Chapter4 [Modo de Compatibilidad]

download Chapter4 [Modo de Compatibilidad]

of 64

Transcript of Chapter4 [Modo de Compatibilidad]

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    1/64

    Beams and Frames

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    2/64

    beam theory can be used to solve simple

    beamscomplex beams with many cross section

    many 2-d and 3-d frame structures are

    better modeled by beam theory

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    3/64

    One Dimensional Problems

    x

    y

    P

    p

    u(x)

    y

    px

    StretchContract

    u(x)

    kx + P(x=l)=0dudx

    The geometry of the problem is three dimensional, but the

    variation of variable is one dimensional

    x v(x)v(x)

    kx + P(x)=0d4v

    dx4

    Variable can be scalar field liketemperature, or vector field like

    displacement.

    For dynamic loading, the variable can

    be time dependent

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    4/64

    Element Formulation assume the displacement w is a cubic polynomial in

    L = Length

    a1, a2, a3, a4 are the undetermined coefficients

    2 3

    1 2 3 4v(x) a a x a x a x= + + +

    the cross sectional areaE = Modulus of Elsaticity

    v = v(x) deflection of the

    neutral axis

    = dv/dx slope of theelastic curve (rotation of

    the section

    F = F(x) = shear force

    M= M(x) = Bending

    moment about Z-axis

    i j

    L, EI

    viFi,Fj,vj

    Mi,i

    Mj,j

    j vjivi

    y

    x

    x

    v(x)

    (x)i

    j

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    5/64

    `

    1 1

    x 0

    dvx 0, v(0) v ;

    dx

    dv

    =

    = = =

    { } { }

    1 1

    2 22 3 2

    3 3

    4 4

    a a

    a av(x) 1 x x x ; (x) 0 1 2x 3x

    a a

    a a

    = =

    2 2x L

    x , v v ;dx =

    = = =

    i 1

    i 2

    2 3j 3

    2j 4

    v 1 0 0 0 a

    0 1 0 0 a

    v a1 L L L

    a0 1 2L 3L

    =

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    6/64

    Applying these boundary conditions, we get

    1

    1 1 2 1

    {d} [P(x)]{a}

    {a} [P(x)] {d}

    a v ; a

    1a 3v 2L 3v L

    =

    =

    = =

    = +

    Substituting coefficients ai back into the original equation

    for v(x) and rearranging terms gives

    L

    { }

    1

    22 3

    3

    4

    a

    av(x) 1 x x x

    a

    a

    =

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    7/64

    The interpolation function or shape function is given by

    2 3 2 3

    1 12 3 2

    2 3 2 3

    3x 2x 2x xv(x) (1 )v (x )

    L L L L

    3x 2x x x( )v ( )

    = + + +

    + + +

    N1=1

    dN1dx

    (x=0) = 0

    N1(x=L) =1

    dN1dx

    (x=L) = 0

    N2=1

    [ ]

    1

    1

    1 2 3 4

    2

    2

    v

    Lv N (x) N (x) N (x) N (x) [N]{d}

    vL

    = =

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    8/64

    strain for a beam in bending is defined by the curvature, so

    Hence

    N A

    dv

    dx

    y

    x

    dvdx

    u(x) = y2 2

    2 2

    du d v d [N]y {d} y[B]{d}

    dx dx dx = = = =

    3 2 3 2 2 3 3 2

    12x 6 6x 4 6 12x 6x 2[B]

    L L L L L L L h

    =

    { } { }

    { } [ ]{ }

    { } [ ]{ }

    { } [ ] { }

    { } [ ] [ ][ ]{ }

    e

    e

    e

    Te

    v

    Te

    v

    T Te 2

    v

    Internal virtual energy U = dv

    substitute E in above eqn.

    U = E dv

    = y B d

    U = d B E B d y dv

    =

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    9/64

    e eFrom virtual work principle U W =

    { } { } { } [ ] { }

    { } { } { } [ ] { }

    { } { } { }

    e e

    T T Te

    b y

    v v

    T T Te

    s y

    s s

    TTe e e

    c

    External virtual workdue to body force

    w = d(x) b dv d N b dv

    External virtual work due to surface force

    w = d(x) p dv d N p ds

    External virtual work due to nodal forces

    w d P , P

    =

    =

    =

    { }yi i yj= P , M , P ,....

    { } [ ] [ ][ ] { } { } [ ] { } [ ] { } { }

    { } { }

    [ ] [ ][ ]

    { } [ ] { } [ ] { } { }

    T TT T T2 ed ( B E B y dv d d N b dv N p dv Py y

    e e sv v

    eK U Fe e

    where

    T 2K B D B y dv Element stiffness matrixe

    ev

    T T eF N b dv N p ds P Total nodal force vectore y y

    e sv

    = + +

    =

    = =

    = + + =

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    10/64

    the stiffness matrix [k] is defined

    dAy

    To compute equivalent nodal force vector

    ( )L

    T 2 T

    VA 0

    2 2

    3

    2 2

    [k] [B] E[B]dV dAy E [B] [B]dx

    12 6L 12 6L

    6L 4L 6L 2LEI

    12 6L 12 6LL

    6L 2L 6L 4L

    = =

    =

    for the loading shown

    { } [ ] { }

    [ ]

    T

    e y

    s

    y

    y

    2 3 2 3 2 3 2 3

    2 3 2 2 3 2

    F N p ds

    From similar triangles

    p w w; p x; ds = 1 dxx L L

    3x 2x 2x x 3x 2x x xN (1 ) (x ) ( ) ( )

    L L L L L L L L

    =

    = =

    = + + +

    w

    x

    py

    L

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    11/64

    { } [ ] { }

    { }

    T

    e y

    s

    2 3

    2 3

    22 3

    2

    e 2 3L

    2 3

    F N p ds

    3wL3x 2x(1 )

    20L L

    wL2x x(x )

    wx 30L LF dx

    7wLL3x 2x( )

    20L L

    =

    +

    +

    = =

    +ve directions

    vi vj

    i j

    22 3

    2wLx x( )20L L

    +

    w

    Equivalent nodal force due toUniformly distributed load w

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    12/64

    v1 v2v3

    1 23

    v4

    v3

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    13/64

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    14/64

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    15/64

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    16/64

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    17/64

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    18/64

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    19/64

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    20/64

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    21/64

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    22/64

    1

    1

    2 5

    2

    3

    3

    V 12 6 -12 6

    M 6 4 -6 2

    V -12 -6 12+12 -6+6 -12 68x10

    M 6 2 -6+6 4+4 -6 2

    -12 -6V

    M

    =

    1

    1

    2

    2

    3

    3

    1 1 2 3

    v

    v

    12 -6 v

    6 2 -6 4

    Boundary condition

    v , , v , v 0

    =

    2 3

    5

    M 1000; M 1000

    8 28x10

    2

    = =

    { } [ ]{ }

    2

    3

    42

    5 43

    1000

    4 1000.0

    4 -2 1000 2.679x101

    -2 8 1000.028*8x10 4.464x10

    Final member end forces

    f k d {FEMS}

    =

    = =

    = +

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    23/64

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    24/64

    Find slope at joint 2 and deflection at

    joint 3. Also find member end forces

    v

    vv

    EI EI

    20 KN 20kN/m Guided Support

    2m 2m 6m

    EI=2 x 10

    4

    kN-m

    2

    Global coordinates

    20 KN 20kN/m

    m mm

    m

    m

    m

    m

    Fixed end reactions (FERs)

    Action/loads at global

    coordinates

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    25/64

    1 14

    1 1

    32 2

    2 2

    1 1 2 2

    For element 1

    f v12 24 -12 24

    m 24 64 -24 321X10

    f -12 -24 12 -24 v4

    24 32 -24 64m

    v v

    For el

    =

    1 1

    41 1

    ement 2

    f v12 36 -12 36

    m 36 144 -36 721X10

    =2 2

    2 2

    2 2 3 3

    f -12 -3 12 -3 v6

    36 72 -36 144m

    v v

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    26/64

    1

    1

    2

    2

    3

    3

    F 1875 3750 -1875 3750

    M 3750 10000 -3750 5000

    F -1875 -3750 1875+555.56 -3750+1666.67 -555.56 1666.67

    M

    F

    M

    =

    3750 5000 -3750+1666.67 10000+6666.67 -1666.67 3333.33

    -555.56 -1666.67 555.56 -1666.67

    1666.67

    1

    1

    2

    2

    3

    3

    1 1 2 3

    v

    v

    v

    3333.332 -1666.67 6666.67

    Boundary condition

    v , , v , 0

    =

    6/16/2013 26

    2 3

    M 50; F 60

    16666.67 -1666.67

    -1666.67 555.56

    = =

    { } [ ]{ }

    2

    3

    2

    3

    50

    v 60

    555.56 1666.67 50 0.0197141

    v 1666.67 16666.67 60 0.167146481481.5

    Final member end forces

    f k d {FEMS}

    =

    = =

    = +

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    27/64

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    28/64

    x

    y

    q3

    q2

    q1

    q5

    q6

    q4

    displacement in local coordinates

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    29/64

    3 3 3 3

    3 3 3 3

    AE AE0 0 0 0

    L L

    12EI 6EI 12EI 6EI0 0

    L L L L6EI 4EI 6EI 2EI

    0 0L L L L

    [k]AE AE

    0 0 0 0L L

    =

    { } [ ]{ }

    If f ' member end forces in local coordinates then

    f' k ' q '=

    3 3 3 3

    3 3 3 3

    12EI 6EI 12EI 6EI

    0 0L L L L

    6EI 2EI 6EI 4EI0 0

    L L L L

    { }q {q q q q q q }

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    30/64

    '

    1 1 2

    '

    2 1 2

    '

    At node i

    q q cos q sin

    q q sin q cos

    = +

    = +

    { } 1 2 3 4 5 6q {q ,q ,q ,q ,q ,q }

    are forces in global coordinate direction

    =

    3 3q q

    l cos ; m sin

    =

    = =

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    31/64

    { } { }

    [ ] [ ] [ ][ ]T

    using conditions q' [L]{q}; and f' [L]{f}

    Stiffness matrix for an arbitrarily oriented beam element is given by

    k L k ' L

    = =

    =

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    32/64

    Grid Elements

    a

    a

    f = GJ/l

    qxi fi qxj fj

    xi i

    xj j

    JG JGq fL L

    q fJG JG

    L L

    =

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    33/64

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    34/64

    3 3 3 3

    3 3 3 3

    GJ GJ0 0 0 0L L

    12EI 6EI 12EI 6EI0 0

    L L L L

    6EI 4EI 6EI 2EI0 0

    L L L LGJ GJ

    0 0 0 0L L

    12EI 6EI 12EI 6EI

    { } [ ]{ }

    If f ' member end forces in local coordinates then

    f' k ' q '=

    3 3 3 3

    3 3 3 3

    L L L L

    6EI 2EI 6EI 4EI0 0

    L L L L

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    35/64

    [ ]

    C 0 -s 0 0 0

    0 1 0 0 0 0

    -s 0 c 0 0 0L

    0 0 0 c 0 -s

    =

    0 0 0 0 1 0

    0 0 0 --s 0 c

    [ ] [ ] [ ][ ]T

    k L k ' L

    =

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    36/64

    Beam element for 3D analysis

    x

    y

    q2

    q1

    q5q7

    q8

    q11

    z

    q3

    q6q4

    displacement in local coordinatesq9

    q10

    q12

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    37/64

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    38/64

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    39/64

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    40/64

    if axial load is tensile, results from beam

    elements are higher than actual

    resultsare conservative

    than actual size of error is small until load is about 25% of

    Euler buckling load

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    41/64

    for 2-d, can use rotation matrices to get

    stiffness matrix for beams in anyorientation

    ,

    add capability for torsional loads about theaxis of the element, and flexural loading in

    x-z plane

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    42/64

    to derive the 3-d beam element, set up the

    beam with thex axis along its length, andyandz axes as lateral directions

    of simple strength of materials solution

    JG

    L

    JG

    LJG

    L

    JG

    L

    T

    Txi

    xj

    i

    j

    =

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    43/64

    J = torsional moment aboutx axis

    G = shear modulusL = length

    xi, xj are nodal degrees of freedom ofangle of twist at each end

    Ti, Tj are torques about thex axis at each

    end

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    44/64

    flexure in x-z plane adds another stiffness

    matrix like the first one derivedsuperposition of all these matrices gives a

    to orient a beam element in 3-d, use 3-d

    rotation matrices

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    45/64

    for beams long compared to their crosssection, displacement is almost all due toflexure of beam

    for short beams there is an additional lateral

    displacement due to transverse shearsome FE programs take this into account,

    but you then need to input a shear

    deformation constant (value associated withgeometry of cross section)

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    46/64

    limitations:

    same assumptions as in conventional beam andtorsion theories

    no better than beam anal sis

    axial load capability allows frame analysis, butformulation does not couple axial and lateral

    loading which are coupled nonlinearly

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    47/64

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    48/64

    Finite Element Model

    Element formulation exact for beam spans

    with no intermediate loads need only 1 element to model any such

    member that has constant cross section

    for distributed load, subdivide into severalelements

    need a node everywhere a point load isapplied

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    49/64

    need nodes where frame members connect,

    where they change direction, or where thecross section properties change

    ,

    have the same linear and rotationaldisplacement

    boundary conditions can be restraints onlinear displacements or rotation

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    50/64

    simple supports restrain only linear

    displacementsbuilt in supports restrain rotation also

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    51/64

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    52/64

    restrain vertical and horizontal displacements

    of nodes 1 and 3

    no restraint on rotation of nodes 1 and 3

    need a restraint inx direction to revent ri id

    body motion, even if all forces are inydirection

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    53/64

    cantilever beam

    has x and y linear displacements and rotation of node 1

    fixed

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    54/64

    point loads are idealized loads

    structure away from area of applicationbehaves as though point loads are applied

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    55/64

    only an exact formulation when there are no

    loads along the span for distributed loads, can get exact solution

    ever where else b re lacin the distributed

    load by equivalent loads and moments at thenodes

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    56/64

    C t I t A i t

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    57/64

    Computer Input Assistance

    preprocessor will usually have the same

    capabilities as for trussesa beam element consists of two node

    physical properties

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    58/64

    material properties:

    modulus of elasticity

    if dynamic or thermal analysis, mass densityand thermal coefficient of expansion

    physical properties: cross sectional area

    2 area moments of inertia

    torsion constant location of stress calculation point

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    59/64

    boundary conditions:

    specify node numbers and displacementcomponents that are restrained

    specify by node number and load components

    most commercial FE programs allows

    application of distributed loads but they use

    and equivalent load/moment set internally

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    60/64

    Output Processing and Evaluation

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    61/64

    Output Processing and Evaluation

    graphical output of deformed shape usually

    uses only straight lines to representmembers

    constraints on the deformed shape of eachmember

    to check these, subdivide each member andredo the analysis

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    62/64

    most FE codes do not make graphical

    presentations of beam stress results

    user must calculate some of these from the stress

    values returned

    for 2- beams, you get a norma stress norma to

    the cross section and a transverse shear acting on

    the face of the cross section

    normal stress has 2 components

    axial stress

    bending stress due to moment

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    63/64

  • 7/28/2019 Chapter4 [Modo de Compatibilidad]

    64/64

    3-d beams

    normal stress is combination of axial stress,flexural stress from localy- andz- moments

    stress due to moment is linear across a section

    the combination is usually highest at theextreme corners of the cross section

    may also have to include the effects of torsion

    get a 2-d stress state which must be evaluated

    also need to check for column buckling