporcionando mayor inyectabilidad, mejor adherencia y

envoltura a las partículas de travertino durante la inyección, así como mayores

resistencias mecánicas, debido a la reacción puzolánica del metacaolín. La durabilidad,

frente a los ciclos de hielo–deshielo, también se incrementó notablemente debido a la

presencia de MK debido a la disminución del tamaño medio de los poros. Como se ha

mencionado debido a que la microsílice mostró una marcada tendencia a aglomerarse en

dispersiones acuosas, su empleo como agente puzolánico limitó notablemente la

inyectabilidad de las muestras. Además, al utilizar la microsílice se observaron bajas

resistencias mecánicas y poca durabilidad frente los ciclos hielo–deshielo.

La inclusión en las mezclas del oleato de sodio provocó una reducción en la

eficacia de todos los superplastificantes, más acusada en los superplastificantes cuya

acción se fundamenta en repulsiones electrostáticas (SMF y PNS). Al mismo tiempo, la

gran adsorción de SMF y PNS en la capa de oleato redujo la hidro–repelencia de las

lechadas tratadas. Por tanto, se recomienda el uso de PCE que imparte máxima

inyectabilidad e hidro–repelencia.

La mezcla que tuvo mejores características, según los resultados, fue la mezcla de

cal, metacaolín, oleato de sodio y PCE (dosis de 1% en peso).

7.2. Morteros autolimpiantes

Los resultados han demostrado que la adición de superplastificantes aumentó

claramente la acción descontaminante de los morteros de cal (degradación de NO)

respecto a los morteros libres de superplastificantes. En las mezclas en las que se

Page 300: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

278

utilizaron como superplastificantes éteres de policarboxilato la estructura porosa se vio

afectada, generando macroporos mayores a 1 m (en especial al emplear 45PC6) y a su

vez este fenómeno ha beneficiado la actividad fotocatalítica y por tanto se ha obtenido el

mejor abatimiento.

El efecto positivo de los superplastificantes, las características de la matriz de cal,

el pH alcalino que proporcionan y los iones alcalinotérreos obstaculizan la formación de

NO2 como producto intermedio muy tóxico, proporcionando excelentes valores de

selectividad.

La capacidad de autolimpieza de los morteros también se mejoró mediante la

adición de los superplastificantes. Se observó que el bajo rendimiento de PCE con

respecto a la actividad de autolimpieza está relacionado con la interferencia con el

mecanismo de fotosensibilización de la degradación del colorante.

También se demostró que la presencia de superplastificantes potencia la

hidrofilicidad fotoinducida, mecanismo que favorece la acción autolimpiante. Todas las

muestras que contuvieron superplastificante, excepto las de PCE, favorecieron valores de

ángulo de contacto bajos (aprox. 10º) durante su irradiación.

7.3. Morteros de adherencia mejorada

Al combinar la cal aérea con diferentes aditivos: minerales puzolánicos

(nanosílice o metacaolín), un agente repelente al agua (oleato de sodio), un mejorador de

la adherencia (copolímero de etileno–vinil–acetato, EVA) y un modificador de reología

(almidón modificado) se obtuvieron dos resultados principales: en primera instancia las

mezclas con nanosílice, EVA, oleato y almidón, aumentaron la resistencia a la

compresión y la durabilidad siendo óptima la mezcla cal–oleato–nanosilice–almidón y

EVA al 5% aunque la adhesión y el agrietamiento no presentaron mejora. Y el segundo

hallazgo importante fue que la adición de MK con los demás aditivos mejoró la

adherencia en la mayoría de los sustratos y minimizó el agrietamiento. Desde el punto de

vista de la mejora de la durabilidad, estos revoques no fueron tan efectivos. Son adecuadas

las mezclas cal–oleato–metacaolín–almidón y EVA al 5% y al 10%.

Page 301: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

279

Referencias

[1] R. Lewis, P. Fidjestøl, Microsilica as an Addition, 5th ed., Elsevier Ltd., 2019.

https://doi.org/10.1016/b978–0–08–100773–0.00011–3.

[2] C. Nunes, Z. Slížková, Freezing and thawing resistance of aerial lime mortar

with metakaolin and a traditional water–repellent admixture, Constr. Build.

Mater. 114 (2016) 896–905. https://doi.org/10.1016/j.conbuildmat.

2016.04.029.

[3] J.F. González–Sánchez, B. Taşci, J.M. Fernández, Í. Navarro–Blasco, J.I.

Alvarez, Combination of polymeric superplasticizers, water repellents and

pozzolanic agents to improve air lime–based grouts for historic masonry repair,

Polymers (Basel). 12 8 (2020). https://doi.org/10.3390/POLYM12040887.

[4] M.N. Aziez, A. Bezzar, Magnesium sulphate attacks on mortars – Influence of

temperature, type of sand and type of cement, J. Eng. Sci. Technol. Rev. 10

(2017) 41–50. https://doi.org/10.25103/jestr.101.07.

[5] C. Shi, X. Zou, P. Wang, Influences of ethylene–vinyl acetate and

methylcellulose on the properties of calcium sulfoaluminate cement, Constr.

Build. Mater. 193 (2018) 474–480. https://doi.org/10.1016/j.conbuildmat.

2018.10.218.

[6] M. Pérez–Nicolás, A. Duran, I. Navarro–Blasco, J.M. Fernández, R. Sirera, J.I.

Alvarez, Study on the effectiveness of PNS and LS superplasticizers in air

lime–based mortars, Cem. Concr. Res. 82 (2016) 11–22.

https://doi.org/10.1016/j.cemconres.2015.12.006.

[7] J.I. Alvarez, J.M. Fernández, I. Navarro–Blasco, A. Duran, R. Sirera,

Microstructural consequences of nanosilica addition on aerial lime binding

materials: Influence of different drying conditions, Mater. Charact. 80 (2013)

36–49. https://doi.org/10.1016/j.matchar.2013.03.006.

[8] J.M. Fernández, A. Duran, I. Navarro–Blasco, J. Lanas, R. Sirera, J.I. Alvarez,

Influence of nanosilica and a polycarboxylate ether superplasticizer on the

performance of lime mortars, Cem. Concr. Res. 43 (2013) 12–24.

https://doi.org/10.1016/j.cemconres.2012.10.007.

Page 302: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

280

[9] I. Navarro–Blasco, M. Pérez–Nicolás, J.M. Fernández, A. Duran, R. Sirera, J.I.

Alvarez, Assessment of the interaction of polycarboxylate superplasticizers in

hydrated lime pastes modified with nanosilica or metakaolin as pozzolanic

reactives, Constr. Build. Mater. 73 (2014) 1–12. https://doi.org/10.1016/

j.conbuildmat.2014.09.052.

[10] A.M. Kaja, H.J.H. Brouwers, Q.L. Yu, NOx degradation by photocatalytic

mortars: The underlying role of the CH and C–S–H carbonation, Cem. Concr.

Res. 125 105805 (2019). https://doi.org/10.1016/j.cemconres.2019.105805.

[11] C. Nunes, Z. Slížková, M. Stefanidou, J. Němeček, Microstructure of lime and

lime–pozzolana pastes with nanosilica, Cem. Concr. Res. 83 (2016) 152–163.

https://doi.org/10.1016/j.cemconres.2016.02.004.

[12] E. Ghafari, H. Costa, E. Júlio, A. Portugal, L. Durães, The effect of nanosilica

addition on flowability, strength and transport properties of ultra high

performance concrete, Mater. Des. 59 (2014) 1–9. https://doi.org/10.1016/

j.matdes.2014.02.051.

[13] H. Uchikawa, S. Hanehara, T. Shirasaka, D. Sawaki, Effect of admixture on

hydration of cement, adsorptive behavior of admixture and fluidity and setting

of fresh cement paste, Cem. Concr. Res. 22 (1992) 1115–1129.

https://doi.org/10.1016/0008–8846(92)90041–S.

[14] H. Vikan, H. Justnes, R. Figi, Adsorption of plasticizers–Influence of

plasticizer and cement type, Ann. Trans. Nord. Rheol. Soc. 13 (2005) 127–134.

[15] B. Silva, A.P. Ferreira Pinto, A. Gomes, A. Candeias, Fresh and hardened state

behaviour of aerial lime mortars with superplasticizer, Constr. Build. Mater.

225 (2019) 1127–1139. https://doi.org/10.1016/j.conbuildmat.2019.07.275.

[16] A. Padovnik, F. Piqué, A. Jornet, V. Bokan–Bosiljkov, Injection Grouts for the

Re–Attachment of Architectural Surfaces with Historic Value—Measures to

Improve the Properties of Hydrated Lime Grouts in Slovenia, Int. J. Archit.

Herit. 10 (2016) 993–1007. https://doi.org/10.1080/15583058.2016.1177747.

Page 303: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

281

[17] A. Arizzi, G. Cultrone, Aerial lime–based mortars blended with a pozzolanic

additive and different admixtures: A mineralogical, textural and physical–

mechanical study, Constr. Build. Mater. 31 (2012) 135–143.

https://doi.org/10.1016/j.conbuildmat.2011.12.069.

[18] E.Y. Gökyiǧit–Arpaci, D. Oktay, N. Yüzer, S. Ulukaya, D. Eksi–Akbulut,

Performance Evaluation of Lime–Based Grout Used for Consolidation of Brick

Masonry Walls, J. Mater. Civ. Eng. 31 6 (2019). https://doi.org/10.1061/

(ASCE)MT.1943–5533.0002692.

[19] F. Jorne, F.M.A. Henriques, L.G. Baltazar, Evaluation of consolidation of grout

injection with ultrasonic tomography, Constr. Build. Mater. 66 (2014) 494–

506. https://doi.org/10.1016/j.conbuildmat.2014.05.095.

[20] A. Bras, F.M.A. Henriques, Natural hydraulic lime based grouts – The

selection of grout injection parameters for masonry consolidation, Constr.

Build. Mater. 26 (2012) 135–144.

https://doi.org/10.1016/j.conbuildmat.2011.05.012.

[21] Y. Zhang, X. Kong, Correlations of the dispersing capability of NSF and PCE

types of superplasticizer and their impacts on cement hydration with the

adsorption in fresh cement pastes, Cem. Concr. Res. 69 (2015) 1–9.

https://doi.org/10.1016/j.cemconres.2014.11.009.

[22] S. Pourchet, S. Liautaud, D. Rinaldi, I. Pochard, Effect of the repartition of the

PEG side chains on the adsorption and dispersion behaviors of PCP in presence

of sulfate, Cem. Concr. Res. 42 (2012) 431–439. https://doi.org/10.1016/

j.cemconres.2011.11.011.

[23] A. Duran, J.F. González–Sánchez, J.M. Fernández, R. Sirera, Í. Navarro–

Blasco, J.I. Alvarez, Influence of two polymer–based superplasticizers (poly–

naphthalene sulfonate, PNS, and lignosulfonate, LS) on compressive and

flexural strength, freeze–thaw, and sulphate attack resistance of lime–

metakaolin grouts, Polymers (Basel). 10 8 (2018). https://doi.org/10.3390/

polym10080824.

Page 304: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

282

[24] Y. Wang, S. Ahmed Khoso, X. Luo, M. Tian, Understanding the depression

mechanism of citric acid in sodium oleate flotation of Ca2+–activated quartz:

Experimental and DFT study, Miner. Eng. 140 (2019) 105878.

https://doi.org/10.1016/ j.mineng.2019.105878.

[25] P. Munafò, G.B. Goffredo, E. Quagliarini, TiO2–based nanocoatings for

preserving architectural stone surfaces: An overview, Constr. Build. Mater. 84

(2015) 201–218. https://doi.org/10.1016/j.conbuildmat.2015.02.083.

[26] A. Izaguirre, J. Lanas, J.I. Álvarez, Behaviour of a starch as a viscosity modifier

for aerial lime–based mortars, Carbohydr. Polym. 80 (2010) 222–228.

https://doi.org/10.1016/j.carbpol.2009.11.010.

[27] C. Groot, Effects of water on mortar–brick bond, Heron (Delft). 40 (1995) 57–

70.

[28] J.N. Eiras, J.S. Popovics, M. V. Borrachero, J. Monzó, J. Payá, The effects of

moisture and micro–structural modifications in drying mortars on vibration–

based NDT methods, Constr. Build. Mater. 94 (2015) 565–571.

https://doi.org/10.1016/j.conbuildmat.2015.07.078.

[29] E. Knapen, D. Van Gemert, Cement hydration and microstructure formation in

the presence of water–soluble polymers, Cem. Concr. Res. 39 (2009) 6–13.

https://doi.org/10.1016/j.cemconres.2008.10.003.

[30] G. Barluenga, F. Hernández–Olivares, SBR latex modified mortar rheology

and mechanical behaviour, Cem. Concr. Res. 34 (2004) 527–535.

https://doi.org/10.1016/j.cemconres.2003.09.006.

[31] S. Zhong, Z. Chen, Properties of latex blends and its modified cement mortars,

Cem. Concr. Res. 32 (2002) 1515–1524. https://doi.org/10.1016/S0008–

8846(02)00813–X.

[32] A. Izaguirre, J. Lanas, J.I. Álvarez, Effect of water–repellent admixtures on the

behaviour of aerial lime–based mortars, Cem. Concr. Res. 39 (2009) 1095–

1104. https://doi.org/10.1016/J.CEMCONRES.2009.07.026.

Page 305: Desarrollo de nuevos morteros de restauración de cal con ...

Discusión general

283

[33] D.C. Park, J.C. Ahn, S.G. Oh, H.C. Song, T. Noguchi, Drying effect of

polymer–modified cement for patch–repaired mortar on constraint stress,

Constr. Build. Mater. 23 (2009) 434–447. https://doi.org/10.1016/

j.conbuildmat.2007.11.003.

[34] D. Park, S. Park, Y. Seo, T. Noguchi, Water absorption and constraint stress

analysis of polymer–modified cement mortar used as a patch repair material,

Constr. Build. Mater. 28 (2012) 819–830. https://doi.org/10.1016/

j.conbuildmat.2011.06.081.

[35] Z. Wang, J. Wu, P. Zhao, N. Dai, Z. Zhai, T. Ai, Improving cracking resistance

of cement mortar by thermo–sensitive poly N–isopropyl acrylamide

(PNIPAM) gels, J. Clean. Prod. 176 (2018) 1292–1303.

https://doi.org/10.1016/ j.jclepro.2017.11.242.

Page 306: Desarrollo de nuevos morteros de restauración de cal con ...
Page 307: Desarrollo de nuevos morteros de restauración de cal con ...

Conclusiones

Page 308: Desarrollo de nuevos morteros de restauración de cal con ...
Page 309: Desarrollo de nuevos morteros de restauración de cal con ...

Conclusiones

287

La evaluación de los resultados obtenidos y su posterior discusión en este trabajo de

investigación ha permitido extraer las siguientes conclusiones:

1. Se han preparado tres gamas de morteros de cal aérea con propiedades mejoradas

enfocados a la restauración de edificaciones del Patrimonio Cultural, mediante la

incorporación combinada de diferentes aditivos.

2. En la primera gama se diseñaron mezclas cuaternarias de cal aérea, superplastificantes

poliméricos de distintos tipos, un agente hidrofugante y aditivos puzolánicos,

obteniéndose morteros de inyección de elevada resistencia y durabilidad para ser

utilizados como materiales de reparación para Patrimonio Edificado.

2.1. Los resultados de esta gama mostraron que el éter de policarboxilato, PCE, fue

mucho más eficaz para aumentar tanto la inyectabilidad como la fluidez de las

lechadas que los polímeros condensados de sulfonato de melamina–

formaldehido (SMF) y sulfonato de naftaleno–formaldehido (PNS).

2.2. Se confirmó que, en estas mezclas, el mecanismo de acción de este

superplastificante polimérico PCE es principalmente estérico, mientras que SMF

y PNS actúan a través de un mecanismo de repulsión electrostática.

2.3. La adsorción de oleato de sodio, añadido como hidrofugante, sobre las partículas

de cal fue evidente y provocó una reducción en la eficacia superplastificante de

los aditivos, particularmente de SMF y PNS.

2.4. La gran adsorción de SMFC y PNS sobre capas pre–adsorbidas de oleato en

partículas de cal redujo la hidro–repelencia de los morteros, como lo confirma

el ángulo de contacto estático del agua.

2.5. El PCE se adsorbió bastante menos y dio lugar a mejoras claras en la

inyectabilidad, que alcanzó el máximo valor, e hidro–repelencia.

2.6. Se estudió la compatibilidad del LS y del PNS, aditivos de acción repulsiva

fundamentalmente electrostática, mezclados con MK. Se observó que el PNS, al

tener una mayor carga aniónica y una disposición molecular lineal, se adsorbió

en mayor cantidad que el LS. Además, la presencia de PNS favoreció la reacción

puzolánica, dando como resultado resistencias mecánicas más altas con un valor

de 4.8 MPa después de 182 días en muestras con 20% MK y 0.5% PNS.

Page 310: Desarrollo de nuevos morteros de restauración de cal con ...

Conclusiones

288

2.7. En durabilidad frente al ataque por cristalización de sulfatos, se observó que los

morteros con PNS, con mayor formación de C–S–H, C–S–A–H y C–A–H, se

alteraron por descalcificación de las fases hidratadas y por formación de fases

expansivas como hexahidrita, yeso y ettringita. En cambio, la menor reactividad

puzolánica en presencia de LS permitió que los morteros mantuvieran una

cantidad significativa de Ca(OH)2 que proporcionó mejor resistencia de las

mezclas al ataque por sulfatos.

2.8. En cuanto a los aditivos puzolánicos, el metacaolín imprimió mejores

características que la microsílice, particularmente en combinación con SP

obteniendo: mayor inyectabilidad, mejor adherencia y envoltura de las partículas

durante la inyección, así como mayores resistencias mecánicas.

2.9. La durabilidad frente a los ciclos de hielo–deshielo también se incrementó

notablemente debido a la presencia de MK.

2.10. La microsílice mostró una marcada tendencia a aglomerarse en dispersiones

acuosas, lo que perjudicó notablemente la inyectabilidad de las mezclas

preparadas con este aditivo puzolánico.

2.11. Según los resultados, la mezcla compuesta de cal, metacaolín, oleato de sodio

y PCE (éste al 1% en peso), resultó ser la composición más efectiva, mejorando

la resistencia mecánica, la inyectabilidad y la hidrofobicidad.

3. Se diseñó una gama de morteros de cal aérea con capacidad fotocatalítica y

autolimpiante, mediante el uso de un aditivo fotocatalizador nanoestructurado (TiO2)

y la incorporación de agentes dispersantes (superplastificantes). Se mejoraron las

prestaciones mecánicas y la durabilidad de estos morteros a través de una adición

puzolánica (nanosílice) y un agente hidrofugante (oleato sódico) que redujo la

penetración de agua.

3.1. La adición de superplastificantes mejoró en un 33% de media la acción

descontaminante de los morteros de cal, con cifras de degradación de óxido

nítrico, NO, del 44%.

3.2. Se comprobó que la separación efectiva de los pares hueco positivo–electrón

formados por acción de la luz en el semiconductor, mejora la fotoactividad.

Esta dispersión fue particularmente eficaz en morteros con 45PC6 como

superplastificante.

Page 311: Desarrollo de nuevos morteros de restauración de cal con ...

Conclusiones

289

3.3. Los derivados de policarboxilato eterificados, PCEs, aumentaron más la

fotoactividad que el PNS debido a su mejor eficacia como dispersantes en

medios de cal asociada a su arquitectura molecular, densidad de carga aniónica

y longitud de sus cadenas laterales.

3.4. La formación de NO2 (intermedio de alta toxicidad) se vio apreciablemente

reducida debido al uso de aditivos dispersantes, con valores de selectividad

(relación porcentual NO/NOx) tan altos como 87%.

3.5. La capacidad de autolimpieza de los morteros se mejoró mediante la adición

de superplastificantes derivados de policarboxilatos, 23APEG, 45PC6 y

52IPEG: en el estudio de la degradación del colorante rodamina B depositado

sobre la superficie de los morteros la eficiencia de decoloración aumentó 1,43

veces en promedio después de 310 minutos de irradiación UV–Vis (con

lámpara de simulación de luz solar).

3.6. Se asoció el bajo rendimiento de autolimpieza de morteros con polímero PCE–

1 con una interferencia con el mecanismo de fotosensibilización de la

degradación del colorante. Este mecanismo, en cambio, fue fomentado por los

otros derivados de policarboxilatos, que mostraron una cinética de degradación

más rápida. Este mecanismo es estrictamente dependiente de luz visible, lo que

explica la aparente disparidad de que, a pesar del bajo rendimiento de

autolimpieza, la reducción de NO de las muestras de PCE–1 fuera elevada (al

ser proceso dependiente de luz UV).

3.7. La presencia de los superplastificantes mejoró el efecto de hidrofilicidad

fotoinducida, mecanismo que favorece la acción autolimpiante.

3.8. La presencia de oleato de sodio como hidrofugante fue compatible con la

hidrofilicidad fotoinducida.

3.9. La eficacia de estas mezclas podría ser mejorada mediante más estudios para

ajustar las dosis y la relación agua/cal de estos morteros en función de su

aplicación final como morteros de revoque (monocapa, multicapa) o de

rejuntado.

Page 312: Desarrollo de nuevos morteros de restauración de cal con ...

Conclusiones

290

3.10. Las condiciones fuertemente alcalinas de los morteros de cal junto con la

actividad fotocatalítica del TiO2 impidieron el crecimiento adecuado de cepas

de la bacteria Pseudomonas fluorescens en el estudio biocida para determinar

la influencia del efecto dispersante de los superplastificantes. Se recomienda

en futuras investigaciones la realización del ensayo con algún otro

microorganismo resistente a pH alcalino como algas u hongos.

4. Se desarrollaron morteros de revoco a base de cal aérea combinando diferentes

aditivos: un agente repelente al agua (oleato de sodio), un mejorador de la adherencia

(copolímero de etileno–vinil–acetato, EVA), un modificador de reología (almidón

modificado) y aditivos minerales puzolánicos (metacaolín o nanosílice) con el fin de

mejorar el rendimiento de los revoques cuando se aplican sobre diferentes sustratos,

en particular la adherencia, la reducción del agrietamiento y la durabilidad.

4.1. Se demostró que la adición de EVA, combinada con oleato, metacaolín y

almidón mejoró la adherencia en la mayoría de los sustratos y se minimizó el

agrietamiento. En cambio, desde el punto de vista de la mejora de la durabilidad

(ciclos hielo–deshielo y resistencia a sulfatos), estos revoques no fueron tan

efectivos.

4.2. La presencia de nanosílice mejoró la resistencia mecánica y la durabilidad en

combinación con EVA, oleato y almidón, aunque la adherencia y el

agrietamiento no mejoraron tanto.

4.3. La aplicación esta gama de morteros sobre diferentes sustratos mostró el efecto

determinante de la porosidad del sustrato, responsable de originar

agrietamientos en la monocapa aplicada, debido a la absorción de agua. Mayor

porosidad conduce a mayor absorción de agua y fisuras superficiales más

intensas en número y dimensión. Debido a ello, los morteros aplicados sobre

granito (1.69% de porosidad total) tienen mejor aspecto visual que aquellos

sobre ladrillo (35.8% de porosidad total) que presentan un notable grado de

fisuras superficiales.

4.4. La distribución de tamaño de poros del sustrato también condiciona la

fisuración superficial de los morteros: una población de poros pequeños (entre

0.01 y 1 micras) genera una importante fuerza de succión capilar, que conduce

a la formación de microfisuras, como se comprobó en los casos de aplicación

sobre ladrillo y piedra caliza.

Page 313: Desarrollo de nuevos morteros de restauración de cal con ...

Conclusiones

291

4.5. Se observó que la adición de EVA a una dosis del 10% redujo ligeramente la

permeabilidad en comparación con la muestra control. La combinación de

EVA con el almidón modificado ocasionó un incremento en la permeabilidad

debido a los cambios en la distribución del tamaño de poro inducidos por el

potenciador de viscosidad.

4.6. Se comprobó que el uso de las combinaciones ensayadas de aditivos es útil para

obtener revoques de cal duraderos en los que se mejora la adherencia y se

reduce la formación de grietas

Page 314: Desarrollo de nuevos morteros de restauración de cal con ...
Page 315: Desarrollo de nuevos morteros de restauración de cal con ...