“Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían...

90
UNIVERSIDAD DE CHILE Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería de los Materiales “Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio: Influencia del Porcentaje de Fibra Adicionado” Alumno: José Patricio Bravo Celis Profesor Guía: Sr. Patricio Jorquera E. Profesor Co-Guía: Sr. Gerardo Díaz R. Profesor Integrante: Sr. Eduardo Donoso C. Fecha: Martes 09 de diciembre de 2003.

Transcript of “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían...

Page 1: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

UNIVERSIDAD DE CHILE

Facultad de Ciencias Físicas y Matemáticas

Departamento de Ingeniería de los Materiales

“Comportamiento Mecánico del Hormigón Reforzado con

Fibra de Vidrio: Influencia del Porcentaje de Fibra

Adicionado”

Alumno: José Patricio Bravo Celis

Profesor Guía: Sr. Patricio Jorquera E.

Profesor Co-Guía: Sr. Gerardo Díaz R.

Profesor Integrante: Sr. Eduardo Donoso C.

Fecha: Martes 09 de diciembre de 2003.

Page 2: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

“Hormigón Reforzado con Fibra de Vidrio: Influencia del Porcentaje de Fibra

Adicionado”

El presente trabajo de título tuvo como objetivo estudiar la influencia de la

incorporación de fibra de vidrio en hormigones de uso general, en las propiedades

mecánicas del hormigón.

En la investigación se realizaron ensayos comparativos entre un hormigón patrón,

que no contenía fibras y hormigones con distinto porcentaje de fibra adicionado. La fibra

adicionada osciló entre el 0,05% y el 0,4% en peso del hormigón. El hormigón patrón tenía

una calidad nominal, expresada como resistencia a la compresión a los 28 días, de 250

kgf/cm2. Las propiedades del hormigón que se estudiaron fueron la trabajabilidad, la

resistencia a la compresión y la resistencia a la flexotracción.

En el hormigón en estado fresco se determinó que, con la incorporación de fibras, la

trabajabilidad disminuye entre un 20% y un 1%, con respecto al hormigón patrón,

dependiendo de la cantidad de fibra adicionada. A mayor cantidad de fibra adicionada

menor es la trabajabilidad del hormigón.

En el hormigón endurecido se logró determinar que la adición de fibras de vidrio no

tiene mayor influencia en el aumento de la resistencia a la compresión del hormigón, y que

por el contrario, el aumento de la cantidad de fibra de vidrio presente en la mezcla de

hormigón incide directamente en el aumento de la resistencia a la flexotracción de éste,

cumpliéndose que a mayor porcentaje de fibra de vidrio adicionado, mayor es el aumento

de la resistencia a la flexotracción.

Del análisis de los resultados de la presente investigación unido a la investigación

bibliográfica, se desprende que algunas de las aplicaciones prácticas del hormigón

reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el

revestimiento de túneles.

2

Page 3: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

INDICE página

INTRODUCCIÓN ________________________________________________________ 6

Capítulo 1 _______________________________________________________________ 7

ANTECEDENTES TEÓRICOS______________________________________________ 7

1.1 Materiales Compuestos________________________________________________ 7

1.1.1 Introducción_____________________________________________________ 7

1.1.2 Materiales Compuestos Reforzados con Partículas_______________________ 9

1.1.3 Materiales Compuestos Estructurales ________________________________ 10

1.1.4 Materiales Compuestos Reforzados con Fibras_________________________ 11

1.2 Conceptos Generales del Comportamiento Mecánico de Materiales Reforzados con

Fibras _______________________________________________________________ 12

1.2.1 Influencia de la Longitud de la Fibra_________________________________ 12

1.2.2 Influencia de la Orientación y de la Concentración de la Fibra ____________ 13

1.2.2.1 Materiales Compuestos con Fibras Discontinuas y Orientadas al Azar___ 14

1.2.3 Fase Fibrosa____________________________________________________ 16

1.2.4 Fase Matriz ____________________________________________________ 18

1.3 Fibra de Vidrio _____________________________________________________ 19

1.3.1 Tipos de Vidrio _________________________________________________ 19

1.4 La Fibra de Vidrio A. R.______________________________________________ 22

1.4.1 Historia _______________________________________________________ 22

1.4.2 Fabricación ____________________________________________________ 24

1.5 Fabricación de un GRC ______________________________________________ 31

1.5.1 Elementos Constituyentes _________________________________________ 31

1.5.2 Procesos de Fabricación de un GRC. ________________________________ 33

1.5.2.1 Procesos de Proyección Simultánea ______________________________ 33

1.5.2.2 Procesos de Premezcla ________________________________________ 34

1.5 Características Mecánicas, Físicas y Químicas de un GRC ___________________ 36

1.7 Ventajas competitivas del GRC ________________________________________ 39

3

Page 4: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

1.8 Cualidades del GRC _________________________________________________ 40

1.9 Principales Aplicaciones del GRC ______________________________________ 41

Capítulo 2 ______________________________________________________________ 44

PLANTEAMIENTO DE LA INVESTIGACIÓN Y PROGRAMA DE ENSAYOS ____ 44

2.1 Introducción _______________________________________________________ 44

2.2 Objetivos__________________________________________________________ 44

2.2.1 Objetivo General ________________________________________________ 44

2.2.2 Objetivos Específicos ____________________________________________ 45

2.2 Variable a Estudiar en el Desarrollo Experimental _________________________ 45

2.3 Programa de Ensayos ________________________________________________ 45

2.4 Descripción de los Ensayos ___________________________________________ 47

2.4.1 Trabajabilidad __________________________________________________ 47

2.4.3 Compresión ____________________________________________________ 48

2.4.4 Flexotracción ___________________________________________________ 50

Capítulo 3 ______________________________________________________________ 52

DESARROLLO DE LA ETAPA EXPERIMENTAL ____________________________ 52

3.1 Materiales _________________________________________________________ 52

3.1.1 Áridos ________________________________________________________ 52

3.1.1.1 Determinación de Impurezas en las Arenas para Hormigones__________ 53

3.1.2 Cemento_______________________________________________________ 54

3.1.3 Fibras de Vidrio Álcali-Resistentes__________________________________ 54

3.1.4 Agua _________________________________________________________ 55

3.1.5 Aditivo _______________________________________________________ 56

3.2 Dosificación y Confección del Hormigón ________________________________ 56

3.2.1 Dosificación del Hormigón Patrón __________________________________ 56

3.2.2 Confección del Hormigón _________________________________________ 57

3.2.3 Programación de las Coladas_______________________________________ 59

3.3 Tipología de Probetas Fabricadas en Obra________________________________ 60

4

Page 5: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

3.3.1 Fabricación de Probetas Cúbicas para Ensayos de Compresión ____________ 61

3.3.2 Fabricación de Probetas Prismáticas para Ensayos de Flexotracción ________ 61

3.3.3 Curado Inicial y Desmolde de las Probetas____________________________ 61

3.3.4 Identificación de las Probetas ______________________________________ 62

3.3.5 Curado de las Probetas en el Laboratorio _____________________________ 62

3.4 Desarrollo de los Ensayos ____________________________________________ 64

3.4.1 Ensayo de Trabajabilidad _________________________________________ 64

4.3.2 Ensayo de Compresión ___________________________________________ 65

4.3.3 Ensayo de Flexotracción __________________________________________ 65

Capítulo 4 ______________________________________________________________ 67

ANÁLISIS E INTERPRETACIÓN DE RESULTADOS _________________________ 67

4.1 Ensayo de Trabajabilidad _____________________________________________ 67

4.2 Ensayo de Compresión _______________________________________________ 69

4.3 Ensayo de Flexotracción______________________________________________ 74

Capítulo 5 ______________________________________________________________ 77

CONCLUSIONES _______________________________________________________ 77

5.1 El Hormigón en Estado Fresco_________________________________________ 77

5.2 El Hormigón Endurecido _____________________________________________ 78

5.3 Posibles Usos del Hormigón Reforzado con Fibra de Vidrio _________________ 78

5.4 Comparación con Otras Fibras de Refuerzo_______________________________ 79

5.5 Propuesta de Trabajos Futuros _________________________________________ 80

BIBLIOGRAFÍA ________________________________________________________ 81

ANEXOS ______________________________________________________________ 87

5

Page 6: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

INTRODUCCIÓN

Los materiales aglomerantes, en la forma de hormigones o morteros, son

atractivos para su uso como materiales de construcción, dado su bajo costo, su durabilidad

y su adecuada resistencia a la compresión para un uso estructural. Adicionalmente, en el

estado fresco ellos son fácilmente moldeables a las formas más complejas que sean

requeridas. Su defecto radica en sus características de baja resistencia a la tracción y a los

impactos, y a su susceptibilidad a los cambios de humedad. Un reforzamiento mediante

fibras puede ofrecer un conveniente, práctico y económico método para superar estas

deficiencias.

La adición de fibras como refuerzo de hormigones, morteros y pasta de cemento

pueden incrementar muchas de las propiedades de éstos, destacando entre ellas, la

resistencia a la flexión, tenacidad, fatiga, impacto, permeabilidad y resistencia a la abrasión

[1].

En el caso específico del refuerzo del hormigón con fibra de vidrio se han

obtenido buenos resultados cuando se trata de morteros de áridos finos [2], utilizándose en

distintas aplicaciones, tales como, paneles antirruido y paneles de fachadas de

edificaciones, dadas su fácil instalación y su poco peso. El material utilizado para la

fabricación de dichos paneles es conocido como GRC (Glass Reinforced Concrete).

Las fibras de vidrio utilizadas para el refuerzo del hormigón son del tipo álcali-

resistente; de esta forma se evita la formación del gel álcali-silicato con los consiguientes

efectos negativos de durabilidad de la fibra.

En el presente trabajo se estudiará la influencia del porcentaje de fibra de vidrio

en las propiedades mecánicas del hormigón.

6

Page 7: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Capítulo 1

ANTECEDENTES TEÓRICOS

1.1 Materiales Compuestos

1.1.1 Introducción

La mayoría de las tecnologías modernas requiere materiales con una combinación

inusual de propiedades, imposible de conseguir con los metales, las cerámicas y los

polímeros convencionales.

Las combinaciones de propiedades de los materiales y la gama de sus valores se

han ampliado, y se siguen ampliando, mediante el desarrollo de materiales compuestos

(composites). En términos generales, se considera que un material compuesto es un

material multifase que conserva una proporción significativa de las propiedades de las fases

constituyentes [3]de manera que presente la mejor combinación posible. De acuerdo con

este principio de acción combinada, las mejores propiedades se obtienen por la

combinación razonada de dos o más materiales diferentes.

Existen materiales compuestos naturales, como por ejemplo, la madera, que

consiste en fibras de celulosa flexibles embebidas en un material rígido llamado lignina. El

hueso es un material compuesto formado por colágeno, una proteína resistente pero blanda,

y por apatito, un mineral frágil.

En el presente contexto, un material compuesto es un material multifase obtenido

artificialmente, en oposición a los que se encuentran en la naturaleza. Además, las fases

constituyentes deben ser químicamente distintas y separadas por una interfaz.

7

Page 8: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

La mayoría de los materiales compuestos se han creado para mejorar la

combinación de propiedades mecánicas tales como rigidez, tenacidad y resistencia a la

tracción a temperatura ambiente y a elevadas temperaturas.

La mayor parte de los materiales compuestos están formados por dos fases; una,

llamada matriz, es continua y rodea a la otra fase, denominada fase dispersa. Las

propiedades de los compuestos son función de las propiedades de las fases constituyentes,

de sus proporciones relativas y de la geometría de las fases dispersas1.

Un esquema simple para clasificar los materiales compuestos consta de tres

divisiones (Fig. 1.1): compuestos reforzados con partículas, compuestos reforzados con

fibras y compuestos estructurales; además, existen dos subdivisiones para cada una. Se

debe mencionar que la fase dispersa de los materiales compuestos reforzados con fibras

tienen una relación longitud-diámetro2 muy alta.

Figura 1-1. Clasificación de los Materiales Compuestos (Callister, 1996).

1 Se refiere a la forma, tamaño, distribución y orientación de la fase dispersa. 2 También conocida como Relación de Aspecto o Factor de Forma, definido matemáticamente como la longitud de la fibra divida por su diámetro equivalente (diámetro de un círculo de área igual al área de la sección transversal de la fibra).

8

Page 9: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

1.1.2 Materiales Compuestos Reforzados con Partículas

Los materiales compuestos reforzados con partículas se subdividen en reforzados

con partículas grandes y consolidados por dispersión (Figura 1-1). Esta distinción se

fundamenta en el mecanismo de consolidación o de reforzamiento. El término" grande" se

utiliza para indicar que las interacciones matriz-partícula no se pueden describir a nivel

atómico o molecular, sino mediante la mecánica continua. En la mayoría de los materiales

compuestos la fase dispersa es más dura y resistente que la matriz y las partículas de

refuerzo tienden a restringir el movimiento de la matriz en las proximidades de cada

partícula. En esencia, la matriz transfiere parte del esfuerzo aplicado a las partículas, las

cuales soportan una parte de la carga. El grado de reforzamiento o de mejora del

comportamiento mecánico depende de la fuerza de cohesión en la interfaz matriz-partícula.

Un material compuesto con partículas grandes es el hormigón, formado por

cemento (matriz) y arena o grava (partículas).

El reforzamiento es tanto más efectivo cuanto más pequeñas sean las partículas y

cuanto mejor distribuidas estén en la matriz. Además, la fracción de volumen de las dos

fases influye en el comportamiento; las propiedades mecánicas aumentan al incrementarse

el contenido de partículas. Se formulan dos expresiones matemáticas para relacionar el

módulo elástico con la fracción de volumen de las fases constituyentes de un material

compuesto de dos fases [4]. Las ecuaciones de la regla de las mezclas predice que el valor

del módulo elástico estará comprendido entre un máximo

c m m pE E V E Vp= + (1.1)

y un mínimo

m pc

m p p m

E EE

V E V E=

+ (1.2)

9

Page 10: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

En estas expresiones, E y V representan el módulo elástico y la fracción de

volumen, respectivamente, mientras los subíndices c, m y p significan material compuesto,

matriz y fase-partícula.

Las partículas de los materiales compuestos consolidados por dispersión

normalmente son mucho más pequeñas: los diámetros tienen de 10 a 100 nm. Las

interacciones matriz-partícula que conducen a la consolidación ocurren a nivel atómico o

molecular. Mientras la matriz soporta la mayor parte de la carga aplicada, las pequeñas

partículas dispersas dificultan o impiden el desplazamiento de dislocaciones. De este modo

se restringe la deformación plástica de tal manera que aumenta el límite elástico, la

resistencia a la tracción y la dureza.

1.1.3 Materiales Compuestos Estructurales

Un material compuesto estructural está formado tanto por materiales compuestos

como por materiales homogéneos y sus propiedades no sólo dependen de los materiales

constituyentes sino de la geometría del diseño de los elementos estructurales. Los

compuestos laminares, los cuales poseen una dirección preferente con elevada resistencia

(tal como ocurre en la madera), y los paneles sándwich, que poseen caras externas fuertes

separadas por una capa de material menos denso, o núcleo (ver figura 1-2), son dos de los

compuestos estructurales más comunes.

10

Page 11: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Figura 1-2. Diagrama esquemático de la fabricación de un panel sándwich con un núcleo en panal [5].

1.1.4 Materiales Compuestos Reforzados con Fibras

Tecnológicamente, los materiales compuestos con fases dispersas en forma de

fibras son los más importantes. A menudo se diseñan materiales compuestos reforzados con

fibras con la finalidad de conseguir elevada resistencia y rigidez a baja densidad. Estas

características se expresan mediante los parámetros resistencia específica y módulo

específico, que corresponden, respectivamente, a las relaciones entre la resistencia a la

tracción y el peso específico y entre el módulo de elasticidad y el peso específico.

Utilizando materiales de baja densidad, tanto para la matriz como para las fibras, se

fabrican compuestos reforzados con fibras que tienen resistencias y módulos específicos

excepcionalmente elevados.

Los materiales compuestos reforzados con fibras se subclasifican por la longitud

de la fibra. Una descripción detallada de este tipo de materiales se muestra a continuación

en el apartado 1.2 de esta Memoria.

11

Page 12: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

1.2 Conceptos Generales del Comportamiento Mecánico de Materiales Reforzados

con Fibras

1.2.1 Influencia de la Longitud de la Fibra

Las características mecánicas de los compuestos reforzados con fibras dependen

no sólo de las propiedades de la fibra, sino también del grado en que una carga aplicada se

transmite a la fibra por medio de la fase matriz. En este proceso de transmisión de carga es

muy importante la magnitud de la unión en la interfaz de las fases matriz y fibra. Al aplicar

un esfuerzo de tracción, la unión fibra-matriz cesa en los extremos de la fibra y en la matriz

se genera un patrón de deformación como el que se muestra en la Figura 1-3; en otras

palabras, en los extremos de la fibra no hay transmisión de carga desde la matriz.

Figura 1-3. Patrón de deformación en una matriz que rodea a una fibra sometida a un esfuerzo de tracción.

Existe una longitud de fibra crítica para aumentar la resistencia y la rigidez del

material compuesto. Esta longitud crítica lc depende del diámetro d de la fibra, de la

resistencia a la tracción fσ y de la resistencia de la unión matriz-fibra (o resistencia al

cizalle de la matriz), cτ , de acuerdo con

fc

c

dl

στ

= (1.3)

12

Page 13: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

La longitud crítica de algunas combinaciones de matriz-fibra de vidrio y de

carbono es del orden de 1 mm, equivalente a unas de 20 a 150 veces el diámetro de la fibra

[6].

En la presente investigación, el diámetro de fibra que se utilizara corresponde a 14

µm y su largo será de 12 mm [7], la resistencia a la tracción de la fibra de vidrio

corresponde a 1,7 GPa [8] y la resistencia al cizalle de la matriz corresponde a 125 Kgf/cm2

(1,25 x 10-2 GPa) [9]. Utilizando la ecuación 1.3, se obtiene que la longitud crítica para esta

investigación corresponde a lc = 1,9 mm.

Las fibras con l» lc (normalmente l >15 lc) se denominan continuas; y las fibras

de menor longitud se denominan discontinuas o fibras cortas. En las fibras discontinuas de

longitud significativamente menor que lc, la matriz se deforma alrededor de la fibra de

modo que apenas existe transferencia del esfuerzo y el efecto del reforzamiento de la fibra

es insignificante.

1.2.2 Influencia de la Orientación y de la Concentración de la Fibra

La disposición u orientación relativa de las fibras y su concentración y

distribución influyen radicalmente en la resistencia y en otras propiedades de los materiales

compuestos reforzados con fibras. Con respecto a la orientación existen dos situaciones

extremas: (1) alineación paralela de los ejes longitudinales de las fibras y (2) alineación al

azar. Las fibras continuas normalmente se alinean (Figura 1-4a), mientras que las fibras

discontinuas se pueden alinear (Figura 1-4b) o bien se pueden orientar al azar (Figura 1-4c)

o alinearse parcialmente.

En el caso de esta investigación, dado el largo de la fibra de vidrio l, equivalente a

12 mm, se tiene que l ≈ 6 lc, con lc longitud crítica de la fibra. Es decir, se tiene una fibra

discontinua o fibra corta. Además esta fibra estará orientada al azar [10].

13

Page 14: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Figura 1-4. Representaciones esquemáticas de compuestos reforzados con fibras (a) continuas y alineadas, (b) discontinuas y alineadas y (c) discontinuas y orientadas al azar.

1.2.2.1 Materiales Compuestos con Fibras Discontinuas y Orientadas al Azar

Normalmente, cuando los materiales compuestos tienen fibras orientadas al azar,

éstas suelen ser discontinuas y cortas; un reforzamiento de este tipo está representado en la

Figura 1-4c. En estas circunstancias, el módulo elástico se expresa mediante una regla de

las mezclas:

c f f mE KE V E Vm= + (1.4)

donde: K = Parámetro de eficiencia de la fibra (típicamente comprendido entre 0,1 y 0,6).

E = Módulo elástico (f se refiere a la fibra y m a la matriz).

V = Fracción de volumen.

El módulo elástico de los materiales reforzados, tanto si las fibras están alineadas

como si están orientadas al azar, aumenta al incrementarse la fracción de volumen de la

fibra. En la Tabla 1-1 se indican algunas propiedades mecánicas de los policarbonatos no

14

Page 15: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

reforzado y reforzado con fibras de vidrio discontinuas y orientadas al azar. Esta tabla da

una idea de las magnitudes que se pueden obtener mediante reforzamiento.

Tabla 1-1. Propiedades del policarbonato sin refuerzo y reforzado con fibra de vidrio orientada al azar.

Reforzado con fibra (% volumen)Propiedades No Reforzado

20 30 40

Gravedad Específica 1.19 –1.22 1.35 1.43 1.52

Resistencia a la Tracción (MPa) 59 – 62 110 131 159

Módulo de Elasticidad (MPa) 2240 – 2345 5930 8620 11590

Elongación (%) 90 – 115 4 – 6 3 – 5 3 – 5

Fuente: Adaptado de Materials Engineering’s Materials Selector. Copyright/IPC, 1988.

En la Tabla 1-2 se indican las eficiencias del reforzamiento con fibras en varias

situaciones; la eficiencia se toma arbitrariamente como la unidad en la dirección paralela a

la alineación y cero en la dirección perpendicular.

Tabla 1-2. Eficiencia del reforzamiento de compuestos reforzados con fibra orientado

en varias direcciones y esfuerzos aplicados en varias direcciones.

Orientación de la fibra Dirección del esfuerzo Eficiencia del reforzamientoParalela a las fibras 1 Todas las fibras paralelas Perpendicular a las fibras 0

Fibras orientadas al azar y uniformemente distribuidas en un plano específico

Cualquier dirección en el plano de las fibras 3/8

Fibras orientadas al azar y uniformemente distribuidas en el espacio de tres dimensiones

Cualquier dirección 1/5

Fuente: H. Krenchel, “Fibre Reinforcement”, Copenhague: Akademisk Forlag, 1964, pág 64.

En las aplicaciones en las que las fibras están sometidas a esfuerzos totalmente

multidireccionales normalmente se utilizan fibras discontinuas orientadas al azar en la

15

Page 16: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

matriz. La Tabla 1-2 muestra que la eficiencia del reforzamiento de estos compuestos es

sólo la quinta parte de la eficacia correspondiente a los compuestos cuyas fibras están

alineadas en la dirección longitudinal; sin embargo, las propiedades mecánicas son

isotrópicas [11].

Las consideraciones sobre la orientación y la longitud de las fibras de un

compuesto particular dependen del nivel y de la naturaleza del esfuerzo aplicado y del costo

de fabricación. Las velocidades de producción de compuestos con fibras cortas (alineadas y

orientadas al azar) son rápidas y se pueden conformar piezas de formas intrincadas que no

son posibles con refuerzos de fibras continuas. Además, los costos de fabricación son

mucho más bajos que en el caso de compuestos reforzados con fibras continuas y alineadas.

1.2.3 Fase Fibrosa

Una importante característica de muchos materiales, especialmente los frágiles, es

que las fibras con diámetros pequeños son mucho más resistentes que el material macizo.

Como es sabido, la probabilidad de la presencia de una imperfección superficial crítica que

conduzca a la rotura disminuye cuando aumenta el volumen específico [12]. Este fenómeno

se utiliza con ventaja en los compuestos reforzados con fibras. El material utilizado como

fibra de refuerzo debe tener alta resistencia a la tracción.

En función de sus diámetros y características, las fibras se agrupan en tres

categorías diferentes: whiskers, fibras y alambres. Los whiskers son monocristales muy

delgados que tienen una relación longitud-diámetro muy grande. Como consecuencia de su

pequeño diámetro, tienen alto grado de perfección cristalina y están prácticamente libres de

defectos, y por ello tienen resistencias excepcionalmente elevadas. Los whiskers pueden ser

de grafito, carburo de silicio, nitruro de silicio y óxido de aluminio. En la Tabla 1-3 se dan

algunas características mecánicas de estos materiales.

16

Page 17: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Tabla 1-3. Características de materiales reforzados con fibras.

Material

Peso

específico

(g/cm3)

Resistencia

a la tracción

(GPa)

Resistencia

específica

(GPa)

Módulo

elástico

(GPa)

Módulo

específico

(GPa)

Whiskers

Grafito 2.2 20 9.1 690 314

Carburo de silicio 3.2 20 6.3 480 150

Nitruro de silicio 3.2 14 4.4 380 119

Óxido de aluminio 3.9 14 – 28 3.6 – 7.2 415 – 550 106 – 141

Fibras

Aramida (Kevlar 49) 1.4 3.5 2.5 124 89

Vidrio E 2.5 3.5 1.4 72 29

Carbono3 1.8 1.5 – 5.5 0.8 – 3.1 150 – 500 83 – 278

Óxido de aluminio 3.2 2.1 0.7 170 53

Carburo de silicio 3.0 3.9 1.3 425 142

Alambres Metálicos

Acero alto en

carbono 7.8 4.1 0.5 210 27

Molibdeno 10.2 1.4 0.14 360 35.3

Tungsteno 19.3 4.3 0.22 400 20.7

Fuente: Adapatado de Introducción a la Ciencia e Ingeniería de los Materiales, W. Callister, 1996.

Los materiales clasificados como fibras son policristalinos o amorfos y tienen

diámetros pequeños; los materiales fibrosos son generalmente polímeros o cerámicas (p.ej.,

aramida, vidrio, carbono, boro, óxido de aluminio y carburo de silicio). La Tabla 1-3

también indica algunos datos de varios materiales utilizados como fibras.

3 Para designar estas fibras se utiliza el término “carbono” en vez de “grafito”, ya que están compuestas de regiones de grafito cristalino y también de material no cristalino y de áreas con cristales defectuosos.

17

Page 18: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Los alambres tienen diámetros relativamente grandes; los materiales típicos son el

acero, el molibdeno y el tungsteno. Los alambres se utilizan como refuerzos radicales de

acero en los neumáticos de automóvil, filamentos internos de los recubrimientos de cohetes

espaciales y paredes de mangueras de alta presión.

1.2.4 Fase Matriz

La fase matriz de un material compuesto con fibras ejerce varias funciones. En

primer lugar, une las fibras y actúa como un medio que distribuye y transmite a las fibras

los esfuerzos externos aplicados; sólo una pequeña fracción del esfuerzo aplicado es

resistido por la matriz. Además, la matriz debe ser dúctil y, por otra parte, el módulo

elástico de la fibra debe ser mucho mayor que el de la matriz. En segundo lugar, la matriz

protege las fibras del deterioro superficial que puede resultar de la abrasión mecánica o de

reacciones químicas con el medio ambiente. Estas interacciones introducen defectos

superficiales capaces de originar grietas, que podrían producir fallos con esfuerzos de

tracción relativamente bajos. Finalmente, la matriz separa las fibras y, en virtud de su

relativa blandura y plasticidad, impide la propagación de grietas de una fibra a otra, que

originaría fallos catastróficos; en otras palabras, la matriz actúa como una barrera que evita

la propagación de grietas. Aunque algunas fibras individuales se rompan, la rotura total del

material compuesto no ocurrirá hasta que se hayan roto gran número de fibras adyacentes,

que forman un agregado de tamaño crítico.

Es esencial que la adherencia de la unión entre fibra y matriz sea elevada para

minimizar el arrancado de fibras. En efecto, la resistencia de la unión tiene gran

importancia en el momento de seleccionar la combinación matriz-fibra. La resistencia a la

tracción final del compuesto depende, en gran parte, de la magnitud de esta unión; una

unión adecuada es esencial para optimizar la transmisión de esfuerzos desde la matriz a las

fibras.

18

Page 19: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

1.3 Fibra de Vidrio

La fibra de vidrio es un material compuesto consistente en fibras continuas o

discontinuas de vidrio embebidas en una matriz plástica [13]; este compuesto se produce en

gran cantidad. El vidrio se utiliza como material de refuerzo debido a las siguientes

razones:

a. Es fácilmente hilable en fibras de alta resistencia.

b. Es fácilmente disponible y se puede aplicar económicamente para producir plástico

reforzado con vidrio utilizando una gran variedad de técnicas de fabricación de

materiales compuestos.

c. Cuando está embebida en una matriz plástica produce un compuesto con muy alta

resistencia específica.

d. Cuando está unido a varios plásticos se obtienen materiales compuestos

químicamente inertes muy útiles en una gran variedad de ambientes corrosivos.

1.3.1 Tipos de Vidrio [14]

Vidrio E: un pionero

Desde 1930, la fibra de vidrio ha sido considerada uno de los materiales del futuro debido a

sus cualidades dieléctricas: el aislamiento de conductores eléctricos sometidos a

temperaturas altas era ofrecido por los filamentos de vidrio E. Usado solo o en asociación

con barniz o resinas sintéticas, fue su primera aplicación industrial en gran escala. La fibra

de vidrio E es el tipo más comúnmente usado, tanto en la industria textil, como en

compuestos donde responde por el 90% de los refuerzos usados.

19

Page 20: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Vidrio R: alto desempeño mecánico

Este tipo de filamento fue creado a pedido de sectores como aviación, espacio y

armamentos. Satisface las exigencias de ellos en términos de comportamiento de materiales

en relación a fatiga, temperatura y humedad. Debido a su alto desempeño técnico puede ser

utilizado para reforzar láminas de rotor de helicópteros, pisos de aviones, tanques de

combustible de aviones, proyectiles y lanzadores de proyectiles. Desarrollado

principalmente para estas aplicaciones, también encontró otras salidas, por ejemplo, en la

industria de deportes y recreación, transporte y blindaje balístico.

Vidrio D: características dieléctricas muy buenas

Compuestos a partir de vidrio D tiene muy bajas pérdidas eléctricas y son entonces usados

como un material que es permeable a ondas electromagnéticas, con beneficios muy

importantes en términos de características eléctricas. La fibra de vidrio D es usada en la

fabricación de ventanas electromagnéticas, y superficies de circuitos impresos de alto

desempeño.

Vidrio AR: resistente a álcali

El vidrio AR fue desarrollado especialmente para reforzar cemento. Su alto contenido de

óxido de zirconio ofrece resistencia excelente para los compuestos alcalinos durante el

secado. El refuerzo de cemento con filamentos de vidrio AR da módulos mejorados de

ruptura con buena durabilidad. Esto significa que el modelado hecho en cemento con

refuerzo de vidrio puede ser mucho más leve. Aplicaciones principales son: sustitución de

asbesto en tejados y coberturas, paneles de revestimiento y componentes de construcción.

20

Page 21: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Vidrio C:

El vidrio C es usado para la producción de mats4 de vidrio para las cuales son requeridas

propiedades de resistencia a la corrosión (como capa externa anticorrosivo de tubos y para

superficies de tubos compuestos).

Una comparación entre las propiedades mecánicas de los distintos tipos de vidrio

puede ser apreciada en la Tabla 1- 4, que se muestra a continuación.

Tabla 1-4. Propiedades Mecánicas de los distintos tipos de Fibra de Vidrio.

Propiedades Vidrio E Vidrio D Vidrio R Vidrio AR

Densidad (g/cm3) 2.60 2.14 2.53 2.68

Resistencia a la Tensión (MPa) 3400 2500 4400 3000

Módulo Elástico (GPa) 72 55 86 72

Resistencia a la ruptura (%) 4.5 4.5 5.2 4.3 Fuente: Página web de Saint Gobain Vetrotex de Brasil.http:// www.saint-gobain-vetrotex.com.br

4 El mat es una presentación especial de la fibra de vidrio en forma de fieltro, en la que los hilos cortados a

una longitud determinada son aglomerados entre sí mediante un ligante químico.

21

Page 22: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

1.4 La Fibra de Vidrio A. R.

1.4.1 Historia

Las fibras de vidrio AR (álcali-resistentes) presentan altas prestaciones para el

refuerzo de morteros de cemento, hormigones y, en general, piezas que puedan verse

sometidas al ataque de tipo alcalino.

La llegada de los aglomerantes hidráulicos5 marca el comienzo de una era de altas

prestaciones en las piezas para la construcción [15], siendo los cementos el material más

importante de esta categoría. Dichos cementos permiten el surgimiento de los hormigones.

El hormigón presenta muy buenas características ante la compresión, pero ofrece

muy escasa resistencia a la tracción, por lo que resulta inadecuado para piezas que tengan

que trabajar a flexión o tracción. Esta característica ha conducido a numerosas

investigaciones y desarrollos para mejorar las resistencias ante estos sometimientos,

intentando lograr dentro del mundo de los materiales compuestos la solución a esta

carencia. El desarrollo más conocido es el refuerzo del hormigón con barras de acero en las

zonas de tracción, dando un material compuesto llamado Hormigón Armado. Su

inconveniente es conducir a mayores dimensiones y pesos, así como a una menor rapidez

de construcción y puesta en obra, lo que, de forma directa, conduce a un encarecimiento de

las piezas por la utilización de abundante mano de obra y manipulación de las mismas.

Ante esta desventaja numerosos trabajos e investigaciones se pusieron en marcha y fruto de

ellas fueron los intentos de aligeramiento y reducción de espesores mediante la adición de

fibras de refuerzo.

Los primeros desarrollos se lograron con la utilización de fibras de asbesto. El

material resultante, llamado "asbestocemento", presentaba grandes ventajas de costo y

trabajabilidad.

5 Materiales que amasados con el agua, fraguan y endurecen tanto expuestos al aire como sumergidos en el agua.

22

Page 23: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

En búsqueda de un refuerzo que permitiera la consecución de un material

compuesto, con excelentes prestaciones, se han desarrollado numerosas experiencias con

otras fibras de refuerzo, tales como, las de origen orgánico (aramidas, nylon, rayon,

polipropileno), inorgánico ( vidrio, boro, carbono) y metálicas ( hierro, fundición dúctil,

acero, Ni, Ti, Al). De entre todas ellas la mejor relación costo-propiedades mecánicas la

ostentan las fibras de vidrio. Los primeros ensayos y experiencias para el refuerzo de los

cementos y sus morteros se realizaron con fibras de vidrio tipo "E", dada la alta resistencia

inherente de las mismas. Sin embargo, dichas tentativas fracasaron debido a que, este tipo

de fibra de vidrio, al ser incorporada al mortero, estaba sujeto al ataque químico de los

cristales alcalinos (álcalis) producidos en el proceso de hidratación del cemento, lo cual

producía un deterioro de la fibra (ver figura 1-5), afectando las propiedades mecánicas del

mortero reforzado, sin poderse remediar este problema [16].

En 1967 el Dr. A.J. Majundar, del Building Research Establishment (BRE) del

Reino Unido, empezó a investigar los vidrios que contenían circonio, logrando convertir en

fibra alguno de ellos y demostrando la resistencia que presentaban estas fibras ante el

ataque alcalino en un medio agresivo como el que suponía el refuerzo de los cementos

Pórtland. Tras 4 años de continuas investigaciones, el refuerzo para los cementos se logró y

la patente de esta investigación fue solicitada por el National Research Development

Corporation (NRDC).

Para la producción a escala comercial, el NRDC y BRE contactaron con la empresa

inglesa Pilkington Brothers (PCL), quien con su Compañía subsidiaria Fibreglass Limited

desarrolló la explotación, industrial y comercial del producto al que llamaron Fibras Cem-

FIL. En 1989 la actividad de la fibra de vidrio Álcali-Resistente Cem-FIL fue adquirida por

el grupo Saint Gobain por medio de su Delegación en España, Cristalería Española S.A., y

fabricada y comercializada por la empresa Vetrotex España S.A. que forma parte de este

Grupo.

23

Page 24: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Figura 1-5. Resistencia al ataque alcalino de distintos tipos de fibra de vidrio en cemento Pórtland. A la izquierda Vidrio E, luego de 8 días a 50°C (2.2 años naturales), al centro, Vidrio E + polímero acrílico

tras 8 días a 50°C, y a la derecha, Cem-FIL luego de 3 meses a 50°C (25 años naturales) [17.]

1.4.2 Fabricación

Como principal materia prima en la fabricación de un GRC6 (Glass Fibre

Reinforced Cement), se emplean las fibras de vidrio Álcali-Resistente, mediante las cuales

el GRC logra las características que se van a detallar en este estudio. Los principales

componentes de este vidrio AR, se muestran en la Tabla 1-5.

Tabla 1-5. Componentes del Vidrio Álcali-Resistente.

Componente Fórmula Química Porcentaje

Sílice SiO2 71

Óxido de Circonio ZrO2 16

Óxido de Sodio Na2O 11

Alúmina Al2O 1

Óxido de Litio Li2O 1

Fuente: Adaptado de El GRC, P. Comino, 2003.

6 Es el nombre comercial con que se conoce a los hormigones reforzados con fibras de vidrio álcali-resistentes.

24

Page 25: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

En el vidrio Álcali-Resistente el componente “estrella” que otorga a la fibra su

poder de Álcali-Resistencia es el Zirconio (Zr).

El proceso de fabricación de la fibra de vidrio AR-Cem-FIL sigue las siguientes etapas:

• Composición - Fusión:

Las materias primas, finamente molidas, se dosifican con precisión y se mezclan

de forma homogénea.

A continuación la mezcla, llamada vitrificable, es introducida en un horno de

fusión directa y calentada a una temperatura determinada. Las temperaturas de fusión

rondan los 1550 °C y éstas dependerán de los elementos constituyentes del vidrio

(fundentes, formadores de red, etc.).

• Fibrado:

El vidrio en estado fundido, al salir del horno, es conducido por unos canales

(Feeders) alimentando las hileras de fabricación de fibras. Estas hileras son elementos

fabricados con aleaciones de platino, de forma prismática y con la base trabajada con un

número determinado de agujeros de dimensiones controladas.

El vidrio fundido se mantiene en la hilera a unos 1250 °C, temperatura que

permite su colada por gravedad, dando origen a barras de vidrio de algunas décimas de

milímetro de diámetro.

A la salida de la hilera, el vidrio se estira a gran velocidad, entre 10 y 60 m/s

según el micraje de fibra a fabricar (diámetro a obtener).

Para la obtención del vidrio como tal y tras el estado fundido, tal y como se

encuentra en las hileras, se procede a un rápido enfriamiento del vidrio fibrado. El

enfriamiento se realiza en una primera fase por radiación y en una segunda por

25

Page 26: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

pulverización de agua fría. De esta forma se logra la no orientación de las partículas en el

espacio y por tanto la formación de ese sólido amorfo que es el vidrio, en este caso Alcali-

Resistente.

El vidrio obtenido tras este proceso tiene forma de filamento de varias micras de

diámetro. Para el vidrio AR los diámetros normales de filamentos oscilan entre las 14 y las

20µ (micras) según el producto y la aplicación a la que se dirija.

• Ensimado:

El conjunto de filamentos desnudos, tal y como salen de la hilera, son

inutilizables directamente, ya que no hay cohesión entre ellos, no resisten la abrasión,

carecen de flexibilidad y trabajabilidad.

Para corregir estos defectos y dar nuevas propiedades a la fibra en función de su

aplicación, así como para poder transformarla y trabajarla en su fabricación y presentación

comercial, es necesario revestir los filamentos con una fina película (ensimaje) que está

constituida en general por una dispersión acuosa de diversos compuestos químicos que

presentan una función bien definida.

El ensimaje se deposita sobre los filamentos a la salida de la hilera cuando la

temperatura del vidrio está todavía comprendida entre los 60 y 120°C, según las

condiciones de fibrado.

La cantidad de ensimaje que se deposita sobre el vidrio es relativamente baja

(entre el 0.5 y el 5%).

Inmediatamente después del ensimaje se procede a la unión de los filamentos para

formar los hilos o conjunto de filamentos dispuestos en formato comercial. La unión de los

filamentos se realiza mediante unos "peines" con gargantas especiales en los cuales se

produce la unión facilitada por el ensimaje.

26

Page 27: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Es este proceso el que otorgará al filamento y al hilo las características especiales

que:

a. Le hará apto ante una aplicación específica.

b. Dará cohesión entre filamentos.

c. Dará resistencia frente a la abrasión que el filamento pueda sufrir consigo mismo,

con otros filamentos o con otras superficies.

d. Elimina cargas electrostáticas en los filamentos o unión de los mismos.

e. Facilita la trabajabilidad del filamento y su transformación.

f. Rigidiza en mayor o menor medida la unión de los filamentos ó hilos.

En la actualidad existe una familia de ensimajes que unidos a la fibra de vidrio

Álcali-Resistente Cem-FIL, le confieren características específicas para la aplicación

determinada a la que vaya destinada. De esta forma existen ensimajes especiales para:

a. Resistir la abrasión que supone el amasado de la fibra en un medio extremadamente

agresivo como es el de la mezcla con arena, cemento, agua y aditivos químicos.

b. Facilitar su corte y proyección en una pistola especialmente diseñada para estos

procesos de transformación de la fibra.

c. Facilitar la dispersión de los filamentos, esto es, facilitar la desunión entre

filamentos. Este ensimaje fue expresamente desarrollado para la sustitución del

amianto.

• Bobinado:

Los hilos obtenidos de la unión de los filamentos son bobinados para dar lugar a

productos finales (roving directo) o productos intermedios (ovillos), que se bobinan según

diferentes formas y geometrías.

Será en el proceso de bobinado donde se controlará la velocidad de rotación de la

bobinadora y por tanto la velocidad de estirado de la fibra de vidrio.

27

Page 28: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

• Secado:

Los productos procedentes del bobinado se pasan por diferentes dispositivos de

secado con objeto de eliminar el exceso de agua en el que había disuelto el ensimaje y

otorgar al ensimaje un tratamiento térmico necesario para consolidar sus propiedades frente

a las aplicaciones a las que será sometido.

• Transformación final:

En la transformación final se realizarán las operaciones necesarias para conferir al

hilo el formato adecuado para la correcta utilización por parte de los Fabricantes de GRC.

Destacan entre las presentaciones comerciales actuales del vidrio Á1ca1i-Resistente Cem-

FIL el roving ensamblado y los hilos cortados, que serán los que se utilizarán en esta

investigación:

Roving Ensamblado:

El roving ensamblado se obtiene de la unión de un número determinado de hilos,

procedentes de ovillos, formando una "mecha". Esta mecha es bobinada en forma de

Roving o gran carrete de dimensiones, peso y densidad controladas.

La medida fisica de un hilo, y por extensión de una mecha, viene reflejada por el

llamado "Título" con unidades denominadas TEX. Así TEX = gr/km que presenta un hilo o

una mecha.

El título de una mecha dependerá pues del número de hilos que la compongan y a

su vez el título de un hilo dependerá del número y del diámetro de los filamentos que lo

componen. Para los Roving Ensamblados Cem-FIL la unidad TEX habitual de la mecha es

de 2450 TEX, estando formada, en algunos productos, y a modo de ejemplo, por 32 hilos

de 76,5 TEX/hilo o por 64 hilos de 38 TEX/hilo. Pueden realizarse otras configuraciones

que dependerán de las prestaciones exigidas a las fibras en el material compuesto.

28

Page 29: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Los diferentes rovings tendrán todos en común el mismo vidrio Alcali- Resistente

Cem-FIL y como elemento diferenciador, entre uno y otro, el ensimaje.

Los rovings van destinados a aplicaciones de proyección simultánea (ya sea

manual o automatizada) y a procesos de refuerzo con hilos continuos y/o cortados.

Hilos Cortados:

Los hilos procedentes de los ovillos son, en este caso, cortados en longitudes

determinadas, según lo exija la aplicación a la que vayan destinados. La medida física del

hilo es el TEX.

Los hilos cortados van destinados a los procesos de amasado y aplicación por

medio del colado-vibrado tradicional o por el de proyección de la mezcla realizada.

Dentro de la gama de los hilos cortados tenemos dos grandes e importantes

familias:

* Los Hilos Cortados Íntegros: Hilos que son capaces de aguantar grandes

abrasiones durante el amasado con aglomerantes hidráulicos, arenas, gravas, agua y

aditivos químicos, manteniéndose en forma íntegra (con todos los filamentos unidos)

durante y tras el amasado realizado.

* Los Hilos Cortados Dispersables en Agua: Hilos que son capaces de dispersarse

o, lo que es lo mismo, dividirse en los filamentos individuales que lo forman, durante el

proceso de amasado o en contacto con agua o disolución acuosa.

Un esquema del proceso de fabricación de la fibra de vidrio junto a sus

productos finales puede ser apreciado en la figura 1-6.

29

Page 30: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Figura 1-6. Proceso de Fabricación de la Fibra de Vidrio, y sus productos Finales [18].

30

Page 31: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

1.5 Fabricación de un GRC

1.5.1 Elementos Constituyentes

Los componentes más usuales de un GRC son:

• Cemento. • Arena. • Agua. • Fibra de Vidrio A. R. • Aditivos.

Entre los aditivos destacan los plastificantes, fluidificantes, superplastificantes,

pigmentos, impermeabilizantes, hidrófugos, polímeros, elementos puzolánicos especiales,

etc. Estos aditivos serán agregados, o no, dependiendo de las propiedades y diseño a

otorgar al GRC en cada obra y en base a los requerimientos exigidos en las prescripciones

correspondientes.

Bajo la descripción general de GRC hay numerosas posibilidades de variar las

mezclas dependiendo del uso del producto final o del método de fabricación elegido para

producir una familia de compuestos. La estandarización está más arraigada en las mezclas

empleadas sobre GRC para aplicaciones arquitectónicas y en las mezclas usadas en el

proceso de fabricación por proyección simultánea.

Por su parte, la cantidad de fibra de vidrio dependerá:

a. Del proceso de fabricación del GRC: Dependiendo del proceso de fabricación del

GRC se tendrán variaciones en la cantidad de fibra añadida. Esto es, si el proceso es

el de proyección simultánea (uso de la fibra en forma de roving) la cantidad de fibra

de vidrio Álcali-Resistente Cem-FIL será del 5% en peso del total de la mezcla

realizada para la fabricación del GRC. Por el contrario, si en el proceso de

fabricación se ha de incorporar la fibra de vidrio durante el amasado del mortero

(premezcla o premix) la proporción será del 3% del total de la mezcla realizada.

31

Page 32: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

b. De la Aplicación: Las fibras de vidrio AR pueden ser incorporadas entre el 0.1 % y

el 5% en peso. Cuando la proporción es baja, las fibras AR minimizan la

segregación de materiales y evitan las microfisuraciones de las piezas fabricadas

con cemento, aumentando la dureza y la resistencia a los choques. Cuando las

proporciones se presentan entre el 1 % y el 2%, las fibras AR son ideales para

mezclas armadas, reduciendo la densidad de productos de hormigón. Cuando la

proporción está entre el 2% y el 3.5% las fibras AR sirven de refuerzo primario en

productos realizados por moldeo y vibración de bajo coste. Cuando la proporción es

de un 5% se utilizan las fibras AR para las aplicaciones que exigen una gran

resistencia, tales como los paneles de fachada arquitectónicos.

c. La Resistencia a otorgar a GRC: La cantidad de vidrio Álcali-Resistente en forma

de fibras es muy importante desde el punto de vista de la resistencia que presenta el

elemento compuesto GRC, pero también es importante tener en cuenta la longitud

de las fibras para la consecución de unos adecuados niveles de resistencia.

Otro parámetro a controlar durante el proceso de fabricación del GRC, es la

longitud de la fibra7, la cual dependerá en gran medida del proceso de fabricación, ya que,

por ejemplo, en procesos de premezcla una fibra muy larga puede dar problemas de

amasado y de destrucción de la fibra por abrasión en su superficie. Para estos procesos las

longitudes ideales (aquéllas con las que se tiene la mayor resistencia con una perfecta

trabajabilidad) oscilan entre los 6 y 24 mm, presentando sus mayores prestaciones a los 12

mm. Para procesos de proyección simultánea (utilización de roving) las longitudes ideales

oscilan entre los 30 y los 45 mm [19].

7 Ya se ha considerado la longitud crítica de la fibra, descrita en el punto 1.2.1 de esta Memoria, y que en el caso de este estudio es cercana a los 2 mm.

32

Page 33: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

1.5.2 Procesos de Fabricación de un GRC.

Dentro de este apartado se presentan los diferentes procesos actuales de

fabricación de un GRC. Hay que tener en cuenta que procesos distintos y/o híbridos a los

presentados pueden utilizarse para la fabricación de piezas específicas.

1.5.2.1 Procesos de Proyección Simultánea

La proyección simultánea es un proceso de fabricación mediante el cual se obtienen

piezas de GRC reforzadas de forma bidireccional (en el plano). La fabricación consistirá en

la proyección de capas que posteriormente se irán compactando entre sí hasta formar el

espesor total de la lámina o panel de GRC (normalmente entre 10 y 15 mm).

Dentro de este proceso de fabricación del GRC se incluye [20]:

a. Proyección Simultánea Manual: Un operario es el encargado de proyectar las capas,

mediante una pistola de proyección (ver figura 1-7). Se utiliza para la fabricación

de paneles de cerramiento de gran tamaño o de otro tipo de elementos de

construcción que requieren una elevada resistencia.

Figura 1-7. Proyección Simultánea Manual de GRC.

b. Proyección Simultánea Automática: La pistola de proyección realiza un

movimiento de vaivén transversal sobre unos moldes que van pasando por debajo

(ver figura 1-8). Este método se emplea con productos planos como los encofrados

33

Page 34: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

perdido de puentes, o para componentes que pueden posformarse con una técnica de

molde plegado, tales como conductos de cables.

Figura 1-8. Proyección simultánea automática de GRC.

c. Proyección Simultánea Robotizada: Las máquinas son controladas por computador,

basándose en el principio de proyección concéntrica8, siendo capaces de proyectar a

intensidades de hasta 35 kg/min. Se pueden memorizar los perfiles para repetirlos

con exactitud. El computador controla la velocidad de la cinta transportadora, la

velocidad de bombeo de mortero y los dispositivos de control de circulación del

agua.

1.5.2.2 Procesos de Premezcla

En el proceso de premezcla, el refuerzo de la fibra de vidrio actúa de forma

tridimensional, pues las fibras se orientan en las tres direcciones.

Todos los procesos de premezcla tienen en común el acto del mezclado, que

normalmente se efectúa en una hormigonera o en un amasador simple de paletas. Las fibras

de vidrio Cem-FIL, a diferencia de algunas otras de refuerzo, presentan una perfecta

incorporación y se pueden mezclar hasta un % elevado dentro de un mortero sin que se

produzcan apelotonamientos o problemas de homogeneización. 8 Consiste en proporcionar tanto hormigón como hilo de vidrio cortado a partir de un único punto de salida. Con esto se logra reducir las pérdidas de hilo de vidrio.

34

Page 35: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

El proceso de premezcla consta, normalmente, de dos etapas. En la primera se

mezclan y amasan los componentes del mortero y se adicionan las de vidrio, y en la

segunda se aplica la mezcla al molde (o en su caso a la realización de la obra in-situ, como

por ejemplo, en la realización de revocos, soleras, etc.).

Por lo general, las resistencias obtenidas con los procesos de premezcla son

inferiores a las obtenidas por proceso de Proyección Simultánea. Por otra parte, dada la

extremada simplicidad, la fácil trabajabilidad y la sencilla puesta en obra, el proceso de

colado-vibrado se convierte en la aplicación más rápida y sencilla de realización de todas

las de fabricación de piezas en GRC. Dentro de este proceso de fabricación del GRC se

destaca [21]:

a. Proceso de Colado-Vibrado: Es el proceso más difundido de aplicación de

premezcla. Las fases de realización de un colado vibrado son: Realización de la

premezcla, colado en un molde, vibrado, fraguado, desmoldeo y curado. Este

proceso se emplea para la fabricación de gran número de piezas tanto ornamentales

como arquitectónicas (ver figura 1-9). Dentro de este proceso se destacan dos

variantes:

• Colado-Vibrado en Molde Abierto.

• Colado-Vibrado en Molde y Contramolde.

Figura 1-9. Colado-Vibrado de Premezcla.

35

Page 36: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

b. Proyección de Premezcla: Esta aplicación ha tenido gran aceptación en los últimos

años pues el nivel de resistencia que las piezas de GRC adquieren con él está entre

las grandes resistencias del GRC procedente de Proyección Simultánea y las de un

GRC procedente del Colado-Vibrado (ver figura 1-10).

Figura 1-10. Premezcla proyectada.

1.5 Características Mecánicas, Físicas y Químicas de un GRC

En la Tabla 1-6, que se muestra a continuación, se aprecian los niveles de

resistencia adquiridos por un GRC a los 28 días, fabricado tanto por el método de

proyección como por el de premezcla, además se compara con un mortero que no contiene

fibra de vidrio. Todos los valores corresponden a placas de espesor de 10 mm.

36

Page 37: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Tabla 1-6. Resistencias Mecánicas a los 28 días de un GRC.

Propiedades Proyección Premezcla Mortero Común

Fibra Cem-FIL (% en peso) 5 3 0

Flexión Módulo de Rotura (MPa) 20 – 30 10 – 14 5 – 12

Límite Elástico (MPa) 7 – 11 5 – 8 3 – 6

Tracción

Módulo de Rotura (MPa) 8 – 11 4 – 7 3 –5

Límite Elástico (MPa) 5 – 7 4 – 6 3 – 5

Resistencia a la Compresión (MPa) 50 – 80 40 – 60 20 – 50

Resistencia al Choque (Kj/m2) 10 – 25 10 – 15 5 – 10

Módulo de Elasticidad (GPa) 10 – 20 10 – 20 9 – 15

Deformación a la Rotura (%) 0.6 – 1.2 0.1 – 0.2 0.1 – 0.2

Densidad del Material (g/cm3) 1.9 – 2.1 1.8 – 2.0 1.7 – 2.1

Fuente: P. Comino, El GRC, 2003.

Tanto la resistencia como la durabilidad del GRC pueden verse mejoradas

notablemente gracias a la adición de un tipo de metacaolín específico, y también con la

adición de polímeros acrílicos. Los datos expuestos se aplican a formulaciones de GRC con

una relación arena/cemento entre el 0.5 y 1.

Las propiedades físicas y químicas del GRC se muestran en la Tabla 1-7.

37

Page 38: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Tabla 1-7. Propiedades Física y Químicas típicas de un GRC.

Propiedad Valor

Pesos Aproximados

Lámina simple 8 mm de espesor (kg/m2) 16

Lámina simple 12 mm de espesor (kg/m2) 24

Panel Sándwich9 (kg/m2) 44

Retracción irreversible (%) 0.05

Retracción final (%) 0.2

Coeficiente de Dilatación Térmica (mm/°C) 10 – 20 x 10-6

Coeficiente de Conductividad Térmica (W/m °C) 0.5 – 1

Resistencia Química Buena

Resistencia a los Sulfatos Se usan cementos especiales

Ambiente Marino No afecta propiedades mecánicas

Hielo – Deshielo Ningún cambio

Luz ultravioleta No lo degrada

Acústica – Reducción de dB

Lámina de GRC de 10 mm de espesor (dB) 30

Lámina de GRC de 20 mm de espesor (dB) 35

Sándwich de 10 cm (dB) 47

Aislamiento Térmico

Lámina simple 8 mm de espesor (W/m °C) 5.3

Lámina simple 12 mm de espesor (W/m °C) 5.2

Panel Sándwich (W/m °C) 0.4

Fuente: P. Comino, El GRC, 2003.

9 El panel sándwich en este caso se compone de una lámina de GRC de 10 mm de espesor, una capa de poliestireno expandido de 110 mm y otra capa de GRC de 10 mm de espesor.

38

Page 39: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

1.7 Ventajas competitivas del GRC

La mayor de las ventajas que presenta el GRC es su reducido peso (del orden de

entre 1/3 y 1/10 del peso de elementos equivalentes en hormigón convencional) guardando

las mismas o superiores prestaciones.

Esta ventaja de ligereza va a repercutir, positivamente, sobre diferentes factores

de diseño e instalación de las piezas y/o estructuras que soporten el GRC y de las mismas

instalaciones (puesta en obra) de las piezas realizadas en este material.

Una pequeña lista de factores que pueden verse modificados frente a la utilización

del GRC, es la siguiente:

a. Transporte de las piezas a obra. Por su característica de ligereza se pueden

transportar del orden de 3 a 5 veces más piezas de GRC que de hormigón

convencional, lo cual abarata una partida importante como es la del transporte de

los elementos prefabricados a obra.

b. Estructura y cimentaciones del edificio que sustentan las piezas del GRC. Se ha de

tener en cuenta el ligero peso que presentan las piezas de GRC a la hora del diseño

de la estructura y sus cimentaciones, lográndose grandes ahorros de material. El

poco peso lo hace ideal para su uso en edificios de gran altura.

c. Maquinaria de instalación y puesta en obra. Ya que las piezas de GRC son poco

pesadas, la maquinaria necesaria para su instalación en obra es mucho más ligera

(de menor capacidad).

d. Cuadrillas de montaje. Debido a la ligereza y características del GRC el montaje se

simplifica, reduciéndose el número total de montadores necesarios.

e. Anclajes y herrajes de unión a los entramados de la estructura son mucho más

ligeros, lo cual repercute sobre el ahorro de materiales.

39

Page 40: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

f. El montaje es mucho más rápido. Debido al poco peso de las piezas de GRC las

grúas emplean menos tiempo de montaje y por tanto de construcción. El reducir el

tiempo de construcción, permitirá anticipar la entrada en el edificio de otros oficios

y un ahorro en los costos de financiación.

Todos estos factores de ahorro, estudiados en su conjunto, suponen una

grandísima ventaja competitiva del GRC y lo convierten en líder frente a otros materiales

alternativos.

1.8 Cualidades del GRC

Las fibras de vidrio tienen excelentes propiedades, que hacen de ellas el refuerzo

ideal para los materiales compuestos de matriz inorgánica. AR es la fibra idónea, por

resistencia alcalina, por su alto rendimiento y por sus altas prestaciones, para el refuerzo de

los composites (materiales compuestos) de cemento.

Las principales cualidades que las fibras AR confieren al GRC son:

a. Durabilidad, ya que la fibra utilizada es inmune a la acción de los álcalis del

cemento.

b. Gran resistencia al impacto, debido a la absorción de energía por los haces de fibra.

c. Impermeabilidad, aún en pequeños espesores.

d. Resistencia a los agentes atmosféricos.

e. El GRC no se corroe ni se deteriora en condiciones atmosféricas.

f. Incombustibilidad, derivada de las características de sus componentes.

g. Aptitud de reproducción de detalles de superficie (ideal para imitar piedra o

pizarra).

h. Ligero, lo que reduce los costos de transporte, puesta en obra e instalación.

i. Aptitud a ser moldeado en formas complejas. (Especialmente útil para la

renovación y restauración de inmuebles).

j. Gran resistencia contra la propagación de fisuras.

40

Page 41: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

k. Reduce la carga en los edificios, lo que conduce a una reducción de los costes de

estructura y cimentación.

l. Reduce los cuidados de mantenimiento.

m. Excelente resistencia frente al vandalismo.

n. Enorme catálogo de texturas y acabados de superficie realizables.

o. Ilimitadas posibilidades de diseños arquitectónicos.

1.9 Principales Aplicaciones del GRC

Todas las características anteriormente citadas hacen del GRC un material

ampliamente utilizado10. Sus aplicaciones presentan un campo muy extenso en la

Arquitectura e Ingeniería. A continuación se detallan las aplicaciones más usuales del

GRC:

a. En la Industria de la Construcción:

• Paneles de Fachada y cerramientos en general

• Sistemas modulares de vivienda

• Elementos para cubiertas

• Decoración de interiores

• Piscinas

• Pavimentos

• Revestimiento de Túneles

b. En la protección contra el fuego:

• Puertas y pantallas antifuego

• Conductos antifuego

10 Incluso en Chile ya hay algunas empresas dedicadas a la producción de algunos artículos de GRC, tales como canaletas y áreas verdes transitables.

41

Page 42: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

c. En el aislamiento térmico:

• Paneles para aislamiento térmico de edificios

• Cámaras Frigoríficas

d. En el control del ruido:

• Barreras antirruido en autopistas, carreteras y ferrocarril

• Protección de maquinarias ruidosas.

e. En la industria marítima:

• Pontones, canales y boyas

• Tanques para piscifactorías

f. En la agricultura:

• Comederos para animales

• Elementos de drenajes

• Suelo de granjas

• Bebederos

g. En el diseño:

• Mobiliario urbano de todas clases

• Escudos y adornos

• Moldes

• Elementos decorativos

• Imitaciones a rocas en parques artificiales.

En la figura 1-11 se aprecian algunas aplicaciones del GRC.

42

Page 43: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Figura 1-11. Aplicaciones del GRC.

43

Page 44: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Capítulo 2

PLANTEAMIENTO DE LA INVESTIGACIÓN Y PROGRAMA DE ENSAYOS

2.1 Introducción

En la actualidad, para el refuerzo de fibras de los hormigones, se utilizan fibras

metálicas, plásticas y en algunos casos vegetales. Las fibras de vidrio se utilizan,

generalmente, mezcladas en pastas de cemento o morteros de granulometría muy fina, en el

GRC (Glass Reinforced Concrete), pero no en la aplicación con hormigones compuestos

por áridos mayores a 5 mm.

En esta memoria se estudia el comportamiento mecánico de los hormigones

reforzados con fibra de vidrio, caracterizando su resistencia a la compresión y a la

flexotracción como función del porcentaje de fibra de vidrio álcali-resistente adicionado.

Además se estudian los cambios en la trabajabilidad en el hormigón dada la incorporación

de la fibra de vidrio.

Utilizando un árido de tamaño máximo de 8 mm se establece un plan de ensayos a

realizar en los laboratorios de la sección de Hormigones del Instituto de Investigación y

Ensaye de Materiales (IDIEM) de la Universidad de Chile.

2.2 Objetivos

2.2.1 Objetivo General

El objetivo general de esta memoria es determinar cómo varían las propiedades

mecánicas del hormigón al adicionarle distintos porcentajes de fibra de vidrio.

44

Page 45: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

2.2.2 Objetivos Específicos

Los objetivos específicos a conseguir con esta memoria se pueden clasificar en

dos grupos. El primero referido al hormigón en estado fresco, y el segundo referido al

hormigón ya endurecido.

Para el Hormigón Reforzado con fibra de vidrio en estado fresco se quiere:

• Determinar la trabajabilidad.

Para el hormigón reforzado con fibra de vidrio ya endurecido se quiere:

• Determinar la resistencia a la compresión.

• Determinar la resistencia a la flexotracción.

2.2 Variable a Estudiar en el Desarrollo Experimental

La variable a estudiar será el porcentaje de fibra de vidrio AR adicionada al

hormigón, y su incidencia en la trabajabilidad, resistencia a la compresión y resistencia a la

flexotracción de éste..

Dado lo anterior, se establecen dosificaciones óptimas para el hormigón reforzado

con fibra de vidrio.

2.3 Programa de Ensayos

Para cuantificar el efecto de la incorporación de fibras de vidrio AR al hormigón, se

efectuarán ensayos comparativos entre un “hormigón patrón” (sin fibras) y hormigones con

distinto porcentaje de fibra adicionado. La fibra usada será Cem-FIL Anti-Crack HD, de la

casa Vetrotex, en un largo de 12 mm. Éste es el largo estándar, en que este tipo de fibra de

vidrio AR, especialmente diseñada para hormigones, es confeccionada. Dicho largo

condicionará el tamaño máximo de árido grueso, que para un refuerzo eficiente no debe

45

Page 46: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

sobrepasar los 2/3 de longitud de la fibra [22]. Dado lo anterior el tamaño máximo del árido

grueso, para esta investigación, es de 8 mm.

Se utilizará un hormigón de una calidad nominal, medida como resistencia a la

compresión, de 250 kgf/cm2, a los 28 días. Se ha considerado este tipo de hormigón, ya que

se piensa que aplicaciones del hormigón reforzado con fibra de vidrio pueden ser losas,

radieres o algún otro que no requiera de mayores resistencias.

Los porcentajes adicionados de fibra de vidrio estarán comprendidos entre el 0,05%

y el 0,4% en peso del hormigón duplicando el porcentaje de fibra adicionada en cada

ensayo. Dado lo anterior se tendrán 5 medidas a ensayar tal como se indica en la Tabla 2-1.

Dichas dosificaciones fueron obtenidas luego de realizar una serie de un ensayos de

prueba11, tomando como límite inferior la cantidad mínima de fibra a adicionar

recomendada por el fabricante [23] equivalente a 0,03% en peso del hormigón, y como

límite superior el 4% señalado en la literatura [24].

Tabla 2-1. Tipos de Hormigones a Ensayar.

Identificador % de Fibra de Vidrio AR adicionado

H0 0,00

H1 0,05

H2 0,10

H3 0,20

H4 0,40

Fuente propia.

Los ensayos a realizar son los de trabajabilidad, resistencia a la compresión y

resistencia a la flexotracción. El primer ensayo se realizará con el hormigón en estado

fresco, para cada uno de los tipos de hormigones. Los dos últimos ensayos se realizarán con 11 Los resultados de dichos ensayos pueden ser consultados en la sección Anexos, del presente trabajo.

46

Page 47: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

el hormigón ya endurecido, en dos etapas: la primera cuando el hormigón cuenta con 7 días

de edad y la segunda cuando el hormigón cuenta con 28 días. Estos ensayos también

comprenden los 5 tipos de hormigones. Un resumen de los ensayos a realizar puede ser

apreciado en la Tabla 2-2.

Tabla 2-2. Resumen de los Ensayos a Realizar.

Ensayo Estado del

Hormigón

Tipo de Hormigón Edad del Hormigón

Trabajabilidad Fresco H0, H1, H2, H3, H4 Menos de media hora

7 días Resistencia a la

Compresión

Endurecido H0, H1, H2, H3, H4

28 días

7 días Resistencia a la

Flexotracción

Endurecido H0, H1, H2, H3, H4

28 días

Fuente propia.

2.4 Descripción de los Ensayos

2.4.1 Trabajabilidad [25]

Durante la etapa en que el hormigón se mantiene en estado fresco es de gran

importancia poder otorgarle una docilidad adecuada, para el uso que se desea darle. Debido

a que las fibras reducen la trabajabilidad del hormigón fresco, se hace necesario determinar

en qué proporción lo hacen.

Para cuantificar la trabajabilidad del hormigón se medirá el asentamiento de cono.

Este ensayo fue ideado por el investigador norteamericano Abrams. Su ejecución está

regulada por la NCh 1019 y consiste básicamente en rellenar un molde metálico

troncocónico de dimensiones normalizadas, en tres capas apisonadas con 25 golpes de

47

Page 48: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

varilla-pisón y, luego de retirar el molde, medir el asentamiento que experimenta la masa

de hormigón colocada en su interior. Esta medición se complementa con la observación de

la forma de derrumbamiento del cono de hormigón, mediante golpes laterales con la

varilla-pisón. De esta manera, la medida del asentamiento permite determinar,

principalmente, la fluidez, y la forma de derrumbamiento permite apreciar la consistencia

del hormigón.

donde: 2.4.3 Compresión

La resistencia a la compresión es una de las propiedades más importantes del

hormigón, siendo también el factor que se emplea frecuentemente para definir su calidad.

El procedimiento de ensayo para la determinación de la resistencia a la

compresión del hormigón está establecido en la norma chilena NCh 1037 – 77 [26].

El valor de la resistencia obtenido en el ensayo no es absoluto, puesto que

depende de las condiciones en que ha sido realizado. Entre estas condiciones, las de mayor

influencia son analizadas a continuación:

a. Forma y dimensiones de la probeta:

• Las probetas empleadas normalmente para determinar la resistencia a la

compresión son de forma cúbica o cilíndrica. De las primeras, se emplean de

preferencia las de 15 y 20 cm de arista, y para las segundas las de 15 cm de

diámetro y 30 cm de altura.

b. Condiciones de ejecución del ensayo:

• Velocidad de aplicación de la carga de ensayo.

• Estado de las superficies de aplicación de la carga.

• Centrado de la carga de ensayo.

48

Page 49: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

c. Características del hormigón:

• Tipo de cemento.

• Relación agua / cemento.

• Edad del hormigón.

d. Condiciones ambientales:

• Temperatura.

• Humedad.

El procedimiento de ensayo, descrito en la norma chilena NCh 1037, se resume a

continuación:

a. Medición de las Probetas.

• Probetas cúbicas: Se coloca el cubo con la cara de llenado verticalmente. Se

miden los anchos de las 4 caras laterales del cubo aproximadamente a media

altura, y las alturas de las caras laterales, aproximando a 1mm. Se debe

determinar la masa del cubo, aproximando a 50 gr.

• Probetas cilíndricas: Se miden dos diámetros perpendiculares entre sí

aproximadamente a media altura, y la altura de la probeta en 2 generatrices

opuestas antes de refrentar, aproximando a 1 mm. Se determina la masa del

cilindro antes de refrentar, aproximando a 50 gr.

b. Ensayo.

• Se debe limpiar las superficies de contacto de las placas de carga y de la

probeta, colocando la probeta en la máquina de ensayo alineada y centrada. Las

probetas cúbicas se colocan con la cara de llenado verticalmente y las

cilíndricas asentadas en una de sus caras planas refrentadas. Al acercar la placa

superior de la máquina de ensayo se debe asentarla sobre la probeta de modo de

49

Page 50: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

obtener un apoyo lo más uniforme posible. La carga debe aplicarse en forma

continua y sin choques a velocidad uniforme, de forma tal que la rotura se

alcance en un tiempo igual o superior a 100 segundos y que la velocidad de

aplicación de carga no sea superior a 3,5 kgf/cm2/seg. Finalmente se registra la

carga máxima expresada en kgf.

c. Resultados.

• Se calcula la resistencia a la compresión del hormigón mediante la siguiente

fórmula:

CPRS

= (2.1)

donde: S = Superficie de carga

P = Carga Máxima

2.4.4 Flexotracción

Se ha considerado de interés el caracterizar los hormigones del presente estudio en

cuanto a su resistencia a la flexotracción, ello principalmente, debido a que una posible

aplicación de estos hormigones sería la de pavimentos industriales, y en ese caso un

aumento de la resistencia a flexotracción por efecto de las fibras sería muy beneficioso.

El procedimiento de ensayo se basa en la norma chilena NCh 1038 [27] y consiste

en someter a una vigueta de hormigón simplemente apoyada, a una solicitación de flexión

mediante la acción de dos cargas concentradas en los límites del tercio central de la luz de

ensayo.

50

Page 51: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Si la fractura de la probeta de produce en el tercio central de la luz de ensayo, se

calcula la resistencia a la tracción por flexión como la tensión de rotura según la fórmula

siguiente:

2

**

P LRb h

= (2.2)

donde: R = Tensión de rotura, N/mm2 (kgf/cm2);

P = Carga máxima aplicada, N (kgf);

L = Luz de ensayo de la probeta, mm (cm)

I = Ancho promedio de la probeta en la sección de rotura, mm (cm);

h = Altura promedio de la probeta en la sección de rotura, mm (cm).

Si la fractura se produce fuera del tercio central de la luz de la probeta, en la zona

comprendida entre la línea de aplicación de carga y una distancia de 0,05 L de esa línea, se

calcula la resistencia a la tracción por flexión como la tensión de rotura, según la fórmula

siguiente:

2

3* **P aR

b h= (2.3)

en que:

a = Distancia entre la sección de rotura y el apoyo más próximo, medida a lo

largo de la línea central de la superficie inferior de la probeta, cm.

51

Page 52: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Capítulo 3

DESARROLLO DE LA ETAPA EXPERIMENTAL

3.1 Materiales

3.1.1 Áridos

Los áridos empleados son una arena y una gravilla de tamaño máximo 8 mm, cuya

procedencia es la planta de áridos PÉTREOS S.A. Las propiedades de los áridos se

muestran en la Tabla 3-1. La granulometría de la arena y la gravilla se indican en la Tabla

3-2.

Para determinar las propiedades de los áridos, tales como densidad aparente

compactada, ensidad neta y absorción, tanto de la arena como de la gravilla, se siguieron

los procedimientos establecidos por las normas chilenas NCh 1116 [28], NCh 1117 [29] y

NCh 1239 [30], todas ellas del año 1977, referidas a dichos temas.

Tabla 3-1. Propiedades de los Áridos.

Áridos Propiedad Unidad

Arena Gravilla

Densidad Aparente

Compactada

[g/cm3] 1,74 1,68

Densidad Neta [g/cm3] 2,60 2,61

Absorción [%] 2,77 1,87

Fuente propia.

Para determinar la granulometría de los áridos se procedió a tamizar los áridos, de

acuerdo con la norma chilena NCh 165 Of. 177 [31].

52

Page 53: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Tabla 3-2. Granulometría de Áridos.

Porcentaje que pasa en peso Tamices Empleados ASTM

Arena Gravilla

812 mm 100 100

N° 4 91 72

N° 8 84 51

N° 16 73 30

N° 30 58 20

N° 50 21 7

N° 100 6 3

M. F. 2,67 4,17

Fuente propia.

3.1.1.1 Determinación de Impurezas en las Arenas para Hormigones

La norma chilena NCh 163 Of.79 [32], establece como requisito general para las

arenas que serán utilizadas en la confección de morteros y hormigones, no presentar

impurezas orgánicas.

Siguiendo la norma chilena NCh 166 Of.52 [33] se procedió a determinar

calorimétricamente la presencia de impurezas orgánicas.

Al someter la arena a la acción del hidróxido de sodio al 3% durante un período de

24 horas se obtuvo una disolución de color más débil al patrón (ver figura 3-1). Esto indica

un contenido despreciable por lo que resulta una arena recomendable para ser utilizada en

la fabricación de hormigones y morteros.

La medición de impurezas orgánicas fue realizada en el laboratorio de Materiales

Poliméricos del IDIEM de la Universidad de Chile. 12 Esta apertura de tamiz no corresponde a la serie ASTM, sino que a la serie complementaria indicada en NCh 165 Of77.

53

Page 54: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Figura 3-1. Determinación calorimétrica de impurezas.

3.1.2 Cemento

El cemento utilizado es fabricado por CEMENTO MELON S.A. y su

denominación comercial es cemento Melón especial, que corresponde a un cemento tipo

Pórtland pozolánico de grado corriente.

Cabe señalar que este cemento, cumple con todas las especificaciones establecidas

por la norma chilena NCh 148 referente a cementos [34], por lo cual ha recibido

certificación de calidad IDIEM.

3.1.3 Fibras de Vidrio Álcali-Resistentes

La fibra de vidrio utilizada, es un monofilamento resultante de la dispersión de

haces de fibra al entrar en contacto con la humedad del hormigón. Su nombre comercial es

Cem-FIL Anti-Crack HD (High Dispersión), y es fabricado por el grupo SAINT GOBAIN-

VETROTEX. El diámetro del filamento corresponde a 14 micras y su longitud a 12 mm,

por lo cual su relación de aspecto (cuociente entre el largo de la fibra y su diámetro)

54

Page 55: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

equivale a 857. La Tabla 3-3 muestra un resumen con las características físicas y mecánicas

más importantes de este tipo de fibra.

Tabla 3-3. Principales Propiedades Mecánicas y Físicas de la Fibra de Vidrio Cem-

FIL Anti-Crack HD.

Propiedad Valor

Resistencia a la Tracción del Filamento 1,7 GPa

Módulo Elástico de Young 72 Gpa

Gravedad Específica 2,68 g/cm3

Alargamiento a la Rotura 2,4%

Diámetro del Filamento 14 µm

Longitud 12 mm

Relación Longitud-Diámetro 857:1

Número de fibras por kilo 212 millones Fuente: Saint Gobain-Vetrotex, Fibras Cem-FIL.

3.1.4 Agua

Para la confección de los hormigones se utiliza agua potable tomada directamente

desde la red de suministro de la ciudad de Santiago. Esta agua cumple con la norma NCh

40913 [35], referida a los requisitos del agua potable.

La norma NCh 1492 Of.82 [36] establece que el agua potable puede ser utilizada

como agua de amasado para hormigones.

13 Este dato fue corroborado por el departamento técnico de la Empresa Aguas Andinas.

55

Page 56: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

3.1.5 Aditivo [37]

Al adicionar fibra de vidrio, disminuye la trabajabilidad del hormigón [38]. Por

este motivo se utiliza un aditivo plastificante. Considerando que los hormigones sujetos de

este estudio pueden ser producidos y comercializados por empresas de hormigón

premezclado, se decide usar un aditivo que además tenga características de retardador de

fraguado, para así facilitar su eventual traslado a grandes distancias en camiones

revolvedores. El aditivo usado es Plastiment H.E.R. [39] fabricado por SIKA S.A.

La dosificación utilizada es la recomendada por el fabricante, que equivale al 1%

en peso de cemento.

3.2 Dosificación y Confección del Hormigón

3.2.1 Dosificación del Hormigón Patrón

En primer lugar se procede a dosificar el hormigón H-25 (resistencia a la

compresión de 250 kg./cm2 a los 28 días y medida en probetas cúbicas de arista 20 cm).

Para ello se sigue la metodología indicada por el ACI (American Concrete Institute) [40],

tomando como puntos de partida un tamaño máximo del árido de 8 mm y un asentamiento

de cono entre 5 y 10 cm.

Para evaluar la dosificación obtenida, se hace una colada de prueba14 en la cual se

mide la trabajabilidad y se toman muestras para ensayar a compresión a los 7 días. En base

a los resultados de esta colada de prueba se procede a ajustar la dosificación calculada,

obteniéndose las cantidades definitivas de materiales a usar para el hormigón. Dicha

dosificación se indica en la Tabla 3-4.

14 Los resultados de esta colada de prueba pueden ser consultados en los Anexos de esta Memoria.

56

Page 57: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Las probetas de prueba fueron confeccionadas en Obra15, y curadas y ensayadas

en la sección aglomerantes del IDIEM de la Universidad de Chile.

Tabla 3-4. Dosificación en peso seco para 1 m3 de hormigón H-25.

Material Peso [kg]

Cemento 460

Gravilla 645

Arena 900

Agua de Amasado 245

Agua de Absorción 37

Aditivo Plastiment H.E.R. 4,6

Peso Total 2292

Relación agua / cemento 0,53

Fuente propia.

3.2.2 Confección del Hormigón

Con el objeto de establecer una comparación más efectiva entre el

comportamiento de hormigones con y sin fibra, se planifica la preparación conjunta de

todos los tipos de hormigones a partir de una sola colada de origen. Para lo anterior se

procede a separar el hormigón fresco, inmediatamente después de amasado, en 5 fracciones

correspondientes a cada tipo de hormigón (un hormigón patrón y 4 hormigones con

fibras16).

El procedimiento detallado de la confección de los hormigones se describe a

continuación:

15 La obra de ubicaba en la comuna de La Granja. 16 Estos fueron definidos en función del porcentaje de fibra de vidrio adicionado al hormigón. Para más información ver la Tabla 2-1 de esta Memoria.

57

Page 58: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

a. Pesar los áridos separadamente (gravilla y arena) en estado húmedo.

b. Homogeneizar separadamente los dos áridos mediante una revoltura a pala, para que

así ellos presenten un estado de humedad uniforme.

c. Tomar muestras de los áridos pesados y determinar su contenido de humedad.

d. Corregir por humedad el peso de los áridos y del agua.

e. Pesar el cemento, agua total (agua de amasado y de absorción corregida por

humedad), aditivo y fibras.

f. Preparar la betonera, humedeciéndola antes de cargar los materiales.

g. Preparar el aditivo, mezclándolo con una fracción del agua total (10 a 15%

aproximadamente).

h. Cargar la gravilla y la arena en la betonera, agregando una fracción del agua total

(un 20% aproximadamente).

i. Revolver los áridos durante 30 segundos para humedecerlos completamente.

j. Cargar el cemento en la betonera.

k. Amasar los materiales durante 2 minutos, agregando el agua y aditivo restante.

l. Revolver manualmente la mezcla verificando su estado (asegurándose de que no

quede material sin mezclar adherido al fondo y en las paredes de la betonera).

m. Amasar durante otros 2 minutos.

n. Determinar la densidad aparente del hormigón fresco [41].

o. Descargar en pailas plásticas, previamente humedecidas, la cantidad de hormigón

correspondiente a la fracción de cada tipo (ello se hace pesando el material

equivalente a un cierto volumen). El hormigón en las pailas es cubierto con láminas

de polietileno para evitar la evaporación del agua.

p. Cargar la betonera con la fracción de hormigón correspondiente a un cierto

porcentaje de fibra.

q. Iniciar un amasado de 2 minutos, durante el cual se va incorporando paulatinamente

la fibra mediante una “lluvia continua” de los filamentos sobre el hormigón.

r. Revolver manualmente la mezcla verificando su estado (asegurándose de que la

fibra se haya mezclado uniformemente y que no hayan grumos de fibras).

58

Page 59: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

s. Amasar durante otros 3 minutos.

t. Descargar el hormigón con fibra en una paila, cubriéndolo para evitar evaporación.

Cargar nuevamente la betonera con otra fracción de hormigón y repetir los puntos q,

r y s, hasta haber confeccionado todos los tipos de hormigones.

u. Una vez amasados todos los hormigones, medir la docilidad de cada uno de ellos

mediante el cono de Abrams.

v. Moldear las probetas correspondientes para los ensayos planificados de la colada.

Todo el proceso de mezclado de los distintos hormigones requiere un tiempo

aproximado de 45 minutos. La medición de la docilidad y el moldeo de las probetas

requiere a su vez de otros 30 minutos, La faena de confección del hormigón requiere la

participación de a lo menos 3 personas.

3.2.3 Programación de las Coladas

Se planifica la ejecución de dos series de coladas, cada una de ellas con el objetivo

de moldear un grupo distinto de probetas, además de efectuar el ensayo de trabajabilidad

del hormigón en estado fresco. De esta forma se tiene lo siguiente:

• Serie N°1: En esta serie se realizan coladas de 72 litros cada una y se contempla

la fabricación de 5 hormigones a partir del volumen inicial (un hormigón patrón

y los 4 tipos de hormigón con distinto porcentaje de fibra de vidrio adicionado).

Se realizan el ensayo de trabajabilidad. Además se moldean las probetas

prismáticas para ensayar a flexotracción, tanto a 7 como a 28 días de edad. En

total se realizan 5 coladas de esta serie.

• Serie N°2: Se realizan coladas de 55 litros cada una y se contempla también la

fabricación de los 5 hormigones descritos en el punto anterior, a partir del

volumen inicial. De estas coladas se moldean los cubos que serán ensayados a

compresión tanto a 7 como a 28 días. Se realizan 2 coladas de esta serie.

59

Page 60: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

La identificación y ordenación de las distintas coladas se resume en la tabla 3-5.

Tabla 1-5. Identificación de las Coladas.

Serie Colada Litros Probetas (Cantidad) Ensayo Edad

1 1 72 Docilidad Hormigón Fresco

1 2 72 Prismas (5) Flexotracción 7 días

1 3 72 Prismas (5) Flexotracción 7 días

1 4 72 Prismas (5) Flexotracción 28 días

1 5 72 Prismas (5) Flexotracción 28 días

2 6 55 Cubos (10) Compresión 7 días

2 7 55 Cubos (10) Compresión 28 días

Fuente: Propia.

Es importante señalar que como forma de control de calidad del hormigón, en cada

una de las coladas, se realizaron ensayos adicionales de docilidad (aparte de los

establecidos en la colada 1 para todos los tipos de hormigones) sobre algunas17 de las

mezclas de hormigón para verificar que se había conseguido el asentamiento de cono

deseado, en el caso del hormigón patrón, y ver cómo variaba el asentamiento de cono de los

hormigones con fibras.

3.3 Tipología de Probetas Fabricadas en Obra

La fabricación de probetas se realizó según los procedimientos establecidos por la

norma chilena NCh 1017. EOf75. Dada la docilidad de estos hormigones, comprendida

entre 5 y 10 cm de asentamiento de cono, se escogió como procedimiento de compactación

de la mezcla al interior de los moldes, el apisonado, tal como indica la citada norma NCh

1017.

17 El detalle de qué tipos de hormigón fueron ensayados en cada colada se describe en los Anexos de esta Memoria, además de mostrar los resultados de estas mediciones.

60

Page 61: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

3.3.1 Fabricación de Probetas Cúbicas para Ensayos de Compresión

Una vez obtenida la docilidad requerida para la mezcla de hormigón reforzado con

fibra de vidrio se procedió a la confección de los cubos. La mezcla de material se añadió en

dos capas de espesor similar dentro de los moldes de 150 mm de arista, debidamente

engrasados. Luego de depositar una capa ésta era apisonada distribuyendo los golpes en

toda la sección del molde. Al terminar el apisonado de la segunda capa se procedió al

alisado superficial. El proceso total de llenado del molde tomó aproximadamente 3

minutos. En total se fabricaron 20 probetas cúbicas.

3.3.2 Fabricación de Probetas Prismáticas para Ensayos de Flexotracción

Al igual que el caso anterior, la mezcla fue adicionada a los moldes, previamente

engrasados, en dos capas de espesor similar, procediendo a apisonarlas. Terminado el

apisonado se procedió al alisado superficial. El tiempo requerido para llenar el molde fue

de aproximadamente 5 minutos. Las dimensiones de éstos moldes prismáticos

corresponden a 15 cm de ancho, 15 cm de alto y 53 cm de largo. El número total de

probetas prismáticas también ascendió a 20.

3.3.3 Curado Inicial y Desmolde de las Probetas

Una vez concluido el proceso de llenado de los moldes, se cubrió la superficie de

éstos con polietileno para evitar la evaporación del agua superficial y se protegió el

conjunto probeta-molde por todos sus lados con arena húmeda.

Las probetas cúbicas fueron desmoldadas a las 24 horas en el laboratorio de

hormigones de IDIEM, y las probetas prismáticas se desmoldaron transcurridas 48 horas,

61

Page 62: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

en el mismo lugar. El traslado al laboratorio se hizo de manera tal que las superficies y

aristas de la probeta no fueran alteradas.

3.3.4 Identificación de las Probetas

La manera de identificar las probetas se puede apreciar en la tabla 3-6 que se

muestra a continuación

Tabla 3-6. Nomenclatura de las Probetas

1° Identificador 2° Identificador 3° Identificador 4° Identificador Ejemplo

C = Cubo 07 = Ensayo a los 7 días

000 = 0% de fibra

1= probeta n°1 C284002

050 = 0,05% de fibra

V = Vigueta 28 = Ensayo a los 28 días

100 = 0,1% de fibra

2 = probeta n°2 V070001

200 = 0,2% de fibra

400 = 0,4% de fibra

Fuente: Propia

3.3.5 Curado de las Probetas en el Laboratorio

Las probetas cúbicas fueron colocadas en la cámara de curado (ver figura 3-2) a una

temperatura de 20°C ± 1°C y a una humedad relativa de 95 ± 1%. Las probetas estuvieron

7 ó 28 días en la mencionada cámara, dependiendo de la identificación que se les había

dado (el segundo identificador indicaba si el ensayo se haría a los 7 ó a los 28 días).

62

Page 63: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Figura 3-2. Probetas cúbicas depositadas en la cámara húmeda.

Las probetas prismáticas fueron sumergidas en agua tranquila y saturada con cal

(ver figura 3-3), a la misma temperatura que la anterior. Dependiendo de la edad de

hormigón requerida para los ensayos de flexotracción, dichas probetas prismáticas

estuvieron 7 ó 28 días sumergidas en las piscinas del laboratorio de hormigones de IDIEM.

Figura 3-3. Probetas prismáticas sumergidas en agua saturada con cal.

63

Page 64: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

3.4 Desarrollo de los Ensayos

3.4.1 Ensayo de Trabajabilidad

El ensayo se efectúa conforme a lo señalado en la norma NCh 1019. El hormigón

cumple con el requisito de tener un tamaño máximo del árido menor que 50 mm y su

trabajabilidad está dentro de los límites establecidos para la aplicabilidad del método, esto

es, entre 2 y 18 cm.

Al realizar los ensayos no se observan inclinaciones o disgregaciones del cono de

hormigón, por el contrario, se observa una gran cohesión y plasticidad de la mezcla.

Para el caso de los distintos hormigones con fibras de observa una mayor cohesión

en relación al hormigón patrón. Esto se nota al llenar el cono y al disgregar el cono con la

varilla pisón posteriormente a la medición.

En la figura 3-4 se aprecia la medida del asentamiento de cono.

Figura 3-4. Ensayo de Trabajabilidad: medición del asentamiento de cono.

64

Page 65: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

4.3.2 Ensayo de Compresión

El ensayo se desarrolla de acuerdo al procedimiento indicado en la norma NCh

1037. Se ensayan dos cubos por cada tipo de hormigón (distintos porcentajes de fibra de

vidrio adicionado) a 7 y a 28 días. Una vista de este ensayo puede apreciarse a

continuación en la figura 3-5.

Figura 3-5. Ensayo de compresión.

4.3.3 Ensayo de Flexotracción

El ensayo de flexotracción se ejecuta basado en la norma NCh 1038. Según la

norma, para las dimensiones de esta probeta prismática se debe realizar el ensayo con dos

cargas puntuales del mismo valor, aplicadas en los límites del tercio central de la luz de

ensayo. Se ha escogido una luz de ensayo de 45 cm, de esta manera se respeta la distancia

mínima de 2,5 cm que debe quedar entre las líneas de apoyo y los extremos de la probeta.

65

Page 66: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Una vista del ensayo de flexotracción puede ser apreciada en la figura 3-6 que se

muestra a continuación.

Figura 3-6. Ensayo de Flexotracción.

66

Page 67: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Capítulo 4

ANÁLISIS E INTERPRETACIÓN DE RESULTADOS

4.1 Ensayo de Trabajabilidad

Con el ensayo de trabajabilidad se logra apreciar una clara influencia de la presencia

de las fibras en el hormigón fresco, observándose una disminución de la docilidad de la

mezcla a medida que aumentaba el porcentaje de fibra de vidrio adicionado.

Los resultados del ensayo se muestran en la tabla 6-1, y su representación se aprecia

en los gráficos 6-1 y 6-2.

Tabla 4-1. Resultados Ensayo de Trabajabilidad.

Tipo de Hormigón Promedio

Asentamiento de

Cono [cm]

Desviación Estándar Variación c/r a

Hormigón Patrón

[%]

H0 7,8 1,0 -

H1 7,7 0,8 1,3

H2 7,3 0,8 6,8

H3 6,9 0,8 13,0

H4 6,3 0,7 23,8

Fuente: Propia.

A medida que aumenta la cantidad de fibra adicionada a la mezcla de hormigón el

asentamiento de cono es menor. Se observa, entonces, una proporcionalidad inversa entre

entre la cantidad de fibra adicionada y el asentamiento de cono. Es decir, a mayor

porcentaje de fibra adicionado menor será el asentamiento de cono.

67

Page 68: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

El mayor asentamiento de cono correspondió al hormigón patrón con 7,8 cm,

mientras que el menor alcanzó a los 6,3 cm, es decir, un centímetro y medio de diferencia,

respecto del mayor. Este último valor correspondió al hormigón H4, que como se indica en

la Tabla 2-1 de esta Memoria, contiene 0,4% de peso en fibra de vidrio.

012345678

Con

o [c

m]

H0 H1 H2 H3 H4

Tipo de Hormigón

TRABAJABILIDAD DEL HORMIGÓN FRESCO ASENTAMIENTO DE CONO

Gráfico 4-0-1. Trabajabilidad del Hormigón.

El menor porcentaje de variación entre un hormigón con fibra y el hormigón patrón

lo obtuvo el hormigón H1, que tiene un porcentaje de fibra adicionado de 0,05% en peso de

la mezcla. Esta variación con respecto al hormigón patrón alcanzó al 1,3%, tal como puede

ser apreciado en el Gráfico 4-2. Por su parte la máxima variación con respecto al hormigón

patrón correspondió al hornigón H4. Dicha variación correspondió al 23,8%. Los

hormigones H2 (0,1% de fibra de vidrio en peso) y H3 (0,2% de fibra de vidrio en peso),

ocuparon valores intermedio, obteniendo variaciones de 6,8% y 13,0% con respecto al

hormigón patrón, respectivamente.

68

Page 69: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

011

2233

Varia

ción

c/r

a H

orm

igón

Pat

rón

[%]

Tipo de Hormigón

TRABAJABILIDAD DEL HORMIGÓN FRESCO EFECTO PORCENTUAL DE LA FIBRA

Gráfico 4-0-2. Variación del asentamiento de cono por influencia de la fibra agregada.

4.2 Ensayo de Compresión

Al realizar el ensayo de compresión se obtienen los valores que se indican en las

Tablas 4-2 y 4-3.

Tabla 4-2. Resultados Ensayo a Compresión a 7 Días.

Tipo de Hormigón Promedio de

Resistencia a la

Compresión

[kgf/cm2]

Desviación Estándar Variación c/r a

Hormigón Patrón

[%]

H0 187 4,2 -

H1 189 5,7 1,1

H2 190 3,5 1,3

H3 192 2,1 2,6

H4 195 2,8 4,1

Fuente: Propia.

69

Page 70: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Es importante señalar que para transformar resistencias a compresión medidas en

probetas cúbicas de arista 15 cm a probetas cúbicas de arista 20 cm, se debe multiplicar

dicho resultado por el factor 0,95 [43].

Tabla 4-3. Resultados Ensayo de Compresión a 28 Días.

Tipo de Hormigón Promedio de

Resistencia a la

Compresión

[kgf/cm2]

Desviación Estándar Variación c/r a

Hormigón Patrón

[%]

H0 257 4,2 -

H1 262 3,5 1,7

H2 262 1,4 1,9

H3 263 2,1 2,1

H4 267 3,5 3,7

Fuente: Propia.

Los resultados obtenidos indican, que si bien al aumentar la cantidad de fibra

adicionada aumenta la resistencia a la compresión, este aumento es muy pequeño. En el

Gráfico 4-3 se aprecia que mientras la resistencia menor a los 7 días alcanzó a los 187

kgf/cm2, correspondiendo este valora al hormigón patrón, el mayor valor alcanzó a los 195

kgf/cm2 , obtenido por el hormigón H4. De la misma forma, en el ensayo a 28 días, los

valores extremos fueron también alcanzados por el hormigón patrón con una marca de 257

kgf/cm2, y el hormigón H4 con un valor de 267 kgf/cm2. Los hormigones H2 y H3,

obtuvieron valores intermedios entre los del hormigón patrón y el hormigón H4, tanto en el

ensayo a 7 días como en el ensayo a 28 días. El hormigón H3 obtuvo valores mayores a los

de H2, en ambos casos.

70

Page 71: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

0

50

100

150

200

250

300

Res

iste

ncia

a la

C

ompr

esió

n [k

gf/c

m2 ]

7 Días 28 Días

Tipo de Hormigón

ENSAYO DE COMPRESIÓN

H0 H1 H2 H3 H4

Gráfico 4-3. Resultados del Ensayo de Compresión a 7 y 28 días.

En el gráfico 4-4 se puede apreciar que si bien hay un efecto en el aumento de la

resistencia a la compresión a medida que se adiciona mayor porcentaje de fibra de vidrio,

porcentualmente este aumento es muy poco, variando entre el 1,1% y el 4,1%, respecto al

hormigón patrón, en el caso de los ensayos a 7 días, y entre el 1,7% y el 3,7%, respecto al

hormigón patrón, en el caso de los ensayos a 28 días. Dichos valores extremos fueron

obtenidos por los hormigones H1 y H4, correspondiendo el menor valor al hormigón H1, y

el valor mayor al hormigón H4.

Tanto a los 7 días como a los 28 días el porcentaje de aumento de la resistencia a la

compresión respecto del hormigón patrón, parece ser similar fijando un tipo de hormigón

con fibra. Por ejemplo, para el hormigón H1 la variación a los 7 días alcanzó al 1,1%

mientras que para los 28 días, el mismo hormigón registró 1,7% de variación respecto al

hormigón patrón. Una situación similar ocurre con el hormigón H2, que registró unos

valores de 1,3% y 1,9% de variación con respecto al hormigón patrón, a los 7 y 28 días,

71

Page 72: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

respectivamente. Los hormigones H3 y H4, se comportaron de manera similar a los

hormigones H1 y H2.

0,0

1,0

2,0

3,0

4,0

5,0

Varia

ción

c/r

a H

orm

igón

Pa

trón

[%]

7 Días 28 Días

Tipo y Edad del Hormigón

ENSAYO DE COMPRESIÓN EFECTO PORCENTUAL DE LA FIBRA

H1 H2 H3 H4

Gráfico 4-4. Variación de la Resistencia a la Compresión por influencia de la fibra agregada.

Para asegurar la calidad de los ensayos realizados, se hace un análisis del nivel de

control de los ensayos, según lo especificado en la norma chilena NCh 1998. Of89 [44]. Se

calcula el coeficiente de variación del ensayo, el cual es un índice de la rigurosidad con la

cual se han confeccionado los hormigones y efectuado los ensayos de compresión.

De acuerdo a la norma se calculan los parámetros ℜ , S1 y V1, de la manera

siguiente:

a) 1

n

ii

R

n=ℜ =∑

(4.1)

donde:

ℜ = Intervalo promedio

72

Page 73: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Ri = Rmáxima – Rmínima , donde R es la resistencia mecánica en la muestra i.

n = Número de muestras.

b) (4.2) 1 *S =ℜ d

donde:

S1 = Desviación normal de ensayos

D = Constante que depende del número de probetas compañeras de cada muestra

(para el caso de dos probetas d toma el valor de 0,887).

c) 11 *100

m

SVf

= (4.3)

donde:

V1 = Coeficiente de variación del ensayo medido porcentualmente.

fm = Resistencia media del lote de muestras.

En la Tabla 4-4 se pueden apreciar los coeficientes de variación de los ensayos de

compresión para los 5 tipos de hormigones ensayados tanto a 7 como a 28 días, y la

calificación de su estado de control.

Tabla 4-4. Grado de Control de los Ensayos de Compresión.

Coeficiente de Variación

[%] Grado de Control

Tipo de Hormigón

7 días 28 días 7 días 28 días

H0 2,9 2,1 Excelente Excelente

H1 3,8 1,7 Muy Bueno Excelente H2 2,3 0,7 Excelente Excelente H3 1,4 1,0 Excelente Excelente H4 1,8 1,7 Excelente Excelente

Fuente: Propia.

73

Page 74: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Dados los resultados mostrados en la Tabla 4-4, se puede decir, que en su conjunto,

el nivel de control del ensayo de compresión fue excelente.

4.3 Ensayo de Flexotracción

Los resultados del ensayo de flexotracción a 7 y 28 días se consignan en las Tablas

4-5 y 4-6, respectivamente.

Tabla 4-5. Resultados Ensayo de Flexotracción a 7 Días.

Tipo de Hormigón Promedio de

Resistencia a la

Flexotracción

[kgf/cm2]

Desviación Estándar Variación c/r a

Hormigón Patrón

[%]

H0 26,4 0,8 -

H1 27,4 2,0 3,6

H2 28,7 0,6 8,0

H3 30,4 0,9 13,0

H4 33,0 1,4 20,0

Fuente: Propia.

Tabla 4-6. Resultados Ensayo de Flexotracción a 28 Días.

Tipo de Hormigón Promedio de

Resistencia a la

Compresión

[kgf/cm2]

Desviación Estándar Variación c/r a

Hormigón Patrón

[%]

H0 37,7 0,8 -

H1 39,0 0,6 3,2

H2 41,3 1,0 8,7

H3 44,0 1,1 14,2

H4 46,8 0,5 19,4

Fuente: Propia.

74

Page 75: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Al realizar el ensayo de flexotracción se observa un importante aumento de la

resistencia del hormigón, tanto a los 7 como a los 28 días, a medida que aumenta el

porcentaje de fibra presente en la mezcla de hormigón, tal como muestra el Gráfico 4-5.

Destaca, en este sentido el hormigón el hormigón H5, que registra los valores más altos,

para las dos edades del hormigón, de resistencia a la flexotracción, siendo éstas de 33

kgf/cm2, para los 7 días y 46,8 kgf/cm2, para los 28 días. Por su parte los valores menores

los registró el hormigón patrón con 26,4 kgf/cm2 y 37,7 kgf/cm2, para los 7 y 28 días

respectivamente. Los hormigones H1, H2 y H3, registraron valores comprendidos entre los

que obtuvieron el hormigón patrón y el hormigón H4. Mientras el hormigón contenía

mayor cantidad de fibra, más alta fue su resistencia a la flexotracción tanto a los 7 como a

los 28 días.

05

101520253035404550

Res

iste

ncia

a la

Fl

exot

racc

ión

[kgf

/cm

2 ]

7 Días 28 Días

Edad y Tipo de Hormigón

ENSAYO DE FEXOTRACCIÓN

H0 H1 H2 H3 H4

Gráfico 4-5. Resultados del Ensayo de Flexotracción a 7 y 28 días.

Porcentualmente hablando (ver gráfico 4-6), el incremento más alto de resistencia a

la flexotracción, con respecto al hormigón patrón, lo mostró el hormigón que contenía

75

Page 76: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

mayor cantidad de fibra de vidrio, H4, asimismo, la menor variación la registró el hormigón

que contenía menor cantidad de fibra de vidrio, H1. Es decir, mientras mayor fue la

cantidad de fibra de vidrio adicionada, mayor fue el aumento porcentual de resistencia a la

flexotracción.

El hormigón H4 registro un 20% y un 19,4% de variación de la resistencia a los 7 y

a los 28 días respectivamente. El hormigón H3 registró valores de 13% y 14,2% de

variación, también a los 7 y 28 días de edad. Los demás hormigones tuvieron porcentajes

similares de variación entre los 7 y 28 días. Del análisis anterior se observa un

comportamiento similar al del ensayo de compresión, en que fijando un tipo de hormigón

con cierto porcentaje de fibra, los porcentajes de variaciones a los 7 y los 28 días fueron

parecidos.

0

5

10

15

20

Varia

ción

Por

cent

ual c

/r a

Hor

mig

ón P

atró

n [%

]

7 Días 28 Días

Edad y Tipo de Hormigón

ENSAYO DE FLEXOTRACCIÓNEFECTO PORCENTUAL DE LA FIBRA

H1 H2 H3 H4

Gráfico 4-6. Variación de la Resistencia a la Flexotración por influencia de la fibra agregada.

76

Page 77: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Capítulo 5

CONCLUSIONES 5.1 El Hormigón en Estado Fresco

La incorporación de fibras de vidrio, tiene una serie de repercusiones sobre las

propiedades del hormigón en estado fresco, destacando entre ellas la reducción de la

trabajabilidad. A medida que aumenta el porcentaje de fibra de vidrio adicionado al

hormigón la docilidad de la mezcla disminuye.

La trabajabilidad seleccionada para los hormigones patrones de esta investigación

fue de 7,5 cm de asentamiento de cono, con lo que se cubre un rango muy amplio de

estructuras que requieren dicho valor para una óptima colocación de la mezcla. Producto de

la adición de fibras la trabajabilidad disminuye hasta un asentamiento de cono de 6 cm, es

decir, la reducción de la docilidad alcanza a un máximo de 20%. Este aspecto es de mucho

interés, dado que se hace necesario conocer esta reducción de trabajabilidad para poder

tomar las precauciones del caso, al momento de diseñar la dosificación del hormigón con

fibras. Para dosis mayores de fibras a las usadas en esta investigación, la reducción de

trabajabilidad es aún mayor [45], lo cual incide directamente en el costo del hormigón,

puesto que se hace necesario el uso adicional de aditivos plastificantes o bien aumentar el

agua de amasado en conjunto con la dosis de cemento (para mantener constante la relación

agua/cemento), a la vez que se obliga un mayor control en el proceso de producción de

hormigón.

La pérdida de trabajabilidad en el hormigón con fibras está acompañada de un

efecto que puede ser beneficioso, ya que se aumenta la cohesión del hormigón. Lo anterior

ofrece algunas ventajas constructivas en algunas obras particulares, tales como

hormigonado de taludes, vaciado del hormigón desde cierta altura y hormigón proyectado

[46].

77

Page 78: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

5.2 El Hormigón Endurecido

En cuanto a las propiedades mecánicas del hormigón endurecido, se aprecia que la

resistencia a la compresión si bien aumenta a medida que la mezcla de hormigón contiene

mayor porcentaje de fibra de vidrio; este aumento es muy pequeño, teniendo un máximo de

variación con respecto al hormigón patrón del orden del 4%. Se puede decir, que la adición

de fibra de vidrio no tiene mayor influencia en el aumento de la resistencia a la compresión

del hormigón.

En cuanto a la resistencia a la flexotracción, se aprecia claramente el aumento de

este valor a medida que se aumenta el porcentaje de fibra de vidrio presente en la mezcla de

hormigón. Es así como se alcanza un máximo de 20% de aumento de la resistencia de la

flexotracción respecto del hormigón patrón a los 7 días y un 19,4% de aumento a los 28

días. Como ya se ha señalado estos valores correspondieron al hormigón que contenía

mayor cantidad de fibra de vidrio. Se concluye entonces que la adición de fibra de vidrio es

un factor relevante en el aumento de la resistencia a la flexotracción de los hormigones.

5.3 Posibles Usos del Hormigón Reforzado con Fibra de Vidrio

El uso de fibras de vidrio como parte integrante del hormigón, es capaz de producir

cambios favorables en su comportamiento. De los ensayos realizados se advierte que los

mayores beneficios se obtienen en el aumento de la resistencia a la flexotracción de los

hormigones.

En base a la bibliografía estudiada [47,48], se encuentra que existe acuerdo en

cuanto a que el hormigón reforzado con fibras de vidrio mejora en forma notable la

resistencia a los impactos y la fisuración por retracción plástica, además de mejorar, en

algún grado, la capacidad de deformación del hormigón otorgándole mayor tenacidad y

ductilidad.

78

Page 79: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Como consecuencia del análisis de los resultados de la presente investigación, se

puede señalar que las aplicaciones en las cuales el hormigón reforzado con fibra de vidrio

puede brindar excelentes resultados, son las siguientes:

• Losas

• Sobrelosas

• Pavimentos Industriales

• Pavimentos para Contenedores

• Hormigón Proyectado

• Revestimientos de Túneles

• Prefabricados

5.4 Comparación con Otras Fibras de Refuerzo

Dos de las fibras más usada en el refuerzo del hormigón además de la de vidrio, son

la fibra de polipropileno y la fibra de acero.

La fibra de polipropileno presenta la mayoría de los atributos en el hormigón que

presenta la fibra de vidrio, sin embargo, no tiene influencia en el aumento de la resistencia a

la flexotracción en el hormigón [49], como sí lo hace la fibra de vidrio. Desde este punto de

vista la fibra de vidrio es superior.

La fibra de acero presenta propiedades similares en el hormigón a las que presenta

la fibra de vidrio, sin embargo, la cantidad de acero que se necesita para resistir una misma

carga máxima, es el doble que la de vidrio [50]. Dado el precio de la fibra de acero que

alcanza los 0,1 U.F./kg y el precio de la fibra de vidrio que alcanza los 0,2 U.F./kg, ambas

fibras son perfectamente comparables en cuanto a costos.

79

Page 80: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

5.5 Propuesta de Trabajos Futuros

Luego de realizar la presente investigación, surgen varias ideas acerca de otros

aspectos relativos al hormigón reforzado con fibra de vidrio, que podrían ser tratados en

investigaciones futuras, entre ellos:

• Óptima relación entre el tamaño máximo del árido y el largo de la fibra.

• Influencia en el hormigón de distintos tipos de fibras de vidrio (HP por ejemplo).

• Comparación extensiva de la fibra de vidrio y las otras fibras de utilizadas para

reforzar hormigones.

• Efecto de la fibra en la confección de elementos prefabricados.

Es de esperar que esta investigación, que acá concluye, sea una de las muchas que

se hagan respecto a este tema.

80

Page 81: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

BIBLIOGRAFÍA [1] Perrero, Joaquín, et al., “Manual del Concreto. Cap. XII.2 Concreto con Fibras”, 1°

Edición, Caracas, Venezuela, Editor SIDETUR (Siderúrgica del Turbio S.A.), 1996,

pág. 238.

[2] Sánchez Paradela, L., et al., “Los Cementos Reforzados con Fibra de Vidrio”, 1°

Edición, Madrid, España, Editor Asociación Técnica Española del Pretensado, 1989,

pág 113.

[3] Callister, William D. “Introducción a la Ciencia e Ingeniería de los Materiales”, 1°

Edición, Barcelona, España, Editorial Reverté , 1997, pág. 532.

[4] Callister, William D., “Introducción a la Ciencia e Ingeniería de los Materiales”, 1°

Edición, Barcelona, España, Editorial Reverté , 1997, pág. 535.

[5] “Engineered Material Handbook”, Vol. 1, Composites, ASM International,

Materials Park, OH, 1987.

[6] Callister, William D., “Introducción a la Ciencia e Ingeniería de los Materiales”, 1°

Edición, Barcelona, España, Editorial Reverté , 1997, pág. 540.

[7] Ficha Técnica “Cem-FIL Hormigones y Morteros”, Saint-Gobain Vetrotex, s.f.

[8] “Cem-FIL AR Glass Fibre”. Cem-FIL GRC Technical Data, Saint-Gobain Vetrotex,

s.f., pág. 5.

81

Page 82: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

[9] Gere, James M. y Timoshenko, Stephen P., “Mecánica de Materiales”, 4° Edición,

México, International Thomson Editores, 1998, pág. 105.

[10] Sánchez Paradela, L., et al., “Los Cementos Reforzados con Fibra de Vidrio”, 1°

Edición, Madrid, España, Editor Asociación Técnica Española del Pretensado, 1989,

pág 124.

[11] Laws, V., “The Efficiency of Fibrous Reinforcement of Brittle Matrices”, Journal of

Applied Physics, Vol. 4, 1971, págs. 1737 – 1746.

[12] Callister, William D., “Introducción a la Ciencia e Ingeniería de los Materiales”, 1°

Edición, Barcelona, España, Editorial Reverté , 1997, pág. 548.

[13] Callister, William D., “Introducción a la Ciencia e Ingeniería de los Materiales”, 1°

Edición, Barcelona, España, Editorial Reverté , 1997, pág. 550.

[14] “La Fibra de Vidrio Vetrotex”, Alcalá de Henares, España, Editor Saint-Gobain

Vetrotex, s.f., pág. 9.

[15] Comino Almenara, Pablo, “El G. R. C. Material Compuesto de Matriz de Cemento

Reforzado con Fibras de Vidrio A. R.”, 1° Edición, Alcalá de Henares, España,

Editor Saint-Gobain Vetrotex, 2003, pág. 2.

[16] Sánchez Paradela, M. Laura y Sánchez Gálvez, Vicente, “Comportamiento a

Tracción de Cementos reforzados con Fibra de Vidrio”, Informes de la

Construcción, España, Vol. 43 n° 413, mayo/junio, 1991, pág. 77.

[17] Comino Almenara, Pablo, “El G. R. C. Material Compuesto de Matriz de Cemento

Reforzado con Fibras de Vidrio A. R.”, 1° Edición, Alcalá de Henares, España,

Editor Saint-Gobain Vetrotex, 2003, pág. 4.

82

Page 83: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

[18] “La Fibra de Vidrio Vetrotex”, Alcalá de Henares, España, Editor Saint-Gobain

Vetrotex, s.f., pág. 5.

[19] Comino Almenara, Pablo, “El G. R. C. Material Compuesto de Matriz de Cemento

Reforzado con Fibras de Vidrio A. R.”, 1° Edición, Alcalá de Henares, España,

Editor Saint-Gobain Vetrotex, 2003, pág. 12.

[20] “Guía para la Producción por Proyección Simultánea”, 1° Edición, Alcalá de

Henares, España, Editor Saint-Gobain Vetrotex, s.f., págs. 5-20.

[21] “Guía para la Producción por Premix”, 1° Edición, Alcalá de Henares, España,

Editor Saint-Gobain Vetrotex, s.f., págs. 5-10.

[22] Ballán Ballán, Eduardo, et al., “Manual de Tecnología del Hormigón Reforzado con

Fibras de Acero”, 1° Edición, Madrid, España, Editor ACHE (Asociación Científico

Técnica del Hormigón Estructural), 2000, pág. 17.

[23] Ficha Técnica “Fibras Cem-Fil”, Alcalá de Henares, España, Editor Saint-Gobain

Vetrotex, s.f.

[24] Sánchez Gálvez, Vicente, “Los Materiales Compuestos en el Sector de la

Construcción. I. Materiales con Matriz de Cemento”, 1° Edición, Madrid, España,

Editor Asociación Técnica Española del Pretensado, 1992, págs. 113 - 116.

[25] Instituto Nacional de Normalización, Norma chilena NCh 1019. Of74.

“Construcción. Hormigón. Determinación de la Docilidad. Método del

Asentamiento del Cono Abrams”, Chile, 1974.

83

Page 84: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

[26] Instituto Nacional de Normalización, Norma chilena NCh 1037. Of77. “Hormigón –

Ensayo de Compresión de Probetas Cúbicas y Cilíndricas”, Chile, 1977.

[27] Instituto Nacional de Normalización, Norma chilena NCh 1038. Of77. “Hormigón –

Ensayo de Tracción por Flexión”, Chile, 1977.

[28] Instituto Nacional de Normalización, Norma chilena NCh 1116. Of77. “Áridos para

Morteros y Hormigones. Determinación de la Densidad Aparente”, Chile, 1977.

[29] Instituto Nacional de Normalización, Norma chilena NCh 1117. Of77. “Áridos para

Morteros y Hormigones. Determinación de las Densidades Real y Neta, y la

Absorción de agua de las Gravas”, Chile, 1977.

[30] Instituto Nacional de Normalización, Norma chilena NCh 1239. Of77. “Áridos para

Morteros y Hormigones. Determinación de las Densidades Real y Neta, y la

Absorción de agua de las Arenas”, Chile, 1977.

[31] Instituto Nacional de Normalización, Norma chilena NCh 165. Of77. “Áridos para

Morteros y Hormigones. Tamizado y Determinación de la Granulometría”, Chile,

1977.

[32] Instituto Nacional de Normalización, Norma chilena NCh 163. Of79. “Áridos para

Morteros y Hormigones – Requisitos Generales”, Chile, 1979.

[33] Instituto Nacional de Normalización, Norma chilena NCh 166. Of52.

“Determinación Calorimétrica de la Presencia de Impurezas Orgánicas en las

Arenas para Hormigones”, Chile, 1952.

[34] Instituto Nacional de Normalización, Norma chilena NCh 148. Of68. “Cemento –

Terminología, Clasificación y Especificaciones Generales”, Chile, 1968.

84

Page 85: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

[35] Instituto Nacional de Normalización, Norma chilena NCh 409. Of84. “Agua Potable

– Requisitos”, Chile, 1984.

[36] Instituto Nacional de Normalización, Norma chilena NCh 1498. Of82. “Hormigón –

Agua de Amasado – Requisitos”, Chile, 1982.

[37] Instituto Nacional de Normalización, Norma chilena NCh 2182. Of95. “Hormigón y

Mortero – Aditivos – Clasificación y Requisitos”, Chile, 1995.

[38] Márquez Rivera, Clara. “Hormigón Proyectado Reforzado con Fibra de Vidrio para

Reparación de Estructuras. Aplicación como Revestimiento Resistente en Túneles”.

Tesis Doctoral, Universidad Politécnica de Madrid, 2002, pág. 209.

[39] Ficha Técnica, “Plastiment H.E.R.”, SIKA S.A., 2003. Disponible en Sitio Web:

http://www.sikachile.cl/products-group-1.htm

[40] ACI. Publication SP – 46. Proportioning Concrete Mixes. American Concrete

Institute, 1974, USA.

[41] Instituto Nacional de Normalización, Norma chilena NCh 1564. Of79.

“Determinación de la Densidad Aparente, del Rendimiento, del Contenido de

Cemento y del Contenido de Aire del Hormigón Fresco”, Chile, 1979.

[42] Instituto Nacional de Normalización, Norma chilena NCh 1017. Eof75. “Hormigón

– Confección y Curado en Obra de Probetas para Ensayos de Compresión y

Tracción”, Chile, 1975.

[43] “Manual del Hormigón”, 2° Edición, Chile, Instituto Chileno del Cemento y del

Hormigón,1985, pág. 76.

85

Page 86: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

[44] Instituto Nacional de Normalización, Norma chilena NCh 1998. Of89. “Hormigón –

Evaluación Estadística de la Resistencia Mecánica”, Chile, 1989.

[45] Márquez Rivera, Clara. “Hormigón Proyectado Reforzado con Fibra de Vidrio para

Reparación de Estructuras. Aplicación como Revestimiento Resistente en Túneles”.

Tesis Doctoral, Universidad Politécnica de Madrid, 2002, pág. 208-209.

[46] Zabaleta, Hernán, “Uso de las Fibras en los Hormigones”, Revista CIMIN, N°58,

junio 1995, págs. 51-52.

[47] Comino Almenara, Pablo, “El G. R. C. Material Compuesto de Matriz de Cemento

Reforzado con Fibras de Vidrio A. R.”, 1° Edición, Alcalá de Henares, España,

Editor Saint-Gobain Vetrotex, 2003, págs. 24-27.

[48] Márquez Rivera, Clara. “Hormigón Proyectado Reforzado con Fibra de Vidrio para

Reparación de Estructuras. Aplicación como Revestimiento Resistente en Túneles”.

Tesis Doctoral, Universidad Politécnica de Madrid, 2002, págs. 212-220.

[49] Maturana, Pablo, et al., “Propiedades del Hormigón Reforzado con Fibras de

Polipropileno”, X Jornadas Chilenas del Hormigón, Santiago de Chile, octubre

1994, Volumen I, págs. 269-281.

[50] Márquez Rivera, Clara. “Hormigón Proyectado Reforzado con Fibra de Vidrio para

Reparación de Estructuras. Aplicación como Revestimiento Resistente en Túneles”.

Tesis Doctoral, Universidad Politécnica de Madrid, 2002, págs. 212-213.

86

Page 87: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

ANEXOS

Tabla A.1 Dosificación Hormigón Patrón. Primer Ensayo de Prueba.

Dimensiones Probeta

a

[cm]

b

[cm]

c

[cm]

Masa [g] Densidad

[g/cm3]

Carga

[kgf]

Tensión a

28 días

[kgf/cm2]

1 15,0 15,2 15,0 7630 2,231 57800 254 2 15,1 15,2 15,0 7540 2,190 56700 247 3 15,1 15,0 15,0 7720 2,272 54600 241 4 15,1 15,0 15,0 7480 2,202 55000 243

Promedio: 246

Tabla A.2 Dosificación Hormigón Patrón. Segundo Ensayo de Prueba.

Dimensiones Probeta

a

[cm]

b

[cm]

c

[cm]

Masa [g] Densidad

[g/cm3]

Carga

[kgf]

Tensión a

28 días

[kgf/cm2]

1 15,1 15,0 15,0 7580 2,231 59800 264 2 15,2 15,0 15,0 7620 2,228 57600 253 3 15,0 15,2 15,0 7630 2,231 58400 256 4 15,0 15,1 15,1 7690 2,248 60100 265

Promedio: 260

Notas:

* *masadensidad

a b c=

arg*

c atensióna b

=

87

Page 88: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Tabla A.3 Determinación Rango de Adición de Fibra.

Porcentaje de Fibra Adicionado [%] Promedio extrapolado de la resistencia a

la Compresión a los 28 días [kgf/cm2]

0,03 260

0,06 262

0,1 264

0,2 268

0,5 258

1,0 240

2,0 231

Tabla A.4 Detalle Ensayo de Trabajabilidad. Asentamiento de cono [cm].

Hormigón Colada H0 H1 H2 H3 H4

1 9,0 8,8 8 7,3 7,0

1 8,2 7,7 7,4 7,4 6,6

2 7,1

3 7,1

4 6,5

5 6,1

6 6,9 5,5

7 7 6

promedio 7,8 7,7 7,3 6,9 6,3

desviación 1,0 0,8 0,8 0,7 0,7

88

Page 89: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Tabla A.5 Resultados Ensayo de Compresión

Dimensiones Hormigón Edad

[días]

Probeta

a

[cm]

b

[cm]

c

[cm]

Masa

[g]

Densidad

[g/cm3]

Carga

[kgf]

Tensión

[kgf/cm2]

H0 7 1 15,0 15,1 15,0 7480 2,202 43000 190

H0 7 2 15,0 15,2 15,0 7500 2,193 42000 184

H0 28 1 15,1 15,0 15,0 7650 2,252 58900 260

H0 28 2 15,0 15,0 15,0 7450 2,207 57200 254

H1 7 1 15,0 15,0 15,0 7590 2,249 43400 193

H1 7 2 15,2 15,0 15,0 7560 2,211 42200 185

H1 28 1 15,1 15,2 15,1 7720 2,228 60600 264

H1 28 2 15,0 15,0 15,1 7530 2,216 58300 259

H2 7 1 15,0 15,0 15,0 7630 2,261 43200 192

H2 7 2 15,1 15,1 15,0 7540 2,205 42600 187

H2 28 1 15,2 15,2 15,0 7580 2,187 60800 263

H2 28 2 15,1 15,1 15,0 7540 2,205 59500 261

H3 7 1 15,0 15,1 15,2 7580 2,202 43700 193

H3 7 2 15,0 15,2 15,1 7450 2,164 43300 190

H3 28 1 15,0 15,1 15,1 7550 2,208 60700 268

H3 28 2 15,1 15,2 15,0 7590 2,205 60800 265

H4 7 1 15,2 15,1 15,0 7660 2,225 45200 197

H4 7 2 15,0 15,2 15,0 7550 2,208 44000 193

H4 28 1 15,0 15,1 15,1 7500 2,193 60400 267

H4 28 2 15,1 15,1 15,0 7450 2,178 59700 262

89

Page 90: “Comportamiento Mecánico del Hormigón Reforzado … · reforzado con fibras de vidrio serían las losas, los pavimentos industriales y el ... atractivos para su uso como materiales

ID69F Comportamiento Mecánico del Hormigón Reforzado con Fibra de Vidrio

Tabla A.5 Resultados Ensayo de Flexotracción

DimensionesHormigón Edad

[días]

Probeta

a

[cm]

h

[cm]

Carga

[kgf]

Tensión

[kgf/cm2]

H0 7 1 15,0 15,1 2050 27

H0 7 2 15,0 15,1 1960 25,8

H0 28 1 15,1 15,0 2890 38,3

H0 28 2 15,2 15,0 2820 37,1

H1 7 1 15,1 15,0 1960 26

H1 7 2 15,0 15,0 2160 28,8

H1 28 1 15,0 15,1 2930 38,5

H1 28 2 15,0 15,0 2960 39,4

H2 7 1 15,1 15,1 2170 28,3

H2 7 2 15,2 15,1 2240 29,1

H2 28 1 15,0 15,2 3230 42,0

H2 28 2 15,0 15,1 3090 40,6

H3 7 1 15,0 15,1 2260 29,7

H3 7 2 15,0 15,1 2350 31

H3 28 1 15,0 15,0 3240 43,2

H3 28 2 15,1 15,0 3380 44,7

H4 7 1 15,1 15,0 2420 32

H4 7 2 15,0 15,0 2550 34

H4 28 1 15,1 15,0 3500 46,4

H4 28 2 15,2 15,0 3580 47,1

Nota:

Tensión de rotura = 2

**

P Lb h

, con luz de ensayo L = 45 cm

90