Comunicaciones Digitales en simulink.pdf

of 34 /34
Prácticas de Comunicaciones Digitales. J.M. Górriz & J.C. Segura-Luna Comunicaciones Digitales Guiones de Prácticas J.M. Górriz & J.C. Segura-Luna 2005 en SIMULINK-MATLAB 7 Ingeniería en Telecomunicación. Curso 2005/2006

Embed Size (px)

description

comunicaciones digitales en simulink de matlab

Transcript of Comunicaciones Digitales en simulink.pdf

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    Comunicaciones Digitales Guiones de Prcticas

    J.M. Grriz & J.C. Segura-Luna 2005

    en SIMULINK-MATLAB 7

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    ndice: Introduccin: P 0: Efectos del Canal.3 Distorsin Lineal. Distorsin No-Lineal. Efecto Multi-path. Sistemas de Comunicacin Digital I: P 1: Modulacin PCM.......10 P 2: Modulacin Delta...........14 P 3: Densidad de Potencia Espectral....17 P 4: Probabilidad de Error....19 P 5: Deteccin ptima en ruido Gausiano...22 P 6: Sistema de Comunicacin Elemental25

    Sistemas de Comunicacin Digital II: P 7. Ecualizacin Adaptativa al Canal.27 P 8. Modulacin QA (Quadrature Amplitude)29 P 9. Modulacin en Cdigo-Trellis (TCM)..31 P10. Sist. de Com. en SD basado en Espectro Exten...33

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    Introduccin:

    En esta seccin introducimos la herramienta de simulacin de Matlab Simulink, implementando los efectos del canal en las seales transmitidas por los sistemas de comunicacin. Prctica 0: Efectos del Canal

    En esta seccin estudiaremos los efectos del canal sobre los sistemas de comunicacin en banda base. En concreto simularemos los efectos de distorsin lineal y no-lineal y el efecto multi-path. 0.1 Distorsin lineal.

    El primer sistema que simularemos es un canal paso-baja. Estudiaremos su comportamiento cuando la entrada es una seal rectangular peridica. El diagrama de bloques es como el de la figura siguiente. 0.1.1 Creacin Del modelo

    Para crear un nuevo modelo utilice la opcin File/New/Model del la ventana de comando de Matlab. Una vez creado el modelo, aada y conecte los bloques entre si en la forma siguiente.

    Figura 0.1: Modelo de canal paso-baja

    0.1.2 Bloques de diseo Pulse Generator

    Este bloque genera un tren de pulsos de periodo y ancho variables. Los parmetros se fijan en la forma: Periodo(secs): 1e-3 Ancho(secs): 0.5e-3

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    Transfer Fcn

    Este bloque implementa una funcin de transferencia arbitraria H(s). Los parmetros del modelo son los coeficientes de los polinomios en s del numerador y denominador de la funcin de transferencia (recuerde que s=j). Por ejemplo, la funcin de transferencia:

    fesdscbsassH ++

    ++= 232

    )(

    se describira en la forma Numerator: [a b c] Denominator: [d e 0 f] Ntese que los coeficientes se introducen en orden descendente de potencias de s, y que tambin hay que especificar los nulos. En el ejemplo que nos ocupa, consideraremos la funcin de transferencia

    oo

    ssH

    jH

    +

    =+

    =1

    1)(1

    1)(

    Para el ejemplo considere un valor 0 = 4000, para este caso, los parmetros deberan ser: Numerator: [1] Denominator: [0.25e-3 1] Mux

    Este bloque multiplexa las diferentes entradas generando un vector de salida. Los parmetros son: Number of inputs: 2 Este bloque se utiliza para multiplexar dos o ms seales. La salida es un vector (bus) en lugar de una lnea escalar. En este caso se utiliza para insertar dos seales (entrada y salida de H(s)) al osciloscopio de forma que se visualicen simultneamente. Scope

    Este bloque simula un osciloscopio. Es decir, visualiza las seales que se aplican a su entrada frente al tiempo de simulacin del sistema. Horizontal range: 0.004 Vertical range: 2 To Workspace

    Este bloque muestrea la seal que se aplica a su entrada y almacena las muestras en una variable que es accesible a Matlab al terminar la simulacin.

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    Variable name: salida Save Format: array Maximum number of rows (time steps): [4000,1,1/20000] Estos parmetros especifican que la variable salida almacenar valores en instantes temporales muestreados al Periodo 1/20000 (frecuencia 20KHz), de uno en uno, con un mximo de 4000. Al finalizar la simulacin, la variable aparecer Matlab, y se podr utilizar para ulterior anlisis de los datos. 0.1.3 Simulacin

    Para iniciar la simulacin, primero elegiremos los parmetros. Para esta simulacin fijaremos los parmetros: Simulation algorithm: Runge Kutta 5 Start Time: 0 Stop Time: 0.004 Min Step Size: 1e-9 Max Step Size: 10 Tolerance: 1e-5 Return Variables: Una vez insertados los bloques y fijados los parmetros de la simulacin, ya pude simular el modelo, pero antes slvelo con File/Save... con el nombre cpbaja.m Simule ahora el modelo eligiendo Simulation/Start. Segn va avanzando la simulacin, en el osciloscopio de puede ver la evolucin temporal de la entrada y salida al sistema. Anlisis temporal

    Una vez la simulacin ha finalizado, en la ventana de comandos de Matlab

    puede ejecutar whos y encontrar que se ha creado una variable denominada salida que debe contener 81 elementos reales, correspondientes a las muestras de la salida. Visualcela con plottime(salida,20000). El primer argumento es la variable y el segundo la frecuencia con que fue muestreada (20KHz en nuestro caso). Deber obtener una grafica de la seal de salida. Si ejecuta ahora zoomtool (no disponible en versiones nuevas de matlab, en este caso use solo plot(salida)), a la grfica se le superponen una serie de botones y campos de texto ms dos cursores. Su significado es el siguiente: > Desplazar el cursor una muestra a la derecha < dem a la izquierda >> Desplazar al siguiente mximo/mnimo a la derecha del cursor < Ampliar la seal entre los dos cursores Restaurar la seal a su tamao original [] Retrazar la seal S Crear una nueva figura con la vista actual Q Terminar zoomtool dejando la figura con su aspecto actual Tambin se pueden desplazar los cursores arrastrndolos con el ratn (haga clic sobre la lnea del cursor y desplace el ratn; luego suelte el botn del ratn). Adems, en la parte inferior izquierda se muestran los valores X e Y de cada cursor as como la diferencia entre estos valores (en el centro).

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    Cuestiones

    Con ayuda de zoomtool, mida los valores mximo (A1) y mnimo (A2) de la seal y calcule la relacin (A1-A2)/A1, que es la separacin relativa entre niveles (una medida de la interferencia inter-simblica introducida por el canal), para valores de ancho de pulsos de 0.25e-3, 0.5e-3 y 0.75e-3. Compruebe que los resultados concuerdan con los previstos en teora. Para una mayor precisin en las medidas, realice estas sobre los ltimos periodos de la seal. De esta forma evitar los efectos del transitorio inicial.

    0.2 Distorsin no-lineal. En esta segunda parte estudiaremos los efectos de la caracterstica no lineal de

    transferencia del canal. Consideraremos un modelo como el de la figura.

    Figura 0.2: Modelo de canal nolineal

    Este modelo genera una seal de la forma

    )sin()sin()( 2211 tatatx += que es transmitida a travs del canal cuya funcin de transferencia en amplitud es de la forma:

    )()()()( 332

    21 txgtxgtxgty ++= 0.2.1 Bloques de diseo

    Los nuevos bloques de diseo son:

    Sin Wave

    Genera una seal seno de amplitud, frecuencia y fase constantes.

    Fcn

    Aplica una transformacin arbitraria a la entrada.

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    Gain

    Amplificador de ganancia constante. 1.2.2 Simulacin

    Ajuste los parmetros del modelo para conseguir una entrada:

    )4000sin()1000sin()( tttx +=

    y las ganancias para conseguir una caracterstica lineal del canal y una frecuencia de muestreo para la salida de 25600 Hz. Simule el sistema durante 0.05 segundos. Al terminar la simulacin, puede visualizar la seal de salida con plottime(salida,25600) y ampliar una parte con zoomtool para ver los detalles (o cualquier otra herramienta de Matlab). Anlisis en frecuencia

    Para analizar en frecuencia la seal de salida, utilizaremos la funcin cpsd. Esta funcin obtiene una estimacin de la densidad de potencia de una seal as como la fase de la misma. En el formato ms sencillo se invoca con cpsd(x,fs,nfft) donde x es la seal, fs la frecuencia de muestreo y nfft el numero de puntos que se calculan de sta. La resolucin espectral est dada por fs/nfft. Con este formato, cpsd visualiza la psd de la seal en decibelios. Si se invoca con el formato cpsd(x,fs,nfft,1) visualiza adems la fase de la seal. Se puede invocar tambin con el formato [pxx,fxx,f]=psd(x,fs,nfft) para obtener los vectores de potencia pxx, fase fxx y frecuencia f. De esta forma se puede trazar la psd en escala lineal con plot(f,pxx). Utilizando cpsd(salida,25600,256) y zoomtool obtenga el espectro de la salida del sistema. Este debera contener dos picos centrados en frecuencias 500Hz y 2000Hz. Sus amplitudes deben ser de -6dB. Esto es debido a que cada seal seno de amplitud 1 genera dos deltas de amplitud 1/2 centradas en la frecuencia positiva y negativa de la sinusoide. Cada una de estas deltas contribuye a la densidad de potencia espectral con. Cuestiones

    Simule el sistema con funciones de transferencia en amplitud

    )(41)(

    21)()())(

    21)()() 322 txtxtxtybtxtxtya ++=+=

    Compruebe que los resultados concuerdan con las predicciones tericas. Cul es el ancho de banda de la seal de salida en cada caso? Qu armnicos aparecen a la salida?

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    0.3 Efecto multi-path.

    En este ltimo apartado consideraremos el efecto multi-path causado por la superposicin de un eco retardado y atenuado de la seal. Consideraremos un modelo como el de la figura.

    Figura 0.3: Modelo de canal multipath

    1.3.1 Bloques de diseo

    Los nuevos bloques son los siguientes:

    Transport Delay Implementa un retardo temporal fijo entre su entrada y salida.

    Band-Limited Wait Noise

    Genera un ruido blanco (densidad de potencia espectral uniforme) de ancho de banda limitado. El ancho de banda se elige de forma que si el perodo de muestreo es T, el ancho de banda resultante es B = 1/2T. 1.3.2 Simulacin

    Ajuste el generador de pulsos para un Periodo de 1ms y un ancho de 0.5ms.

    Simule el sistema durante 0.1 segundos. Muestree la salida a una frecuencia de 25600Hz y fije un mximo nmero de muestras superior a 2561 (p.e. 3000). Con estos parmetros, observe en el osciloscopio la seal de salida para diferentes valores de retardo y ganancia del eco.

    Anlisis en frecuencia

    A continuacin obtendremos una caracterizacin de la funcin de transferencia del sistema. Desconecte el bloque que implementa la funcin de transferencia H(s) y alimente ahora el sistema con el generador de ruido blanco. Ajuste sus parmetros para generar un ruido limitado en banda a 12800Hz (Perodo de muestreo de 1/25600) y una

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    potencia de 1e-4 (para un rango de amplitudes aceptable en el osciloscopio). Con valores de 0.25ms de retardo y 0.1 de ganancia, simule el sistema durante 0.1s. Al terminar la simulacin, visualice la funcin de transferencia con ctfe(entrada,salida,25600,256,1) (el formato es muy similar al de la funcin cpsd salvo que tiene dos variables de entrada en lugar de una). Observar el comportamiento oscilatorio tanto de la amplitud como de la fase del sistema. Si ahora obtiene los vectores de amplitud y fase con: [txx,fxx,f]=ctfe(entrada,salida,25600,256) podr visualizar el mdulo con plot(f,txx) y la fase con plot(f,fxx), pudiendo utilizar zoomtool para realizar medidas sobre ellos. Cuestiones

    Mediante el proceso descrito anteriormente, obtenga la funcin de transferencia del sistema multi-path para ganancia 0.1 y valores de retardo de 0.5ms, 0.25ms y 0.125ms. Compruebe que los resultados concuerdan con los predichos por la teora. Qu ocurre si se aumenta la ganancia de 0.1 a 0.75? Explique el efecto que se produce.

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    Sistemas de Comunicacin Digital I

    En este segundo apartado estudiaremos algunos aspectos relacionados con los sistemas de comunicacin digital. En primer lugar estudiaremos dos de las tcnicas de conversin A/D, PCM con compresin logartmica y modulacin delta. En segundo lugar estudiaremos diferentes tcnicas de codificacin de lnea y conformacin de pulsos. Para terminar, realizaremos medidas de simulacin sobre la probabilidad de error en deteccin para diferentes cdigos de lnea en presencia de ruido gausiano en el canal. Prctica 1. Modulacin PCM

    En este primer apartado estudiaremos el ruido de cuantizacin en un sistema PCM con y sin compresin de amplitud. Para ello utilizaremos un modelo como el de la siguiente figura:

    Figura 1.1: Modelo de sistema de comunicacin PCM

    1.1 Bloques de diseo

    Algunos de los bloques que aparecen en el modelo tienen un nombre (colocado en su parte inferior) que difiere del encontrado en la librera correspondiente. Para cambiar el nombre de un bloque basta con hacer clic sobre el nombre, borrar y escribir el nuevo nombre en su lugar. Seal

    Generador Sin Wave Amplitude = 1 Frequency = 2*pi*800 Phase = 0 Sample time = (vaco) Mues

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    Este es un bloque Zero-Order Hold que implementa el proceso de muestreo

    previo a la cuantizacin de la seal. Utilizaremos una frecuencia de muestreo de 8192 Hz. Sample time = 1/8192 PCM-cod

    Este bloque implementa la cuantizacin de las muestras de la seal. Por cada muestra de entrada genera n bits de salida, siendo el bit-rate de salida de n-veces la frecuencia de muestreo. Los parmetros permiten ajustar el nmero de bits as como la compresin utilizada (0=lineal, 1=ley, 2=leyA). Para los modos de compresin, el parmetro de compresin es para ley y A para leyA. Por ejemplo, para ley con 8 bits y rango de entrada 1 los parmetros seran los siguientes. Valor de pico = 1 Numero de bits = 8 Compresin = 1 Parmetro de compresin = 255 PCM-decod

    Este es el bloque complementario del anterior e implementa un decodificador PCM. Los parmetros tienen el mismo significado que en el bloque anterior. Fjelos siempre con los mismos valores que en el bloque de codificacin para un funcionamiento correcto.

    Retardo

    Este bloque implementa un retardo de los bits originales necesario para compensar el retardo de n+2 bits introducido por los bloques de codificacin/decodificacin. Por ejemplo, para 8 bits con frecuencia de muestreo de 8192 Hz los parmetros de retardo son Frecuencia de muestreo = 8*8192 Numero de muestras = 8+2 LPF

    Filtro analgico Chebyshev Type II LP filter. Este bloque implementa un filtro analgico paso-baja tipo Chebyshev para la reconstruccin de la seal a partir de sus muestras. Fije los parmetros como sigue. Cutoff frequency = 2*pi*4096 (mitad de la frecuencia de muestreo) Order = 6 (orden del filtro) Db ripple down in stop band = 40 (atenuacin en la banda de stop) mseal mruido

    Estos dos bloques de muestreo To Workspace se utilizan para pasar las muestras de la seal y el ruido de cuantizacin al espacio de trabajo para su posterior procesado en MATLAB. Fije los parmetros como sigue:

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    Variable name = s (n para mruido) Maximum number of rows = [4000,1,1/8192] Osciloscopios

    Hay varios de estos bloques Scope que permiten visualizar las seales en diferentes puntos del sistema. Ajuste los rangos vertical y horizontal para una adecuada visualizacin de las seales. 1.2 Simulacin

    Ajuste los parmetros de simulacin para una duracin de 0.01 segundos. Runge-Kutta 5 Start time = 0 Stop time = 0.01 Min step size = 0.0001 Max step size = 10 Tolerance = 1e-3 Return variables = (vaco)

    Durante la simulacin del sistema podr ver en los osciloscopios la forma de onda de las seales PCM. Al final de la simulacin aparecern las variables s y n en el espacio de trabajo. Utilizando la funcin csnr(s,n) podr obtener una estimacin de la relacin senal/ruido de cuantizacin. Esta debe ser de 37.67 dB. SNR en funcin del nmero de bits

    En primer lugar estudiaremos la variacin de la SNR en funcin del nmero de bits utilizados para la cuantizacin. Para ello construiremos una curva SNR frente al nmero de bits. En la misma forma que en caso anterior, realice medidas de la SNR para valores del nmero de bits entre 8 y 1 . Recuerde fijar los parmetros de los bloques de codificacin/decodificacin as como del bloque de retardo para adecuarlos al nmero de bits utilizados en cada caso. Una vez realizadas las medidas para ley-, repita las mismas medidas sin utilizar compresin (cuantizacin lineal). Puede trazar las curvas de variacin construyendo vectores con los valores del nmero de bits y de los valores SNR para los dos tipos de cuantizacin en la siguiente forma: >> n=[1 2 3]; >> lineal=[6.18 12.75 18.86]; >> mu=[0.67 3.10 7.36]; >> plot(n,mu,n,lineal) Esto generar un par de curvas con los valores lineal y frente a n. Compruebe que los resultados obtenidos concuerdan con los predichos por la teora. (nota: debe construir las curvas para n=1...8). SNR en funcin de la potencia de entrada relativa

    Ahora estudiaremos la variacin de la SNR de salida en funcin de la potencia relativa de la seal de entrada m2(t)/mp2. Manteniendo el valor de pico en los bloques de codificacin/decodificacin, disminuya progresivamente la amplitud de la senal de entrada y mida la SNR de cuantizacin como en el caso anterior. Utilice una serie decreciente de valores 1, 1/2, 1/4, 1/8,..., 1/1024. De esta forma, obtendr valores de

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    potencia de entrada distribuidos logartmicamente. Construya una tabla de valores de potencia de entrada y SNR para ley- y cuantizacin lineal. Trace las curvas para ley- con =255 y para cuantizacin lineal y compruebe que los resultados corresponden con los previstos en teora.

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    Prctica 2 Modulacin Delta

    La modulacin delta es una alternativa a la codificacin PCM. Es este apartado estudiaremos esta tcnica de cuantizacin utilizando un modelo sencillo como el de la figura:

    Figura 2.1: Modelo de sistema de modulacin delta

    2.1 Bloques de diseo

    Los bloques de diseo utilizados en este modelo son: Seno

    Este bloque Sin Wave se usa para generar la senal de entrada al sistema.

    Amplitude = 1 Frequency = 2*pi*200 Phase = 0 Sample time = (vaco) Delta Mod

    Este bloque implementa el codificador Delta. Es un modelo sencillo que implementa modulacin Delta con integracin simple. Los parmetros permiten variar la frecuencia de muestreo y el cuanto de amplitud del integrador. Para esta simulacin utilizaremos una frecuencia de muestreo de 8*8192 (igual al caso de PCM con 8 bits) y un cuanto calculado para no sobrecarga de pendiente con una seal senoidal de amplitud unitaria y frecuencia 2*pi*800 radianes/s. Frecuencia de muestreo = 8*8192 Cuanto = 0.0768 Delta Demod

    Este bloque implementa el decodificador Delta. Fije los parmetros a los mismos

    valores que en el bloque de codificacin. LPF

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    Este bloque es igual que el utilizado en PCM para reconstruir la seal a partir de sus muestras. Fije los parmetros a los valores siguientes. Cutoff frequency = 2*pi*4096 Order = 6 Db down in stop band = 40 mseal mruido

    Para estos bloques de muestreo To Workspace utilizaremos una frecuencia de

    muestreo elevada. Dado que las seales se generan a una frecuencia de 8*8192 Hz, es necesario muestrearlas a una frecuencia doble (16*8192 Hz). Variable name = s (n para mruido) Maximum number of rows = [4000,1,1/(16*8192)] 2.2 Simulacin

    Simule el modelo durante 0,032 segundos. Fije los parmetros de simulacin como sigue:

    Runge-Kutta 5 Start time = 0 Stop time = 0.032 Min step size = 0.0001 Max step size = 10 Tolerance = 1e-3 Return variables = (vaco)

    Despus de la simulacin, podr medir la relacin SNR de salida con csnr(s,n).

    Esta deber estar en torno a los 24 dB. Sin embargo, la teora predice que debera obtenerse una SNR en torno a los 36 dB. La discrepancia estriba en que no se ha filtrado la seal al ancho de banda (B = 4094 Hz). Si calcula tericamente la SNR sin tener en cuanta el efecto de este filtrado los resultados concordarn. Para tener en cuenta el efecto de filtrado, utilizaremos una estimacin de la PSD de la seal y el ruido en la forma [Ps,Fs,F]=cpsd(s,16*8192,1024) [Pn,Fn,F]=cpsd(n,16*8192,1024) respectivamente. Con estos valores, podemos trazar la PSD del ruido con la orden plot(F,10*log10(Pn)) y comprobar que es aproximadamente uniforme en el rango de frecuencias desde 0 a la frecuencia de muestreo 8*8192. Las potencias totales de la seal y el ruido en decibelios se pueden calcular como: PTs=10*log10(sum(Ps)) PTn=10*log10(sum(Pn)) respectivamente. La potencia del ruido sobre la banda de frecuencias de la seal se obtiene sumando nicamente las contribuciones de la PSD del ruido para frecuencias inferiores a 4096 Hz en la forma >> i=(F> PBn=10*log10(sum(Pn(i))); La SNR de cuantizacin para la banda completa de frecuencias es simplemente SNR=PTs- PTn, y la SNR teniendo en cuenta nicamente el ruido en la banda de frecuencias de la seal es SNRB=PTs-PBn.

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    Cuestiones

    Construya una tabla de los valores de SNR y SNRB para valores de frecuencia

    de la seal de entrada de 200, 400, 600, 800, 1000 y 1200 Hz. Trace las curvas de la SNR y SNRB. Compruebe que al acercarse a los 800 Hz empieza a observarse el efecto de sobrecarga de pendiente. Qu ocurre con los valores de la SNR? Qu ocurre con la PSD del ruido cuando aparece el efecto de sobrecarga de pendiente?

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    Prctica 3 Densidad de potencia espectral En este apartado estimaremos las densidades de potencia espectral de diferentes

    tipos de cdigos de lnea. Para ello utilizaremos un modelo como el de la figura siguiente.

    Figura 3.1: Modelo para el clculo de densidades de potencia espectral

    3.1 Bloques de diseo Bitgen

    Este bloque genera una secuencia aleatoria de bits (0 y 1) al bit-rate especificado. Los parmetros a utilizar son los siguientes

    Bit-rate = 64 Semilla = 1234 BINCOD

    Este bloque Polar/On-Off implementa un codificador polar u on-off dependiendo del parmetro codificacin. El bit-rate y el ancho de los pulsos tambin es configurable. Los parmetros se fijan en la forma: Bit-rate = 64 Ancho de los pulsos = 1/128 (para ancho mitad, 1 para ancho completo) Codificacion = [-1,1] (para polar, [0,1] para on-off) Muestras

    Este bloque To Workspace se utiliza para recuperar las muestras de la seal a analizar. Variable name = s Maximum number of rows = [6200,1,1/512] Save format: Array Gain

    Este bloque se usa simplemente como punto de conexin. Fije la ganancia a 1. Gain = 1 2.3.2 Simulation

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    Simule el modelo durante 12 segundos (12*64=768 bits). Fije los parmetros

    como sigue:

    Runge-Kutta 5 Start time = 0 Stop time = 12 Min step size = 0.0001 Max step size = 10 Tolerance = 1e-3 Return variables = (vaco)

    Una vez terminada la simulacin, aparecer una variable s de 6145 elementos.

    Calcule la PSD con [Pxx,Fxx,F]=cpsd(s,512,64). A continuacin podr visualizarla en escala lineal con plot(F,Pxx) o en escala logartmica con plot(F,10*log10(Pxx)). Una vez visualizadas podr medir con zoomtool los valores relevantes de la PSD (frecuencias a las que se anula).

    Realice medidas para codificacin polar de ancho mitad y completo. Mida la PSD para codificacin ONOFF de ancho mitad y compruebe que en ella aparecen deltas en los armnicos de la frecuencia del bit-rate. Compruebe que estas desaparecen cuando se usan pulsos de ancho completo. Repita las medidas para codificaciones bipolar y duobinaria y compruebe que los resultados concuerdan con los predichos tericamente. Modifique ahora el modelo para simular un sistema que utiliza conformacin de pulsos con el primer criterio de Nyquist.

    Figura 2.3: Modelo alternativo para el clculo de psds

    Fije los parmetros del bloque BCOD para conseguir una codificacin polar de

    ancho mitad, y los del bloque Sinc FIR en la forma siguiente: Bit-rate = 64 Exceso de ancho de banda = 0 Numero de etapas = 64 Sobremuestreo = 16

    Estime la PSD para excesos de ancho de banda de 0, 0.5 y 1.

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    Prctica 4. Probabilidad de error En esta prctica simularemos un sistema de comunicacin digital en presencia de

    ruido gausiano en el canal de transmisin. Utilizaremos un modelo como el de la figura.

    Figura 4.1 : Modelo de sistema de de transmisin con ruido gausiano aditivo en el canal

    4.1 Bloques de diseo Los bloques de diseo son los siguientes:

    Bitgen

    Este bloque genera una cadena pseudoaletoria de bits al bit-rate especificado. Bit-rate = 64 Semilla = 1234 Polar/on-off

    Es un codificador de lnea como el usado en los bloques BCOD de la seccin anterior. Bit-rate = 64 Ancho = 1 Codificacin = [-1,1] Ruido

    Este bloque Gauss implementa un canal con ruido gausiano aditivo. Densidad espectral del ruido = 1e-3 Ancho de banda del ruido = 8*64 Semilla = 1234 LPF

    Este bloque Chebyshev Type I LP Filter implementa el filtro paso-baja del receptor, se utiliza para limitar la potencia del ruido introducido en el receptor.

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    Cutoff frequency = 2*pi*4*64 Order = 6 Db ripple in passband = 1 Muestreo

    Este bloque Zero-Order hold implementa el muestreo en el receptor, realizado a

    la frecuencia del bit-rate. Sample time = 1/64 Decisin

    Este bloque Relay decide el bit recibido en funcin de la amplitud del pulso muestreado. Acta como un comparador de nivel. Input for on = 0 (para polar, 0.5 para on-off) Input for off = 0 (para polar, 0.5 para on-off) Output when on = 1 Output when off = 0 Relational operator

    Este bloque se utiliza para comparar los bits recibidos con los emitidos. Sus

    parmetros se ajustan para que se genere un 1 cuando se produce un error. Operator = = Retardo

    El detector, debido al filtro paso-baja, introduce un retardo de un bit. Este bloque se usa para retardar los bits emitidos esta cantidad de tiempo de forma que sean comparables con los recibidos. Frecuencia de muestreo = 64 Nmero de muestras = 1 Error

    Este bloque To Workspace muestrea la seal error al bit-rate. La variable

    contiene un 1 en la posicin de cada bit errneo y 0s en las dems posiciones. Variable name = err Maximum number of rows = [1000,1,1/64] 4.2 Simulacin

    Con los parmetros antes fijados, simule el modelo durante 8 segundos. Runge-Kutta 5 Start time = 0 Stop time = 8 Min step size = 0.0001 Max step size = 10 Tolerance = 1e-3 Return variables = (vaco)

    Al finalizar la simulacin quedar accesible una variable denominada err que contiene un 1 en las posiciones de los bits errneos. El nmero de bits se puede obtener

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    con length(err) y el nmero de errores con sum(err). De esta forma, una estimacin de la probabilidad de error es sum(err)/length(err). Si los parmetros se ajustaron adecuadamente, deber obtener un nmero de errores 45 sobre un total de 513 bits con una probabilidad de 0.0877. La probabilidad terica se puede obtener suponiendo que el filtro paso-baja es ideal y que el ruido tiene una PSD uniforme. Utilice la funcin q para calcular el error, q(1/0.7155). En este caso, la probabilidad de error es:

    0811.0)7155.0/1()(10)644(22 3 ===== QPPBSP nnnn

    Note que la estimacin que la estimacin es aceptable. La estimacin debe mejorar al aumentar el nmero de errores (por ejemplo para el caso de codificacin on-off). Repita la simulacin para codificacin on-off. Modifique el codificador para adecuarlo a este cdigo. Modifique tambin el detector (bloque Decisin) para que ahora el nivel de deteccin sea 0.5 en lugar de 0 como en el caso anterior. Compruebe que ahora el error aumenta y la estimacin de la probabilidad de error es mejor que en el caso anterior. Cuestiones

    Repita las dos simulaciones anteriores pero ahora reduzca el ancho de banda del filtro del receptor a la mitad (es decir a 2*pi*2*64: dos veces el bit-rate). Qu ocurre con la probabilidad de error?. Cul es el motivo de esta diferencia? Modifique el modelo para estimar la probabilidad de error de codificaciones pseudos-ternarias. Qu cambios son necesarios en el receptor? Estime las probabilidades de error para los dos anchos de banda anteriores y para codificaciones bipolar y pseudos-ternaria. Los bloques de los codificadores necesarios se encuentran en la misma librera que el bloque para codificacin polar Polar/On-Off.

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    Prctica 5. Deteccin ptima en Ruido Gausiano.

    En esta prctica implementaremos un detector ptimo basado en un filtro de ajuste (matched filter) en su realizacin mediante correlacin. El filtro de ajuste es un filtro lineal diseado para devolver la mxima SNR dada una forma de onda de los smbolos transmitidos. Utilizaremos el modelo de la figura siguiente:

    Figur 5.1: Modelo de sistema de de transmisin con ruido gausiano aditivo en el canal y sistema de

    5.1 Bloques de diseo

    Los bloques de diseo son los siguientes:

    Bit Gen

    Este bloque genera una cadena pseudoaletoria de bits al bit-rate especificado. t-ra

    INCOD

    Es un codificador de lnea como el usado en los bloques BCOD de la seccin anterio

    = 64

    [0,1]

    uido

    Este bloque Gauss implementa un canal con ruido gausiano aditivo. ensidad espectral del ruido = 1e-3

    Integrate and Dump

    a recepcin con deteccin ptima.

    Bi te = 64 Semilla = 1234 B

    r. it-rateBAncho = 1

    n = Codificaci R

    DAncho de banda del ruido = 8*64 Semilla = 1234

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    Este bloque integra la seal de entrada en los intervalos de muestreo y se resetea

    al final

    Absolute Value Bond = 1

    uestreo

    ste bloque Zero-Order hold implementa el muestreo en el receptor, realizado a la frecu

    Sample time = 1/64

    ecisin e bloque Relay decide el bit recibido en funcin de la amplitud del pulso

    muestr

    ara polar)

    elational operator

    ste bloque se utiliza para comparar los bits recibidos con los emitidos. Sus parme

    etardo

    El detector, debido a la espera del muestreo para la toma de la decisin, introdu esta

    rror

    ste bloque To Workspace muestrea la seal error al bit-rate. La variable contien

    s = [1000, 1, 1/64]

    5.2 Simulacin

    Con los parmetros antes fijados, simule el modelo durante 8 segundos. nge-

    0.0001

    de ellos.

    Integration Period = 1/64Simple Time = 1/(8*8*64) M

    Eencia del bit-rate.

    D

    Esteado. Acta como un comparador de nivel.

    put for on = 1/(2*64) (para on-off, 0 pIn

    Input for off = 1/(2*64) (para on-off, 0 para polar) Output when on = 1 Output when off = 0 R

    Etros se ajustan para que se genere un 1 cuando se produce un error.

    erator = = Op

    R

    ce un retardo de un bit. Este bloque se usa para retardar los bits emitidos cantidad de tiempo de forma que sean comparables con los recibidos. recuencia de muestreo = 64 FNmero de muestras = 1 E

    Ee un 1 en la posicin de cada bit errneo y 0s en las dems posiciones.

    ariable name = err VMaximum number of row

    Ru Kutta 5 Start time = 0 Stop time = 8 Min step size =Max step size = 10

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    Tolerance = 1e-3 Return variables = (vaco)

    uedar accesible una variable denominada err que ontien r

    Al finalizar la simulacin q

    c e un 1 en las posiciones de los bits errneos. El nmero de bits se puede obtenecon length(err) y el nmero de errores con sum(err). De esta forma, una estimacin de laprobabilidad de error es sum(err)/length(err). Si los parmetros se ajustaron adecuadamente, deber obtener un nmero de errores 11 sobre un total de 513 bits con una probabilidad de 0.0214. La probabilidad terica se puede obtener suponiendo que elfiltro paso-baja es ideal y que el ruido tiene una PSD uniforme. Utilice la funcin q para calcular el error, q((Eb/N0) 1/2), donde Eb (1/(2Br)) es la energa promedio por bit y N0 es la densidad de potencial espectral del ruido. En este caso, la probabilidad de error es:

    0026.010)(101 33

    0 =

    == bEQPN

    ote que la estimacin no es muy buena debido al reducido nmero de errores acin

    a la simulacin para codificacin polar. Modifique el codificador para decua

    Nobservados ( y al uso de tablas para calcular la probabilidad de error!). La estimdebe empeorar para el caso de codificacin polar ya que se comenten incluso menos errores (deteccin ms robusta).

    uestiones C

    Repita rlo a este cdigo. Modifique tambin el detector (bloque Decisin) para que ahora el nivel de deteccin sea 0. Por qu mejoran los resultados?

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    Prctica 6. Sistema de Comunicacin Elemental. tal con

    s con

    el

    En esta prctica implementaremos un sistema de Comunicacin Elemen

    lo ocimientos adquiridos en las primeras 5 prcticas de la asignatura. El sistema emisor transmite una seal senoidal cosificada mediante PCM en un canal ruidoso gausiano y el sistema receptor la filtra, muestrea, detecta y reconstruye. Utilizaremos modelo de la figura siguiente:

    Figura 6.1: Sistema de Comunicacin elemental.

    onde los bloqu por:

    6.1 Blo

    eWave: Bloque que genera una seal senoidal de frecuencia 1Hz y amplitud .

    compre

    D es del emisor y receptor estn compuestos

    ues de diseo: q

    misor: E

    Sin1

    Muestreador: Bloque Sample and Hold con frecuencia de muestreo de 10 Hz

    odificador PCM: Codificador PCM de 8 bits con ley y parmetro de Csin 255.

    Figura 6.2: Sistema de Comunicacin elemental: Emisor.

    eceptor:

    o LPF: Este bloque Analog Filter Design tiene un orden de 6, 1 dB de

    estreo igual al it rate

    R

    Filtr rizado en la banda de paso y una frecuencia de corte doble del bit rate.

    Muestreador: Bloque Sample and Hold con frecuencia de muB del canal

    Decisin

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    Este bloque Relay decide el bit recibido en funcin de la amplitud del pulso muestr

    ecodificador PCM: Decodificador PCM de 8 bits con ley y parmetro de compre

    Filtro LPF (~Demodulador): Este bloque Analog Filter Design tiene un

    eado. Acta como un comparador de nivel. Dsin 255.

    orden de 6, 1 dB de rizado en la banda de paso y una frecuencia de corte doble de la frecuencia de la seal de entrada.

    Figura 6.3: Sistema de Comunicacin elemental: Receptor.

    anal GAUSS

    Este bloque Gauss implementa un canal con ruido gausiano aditivo. ensidad espectral del ruido = 1e-4

    .2 Simulacin

    Con los parmetros antes fijados, simule el modelo durante 5 segundos. Compr uno de

    .3 Cuestiones:

    Cul es la causa de la distorsin de la seal reconstruida? Cmo modificara el

    C

    DAncho de banda del ruido = 8*8*64 Semilla = 1234 6

    uebe el buen funcionamiento del circuito y discuta la seleccin de cadalos parmetros antes mencionados. Introduciendo bloques To Workspace compruebe el retardo existente entre la seal PCM transmitida y la seal PCM reconstruida. Calculela probabilidad experimental de error en la transmisin-recepcin de l a cadena PCM. Calcule el error cuadrtico medio entre la seal transmitida y la recibida en los 5 segundos de simulacin. 6 diagrama de bloques en emisor y receptor si desea transmitir los bits PCM en codificacin polar?

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    Sistemas de Comunicacin Digital II Prctica 7. Ecualizacin Adaptativa al Canal.

    En esta prctica vamos a implementar un ecualizador que compense la distorsin introducida por un canal de transmisin de tipo paso baja. Para ello vamos a implementar en Simulink el siguiente diagrama de bloques:

    Figura 7.1: Ecualizador Adaptativo RLS.

    .1 Bloques de diseo:

    os bloques de diseo relevantes en la prctica son:

    and Limited White Noise:

    loque que genera un ruido blanco con parmetros: oise Power = 1e-5

    ign

    Bloque que genera una seal cuadrada con frecuencia de muestreo igual al anterio

    ime = -1

    oise:

    loque Band Limted White Noise que genera un ruido blanco con parmetros: oise Power = 0.002e-5

    7 L B

    B

    NSimple Time = 1e-5 Semilla = 1234 S

    r. Sample T N

    B

    NSimple Time = 1e-5

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    Semilla = 1234 Dispersive Channel:

    Bloque del tipo Digital Filter que modela un canal dispersivo tipo paso baja. Se encuentra en Libcom. Los parmetros del modelo son: Transfer Fucntion Type = FIR (all zeros) Dispersion = 3.5 RLS Adaptive filter: Implementa un filtro FIR adaptativo que minimiza por el mtodo de por mnimos cuadrados la diferencia entre una versin retardada de la seal de entrada y la seal filtrada por dicho filtro. Los parmetros del bloque son: FIR filter length = 11

    = 0.95 1

    Memory weighting factor Initial Value of filter Taps = 0Initial Input Variance Estimate = Reset Input: Either Edge 7.2 Simulacin y Cuestiones:

    Simule el sistema durante 0.02 segundos. Compruebe el buen funcionamiento

    del circuito y discuta la seleccin de cada uno de los parmetros antes mencionados. Introduciendo bloques To Workspace calcule el error cuadrtico medio experimental. El error mnimo se puede calcular como:

    )0()0(min dd rr =

    donde los trminos de la parte derecha de la igualdad son la varianza de la seal original y la estimada por el filtro de mnimos cuadrados.

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    Prctica 8. Modulacin QA (Quadrature Amplitude)

    los m

    n esta prctica vamos a modular una seal mediante QAM. Para ello usaremos E

    dulos que se encuentran en la librera de Comunicaciones de Matlab que a partir de una secuencia de enteros proporcionan una representacin en banda base de la seal modulada, as como los bloques destinado a representacin de seales propios de la citada librera. El diagrama de bloque se muestra en la figura siguiente:

    Figura 8.1: Modulacin-Demodulacin QAM.

    .1 Bloques de diseo:

    levantes en la prctica son:

    devuelve con carcter aleatorio enteros en el intervalo de muestreo que mo

    4 Sample time = 0.1

    odulator

    a usando el mtodo de Modulacin de amplitud por Cuadra

    Input Type = Integer od = MAverage Power

    8

    os bloques de diseo reL

    andom Integer R

    ste bloqueEdela una seal M-aria que se emite un sistema de comunicacin. Los parmetros

    del modelo son:

    M-ary number =

    Rectangular QAM M

    odula la seal de entradM

    tura Rectangular. La salida es una representacin en Banda Base de la seal modulada. Los parmetros del modelo son:

    M-ary number = 4

    Normalization MethSamples per symbol = 1

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    AWGN

    ue modela un Canal que aade ruido gausiano a la seal transmitida. Los armetros del mismo son:

    Ratio Eb/N0

    odulator

    mismos parmetros que el anterior. El Receptor debe conocer la forma en que la informacin se trasmite.

    ve la tasa de error, el nmero de bits comparados y los bits

    errneos en la variable que se define en su interior y que queda disponible en el Works

    e 20 segundos. Compruebe el buen funcionamiento del

    circuito y discuta la seleccin de cada uno de los parmetros antes mencionados. Repres

    rror

    Este bloqp Mode = signal to Noise b/N0= 5 dB ENumber bits per symbol = 1 Symbol Period = 0.1 Rectangular QAM Dem

    Demodulador QAM con los

    Error Rate Calculation

    Bloque que devuel

    pace de Matlab una vez la simulacin ha finalizado. 8.2 Simulacin y Cuestiones:

    Simule el sistema durant

    ente la constelacin de puntos original y ruidosa usando los bloques propios de Simulink. Compare la tasa de error en la transmisin de los pulsos con la tasa de eterica (para deteccin ptima) que se puede calcular como:

    21 2log3)1(2 ELL

    = 0221 1log NLQ

    LP bB

    donde L=sqrt(M), M=2k con k par y Q(x) es la funcin error. A qu se debe la iferencia entre el error terico y el experimental? Simule el sistema para varios

    e uido

    dnmeros distintos de niveles de la seal transmitida y obtenga la tasa de error. En vez dla anterior, use la siguiente funcin de probabilidad de error para ratios de seal rgrandes:

    ( )

    = Msen

    NMEQP bB /

    log220

    22

    donde Eblog2(M) es la energa por smbolo y M es el tamao del conjunto de smbolos. Observe como el detector-demodulador ptimo produce una tasa de error

    ra en r

    menor. Simule el circuito para diferentes ratios de seal-ruido y represente la mejola aproximacin dada por la ecuacin anterior. Compruebe que la probabilidad de errode PB2 es aproximadamente el doble que PB1.

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    Prctica 9. Modulacin en Cdigo-Trellis (TCM)

    odificacin Trellis en un medio gausiano. El objetivo de la misma es comprobar la ejora cdigo

    in

    En esta prctica vamos ha transmitir una seal modulada QAM usando cm en la tasa de error sin aumento del ancho de banda. La codificacin con Trellis combina una modulacin multi-nivel de la seal con un esquema de codificacTrellis (diagrama de transicin de estados). Usamos el esquema de la figura siguiente:

    Figura 9.1: Modulacin-Demodulacin TCM

    os bloques relevantes del diagrama son:

    ernouilli Binary Generator

    hipottica seal binaria a transmitir que ser codificada con QAM-TCM Rectangular:

    leccionar

    inaria (CT) de entrada y la modula usando QAM

    rectangular. Para ello los parmetros a usar dentro del bloque son:

    0 1 0; 0 0 0 1])

    etro especifica el tipo de Codificacin Trellis. En el primer ector se especifica el delay para el codificador de los k bits de entrada (k=3). La

    segund

    L 9.1 Bloques de diseo: B

    Este bloque modela una

    Framed based outputs = seSamples per frame = 3

    ncoder Rectangular QAM TCM E

    Este bloque codifica la seal b

    Trellis Structure: poly2trellis([3 1 1], [ 5 2 0 0; 0 M-ary number = 16

    El primer parmv

    a matriz especifica las n conexiones para los k bits de entrada. Para ms ayuda pulse el botn help de el bloque y la ayuda de Matlab acerca de la funcin poly2trellis. A la salida del bloque tenemos una seal 16-QAM.

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    AWGN Este bloque modela un Canal que aade ruido gausiano a la seal transmitida. Los

    s del mismo son:

    = 1 ymbol Period = 1

    r

    Este bloque decodifica la seal ruidosa 16QAM TCM de entrada recontruyendo :

    Trelli

    Este bloque convierte la seal de entrada y salida vectorial (3x1) en seal escalar alizacin y comparacin.

    Error

    Bloque que devuelve la tasa de error, el nmero de bits comparados y los bits se define en su interior y que queda disponible en el

    Workspace de Matlab una vez la simulacin ha finalizado.

    Bloque que compensa el retraso introducido en la CT.

    9.2 Sim

    Simule el sistema durante 20 segundos. La tasa de error debe estar en torno a

    ionamiento del circuito y discuta la seleccin de cada uno de los parmetros antes mencionados. Compare los resultados con la misma modula do

    parmetro Mode = signal to Noise Ratio Eb/N0 Eb/N0= 5 dB Number bits per symbol S Rectangular QAM TCM Decode

    la seal original con un cierto desfase s Structure: poly2trellis([3 1 1], [ 5 2 0 0; 0 0 1 0; 0 0 0 1])

    M-ary number = 16 Traceback Depth = 2

    Unbuffer

    para su visu

    Rate Calculation

    errneos en la variable que

    Integer Delay

    ulacin y Cuestiones:

    0.074. Compruebe el buen func

    cin pero sin CT. Represente la constelacin de puntos original y ruidosa usanlos bloques propios de Simulink.

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    Prctica 10. Sistema de comunicacin en secuencia

    unicacin en secuencia irecta que utiliza la tcnica de Espectro extendido para la supresin de interferencias

    (jamm

    Figura 9.1: Sistema DS-SS

    pectro Extendido los bloques principales son:

    diseo:

    consta de un generador de pulsos binarios de Bernoulli (1,0) y su adaptacin a codificacin bipolar (1,-1) mediante una funcin de Matlab.

    directa basado en Espectro Extendido.

    En esta prctica vamos a implementar un sistema de comd

    ing). El diagrama de bloques de la prctica es el siguiente:

    En este sistema de secuencia directa basado en Es

    10.1 Bloques de

    Secuencia de Bits

    Este bloque

    Bernoulli.

    e = 1

    = 2*(u)-1

    al anterior con la diferencia de el timepo de muestra que es 10

    veces inferior (un bit rate 10 veces superior).

    Sample Tim Matlab Function.

    Matlab function Secuencia Extendida

    Bloque idntico

    Ingeniera en Telecomunicacin. Curso 2005/2006

  • Prcticas de Comunicaciones Digitales. J.M. Grriz & J.C. Segura-Luna

    Matlab

    Este bloque adapta la seal antipodal modulada extendida al Modulador binario

    Matlab

    Modulator- Demolulator

    oduladores- demoduladores binarios en banda base PSK:

    Samples per symbol = 1 AWGN

    ste bloque modela un Canal que aade ruido gausiano a la seal transmitida. Los s del mismo son:

    = 1 ymbol Period = 0.1

    Funcin inversa a Matlab Funcrion 2.

    ecuencia Extendida 2

    Replica de la Seal extendida que debe incluir la estimacin por parte del raso en la propagacin (en nuestro caso este tiempo sera nulo).

    Error

    loque que devuelve la tasa de error, el nmero de bits comparados y los bits se define en su interior y que queda disponible en el

    Workspace de Matlab una vez la simulacin ha finalizado.

    imule el sistema durante 100 segundos. La tasa de error debe estar en torno a cionamiento del circuito y discuta la seleccin de cada

    uno de los parmetros antes mencionados. . Represente la constelacin de puntos origina

    ente

    Function2

    PSK:

    Function = ((-1)*(u)+1)/2

    BPSK M

    Eparmetro Mode = signal to Noise Ratio Eb/N0 Eb/N0= 0 dB Number bits per symbol S Matlab Function3 S

    receptor del tiempo de ret Rate Calculation B

    errneos en la variable que

    10.2 Simulacin y Cuestiones:

    S

    0.10891. Compruebe el buen fun

    l y ruidosa usando los bloques propios de Simulink. Compare los resultados conla misma modulacin pero sin EE (transmisin de una seal antipodal de Bit rate =1 en ruido gausiano mediante BPSK y demodulacin BPSK). Para ello calcule tericamla Ganancia (relacin entre Bit rates) y redisee el bloque de ruido gausiano modificando el ratio Eb/N0, de manera que usemos la misma potencia de ruido en ambos casos, y el periodo del smbolo. Cul es el porcentaje de mejora en la tasa de error de transmisin-recepcin?

    Ingeniera en Telecomunicacin. Curso 2005/2006