cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001...

40

Transcript of cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001...

Page 1: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

cc3001 Métodos Matemáticos

Patricio Poblete

Otoño 2012

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 1 / 17

Page 2: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Funciones discretas

Para estudiar la eciencia de los algoritmos, generalmente usamos

funciones discretas, que miden cantidades tales tiempo de ejecución,

memoria utilizada, etc.

Estas funciones son discretas porque dependen del tamaño del

problema (n). Por ejemplo, n podría representar el número de

elementos a ordenar.

Notación: f (n) o bien fn

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 2 / 17

Page 3: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Funciones discretas

Para estudiar la eciencia de los algoritmos, generalmente usamos

funciones discretas, que miden cantidades tales tiempo de ejecución,

memoria utilizada, etc.

Estas funciones son discretas porque dependen del tamaño del

problema (n). Por ejemplo, n podría representar el número de

elementos a ordenar.

Notación: f (n) o bien fn

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 2 / 17

Page 4: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Funciones discretas

Para estudiar la eciencia de los algoritmos, generalmente usamos

funciones discretas, que miden cantidades tales tiempo de ejecución,

memoria utilizada, etc.

Estas funciones son discretas porque dependen del tamaño del

problema (n). Por ejemplo, n podría representar el número de

elementos a ordenar.

Notación: f (n) o bien fn

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 2 / 17

Page 5: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Notación O

Se dice que una función f (n) es O(g(n)) si existe una constante c > 0

y un n0 ≥ 0 tal que para todo n ≥ n0 se tiene que f (n) ≤ cg(n).

Se dice que una función f (n) es Ω(g(n)) si existe una constante c > 0

y un n0 ≥ 0 tal que para todo n ≥ n0 se tiene que f (n) ≥ cg(n).

Se dice que una función f (n) es Θ(g(n)) si f (n) = O(g(n) y

f (n) = Ω(g(n)).

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 3 / 17

Page 6: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Notación O

Se dice que una función f (n) es O(g(n)) si existe una constante c > 0

y un n0 ≥ 0 tal que para todo n ≥ n0 se tiene que f (n) ≤ cg(n).

Se dice que una función f (n) es Ω(g(n)) si existe una constante c > 0

y un n0 ≥ 0 tal que para todo n ≥ n0 se tiene que f (n) ≥ cg(n).

Se dice que una función f (n) es Θ(g(n)) si f (n) = O(g(n) y

f (n) = Ω(g(n)).

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 3 / 17

Page 7: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Notación O

Se dice que una función f (n) es O(g(n)) si existe una constante c > 0

y un n0 ≥ 0 tal que para todo n ≥ n0 se tiene que f (n) ≤ cg(n).

Se dice que una función f (n) es Ω(g(n)) si existe una constante c > 0

y un n0 ≥ 0 tal que para todo n ≥ n0 se tiene que f (n) ≥ cg(n).

Se dice que una función f (n) es Θ(g(n)) si f (n) = O(g(n) y

f (n) = Ω(g(n)).

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 3 / 17

Page 8: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Ejemplos

3n = O(n)2 = O(1)2 = O(n)3n + 2 = O(n)

3 = Ω(1)3n = Ω(n)3n = Ω(1)3n + 2 = Ω(n)

3n + 2 = Θ(n)

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 4 / 17

Page 9: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Ejemplos

3n = O(n)2 = O(1)2 = O(n)3n + 2 = O(n)

3 = Ω(1)3n = Ω(n)3n = Ω(1)3n + 2 = Ω(n)

3n + 2 = Θ(n)

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 4 / 17

Page 10: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Ejemplos

3n = O(n)2 = O(1)2 = O(n)3n + 2 = O(n)

3 = Ω(1)3n = Ω(n)3n = Ω(1)3n + 2 = Ω(n)

3n + 2 = Θ(n)

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 4 / 17

Page 11: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Ecuaciones de Recurrencia

Son ecuaciones en que el valor de la función para un n dado se obtiene

en función de valores anteriores.

Esto permite calcular el valor de la función para cualquier n, a partir

de condiciones de borde (o condiciones iniciales)

Ejemplo: Torres de Hanoi

an = 2an−1 + 1

a0 = 0

Ejemplo: Fibonacci

fn = fn−1 + fn−2

f0 = 0

f1 = 1

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 5 / 17

Page 12: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Ecuaciones de Recurrencia

Son ecuaciones en que el valor de la función para un n dado se obtiene

en función de valores anteriores.

Esto permite calcular el valor de la función para cualquier n, a partir

de condiciones de borde (o condiciones iniciales)

Ejemplo: Torres de Hanoi

an = 2an−1 + 1

a0 = 0

Ejemplo: Fibonacci

fn = fn−1 + fn−2

f0 = 0

f1 = 1

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 5 / 17

Page 13: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Ecuaciones de Recurrencia

Son ecuaciones en que el valor de la función para un n dado se obtiene

en función de valores anteriores.

Esto permite calcular el valor de la función para cualquier n, a partir

de condiciones de borde (o condiciones iniciales)

Ejemplo: Torres de Hanoi

an = 2an−1 + 1

a0 = 0

Ejemplo: Fibonacci

fn = fn−1 + fn−2

f0 = 0

f1 = 1

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 5 / 17

Page 14: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Ecuaciones de Recurrencia

Son ecuaciones en que el valor de la función para un n dado se obtiene

en función de valores anteriores.

Esto permite calcular el valor de la función para cualquier n, a partir

de condiciones de borde (o condiciones iniciales)

Ejemplo: Torres de Hanoi

an = 2an−1 + 1

a0 = 0

Ejemplo: Fibonacci

fn = fn−1 + fn−2

f0 = 0

f1 = 1

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 5 / 17

Page 15: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Ecuaciones de Primer Orden

Consideremos una ecuación de la forma

an = ban−1 + cn

donde b es una constante y cn es una función conocida.

Como precalentamiento, consideremos el caso b = 1:

an = an−1 + cn

Esto se puede poner en la forma

an − an−1 = cn

Sumando a ambos lados, queda una suma telescópica:

an = a0 +∑

1≤k≤n

ck

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 6 / 17

Page 16: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Ecuaciones de Primer Orden

Consideremos una ecuación de la forma

an = ban−1 + cn

donde b es una constante y cn es una función conocida.

Como precalentamiento, consideremos el caso b = 1:

an = an−1 + cn

Esto se puede poner en la forma

an − an−1 = cn

Sumando a ambos lados, queda una suma telescópica:

an = a0 +∑

1≤k≤n

ck

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 6 / 17

Page 17: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Ecuaciones de Primer Orden

Consideremos una ecuación de la forma

an = ban−1 + cn

donde b es una constante y cn es una función conocida.

Como precalentamiento, consideremos el caso b = 1:

an = an−1 + cn

Esto se puede poner en la forma

an − an−1 = cn

Sumando a ambos lados, queda una suma telescópica:

an = a0 +∑

1≤k≤n

ck

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 6 / 17

Page 18: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Ecuaciones de Primer Orden

Consideremos una ecuación de la forma

an = ban−1 + cn

donde b es una constante y cn es una función conocida.

Como precalentamiento, consideremos el caso b = 1:

an = an−1 + cn

Esto se puede poner en la forma

an − an−1 = cn

Sumando a ambos lados, queda una suma telescópica:

an = a0 +∑

1≤k≤n

ck

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 6 / 17

Page 19: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Ecuaciones de Primer Orden (cont.)

Para resolver el caso general:

an = ban−1 + cn

dividamos ambos lados por el factor sumante bn:

an

bn=

an−1

bn−1+

cn

bn

Si denimos An = an/bn, Cn = cn/b

n, queda una ecuación que ya sabemos

resolver:

An = An−1 + Cn

con solución

An = A0 +∑

1≤k≤n

Ck

y nalmente

an = a0bn +

∑1≤k≤n

ckbn−k

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 7 / 17

Page 20: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Ejemplo: Torres de Hanoi

El número de movimientos de discos está dado por la ecuación

an = 2an−1 + 1

a0 = 0

De acuerdo a lo anterior, la solución es

an =∑

1≤k≤n

2n−k =∑

0≤k≤n−1

2k

lo cual se simplica a

an = 2n − 1

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 8 / 17

Page 21: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Ejemplo: Torres de Hanoi

El número de movimientos de discos está dado por la ecuación

an = 2an−1 + 1

a0 = 0

De acuerdo a lo anterior, la solución es

an =∑

1≤k≤n

2n−k =∑

0≤k≤n−1

2k

lo cual se simplica a

an = 2n − 1

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 8 / 17

Page 22: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Ejercicio

Generalizar este método para resolver ecuaciones de la forma

an = bnan−1 + cn

donde bn y cn son funciones conocidas.

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 9 / 17

Page 23: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Ecuaciones lineales con coecientes constantes

Ejemplo: Fibonacci

fn = fn−1 + fn−2

f0 = 0

f1 = 1

Este tipo de ecuaciones tienen soluciones exponenciales, de la forma

fn = λn:fn = fn−1 + fn−2 ⇐⇒ λn = λn−1 + λn−2

Dividiendo ambos lados por λn−2 obtenemos la ecuación característica

λ2 − λ− 1 = 0

cuyas raíces son

φ =1 +√5

2≈ 1.618 . . . , φ =

1−√5

2≈ −0.618 . . .

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 10 / 17

Page 24: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Ecuaciones lineales con coecientes constantes

Ejemplo: Fibonacci

fn = fn−1 + fn−2

f0 = 0

f1 = 1

Este tipo de ecuaciones tienen soluciones exponenciales, de la forma

fn = λn:fn = fn−1 + fn−2 ⇐⇒ λn = λn−1 + λn−2

Dividiendo ambos lados por λn−2 obtenemos la ecuación característica

λ2 − λ− 1 = 0

cuyas raíces son

φ =1 +√5

2≈ 1.618 . . . , φ =

1−√5

2≈ −0.618 . . .

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 10 / 17

Page 25: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Ecuaciones lineales con coecientes constantes

Ejemplo: Fibonacci

fn = fn−1 + fn−2

f0 = 0

f1 = 1

Este tipo de ecuaciones tienen soluciones exponenciales, de la forma

fn = λn:fn = fn−1 + fn−2 ⇐⇒ λn = λn−1 + λn−2

Dividiendo ambos lados por λn−2 obtenemos la ecuación característica

λ2 − λ− 1 = 0

cuyas raíces son

φ =1 +√5

2≈ 1.618 . . . , φ =

1−√5

2≈ −0.618 . . .

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 10 / 17

Page 26: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Ecuaciones lineales con coecientes constantes(cont.)

La solución general se obtiene como una combinación lineal de estas

soluciones:

fn = Aφn + Bφn

La condición inicial f0 = 0 implica que B = −A, esto es,

fn = A(φn − φn)

y la condición f1 = 1 implica que

A(φ− φ) = A√5 = 1

con lo cual obtenemos nalmente la fórmula de los números de Fibonacci:

fn =1√5

(φn − φn)

Nótese que φn → 0 cuando n→∞, de modo que fn = Θ(φn).

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 11 / 17

Page 27: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Ecuaciones lineales con coecientes constantes(cont.)

La solución general se obtiene como una combinación lineal de estas

soluciones:

fn = Aφn + Bφn

La condición inicial f0 = 0 implica que B = −A, esto es,

fn = A(φn − φn)

y la condición f1 = 1 implica que

A(φ− φ) = A√5 = 1

con lo cual obtenemos nalmente la fórmula de los números de Fibonacci:

fn =1√5

(φn − φn)

Nótese que φn → 0 cuando n→∞, de modo que fn = Θ(φn).

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 11 / 17

Page 28: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Ecuaciones lineales con coecientes constantes(cont.)

La solución general se obtiene como una combinación lineal de estas

soluciones:

fn = Aφn + Bφn

La condición inicial f0 = 0 implica que B = −A, esto es,

fn = A(φn − φn)

y la condición f1 = 1 implica que

A(φ− φ) = A√5 = 1

con lo cual obtenemos nalmente la fórmula de los números de Fibonacci:

fn =1√5

(φn − φn)

Nótese que φn → 0 cuando n→∞, de modo que fn = Θ(φn).

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 11 / 17

Page 29: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Ecuaciones lineales con coecientes constantes(cont.)

La solución general se obtiene como una combinación lineal de estas

soluciones:

fn = Aφn + Bφn

La condición inicial f0 = 0 implica que B = −A, esto es,

fn = A(φn − φn)

y la condición f1 = 1 implica que

A(φ− φ) = A√5 = 1

con lo cual obtenemos nalmente la fórmula de los números de Fibonacci:

fn =1√5

(φn − φn)

Nótese que φn → 0 cuando n→∞, de modo que fn = Θ(φn).

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 11 / 17

Page 30: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Teorema Maestro

Consideremos una ecuación de la forma

T (n) = pT (n

q) + Kn

Supongamos que n es una potencia de q, digamos n = qk . Entonces

T (qk) = pT (qk−1) + Kqk

y si denimos ak = T (qk), tenemos la ecuación

ak = pak−1 + Kqk

la cual tiene solución

ak = a0pk + K

∑1≤j≤k

qjpk−j

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 12 / 17

Page 31: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Teorema Maestro

Consideremos una ecuación de la forma

T (n) = pT (n

q) + Kn

Supongamos que n es una potencia de q, digamos n = qk . Entonces

T (qk) = pT (qk−1) + Kqk

y si denimos ak = T (qk), tenemos la ecuación

ak = pak−1 + Kqk

la cual tiene solución

ak = a0pk + K

∑1≤j≤k

qjpk−j

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 12 / 17

Page 32: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Teorema Maestro

Consideremos una ecuación de la forma

T (n) = pT (n

q) + Kn

Supongamos que n es una potencia de q, digamos n = qk . Entonces

T (qk) = pT (qk−1) + Kqk

y si denimos ak = T (qk), tenemos la ecuación

ak = pak−1 + Kqk

la cual tiene solución

ak = a0pk + K

∑1≤j≤k

qjpk−j

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 12 / 17

Page 33: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Teorema Maestro (cont.)

Como k = logq n, tenemos

T (n) = T (1)plogq n + Kplogq n∑

1≤j≤logqn

(q

p)j

y observamos que

plogq n = (qlogq p)logq n = (qlogq n)logq p = nlogq p

Por lo tanto

T (n) = nlogq p(T (1) + K∑

1≤j≤logqn

(q

p)j)

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 13 / 17

Page 34: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Teorema Maestro: Caso p < q

T (n) = nlogq p(T (1) + K∑

1≤j≤logqn

(q

p)j)

En el caso p < q tenemos:

T (n) = nlogq p(T (1) + Kq

p

(qp

)logq n − 1qp− 1

)

⇒ T (n) = Θ(n)

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 14 / 17

Page 35: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Teorema Maestro: Caso p < q

T (n) = nlogq p(T (1) + K∑

1≤j≤logqn

(q

p)j)

En el caso p < q tenemos:

T (n) = nlogq p(T (1) + Kq

p

(qp

)logq n − 1qp− 1

)

⇒ T (n) = Θ(n)

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 14 / 17

Page 36: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Teorema Maestro: Caso p = q

T (n) = nlogq p(T (1) + K∑

1≤j≤logqn

(q

p)j)

En el caso p = q tenemos:

T (n) = n(T (1) + K∑

1≤j≤logqn

1)

=⇒ T (n) = Θ(n log n)

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 15 / 17

Page 37: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Teorema Maestro: Caso p = q

T (n) = nlogq p(T (1) + K∑

1≤j≤logqn

(q

p)j)

En el caso p = q tenemos:

T (n) = n(T (1) + K∑

1≤j≤logqn

1)

=⇒ T (n) = Θ(n log n)

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 15 / 17

Page 38: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Teorema Maestro: Caso p > q

T (n) = nlogq p(T (1) + K∑

1≤j≤logqn

(q

p)j)

En el caso p > q tenemos:

T (n) = nlogq p(T (1) + K∑

1≤j≤logqn

(q

p)j)

Peroq

p< 1 =⇒ T (n) ≤ nlogq n(T (1) + K

qp

1− qp

)

=⇒ T (n) = Θ(nlogq p)

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 16 / 17

Page 39: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Teorema Maestro: Caso p > q

T (n) = nlogq p(T (1) + K∑

1≤j≤logqn

(q

p)j)

En el caso p > q tenemos:

T (n) = nlogq p(T (1) + K∑

1≤j≤logqn

(q

p)j)

Peroq

p< 1 =⇒ T (n) ≤ nlogq n(T (1) + K

qp

1− qp

)

=⇒ T (n) = Θ(nlogq p)

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 16 / 17

Page 40: cc3001 Métodos Matemáticos - users.dcc.uchile.clnbaloian/cc3001-02/ppts/met-mat.pdf · cc3001 Métodos Matemáticos Patricio Poblete Otoño 2012 Patricio Poblete cc3001 Métodos

Ejercicio

Estudiar la siguiente ecuación, que generaliza el Teorema Maestro:

T (n) = pT (n

q) + Knr

Patricio Poblete () cc3001 Métodos Matemáticos Otoño 2012 17 / 17