conductividad termica

5
ESCUELA POLITECNICA NACIONAL FACULTAD DE INGENIERIA MECANICA TRANSFERENCIA DE CALOR I NOMBRE: Paul Valdiviezo V. La conductividad térmica es una propiedad física de los materiales que mide la capacidad de conducción de calor. En otras palabras la conductividad térmica es también la capacidad de una sustancia de transferir la energía cinética de sus moléculas a otras moléculas adyacentes o a sustancias con las que no está en contacto. En el Sistema Internacional de Unidades la conductividad térmica se mide en W/(K·m) ( equivalente a J/(s·°C·m) ) La conductividad térmica es una magnitud intensiva. Su magnitud inversa es la resistividad térmica, que es la capacidad de los materiales para oponerse al paso del calor. Para un material isótropo la conductividad térmica es un escalar k definido como: donde: , es el flujo de calor (por unidad de tiempo y unidad de área). , es el gradiente de temperatura. Conductividades térmicas de los materiales La conductividad térmica es una propiedad de los materiales que valora la capacidad de transmitir el calor a través de ellos. Es elevada en metales y en general en cuerpos continuos, es baja en polímeros, y muy baja en algunos materiales especiales como la fibra de vidrio, que se denominan por ello aislantes térmicos. Para que exista conducción térmica hace falta una sustancia, de ahí que es nula en el vacío ideal, y muy baja en ambientes donde se ha practicado un vacío bajo. En algunos procesos industriales se busca maximizar la conducción de calor, bien utilizando materiales de alta conductividad, bien configuraciones con una gran área de contacto, o ambas cosas. Ejemplos de esto son los disipadores y los intercambiadores de calor. En otros casos el efecto buscado es justo el contrario, y se desea minimizar el efecto de la conducción, para lo que se emplean materiales de baja conductividad

Transcript of conductividad termica

Page 1: conductividad termica

ESCUELA POLITECNICA NACIONAL

FACULTAD DE INGENIERIA MECANICA

TRANSFERENCIA DE CALOR I

NOMBRE: Paul Valdiviezo V.

La conductividad térmica es una propiedad física de los materiales que mide la capacidad de conducción de calor. En otras palabras la conductividad térmica es también la capacidad de una sustancia de transferir la energía cinética de sus moléculas a otras moléculas adyacentes o a sustancias con las que no está en contacto. En el Sistema Internacional de Unidades la conductividad térmica se mide en W/(K·m) ( equivalente a J/(s·°C·m) )

La conductividad térmica es una magnitud intensiva. Su magnitud inversa es la resistividad térmica, que es la capacidad de los materiales para oponerse al paso del calor. Para un material isótropo la conductividad térmica es un escalar k definido como:

donde:

, es el flujo de calor (por unidad de tiempo y unidad de área).

, es el gradiente de temperatura.

Conductividades térmicas de los materiales

La conductividad térmica es una propiedad de los materiales que valora la capacidad de transmitir el calor a través de ellos. Es elevada en metales y en general en cuerpos continuos, es baja en polímeros, y muy baja en algunos materiales especiales como la fibra de vidrio, que se denominan por ello aislantes térmicos. Para que exista conducción térmica hace falta una sustancia, de ahí que es nula en el vacío ideal, y muy baja en ambientes donde se ha practicado un vacío bajo.

En algunos procesos industriales se busca maximizar la conducción de calor, bien utilizando materiales de alta conductividad, bien configuraciones con una gran área de contacto, o ambas cosas. Ejemplos de esto son los disipadores y los intercambiadores de calor. En otros casos el efecto buscado es justo el contrario, y se desea minimizar el efecto de la conducción, para lo que se emplean materiales de baja conductividad térmica, vacíos intermedios (ver termo), y se disponen en configuraciones con poca área de contacto.

La transferencia de la energía de colisión entre el nitrógeno y el dióxido de carbono induce una excitación vibratoria del dióxido de carbono con la suficiente energía para impulsar la inversión de población deseada para el funcionamiento del láser generando la conductividad térmica.

Las moléculas permanecen en un estado excitado inferior. El retorno a su estado fundamental se hace mediante las colisiones con los átomos de helio frío. Los átomos de helio excitado por el choque deben ser enfriado para mantener su capacidad de producir una inversión de población de las moléculas de dióxido de carbono. En los láseres de ampolla sellada, la refrigeración se realiza por intercambio de calor cuando los átomos de helio rebotan en la pared fría de la ampolla.

Page 2: conductividad termica

Conductividades térmicas de diversos materiales en W/(K·m)

Page 3: conductividad termica

Material λ Material λ Material λ

Acero 47-58 Corcho 0,03-0,04 Mercurio 83,7

Agua 0,58 Estaño 64,0 Mica 0,35

Aire 0,02 Fibra de vidrio 0,03-0,07 Níquel 52,3

Alcohol 0,16 Glicerina 0,29 Oro 308,2

Alpaca 29,1 Hierro 80,2 Parafina 0,21

Aluminio 209,3 Ladrillo 0,80 Plata 406,1-418,7

Amianto 0,04 Ladrillo refractario 0,47-1,05 Plomo 35,0

Bronce 116-186 Latón 81-116 Vidrio 0,6-1,0

Zinc 106-140 Litio 301,2 Cobre 372,1-385,2

Madera 0,13 Tierra húmeda 0,8 Diamante 2300

Titanio 21,9

La tabla que se muestra a continuación se refiere a la capacidad de ciertos materiales para transmitir el calor.

El coeficiente de conductividad térmica (λ) caracteriza la cantidad de calor necesario por m2, para que atravesando durante la unidad de tiempo, 1 m de material homogéneo obtenga una diferencia de 1 °C de temperatura entre las dos caras.

Es una propiedad intrínseca de cada material que varía en función de la temperatura a la que se efectúa la medida, por lo que suelen hacerse las mediciones a 300 K con el objeto de poder comparar unos elementos con otros.

Es un mecanismo molecular de transferencia de calor que ocurre por la excitación de las moléculas. Se presenta en todos los estados de la materia pero predomina en los sólidos.

Coeficiente de transferencia de calor por convección

La ley de enfriamiento de Newton establece que la tasa de transferencia de calor que abandona una superficie a una temperatura Ts para pasar a un fluido del entorno a temperatura Tf se establece por la ecuación:

Qconvection = h A (Ts - Tf)

donde el coeficiente de transferencia de calor h tiene las unidades de W/m2.KoBtu/s.in2.F. El coeficiente h no es una propiedad termodinámica. Es una correlación simplificada entre el estado del fluido y las condiciones de flujo, por lo cual generalmente se la conoce como una propiedad de flujo.

La convección está ligada al concepto de una capa de contorno que es una delgada capa de transición entre una superficie, que se supone adyacente a las moléculas estacionarias, y el flujo

Page 4: conductividad termica

de fluido en el entorno. Esto se puede observar en la siguiente figura que muestra un flujo sobre una placa plana.

Donde u(x,y) es la velocidad de dirección x. A la región que va hasta la arista externa de la capa de fluido, definida como el 99% de la velocidad de la corriente libre, se denomina espesor de la capa de contorno del fluido d(x).

Se podría hacer un croquis similar de la transición de temperatura desde la temperatura de la superficie a la temperatura de los alrededores. En la siguiente figura se muestra un esquema de la variación de la temperatura. Observe que el espesor de la capa del contorno térmico no necesariamente es el mismo que el del fluido. Las propiedades del fluido que componen el Número de Prandtl rigen la magnitud relativa de los dos tipos de capas del contorno. Un Número de Prandtl (Pr) de 1 implicaría el mismo comportamiento para ambas capas del contorno.

Al mecanismo real de transferencia de calor a través de la capa del contorno se lo toma como conducción, en la dirección y, a través del fluido estacionario cercano a la pared que es igual a la tasa de convección que va desde la capa límite al fluido. Esto puede expresarse de la siguiente manera:

h A (Ts - Tf) = - k A (dT/dy)s

Es decir que el coeficiente de convección para una determinada situación puede evaluarse midiendo la tasa de transferencia de calor y la diferencia de temperatura, o midiendo el gradiente de temperatura adyacente a la superficie y la diferencia de temperatura.

Page 5: conductividad termica

La medición de un gradiente de temperatura a través de una capa de contorno requiere gran precisión y, por lo general, se logra en un laboratorio de investigación. Muchos manuales contienen valores tabulados de los coeficientes de transferencia de calor por convección para diferentes configuraciones.

La siguiente tabla muestra algunos valores típicos para el coeficiente de transferencia de calor por convección:

Medio Coeficiente de transferencia de calor h (W/m2.K)

Aire (convección natural) 5-25

Aire/vapor supercalentado (convección forzada) 20-300

Petróleo (convección forzada) 60-1800

Agua (convección forzada) 300-6000

Agua (en ebullición) 3000-60.000

Vapor (en condensación) 6000-120.000

 

Bibliografía

http://es.wikipedia.org/wiki/Conductividad_t%C3%A9rmica

http://help.solidworks.com/2011/spanish/SolidWorks/cworks/LegacyHelp/Simulation/AnalysisBackground/ThermalAnalysis/Convection_Topics/Convection_Heat_Coefficient.htm