Caract. Asfaltos Creep Repetido AEC

45
CARACTERIZACION DE ASFALTOS MEDIANTE CREEP REPETIDO MULTI-ESFUERZO EN REOMETRO DE CORTE DINAMICO. Ing. Israel Sandoval Navarro Jefe de Laboratorio y Reología SURFAX S.A. de C.V. Ing. Ignacio Cremades Ibáñez Director Técnico SURFAX S.A. de C.V.

Transcript of Caract. Asfaltos Creep Repetido AEC

Page 1: Caract. Asfaltos Creep Repetido AEC

CARACTERIZACION DE ASFALTOS MEDIANTE CREEP REPETIDO MULTI-ESFUERZO EN REOMETRO DE CORTE

DINAMICO.

Ing. Israel Sandoval Navarro Jefe de Laboratorio y Reología

SURFAX S.A. de C.V.

Ing. Ignacio Cremades Ibáñez Director Técnico

SURFAX S.A. de C.V.

Page 2: Caract. Asfaltos Creep Repetido AEC

Sandoval / Cremades

3

CARACTERIZACION DE ASFALTOS MEDIANTE CREE P REPETIDO MULTI-ESFUERZO EN REOMETRO DE CORTE DINAMICO.

RESUMEN En el presente trabajo se revisan y comparan las diferentes propuestas actualmente en estudio a nivel mundial para la caracterización de asfaltos por reología, en cuanto a resistencia ante la deformación permanente se refiere, así como la metodología actualmente empleada en México, SUPERPAVE.

Se revisan parámetros como el empleado actualmente δsenG *

el cual involucra la resistencia

total del asfalto ante la deformación y la aportación de la componente elástica al desempeño del asfalto en el pavimento y que ha demostrado no clasificar correctamente algunos asfaltos, especialmente los modificados.

El parámetro

δδ tan

11

*

⋅−

sen

G el cual da mas importancia al ángulo de fase, resaltando la

respuesta elástica del asfalto [1,2,3].

También se contempla el parámetro Viscosidad a Corte Cero 0η el cual implica la resistencia que ofrece el asfalto al flujo. Este flujo es el causante de las roderas o deformaciones permanentes [4,5,6]. Por ultimo se revisa la propuesta más actual, la Recuperación Elástica mediante Creep Repetido, esta metodología involucra la resistencia ante la deformación, la memoria elástica y la dependencia del comportamiento del asfalto a la variación del esfuerzo aplicado[7,8]. Se analizan asfaltos clasificados como PG 76, pero que tienen diferencias en cuanto a las materias primas y procesos empleados para su modificación, además de que presentan algunas diferencias en otras características como ángulo de fase. Estos asfaltos son clasificados por el método SUPERPAVE como PG 76 y cumplen con la exigencia de ángulo de fase en México, sin embargo pueden presentar un comportamiento diferente en campo debido a deficiencias comprobadas de este método. Se pretende resaltar las diferencias entre los métodos de caracterización y determinar cual aportaría mas información para la selección correcta de un asfalto.

Page 3: Caract. Asfaltos Creep Repetido AEC

Análisis de asfaltos mediante Creep Repetido

4

INTRODUCCIÓN El constante cambio en las condiciones de trabajo de las carreteras como aumento de cargas y velocidades de transporte han obligado a buscar nuevas herramientas para la medición y predicción del desempeño de los asfaltos en campo, el reómetro de corte dinámico (DSR por sus siglas en ingles) a demostrado ser una de las más importantes herramientas con las que se cuenta en la actualidad para determinar el comportamiento reológico de los asfaltos. El DSR es usado en la especificación de SUPERPAVE para determinar las propiedades de los asfaltos en el rango de temperaturas intermedias y altas (52-82 ºC) de trabajo. El parámetro de especificación adoptado por SHRP (Strategic Highway Research Program) para determinar el desempeño de los asfaltos vírgenes o modificados ante la deformación permanente, comúnmente conocida como formación de Roderas, es el módulo complejo dividido por el seno del ángulo de fase G*/senδ. Las Roderas en los pavimentos asfálticos son causadas por la acumulación de pequeñas deformaciones ocasionadas por las cargas del tráfico. Durante cada periodo de carga se realiza cierto trabajo deformando la superficie del pavimento. La energía aplicada en cada ciclo de carga causa una deformación en la superficie, parte de esta energía se almacena para recuperar una porción de la deformación causada y otra parte de la energía aplicada es disipada en forma de calor y de flujo, causando la deformación permanente. Para reducir la formación de roderas debe minimizarse la energía disipada en cada ciclo de carga. Para un material viscoelástico como lo es el asfalto en las temperaturas normales de trabajo, la energía disipada se puede calcular: δεσπ senWC ⋅⋅⋅= Este fenómeno puede considerarse como controlado por esfuerzo por la aplicación de cargas cíclicas, para un fenómeno de este tipo σo es el esfuerzo aplicado δεσπ senWC ⋅⋅⋅= 0

La deformación debida al esfuerzo aplicado puede representarse como: *

0

Gσε = .

Sustituyendo en la ecuación de energía, tenemos que:

δ

σπ

senG

WC *12

0 ⋅⋅=

La energía disipada en cada ciclo de carga es inversamente proporcional al parámetro

δsenG * .

Page 4: Caract. Asfaltos Creep Repetido AEC

Sandoval / Cremades

5

Este parámetro combina la resistencia total del material ante la deformación │G*│ y la relativa no-elasticidad del ligante asfáltico reflejada por sen δ.

δδδδ2222

G*2

Com

pone

nte

Vis

cosa

G''

Alta

s T

empe

ratu

ras

Componente Elástica G'Bajas Temperaturas

G*1

δδδδ1111

Importancia del ángulo de fase (δ)(δ)(δ)(δ)

G* es la resistencia total del material e incluye ambos comportamientos Elástico y Viscoso

δ δ δ δ indica la proporción de cada uno

Fig. 1. Importancia del ángulo de fase (δ). Cuanto menor es el ángulo de fase mayor es la capacidad del material de recuperar las deformaciones.

Teniendo que senδ = G”/ │G*│y que G” es el módulo de pérdida o el módulo viscoso que esta relacionado con la capacidad del material de disipar energía en cada ciclo de carga, su relación con │G*│ da una medición relativa de la componente no-elástica de la resistencia total a la deformación. Esto significa que la resistencia a la deformación permanente de un ligante se puede incrementar al aumentar el valor del módulo complejo │G*│ o al decrecer la parte no elástica senδ. │G*│ y δ son función de la temperatura y del tiempo de carga, por eso se miden a la temperatura máxima de diseño y a la frecuencia de 10 rad/seg que se asemeja al efecto producido sobre el pavimento por un vehículo moviéndose entre 80 y 90 kilómetros por hora.

En general, para todos los asfaltos vírgenes y para la mayoría de los asfaltos modificados, la oxidación resultante durante la producción de la mezcla en caliente (HMA) se traduce en un incremento del módulo complejo G* y en un decremento del ángulo de fase δ. Esto se traduce en una mayor resistencia a la deformación y en mayor elasticidad, lo que significa una mayor resistencia a la formación de roderas. Las propiedades iniciales del asfalto en el pavimento son más críticas desde el punto de vista de la deformación permanente, que las del asfalto envejecido, es por esto que Superpave especifica un límite mínimo para el valor de │G*│/senδ en el asfalto original y en el asfalto envejecido en horno (TFO o RTFO).

Page 5: Caract. Asfaltos Creep Repetido AEC

Análisis de asfaltos mediante Creep Repetido

6

Aunque el parámetro δsenG * clasifica eficientemente el desempeño de los asfaltos vírgenes

ante la deformación permanente, se ha demostrado mediante numerosos estudios como los realizados en el ALF (Accelerated Loading Facility) del Turner Fairbank Hyghway Research Center [1], que este parámetro no clasifica correctamente algunos asfaltos, especialmente los asfaltos modificados. Esto es debido en primera instancia a que el desarrollo de SUPERPAVE se realizó con

asfaltos vírgenes y a que el parámetro δsenG * presenta poca sensibilidad a los cambios en el

ángulo de fase (δ). Esta deficiencia en la clasificación de los asfaltos puede resultar en una mala elección de un ligante para determinadas condiciones de trabajo del pavimento en campo.

La poca sensibilidad ante los cambios de ángulo de fase de δsenG * implica la posibilidad de

que se clasifiquen en un mismo PG (Performance Grade) asfaltos que presenten comportamientos muy diferentes ante la deformación permanente, a continuación se explica este punto. En primer lugar si se tiene un asfalto envejecido por RTFO, PG 76, modificado con un

elastómero, clasificado mediante δsenG * y un ángulo de fase de 58.82°, este valor bajo de

δ refleja una alta capacidad de este asfalto modificado de recuperar la deformación causada por el tráfico. Sin embargo es posible tener un asfalto modificado con un plastómero, envejecido por RTFO, que por la naturaleza de este tipo de modificador presenta poca

elasticidad, y el parámetro δsenG * lo clasifica de igual forma como un PG 76 aunque este

presente un ángulo de fase alto de 75.17° , este va lor refleja poca capacidad del asfalto modificado de almacenar energía para recuperar la deformación causada por el paso de los vehículos, la mayor parte de la energía aplicada durante el ciclo de carga se disipa en forma de deformación permanente.

Asfalto Modificado PG

(RTFO)

TF RTFO

δsenG * =2.2 kPa δ

Recuperación Elástica por

Torsión a 25°C

Recuperación Elástica por

Ductilometro a 25 °C

AC-20 + R.E.T. (Elastómero) 76 81.9 °C 58.82 ° 50 % 82 %

AC-20 + E.V.A. (Plastómero) 76 80.1 °C 75.17 ° 20 % 45 %

RET : TERPOLIMERO ELASTOMERICO REACTIVO ; TF= Temperatura de falla G*/senδ = 2.2kPa Nota : El Asfalto modificado con plastómero tiene u n ángulo de fase de 75.17 ° a 76 °C, 16 ° por encima del modificado con el elastómero.

Page 6: Caract. Asfaltos Creep Repetido AEC

Sandoval / Cremades

7

El parámetro δsenG * determina que el asfalto modificado con un plastómero presenta un

desempeño igual ante la deformación permanente que el asfalto modificado con un elastómero, sin embargo tomando en cuenta los valores de Angulo de fase, Recuperación Elástica por Torsión y Recuperación Elástica por Ductilometro es claro que el asfalto con elastómero tiene mayor capacidad elástica que el modificado con plastómero. La importancia de obtener un parámetro que clasifique correctamente todos los tipos de asfalto, ya sean vírgenes o modificados, ha provocado que los investigadores alrededor del mundo se den a la tarea de realizar diversos estudios ya sea haciendo modificaciones a los parámetros ya existentes como el presentado en el III congreso de AMAAC en 2003 [3] y

propuesto por Shenoy A. [1,2] que implica la modificación del parámetro δsenG * para

aumentar su sensibilidad al ángulo de fase que resulta en la ecuación

δδ tan

11

*

⋅−

sen

G ,

además se proponía el parámetro de control de roderas CR que clasifica y diferencia la capacidad del cemento asfáltico de recuperar las deformaciones causadas al aplicar un esfuerzo ó proponiendo nuevos parámetros y métodos de prueba como la Viscosidad a Corte

Cero 0η (propuesta Europea) presentado en el IV congreso de AMAAC y el XIII congreso CILA 2005 [4,5,6], este parámetro permite estimar la resistencia del asfalto al flujo. La propuesta mas actual y la que parece tener mas aceptación es la Recuperación Elástica en Creep Repetido (propuesta en U.S.A.) la cual pretende usarse como un plus al método SUPERPAVE para evaluar la memoria elástica de los asfaltos modificados y la dependencia de su comportamiento ante los cambios de esfuerzo aplicado. A continuación se describen cada una de estas propuestas de forma mas detallada.

Page 7: Caract. Asfaltos Creep Repetido AEC

Análisis de asfaltos mediante Creep Repetido

8

CRITERIO SUPERPAVE REFINADO

δδ tan

11

*

⋅−

sen

G.

En la prueba de Recuperación en Creep Repetido (RCRB), al aplicar una fuerza σo kPa durante “t” seg, la deformación total o deformación máxima γmax debe ser la suma de la deformación elástica o recuperable más la deformación viscosa o no recuperable.

nrecrec γγγ %%% max += (1)

*100% 0

max G

σγ = (2)

20 ''

'

100

%

G

Grec =σ

γ (3)

Cuando se da suficiente tiempo para que la muestra se recupere totalmente. Bajo esta premisa, teniendo en cuenta que G’ = │G*│ senδ (módulo viscoso) y G” = │G*│ cosδ (módulo elástico) y sustituyendo se puede llegar a la expresión:

δδγγ

sennrec

tan

11

%

%

max

−= (4)

Esta ecuación da un valor de 1 cuando δ = 90º lo que indica que se trata de un material viscoso. Por otro lado los resultados de la ecuación se vuelven inconsistentes para valores de δ < 52º. Como las pruebas se llevan a cabo a temperaturas relativamente altas, normalmente no se obtienen ángulos de fase menores a 52º, aunque se han dado en algunos casos. Sustituyendo (2) en (4)

−=δδ

σγsenGnrec tan

11

*

100% 0

Como G* y δ son función de la frecuencia y de la temperatura, el efecto de la velocidad del tráfico y de la temperatura del pavimento, están integrados en esta ecuación. La deformación permanente se puede expresar como:

Page 8: Caract. Asfaltos Creep Repetido AEC

Sandoval / Cremades

9

)tan/1(1

*100% 0

δδ

σγ

sen

Gnrec

=

Para minimizar la deformación permanente se debe maximizar el término

)tan/1(1

*

δδsen

G

En la figura siguiente se muestra como se determina la temperatura de falla THS para un asfalto modificado, empleando el criterio SUPERPAVE refinado se da un aumento considerable en la temperatura máxima de trabajo así como un aumento de PG76 a PG88.

70 75 80 85 90 950123456789

101112131415161718

THS

=91.53 oC

TF=81.9 oC

G*/senδ

G*/(1-1/(tanδsenδ))

Temperatura, (oC)

G*/

(1-1

/(ta

nδse

nδ))

G*/

senδ

(kP

a)

Asfalto Modificado RTFO

Fig. 2 - Determinación de la temperatura de falla y grado de desempeño PG, empleando los

métodos SUPERPAVE δsenG * y SUPERPAVE REFINADO

δδ tan

11

*

⋅−

sen

G .

Los valores de 1.0 kPa para asfaltos originales y de 2.2 kPa para asfaltos envejecidos se mantienen. Para los asfaltos vírgenes los dos parámetros coinciden mientras que para los asfaltos modificados los resultados difieren permitiendo una mejor clasificación de estos ya

Page 9: Caract. Asfaltos Creep Repetido AEC

Análisis de asfaltos mediante Creep Repetido

10

que el parámetro SUPERPAVE REFINADO es más sensible a las variaciones en el ángulo de fase y describe con mayor precisión la deformación no recuperable de los asfaltos. Con este parámetro se han podido diferenciar asfaltos con diferente comportamiento frente a la deformación permanente. Este parámetro PBG (Performance Based Grade) ha sido comparado con resultados experimentales encontrándose una buena correlación, que permite diferenciar entre varios asfaltos modificados con igual grado PG. Es necesario insistir en que este parámetro no es válido para ángulos de fase inferiores a 52º, cuando los asfaltos modificados presentan valores iguales o menores a 52°, como en el caso de algunos modificadores o asfaltos oxidados, es necesario emplear la ecuación:

( )Psen

G

δ*

Donde P = 9, pero puede tomar otro valor si se encuentra una mejor correlación. Este parámetro puede ser considerado como una especificación para las mezclas asfalto agregado para evaluar su potencial ahuellamiento.

Page 10: Caract. Asfaltos Creep Repetido AEC

Sandoval / Cremades

11

VISCOSIDAD A CORTE CERO 0η (ZSV por sus siglas en ingles Zero Shear Viscosity). La viscosidad a corte cero es la viscosidad medida a velocidades de corte extremadamente bajas, velocidades cercanas a cero.

1 10 100

2x105

4x105

6x105

8x105

106

Barrido de frecuencia

η0

Eta'

Viscosidad(P)

ω , (rad/s)

Fig. 3. Viscosidad a Corte Cero. Es el valor donde la viscosidad se vuelve constante.

Al aplicar un esfuerzo a un material a velocidades tan bajas la energía se va disipando entre cada una de las capas del material (Fig. 4), hasta que la cantidad de energía disipada es constante y la resistencia al flujo que ofrece la estructura del material se vuelve constante, por lo que la viscosidad de corte no cambia y se hace independiente de la velocidad de corte. Fig. 4. Capas del material. La cantidad de energía disipada entre ellas es constante.

flujo

Cantidad de energía disipadaconstante a través de las capas del material

Page 11: Caract. Asfaltos Creep Repetido AEC

Análisis de asfaltos mediante Creep Repetido

12

1 10 100

2x105

4x105

6x105

8x105

106

Barrido de frecuencia

η0

Eta'

Viscosidad(P)

ω , (rad/s)

Fig.5. La viscosidad depende de la velocidad de corte. Cuando se aplica un esfuerzo a velocidades relativamente altas, la energía actúa sobre las primeras capas del material sin que este tenga la capacidad de disipar la energía entre ellas, por lo que se vencen las energías intermoleculares, como pueden ser fuerzas de Van Der Waals o puentes de hidrógeno. Al vencer estas energías intermoleculares se afecta la estructura del material y por lo tanto ofrece menor resistencia al flujo. VISCOSIDAD A CORTE CERO COMO PARAMETRO DE ESPECIFIC ACIÓN. Como se ha mencionado anteriormente el sistema de clasificación de asfaltos grado PG propuesto por SUPERPAVE ha sido exitoso en la clasificación de los asfaltos convencionales, pero ha demostrado poca confiabilidad en la caracterización de los asfaltos modificados

debido a que el parámetro δsenG * no es lo suficientemente sensible a los cambios en el

ángulo de fase. El fundamento técnico empleado por SUPERPAVE para caracterizar eficientemente el comportamiento del asfalto es valido pero se ve bloqueado por la poca

sensibilidad del parámetro δsenG * , por esto las condiciones y características que debe

cumplir el asfalto no cambian, lo que cambia es el parámetro mediante el cual se caracteriza el comportamiento del asfalto. Para determinar el valor ZSV que deben cumplir los asfaltos como valor de especificación se determinó el grado de desempeño PG para las diferentes muestras de asfaltos vírgenes, se

determinó la temperatura de falla, temperatura a la cual δsenG * tiene el valor de 1 kPa para

asfaltos originales y 2.2 kPa para asfaltos envejecidos.

Page 12: Caract. Asfaltos Creep Repetido AEC

Sandoval / Cremades

13

Se determinó en el DSR mediante barridos de frecuencia, el valor de la viscosidad de corte cero que presentan los asfaltos vírgenes a la temperatura de falla de cada uno de ellos

( temperatura a la cual δsenG * = 1.0 kPa para original y 2.2 kPa para envejecido), la TF de

cada muestra de asfalto es diferente a las demás pero a esta temperatura todos tienen el valor

de δsenG * de 1.0 kPa para original y 2.2 kPa para envejecido y de la misma forma el mismo

valor en la viscosidad de corte cero η0. La Viscosidad de corte cero es uno de los principales candidatos para convertirse en el parámetro de especificación vigente en Europa [5]. Determinación de los grados de desempeño PG. En el Reómetro de Corte Dinámico se determina el PG y TF para cada uno de los asfaltos, bajo las condiciones de prueba normalmente usadas empleando el software SHRP.

64 65 66 67 68 69 70

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

PG 70

G*/senδ

TF=66.65 oC

Temperatura, (oC)

G*/

senδ

(KP

a)

G*/senδAC-20 Salamanca Virgen PG 64

PG 64

10 rad/seg

Fig.6. Determinación del PG y la temperatura de falla. Determinación del valor de especificación de Viscos idad de corte cero η0. Barridos de deformación. Se realizan barridos de deformación entre 0.1 y 10%, en un rango de temperaturas de aproximadamente 30º C alrededor de la TF , con esta información se determina la zona de respuesta lineal viscoelástica, de esta zona se determina el esfuerzo a emplear en los barridos de frecuencia. Con esto se garantiza no afectar la estructura del material durante el análisis dinámico en el DSR.

Page 13: Caract. Asfaltos Creep Repetido AEC

Análisis de asfaltos mediante Creep Repetido

14

103 104 105

2x106

4x106

6x106

8x106

107AC-20 Salamanca virgen

τ

Para el barrido de frecuenciapuede utilizarse cualquier τdentro de este rango.

Zona lineal viscoelástica

G*

G*(dyn/cm2)

Esfuerzo (τ) , (dyn/cm2)

Fig.7. Determinación de la zona lineal Viscoelástica. Barridos de frecuencia. Se realizan barridos de frecuencia entre 0.1 y 100 rad/seg (en algunos casos es necesario emplear un rango de frecuencias entre 0.01 y 100 rad/seg). Se aplica el mismo esfuerzo empleado para determinar el grado de desempeño y la temperatura de falla ya que este nivel de esfuerzo se encuentra dentro de la zona de respuesta lineal-viscoelástica. Estos barridos se realizan de igual forma que los barridos de deformación, en un rango de temperaturas de aproximadamente 30 ºC alrededor de la temperatura de falla.

0.1 1 10 100

η0 80 °C

η0 77 °C

η0 74 °C

η0 71 °C

η0 68 °C

η0 65 °C

Frecuencia (rad/s)

Vis

cosi

dad

(P

a.s)

AC-20 Tampico Virgen RTFO

η0 62 °C

Fig. 8. Barridos de frecuencia a las diferentes temperaturas

Page 14: Caract. Asfaltos Creep Repetido AEC

Sandoval / Cremades

15

Se determina el valor de la Viscosidad de Corte Cero a cada una de las temperaturas de análisis. Con estos valores de Viscosidad de Corte Cero η0, se realiza una Curva de comportamiento de Log (η0) contra temperatura, y de esta curva se determina el valor de la viscosidad de corte

cero a la temperatura de falla (temperatura a la cual δsenG * toma el valor de 1.0 kPa para

asfalto original y 2.2 para asfalto envejecido).

50 55 60 65 70 75 80

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

5.2

AC-20 Salamanca Virgen

Curva de Comportamiento Log(ηηηη0000) vs T

log

(Vis

cosi

dad

de c

orte

cer

o ηη ηη 0)

(Pa.

s)

Temperatura (0C)

Fig.9. Curva de comportamiento de Log (η0) contra Temperatura. Valor de Viscosidad de Corte

Cero a la temperatura de falla donde δsenG * =1.0 kPa para original ó 2.2 kPa para

envejecido.

Page 15: Caract. Asfaltos Creep Repetido AEC

Análisis de asfaltos mediante Creep Repetido

16

50 55 60 65 70 75 80 851.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

AC-20 Tampico

PG 82PG 76PG 52 PG 70PG 64

Log

(η(η (η(η00 00)

(

Pas

)

Temperatura °C

Asfaltos Virgenes RTFO

PG 58

AC-5 Salamanca

AC-20 Salamanca

AC-20 Cadereyta

Log (η(η(η(η0000)=2.39

Fig.10. Valor de especificación de Viscosidad a Corte Cero establecido de las curvas de comportamiento de todas las muestras de asfalto virgen a cada una de sus temperaturas de falla. Se determino un valor mínimo especificación de Log ( η0) =2.39 para asfalto envejecido. Este valor es el que los Cementos Asfálticos deberán cumplir como especificación para estimar la resistencia ante la deformación permanente. La temperatura a la cual un Ligante Asfáltico presenta este Valor de Viscosidad de corte cero será la Temperatura máxima de trabajo del pavimento asfáltico. La temperatura máxima de trabajo de un asfalto, será la temperatura a la cual Log (η0) tiene el valor de 2.39 para asfalto envejecido y el Grado de desempeño PG es el grado anterior a esta temperatura, ya sean vírgenes o modificados, las exigencias no cambian lo que cambia es el parámetro para medir el desempeño.

Page 16: Caract. Asfaltos Creep Repetido AEC

Sandoval / Cremades

17

PRUEBA DE RECUPERACIÓN ELASTICA MULTI-ESFUERZO EN C REEP REPETIDO en Reometro de Corte Dinámico. La prueba de CREEP-RECOVERY (RCRT, Repited Creep-Recovery Test) consiste en aplicar a un material un esfuerzo determinado, causando con esto una deformación (creep), después de un periodo determinado en el cual se mantuvo el esfuerzo constante, se retira totalmente el esfuerzo aplicado, dejando así que la estructura del material se recupere de la deformación causada con el esfuerzo aplicado (recovery). Este proceso puede realizarse en un solo ciclo, incluyendo este solo un paso de deformación y uno de recuperación o en ciclos repetidos en el cual pueden realizarse varios pasos consecutivos de deformación-recuperación, en este caso es posible evaluar la deformación acumulada por la aplicación de cargas repetidas. Se pretende usar la prueba de RCRT multi-esfuerzo, realizada en reómetro de corte dinámico, como una prueba adicional al método SUPERPAVE actualmente usado en México, al cual además se adicionan también pruebas empíricas como Recuperación Elástica por Torsión y Ductilometro, Penetración, Resilencia etc., principalmente empleadas en asfaltos modificados. Las pruebas de recuperación elástica por torsión o en ductilometro pretenden dar información sobre la capacidad del asfalto para recuperar las deformaciones causadas por el paso de los vehículos sobre el pavimento, sin embargo estas pruebas no contemplan la generación de deformaciones repetidas, lo que evidentemente afecta el comportamiento del asfalto y su memoria elástica. Además no toman en cuenta la dependencia del comportamiento elástico a las variaciones de esfuerzo y temperatura, las cuales también afectan de manera muy importante el comportamiento del asfalto. A continuación se describe el protocolo de RCRT: Condiciones de la prueba Se realiza el ensayo con la misma geometría del método SUPERPAVE, platos paralelos de 25.0 mm de diámetro y 1.0 mm de gap, ambientando correctamente a la temperatura de prueba por 600 seg., que es la temperatura de Grado de Desempeño PG, por ejemplo si se va analizar un asfalto PG76-XX, la prueba RCRT debe realizarse a 76°C, si se analiza un asfalto PG64-XX, la prueba debe realizarse a 64°C. Se aplica un esfuerzo constante de 1.0 segundo de duración (creep) el esfuerzo máximo se alcanza en aproximadamente 0.02 segundos, seguido del lapso de recuperación de 9.0 segundos a esfuerzo cero (recovery). Se corren 20 ciclos a dos niveles de esfuerzo, los primeros 10 ciclos se realizan a 100 Pa (en el paso creep) y los siguientes 10 ciclos se llevan a cabo a 3200Pa. Es muy importante resaltar que el reómetro de corte dinámico no realiza otra acción durante este periodo más que la de medir la respues ta del material, por lo que las mediciones en el segmento de recuperación dependen totalmente de la memoria elástica del material. Lo que no ocurre en las prop uestas anteriores en las que el reómetro se encarga de regresar el material a la po sición original.

Page 17: Caract. Asfaltos Creep Repetido AEC

Análisis de asfaltos mediante Creep Repetido

18

0 2 4 6 8 100

2

4

6

8

10

12

14

16

18

20

% S

trai

n

Tiempo global (seg.)

strain

creep 1.0 seg

Recovery 9.0 seg.

Ciclo Creep-Recovery 10 seg.

Fig. 11- Ciclo Creep-Recovery, 1.0 seg. a esfuerzo constante en el paso creep y 9.0 seg. en el

segmento de recuperación a esfuerzo cero.

La prueba de creep-recovery permite medir la memoria elástica del material.

0 2 4 6 8 10

0

2

4

6

8

10

12

14

16

18

20

Deformacion Permanente

% S

trai

n

Tiempo global (seg.)

strain

Deformacion total causada a esfuerzo 100 o 3200

Deformacion Recuperada

Fig.12- Deformación causada durante el segmento Creep, Deformación recuperada durante el periodo de recovery, Deformación permanente o No recuperable, durante un ciclo Creep-Recovery. (%Strain : porcentaje de deformación.)

Page 18: Caract. Asfaltos Creep Repetido AEC

Sandoval / Cremades

19

0 50 100 150 200

0

1000

2000

3000

4000

5000

Esfuerzo en Creep 3200 Pa

% S

trai

n

Tiempo global (seg.)

strain

Esfuerzo en Creep 100 Pa

Fig. 13- Ciclos creep-recovery de 1 a 10 a 100 Pa en creep, de 11 a 20 a 3200 Pa. Al aplicar dos niveles de esfuerzo, 100 y 3200 Pa, se puede evaluar la dependencia de la capacidad elástica del asfalto ante el esfuerzo de corte, además de que la diferencia entre los primeros y los segundos 10 ciclos junto con la deformación total alcanzada al final de la prueba dan información sobre la estabilidad y fuerza de la red polimérica formada por el modificador en el seno del asfalto. Cuanto menor es la diferencia entre la recuperación elástica del segmento a 100 Pa y la del segmento a 3200 Pa, mas estable y resistente es la red polimérica del modificador.

Page 19: Caract. Asfaltos Creep Repetido AEC

Análisis de asfaltos mediante Creep Repetido

20

0 20 40 60 80 100

10

100

1000

Deformación

No recuperada

Deformación recuperada

% S

trai

n

Tiempo (seg)

100 Pa 3200 Pa

Deformación recuperada

Deformación

No recuperada

Fig.14- Creep-Recovery a 100 y 3200 Pa, Asfalto modificado con estructura débil.

0 20 40 60 80 100

1

10

100

Deformación

No recuperada

Deformación recuperada

Deformación

No recuperada

Deformación recuperada

% S

trai

n

Tiempo (seg)

100 Pa 3200 Pa

Fig.15- Creep-Recovery a 100 y 3200 Pa, Asfalto modificado con estructura fuerte.

Page 20: Caract. Asfaltos Creep Repetido AEC

Sandoval / Cremades

21

En la figura 14 se presenta la prueba creep-recovery de un asfalto modificado con estructura débil, además de que la recuperación elástica en la fase de 100 Pa no es tan buena, existe una gran diferencia entre esta y la recuperación elástica a 3200 Pa, esto representa que la estructura polimérica no es capaz de soportar el aumento en el esfuerzo aplicado y las deformaciones repetidas causadas. En la figura 15, en cambio, se presenta un asfalto modificado con una estructura fuerte, la recuperación elástica en la fase de 100 Pa es alta, además de que se observa claramente que la diferencia entre las recuperaciones elásticas entre los dos esfuerzos 100 y 3200 Pa es pequeña, lo que indica que su estructura es resistente y no se ve afectada en gran medida por el aumento de esfuerzo y las deformaciones repetidas. La prueba se llevo a cabo a las mismas condiciones (temperatura, tiempo, ciclos, esfuerzos etc.) para los dos asfaltos de las figuras 14 y 15. Análisis de datos. En cada ciclo creep-recovery es necesario registrar cada uno de los siguientes parámetros: ε0 Valor inicial para la deformación en el principio del segmento creep para cada ciclo. εc Valor de la deformación al final del segmento creep para cada ciclo. ε1 Valor de la deformación total causada durante el segmento creep de cada ciclo, calculado como εc- ε0 . εr Valor de la deformación al final del segmento de recuperación de cada ciclo, es la deformación total acumulada hasta este ciclo. ε10 Valor de la deformación al final del segmento de recuperación de cada ciclo, calculado como εr- ε0 , es la deformación no recuperada en cada ciclo.

Page 21: Caract. Asfaltos Creep Repetido AEC

Análisis de asfaltos mediante Creep Repetido

22

-4 -2 0 2 4 6 8 10 12 14-4

-2

0

2

4

6

8

10

12

14

16

18

20

22

24

% S

trai

n

Tiempo global (seg.)

strain

ε0

εc

εr

ε1

ε10

Creep

Recovery

Para cada uno de los ciclos a 100 Pa es necesario calcular el porcentaje de recuperación como sigue:

( ) ( )1

101 100,100

εεεε ∗−

=N

De igual forma para cada uno de los ciclos a 3200 Pa es necesario calcular el porcentaje de recuperación como sigue :

( ) ( )1

101 100,3200

εεεε ∗−=N

Con estos resultados se calcula el promedio de las recuperaciones elásticas (%εr) para los diez ciclos en los dos niveles de esfuerzo, 100 y 3200 Pa. ( )( ) 10/,100.),100(% Nprom rr εε ∑= N = 1 a 10 ( )( ) 10/,3200.),3200(% Nprom rr εε ∑= N = 1 a 10

Page 22: Caract. Asfaltos Creep Repetido AEC

Sandoval / Cremades

23

0 50 100 150 200

0

5000

10000

15000

20000 Asfalto con estructura debil

y baja recuperación elástica

0 20 40 60 80 100

-100

102030405060708090

100110120130140150160170180

% S

train

Tiempo global (seg)

% S

trai

n

Tiempo global (seg)

Primeros 10 ciclos 100 Pa

Asfalto con estructura fuerte

y alta recuperación elástica

Segundos 10 ciclos 3200 Pa

Además es importante tomar en cuenta la deformación total acumulada al final de los 20 ciclos ya que esta nos puede dar una idea mas clara del comportamiento del asfalto, tanto de su

resistencia ante la deformación como de su capacidad de recuperar las deformaciones.

Page 23: Caract. Asfaltos Creep Repetido AEC

Análisis de asfaltos mediante Creep Repetido

24

PARTE EXPERIMENTAL Para la realización de este estudio se emplearon cinco Asfaltos diferentes, uno virgen y cuatro modificados, modificados con procesos y materias primas diferentes. Todos los Asfaltos modificados son clasificados como PG76-XX, aunque presentan diferentes características en base a los modificadores y procesos de modificación empleados.

# Asfalto Tipo PG (RTFO)

1 AC-20 Salamanca Virgen 70-XX

2 Asfalto con R.E.T. y Acido Polifosforico Modificado 76-XX

3 Asfalto con polímero tipo E.V.A. Modificado 76-XX

4 Asfalto Oxidado con Acido Polifosforico Modificado 76-XX

5 Asfalto con polímero tipo SB, SBS y Ag. Ret. Modificado 76-XX RET : Terpolímero Elastomerico Reactivo Procedencia de los asfaltos. 1-AC-20 Salamanca : Procedente de la refinería de Salamanca en Guanajuato, empleado como base para los modificados 2, 3 y 4. 2-Asfalto modificado con polímero R.E.T. y como catalizador Acido Polifosforico. 3-Asfalto modificado con Etil Vinil Acetato E.V.A. 4-Asfalto modificado oxidado con Acido Polifosforico. 5-Asfalto modificado Comercial, modificado con polímero tipo SB o SBS y agente de reticulación (Ag. Ret.). Además para algunos otros cálculos se emplearon asfaltos vírgenes de diferentes zonas del país como: AC-20 de la refinería de Tampico Madero, AC-20 de la refinería de Cadereyta Nuevo León, AC-5 de la refinería de Salamanca Guanajuato. Los asfaltos 2,3 y 4 son fabricados en laboratorio, la muestra 5 fue proporcionada por una empresa productora de asfalto modificado.

Page 24: Caract. Asfaltos Creep Repetido AEC

Sandoval / Cremades

25

ANÁLISIS EMPÍRICO Se realizo un análisis empírico a todas las muestras, que incluye las siguientes pruebas:

Prueba Método Penetración a 25°C M-MMP-4-05-006/00 SCT Penetración a 4°C M-MMP-4-05-006/00 SCT Punto de Reblandecimiento M-MMP-4-05-009/00 SCT Recuperación Elástica por Torsión a 25°C M-MMP-4-05 -024/02 SCT Recuperación Elástica por Ductilometro a 25°C D 608 4-97 ASTM Ductilidad a 4°C M-MMP-4-05-011/00 SCT Resilencia a 25°C M-MMP-4-05-023/02 SCT Viscosidad Brookfield a 135°C M-MMP-4-05-005/02 SCT Separación en Asfalto Modificado por Anillo y Esfera M-MMP-4-05-022/02 SCT Pruebas al Residuo de la Película Delgada en RTFO M-MMP-4-05-010/02 SCT RESULTADOS PRUEBA AC-20

Salamanca Asfalto

Modificado R.E.T. y

Ac.Polifosforico

Asfalto Modificado con

SB, SBS y agente reticulante

Asfalto Oxidado con

Ac. Polifosforico

Asfalto Modificado con E.V.A.

Penetración a 25°C (1/10mm) 45 42 65 34 57 Penetración a 4°C (1/10mm) 24 20 24 18 22 Reblandecimiento (°C) 50 65 56 58 56 Rec. Elástica por Torsión 25°C (%) 9 50 60 13 20 Rec. Elástica por Ductilometro 25°C (%)

20 82 83 33 45

Ductilidad a 4°C (cm) ---- 5 17 ---- 6 Resiliencia a 25°C (%) 7 27 22 12 15.5 Viscosidad Brookfield 135°C (cps) 424 1637 917 288 698 Separación por Anillo y Esfera (°C) N.A. 1 0 NA 2 Perdida de masa por calentamiento (%)

0.36 0.61 0.78 0.39 0.41

Penetración a 25°C (1/10mm) 24 26 30 18 25 Penetración a 4°C (1/10mm) 14 14 15 11 14 Reblandecimiento (°C) 59 74 66 66 64 Rec. Elástica por Ductilometro 25°C (%)

33 79 82 38 44

Ductilidad a 4°C (cm) ---- ---- ---- ---- ---- Resiliencia a 25°C (%) 20 23 29 24 22 Viscosidad Brookfield 135°C (cps) 735 3673 1733 588 1342

Page 25: Caract. Asfaltos Creep Repetido AEC

Análisis de asfaltos mediante Creep Repetido

26

Los resultados del análisis empírico demuestran las diferencias existentes entre las muestras de asfaltos modificados analizados, principalmente en las recuperaciones elásticas, por torsión y ductilometro. Los asfaltos modificados con polímeros elastoméricos como Terpolimero Elastomerico Reactivo (R.E.T.) y los tipo SB, SBS presentan recuperaciones elásticas altas, a diferencia del asfalto oxidado con ácido polifosfórico y plastómero tipo E.V.A., estos presentan recuperaciones elásticas bajas. Sin embargo en otros resultados como el punto de reblandecimiento presentan valores similares. Otra diferencia notable se encuentra en la viscosidad brookfield , los valores mas altos representan una mayor resistencia al flujo, este es un factor importante para estimar la resistencia ante la deformación permanente. Este tipo de análisis nos da una idea de la consistencia del asfalto pero no nos da información sobre el comportamiento que tendrá el asfalto en el pavimento. ANÁLISIS REOLÓGICO Se realizo el análisis reológico mediante los métodos antes descritos:

METODO PARÁMETRO EVALUADO

SUPERPAVE δsenG *

SUPERPAVE REFINADO )tan/1(1

*

δδsen

G

VISCOSIDAD A CORTE CERO Log (η0)

CREEP REPETIDO )100(% Parε , )3200(% Parε ,

% deformación total acumulada

Page 26: Caract. Asfaltos Creep Repetido AEC

Sandoval / Cremades

27

METODO SUPERPAVE δsenG *

Se determino el grado de desempeño empleando el método SHRP-SUPERPAVE conforme a la metodología AASHTO TP-5 o su homologo en la normativa Mexicana M-MMP-4-05-025/02, el análisis se llevo a cabo en un Reómetro de Corte Dinámico AR-2000, la prueba se llevo a cabo a las temperaturas de 70, 76 y 82°C, controlad a por deformación a 10% para asfalto original y 12% para asfalto envejecido por RTFO. El esfuerzo aplicado es el necesario para causar las deformaciones antes mencionadas y es determinado por el reómetro.

Asfaltos Originales, G*/sen δ = 1.0 kPa

Muestra 64°C 70°C 76°C

Tipo de Asfalto δsenG *

δ δsenG *

δ δsenG *

δ

AC-20 Salamanca virgen 1.69 84.51 0.80 86.14 0.39 87.40

Muestra 70°C 76°C 82°C

Tipo de Asfalto Modificado δsenG *

δ δsenG *

δ δsenG *

δ

R.E.T. + Acido Polifosforico 2.56 63.37 1.56 64.09 0.92 65.45

SB, SBS + Agente Reticulante 1.66 73.16 0.89 76.47 0.48 80.08

Oxidado con Acido Polifosforico 1.85 78.25 0.96 80.51 0.52 82.54

E.V.A. 1.43 82.31 0.73 84.18 0.39 85.72

Page 27: Caract. Asfaltos Creep Repetido AEC

Análisis de asfaltos mediante Creep Repetido

28

Asfaltos RTFO, G*/sen δ = 2.2 kPa

Muestra 64°C 70°C 76°C

Tipo de Asfalto δsenG *

δ δsenG *

δ δsenG *

δ

AC-20 Salamanca virgen 5.59 77.92 2.56 80.83 1.22 83.28

Muestra 70°C 76°C 82°C

Tipo de Asfalto Modificado δsenG *

δ δsenG *

δ δsenG *

δ

R.E.T. + Acido Polifosforico 5.98 58.61 3.57 58.82 2.19 59.57

SB, SBS + Agente Reticulante 4.71 65.08 2.561 67.81 1.39 71.39

Oxidado con Acido Polifosforico 5.62 69.04 2.98 71.65 1.61 74.37

E.V.A. 6.78 72.17 3.49 75.17 1.76 78.14 Se encontraron los siguientes grados de desempeño PG, Asfaltos envejecidos RTFO

Tipo de Asfalto Modificado PG Tf (°C) G*/senδ>2.2kPa

δ (°)

G*/sen δ (kPa)

AC-20 Salamanca virgen 70 71.32 80.83 2.56

R.E.T. + Acido Polifosforico 76 81.9 58.82 3.57

SB, SBS + Agente Reticulante 76 77.51 67.81 2.56

Oxidado con Acido Polifosforico 76 79.00 71.65 2.98

E.V.A. 76 80.06 75.17 3.49 Los valores de G*/senδ y δ, son a 76°C para los asfaltos modificados y a 70°C par a el AC-20 Salamanca

Page 28: Caract. Asfaltos Creep Repetido AEC

Sandoval / Cremades

29

El método SUPERPAVE clasifica los asfaltos modificados analizados como PG 76-XX (Excepto el AC-20 Salamanca que se usa solo como referencia) a pesar de que en los análisis empíricos algunas de las muestras de asfalto modificado presentan muy poca recuperación elástica, por ejemplo los modificados con E.V.A. y el Oxidado con Acido Polifosforico, en cambio otros presentan Recuperaciones Elásticas altas como el modificado con Terpolimero Elastomerico Reactivo (R.E.T.) y el modificado con polímero tipo SB, SBS. Estas diferencias se explican en la siguiente tabla.

Tipo de Asfalto Modificado PG (RTFO)

Rec. Elástica por Torsión 25 °C (%)

Rec. Elástica por Ductilometro 25 °C

(RTFO) (%)

Viscosidad Brookfield 135°C

(RTFO) (cP)

AC-20 Salamanca virgen 70 9 33 735

R.E.T. + Acido Polifosforico 76 50 79 3673

SB, SBS + Agente Reticulante 76 60 82 1733

Oxidado con Acido Polifosforico 76 13 38 588

E.V.A. 76 20 44 1342 Además es importante observar la viscosidad brookfield (medida a 135°C en el asfalto envejecido) este valor indica la resistencia al flujo que ofrece cada uno de los asfaltos modificados, de igual forma los valores mas elevados corresponden a los asfaltos modificados con R.E.T. y modificado con polímero tipo SB, SBS, cuanto mayor es la viscosidad mas difícil es que el asfalto se deforme. Este es uno de los motivos por los cuales los técnicos en asfaltos en el mundo y especialmente los creadores de SHRP se han dado a la tarea de buscar otros parámetros y métodos para la caracterización de asfaltos y principalmente para poder predecir el desempeño que tendrá el asfalto en campo. A continuación se presentan los resultados obtenidos con los mismos asfaltos modificados empleando los diferentes métodos de clasificación por reología, mencionados anteriormente.

Page 29: Caract. Asfaltos Creep Repetido AEC

Análisis de asfaltos mediante Creep Repetido

30

CRITERIO SUPERPAVE REFINADO

δδ tan

11

*

⋅−

sen

G

El procedimiento para determinar el grado de desempeño mediante SUPERPAVE REFINADO es el mismo que en SHRP-SUPERPAVE, conforme a la metodología AASHTO TP-5 o su homologo en la normativa Mexicana M-MMP-4-05-025/02, la única diferencia es que el

parámetro a evaluar es

δδ tan

11

*

⋅−

sen

G y no δsenG * .

El análisis se llevo a cabo en un Reómetro de Corte Dinámico AR-2000, la prueba se llevo a cabo a las temperaturas de 70, 76 y 82 y en algunos casos 88 °C, controlada por deformación a 12% para asfalto envejecido por RTFO. El esfuerzo aplicado es el necesario para causar las deformaciones antes mencionadas y es determinado por el reómetro.

Asfaltos RTFO, G*/sen δ ó G*/1-(1/(senδ tanδ)) = 2.2 kPa

SUPERPAVE,

G*/senδ>2.2kPa SUPERPAVE REFINADO, G*/1-(1/(tanδsenδ))>2.2kPa Tipo de Asfalto Modificado

PG Tf (°C) δ (°) PG T f (°C) ∆Tf (°C) AC-20 Salamanca virgen 70 71.32 80.83 70 72.33 1.01

R.E.T.+ Acido Polifosforico 76 81.9 58.82 88 91.46 9.56

SB, SBS + Agente Reticulante 76 77.51 67.81 76 81.84 4.33

Oxidado con Acido Polifosforico 76 79.00 71.65 76 81.71 2.71

E.V.A. 76 80.06 75.17 76 81.11 1.05 ∆Tf diferencia con la temperatura de falla determinada con G*/senδ Aunque el método SUPERPAVE G*/sen δ clasifica a todos los asfaltos modificados como PG 76-XX, el método SUPERPAVE REFINADO G*/1-(1/(tanδsenδ)) resalta una notable diferencia en el asfalto modificado con R.E.T. y Acido polifosforico PG 88-XX con una temperatura de falla de 91.4°C, es importante mencionar la diferen cia entre el ángulo de fase de este asfalto 58.82° y los de los demás modificados 67.8, 71.6 y 75.17°. Cabe señalar que el aumento en la temperatura de falla es inversamente proporcional al valor del ángulo de fase. Por lo tanto el método SUPERPAVE refinado da mayor importancia al ángulo de fase.

Page 30: Caract. Asfaltos Creep Repetido AEC

Sandoval / Cremades

31

Viscosidad A CORTE CERO 0η . Para la determinación del grado de desempeño mediante la viscosidad a corte cero η0 se realizaron barridos de frecuencia de 0.1 a 100 rad/seg, (ó de 0.01 a 100 rad/seg en los casos que fue necesario), el esfuerzo aplicado es el mismo empleado en la metodología SUPERPAVE (cuando la prueba es controlada por esfuerzo) y en un rango de temperaturas de 30 °C al rededor de la temperatura de falla dete rminada con el método SUPERPAVE. Se genera una grafica de comportamiento de Log(η0) vs T de la cual se determino la temperatura de falla y el grado de desempeño, para cada uno de los asfaltos modificados. Se determinó el valor del parámetro Log(η0)= 2.39 para asfaltos envejecidos RTFO, este valor se determino de curvas de comportamiento de asfaltos vírgenes, como se explico en el apartado de Viscosidad a Corte Cero en la Introducción.

65 70 75 80 85 90 95 100

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Log

( ηη ηη00 00 )

(η0

en P

as)

Temperatura (°C)

2CAmod RET 76RTFO

4CAmodEVA76RTFO

5CAoxidado76RTFO

6CAmodSBS76RTFO

Curvas de comportamientoAsfaltos Modificados Envejecidos RTFO

Page 31: Caract. Asfaltos Creep Repetido AEC

Análisis de asfaltos mediante Creep Repetido

32

Asfaltos Modificados Envejecidos RTFO

SUPERPAVE, G*/senδ>2.2kPa

Viscosidad a Corte Cero Log(η0)> 2.39 Tipo de Asfalto Modificado

PG Tf (°C) δ (°) PG T f (°C) ∆Tf (°C) AC-20 Salamanca virgen 70 71.32 80.83 70 71.32 0.00

R.E.T. + Acido Polifosforico 76 81.9 58.82 94 94.9 13.00

SB, SBS + Agente Reticulante 76 77.51 67.81 76 81.31 3.80

Oxidado con Acido Polifosforico 76 79.00 71.65 76 81.19 2.19

E.V.A. 76 80.06 75.17 76 76.06 - 4.0 ∆Tf diferencia con la temperatura de falla determinada con G*/senδ Empleando como parámetro para estimar el desempeño del asfalto, la Viscosidad a Corte Cero, se obtienen resultados con la misma tendencia entre las temperaturas de falla de los métodos SUPERPAVE REFINADO y Viscosidad a Corte Cero y de igual forma la diferencia de estos contra los resultados del método SUPERPAVE. Este método también resalta un notable aumento en la temperatura de falla del asfalto modificado con R.E.T. y Acido Polifosforico de13°C, esto se relaciona con su ángulo de fase bajo 58.82° y su alta resistencia al flujo, ofrecie ndo este la mayor resistencia ante la deformación permanente, además el aumento en los asfaltos modificados con polímero tipo SB, SBS y el oxidado con ácido polifosforico son mas o menos del mismo orden en los dos métodos. En la siguiente tabla se comparan los resultados entre los tres métodos, es muy importante notar la similitud entre los resultados. Para los asfaltos AC-20 Salamanca virgen, el asfalto modificado con polímero SB, SBS + agente reticulante, el oxidado con Acido Polifosforico y el modificado con plastómero, Asfaltos que presentan ángulos de fase altos, los tres métodos los clasifican como PG 76-XX, solo se nota un importante aumento en el PG y la temperatura de falla con el asfalto modificado con R.E.T. y Acido Polifosforico, asfalto que presenta un ángulo de fase bajo, lo que refleja un mejor desempeño ante la deformación permanente.

SUPERPAVE, G*/senδ>2.2kPa

SUPERPAVE REFINADO, G*/1-(1/(tanδsenδ))>2.2kPa

Viscosidad a Corte Cero Log(η0)> 2.39 Tipo de Asfalto

Modificado PG Tf (°C) δ (°) PG T f (°C) ∆Tf (°C) PG Tf (°C) ∆Tf

(°C) AC-20 Salamanca

virgen 70 71.32 80.83 70 72.33 1.01 70 71.32 0.00

R.E.T. + Acido Polifosforico 76 81.9 58.82 88 91.46 9.56 94 94.9 13.00

SB, SBS + Agente Reticulante 76 77.51 67.81 76 81.84 4.33 76 81.31 3.80

Oxidado con Acido Polifosforico 76 79.00 71.65 76 81.71 2.71 76 81.19 2.19

E.V.A. 76 80.06 75.17 76 81.11 1.05 76 76.06 - 4.0 ∆Tf diferencia con la temperatura de falla determinada con G*/senδ

Page 32: Caract. Asfaltos Creep Repetido AEC

Sandoval / Cremades

33

PRUEBA DE RECUPERACIÓN ELASTICA MULTI-ESFUERZO EN C REEP REPETIDO. Esta metodología se llevo a cabo bajo las siguientes condiciones: Se realizaron 20 ciclos Creep-Recovery divididos en dos segmentos de 10 ciclos cada uno. Primeros 10 ciclos: Se empleo un esfuerzo de 100 Pa con un periodo de Creep de 1 segundo y 9 segundos en el periodo de Recovery (Recuperación). Segundos 10 ciclos: Se empleo un esfuerzo de 3200 Pa con un periodo de Creep de 1 segundo y 9 segundos en el periodo de Recovery (Recuperación). Se realizan los siguientes cálculos: Promedio de porcentaje de recuperación elástica en los primeros 10 ciclos a 100 Pa ( )( ) 10/,100.),100(% Nprom rr εε ∑= N = 1 a 10 Promedio de porcentaje de recuperación elástica en los segundos 10 ciclos a 3200 Pa

( )( ) 10/,3200.),3200(% Nprom rr εε ∑= N = 1 a 10 Diferencia absoluta entre los porcentajes de recuperación elástica a 100 y 3200 Pa

.),3200(%.),100(%)3200100( prompromPaPaRdif rr εε −=− Además se toma en cuenta la deformación máxima acumulada después de los 20 ciclos Creep-Recovery Las pruebas se realizaron a la temperatura de grado de desempeño 76°C (70°C para el asfalto virgen), enseguida se presentan los resultados. En las siguientes graficas de la prueba Creep-Recovery, se presenta la deformación normalizada, se presenta la deformación alcanzada y recuperada por ciclo, dividido en los dos niveles de esfuerzo 100 y 3200 Pa. Este tipo de graficas permiten observar mas claramente la cantidad de deformación recuperada en cada ciclo, lo que ofrece una idea grafica de la capacidad elástica del asfalto.

Page 33: Caract. Asfaltos Creep Repetido AEC

Análisis de asfaltos mediante Creep Repetido

34

Creep-Recovery AC-20 Salamanca Virgen RTFO

0 20 40 60 80 100

10

100

1000

Deformación

No recuperada

Deformación recuperada 2%

% S

trai

n

Tiempo (seg)

100 Pa 3200 Pa

Deformación recuperada 0%

Deformación

No recuperada

AC-20 Salamanca RTFO

Para el asfalto virgen no existe deformación recuperada en ninguno de los dos niveles de esfuerzo, esto evidencia la poca capacidad del asfalto de recuperar las deformaciones, esto resulta obvio debido a que se trata de un asfalto virgen.

Page 34: Caract. Asfaltos Creep Repetido AEC

Sandoval / Cremades

35

Creep-Recovery Asfalto modificado con R.E.T. y Acid o Polifosforico RTFO

0 20 40 60 80 100

10

100

1000

Deformación

No recuperada

Deformación

recuperada 68 %

% S

trai

n

Tiempo (seg)

100 Pa 3200 Pa

Deformación

recuperada 75%

Deformación

No recuperada

Asfalto Modificado con R.E.T. y Acido Polifosforico

El Asfalto Modificado con R.E.T. presenta recuperaciones elásticas en creep altas, esto denota una buena resistencia ante la deformación permanente además de que la diferencia pequeña entre la recuperación de los dos niveles de esfuerzo, refleja una estructura estable que no se ve afectada por el incremento en el esfuerzo aplicado.

Page 35: Caract. Asfaltos Creep Repetido AEC

Análisis de asfaltos mediante Creep Repetido

36

Creep-Recovery Asfalto modificado (comercial) con p olímero tipo SB, SBS y agente

reticulante RTFO

0 20 40 60 80 100

10

100

1000

Deformación

No recuperada

Deformación recuperada 11 %

% S

trai

n

Tiempo (seg)

100 Pa 3200 Pa

Deformación recuperada 32 %

Deformación

No recuperada

Asfalto modificado con polimero tipo SB, SBS

El Asfalto Modificado con polímero tipo SB, SBS presenta recuperaciones elásticas en creep regulares, esto denota una medianamente aceptable resistencia ante la deformación permanente además de que la diferencia notable entre la recuperación de los dos niveles de esfuerzo, refleja una estructura regularmente estable que se ve afectada de manera importante por el incremento en el esfuerzo aplicado.

Page 36: Caract. Asfaltos Creep Repetido AEC

Sandoval / Cremades

37

Creep-Recovery Asfalto Oxidado con Acido Polifosfor ico RTFO

0 20 40 60 80 100

10

100

1000

Deformación

No recuperada

Deformación recuperada 0 %

% S

trai

n

Tiempo (seg)

100 Pa 3200 Pa

Deformación recuperada 26 %

Deformación

No recuperada

Asfalto Oxidado con Acido Polifosforico

El Asfalto Modificado Oxidado con Acido Polifosforico presenta recuperaciones elásticas en creep bajas, esto denota poca resistencia ante la deformación permanente además de que la diferencia notable entre la recuperación de los dos niveles de esfuerzo, refleja una estructura regularmente estable que se ve afectada de manera importante por el incremento en el esfuerzo aplicado.

Page 37: Caract. Asfaltos Creep Repetido AEC

Análisis de asfaltos mediante Creep Repetido

38

Creep-Recovery Asfalto modificado con polímero tip o E.V.A. RTFO

0 20 40 60 80 100

10

100

1000

Deformación

No recuperada

Deformación recuperada 0 %

% S

trai

n

Tiempo (seg)

100 Pa 3200 Pa

Deformación recuperada 27 %

Deformación

No recuperada

Asfalto Modificado con polimero tipo E.V.A.

El Asfalto Modificado con polímero tipo E.V.A. presenta recuperaciones elásticas en creep bajas, esto denota poca resistencia ante la deformación permanente además de que la diferencia notable entre la recuperación elástica de los dos niveles de esfuerzo, refleja una estructura poco estable que se ve afectada de manera importante por el incremento en el esfuerzo aplicado. En la tabla siguiente se presenta un comparativo entre los resultados de los diferentes asfaltos, Recuperación Elástica en creep repetido, a 100 y 3200 Pa, la diferencia entre las recuperaciones elásticas de estos dos niveles de esfuerzo y la deformación máxima acumulada.

Page 38: Caract. Asfaltos Creep Repetido AEC

Sandoval / Cremades

39

Los asfaltos AC-20 Salamanca virgen y el modificado con polímero tipo EVA presentan las deformaciones acumuladas mas altas entre los asfaltos empleados para este estudio, la deformación alcanzada al final de cada ciclo es alta además de que la recuperación elástica en cada ciclo es baja lo que provoca una acumulación alta de deformaciones permanentes.

SUPERPAVE, G*/senδ>2.2kPa

Tipo de Asfalto

PG Tf (°C) δ (°)

Temp. de

Prueba

% εr a 100

Pa

% εr a 3200 Pa

Rdif (100Pa-3200Pa)

% Def. máxima

acumulada

Valores recomendables --- --- ---- ---- ---- 15

mínimo 70

máximo ----

AC-20 Salamanca virgen 70 71.32 80.83 70 2 0 (-6) 8 13683

R.E.T. + Acido Polifosforico 76 81.9 58.82 76 75 68 7 1339

SB, SBS + Agente Reticulante 76 77.51 67.81 76 32 11 21 8886

Oxidado con Acido Polifosforico 76 79.00 71.65 76 26 0 (-3) 29 9608

E.V.A. 76 80.06 75.17 76 27 0 (-3) 30 18260

% εr : Porcentaje de recuperación elástica en Creep Repetido. Rdif : Diferencia entre % εr a 100 Pa y % εr a 3200 Pa. % Def. máxima acumulada : Deformación alcanzada al final de los 20 ciclos Creep-Recovery. En la siguiente grafica se presenta el comparativo de las pruebas de Creep-Recovery para todos los asfaltos analizados en este estudio, la deformación alcanzada es la acumulada al final de los 20 ciclos, los primeros 10 a 100Pa y los 10 siguientes a 3200 Pa la temperatura de prueba fue de 76 °C. Se establece un valor mínimo a la recuperación elástica a 3200 Pa porque algunos asfaltos modificados con plastómeros podrían presentar buena elasticidad a 100 Pa pero al aumentar el nivel de esfuerzo a 3200 se da una caída importante en este comportamiento, por lo que a este esfuerzo es mas fácil encontrar diferencias. El máximo en la diferencia entre 100 y 3200 Pa se establece porque se pretende garantizar la estabilidad de la estructura de asfalto al recibir una carga. La estabilidad puede estimarse basándose en la linealidad de su comportamiento elástico al variar el esfuerzo.

Page 39: Caract. Asfaltos Creep Repetido AEC

Análisis de asfaltos mediante Creep Repetido

40

GRADO PG

0 50 100 150 200-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

8886

9608

18260

Deformación total acumulada

Asfalto modificado con R.E.T.

Asfalto modificado (comercial)

con polimero tipo SB, SBS

Asfalto Oxidado con Acido Polifosforico

Asfalto modificado con E.V.A.

% S

trai

n

Tiempo global (seg)

AC-20 Salamanca

13683

1339

El mejor desempeño lo presento el asfalto modificado con R.E.T. y acido polifosforico, presentando la menor acumulación de deformación permanente, gracias a su alta capacidad de recuperar las deformaciones causadas al aplicarle un esfuerzo. Este comportamiento se comprueba a lo largo de los diferentes análisis realizados SUPERPAVE (en el cual presento PG76-XX), SUPERPAVE refinado (en el cual alcanzo PG 88-XX), Viscosidad a Corte Cero (en el cual alcanzo PG 94-XX) y Creep Repetido, en todos los anteriores presento el mejor desempeño ante la deformación permanente. El asfalto modificado con polímero tipo SB, SBS y el oxidado con Acido Polifosforico presentan un desempeño similar, situación que de igual forma se presentó en los análisis reológicos antes mencionados, en los métodos SUPERPAVE , SUPERPAVE refinado y Viscosidad a Corte Cero, ambos mantuvieron el PG 76 con cercana temperatura de falla. El desempeño mas bajo lo presento el asfalto modificado con polímero tipo E.V.A. el cual mediante el método SUPERPAVE presento un PG76-XX y aunque en los métodos SUPERPAVE refinado y Viscosidad a Corte Cero mantuvo el grado 76-XX, en las pruebas de Creep Repetido acumulo la mayor cantidad de deformación permanente. Esto puede

Page 40: Caract. Asfaltos Creep Repetido AEC

Sandoval / Cremades

41

explicarse por varias razones, el tener un ángulo de fase alto de aproximadamente 75°, lo convierte en un asfalto con una alta capacidad de disipar energía lo que explica que ofrezca poca resistencia al flujo, siendo un asfalto fácil de deformar. Además la pobre capacidad elástica reflejada tanto por el ángulo de fase como por las recuperaciones elásticas por torsión (de 20%) y por ductilometro (de 44%) en cierta medida explican su poca capacidad para recuperar las deformaciones causadas al aplicarle un esfuerzo. El hecho de que el asfalto modificado con polímero tipo SB, SBS presentara un comportamiento similar al del asfalto oxidado, aunque presentara los valores mas altos de Recuperaciones elásticas por torsión de 60% y por ductilometro de 83%, en el análisis empírico, se puede explicar de la siguiente forma: El comportamiento de los materiales viscoelasticos es altamente dependiente de la temperatura y del esfuerzo aplicado. Aunque a temperaturas relativamente bajas como 25°C, a la cual se llevan acabo las pruebas de recuperación elástica (por torsión y ductilometro) domina la componente elástica, al subir la temperatura de trabajo el dominio va pasando a la componente viscosa, lo que provoca que el asfalto modificado de ser un asfalto con una alta capacidad elástica se convierta en un asfalto con capacidad alta de disipar energía, lo que lo hace fácil de deformar y poco capaz de recuperar las deformaciones. Por otro lado al aplicar esfuerzos grandes la estructura no es capaz de resistir dichos esfuerzos y cede ante el corte provocando deformaciones importantes. Enseguida se presentan los resultados obtenidos para las muestras de asfalto modificado antes mencionadas, a las temperaturas de falla de cada uno de ellos (Temperatura a la cual

kPasenG 2.2* =δ ), esto para estimar su desempeño bajo las mismas condiciones ya que se

presentan algunas diferencias en este parámetro.

Tipo de Asfalto Modificado PG Tf (°C) G*/senδ=2.2kPa

δ (°)

G*/sen δ (kPa)

AC-20 Salamanca virgen 70 71.32 80.83 2.56

R.E.T. + Acido Polifosforico 76 81.9 58.82 3.57

SB, SBS + Agente Reticulante 76 77.51 67.81 2.56

Oxidado con Acido Polifosforico 76 79.00 71.65 2.98

E.V.A. 76 80.06 75.17 3.49 Los valores de G*/senδ y δ, son a 76°C para los asfaltos modificados y a 70°C par a el AC-20 Salamanca

Page 41: Caract. Asfaltos Creep Repetido AEC

Análisis de asfaltos mediante Creep Repetido

42

0 50 100 150 200

0

5000

10000

15000

20000

25000

30000

10515

12738

30212

Deformación total acumulada

Asfalto modificado con R.E.T.

Tf= 81.9°C

Asfalto modificado (comercial)

con polimero tipo SB, SBS

Tf= 77.55°C

Asfalto Oxidado con Acido Polifosforico

Tf= 79°C

Asfalto modificado con E.V.A.

Tf= 80.06°C

% S

trai

n

Tiempo global (seg)

AC-20 Salamanca

Tf= 71.32°C

15657

3083

Temperatura de falla

En las pruebas a la temperatura de falla los asfaltos mantienen el comportamiento que se presento en las pruebas a la temperatura de PG, aunque obviamente con deformaciones mayores ya que se trabaja a mayor temperatura. El asfalto modificado con R.E.T. y Acido polifosforico presento el mejor comportamiento, seguido por el asfalto modificado con el polímero tipo SB, SBS y Agente reticulante enseguida el oxidado con Acido polifosforico, el AC-20 virgen y el modificado con plastómero EVA.

Page 42: Caract. Asfaltos Creep Repetido AEC

Sandoval / Cremades

43

En el Laboratorio de mezclas asfálticas de SURFAX se prepararon pastillas con los asfaltos empleados en este trabajo. Se emplearon las mismas condiciones y características en la fabricación de las mezclas y las pastillas, material, granulometría, grado de compactación, solo varían los asfaltos y lógicamente las temperaturas de mezclado y compactación dependen del tipo de asfalto. A cada uno de los tipos de mezcla (tipo de asfalto) se le causaron deformaciones con una maquina de pista a 60°C. Los resultados obtenidos son los siguientes:

0 500 1000 1500 2000 2500-20

0

20

40

60

80

100

120

140

160

180

200

Mezcla Asfaltica, Asfalto

modificado con R.E.T.

Mezcla Asfaltica Asfalto,

modificado con polimero S.B.S.

Mezcla Asfaltica, Asfalto

modificado con polimero E.V.A.

Mezcla Asfaltica,

Asfalto Oxidado

Def

orm

ació

n (

1/10

00 p

lg)

N. de Ciclos

Mezcla Asfaltica,

AC-20 Salamanca Virgen

En los resultados de la maquina de pista se observa que el asfalto modificado con Terpolimero Elastomerico Reactivo (R.E.T.) presenta la menor deformación permanente, dato que concuerda con los resultados de los métodos reológicos antes descritos, seguido por el asfalto modificado con el polímero tipo SB o SBS, el modificado con polímero tipo E.V.A., el asfalto oxidado y el asfalto virgen. Este comportamiento es dependiente de la temperatura y seguramente si se realizan pruebas a temperaturas mas altas, las mezclas presentaran comportamientos distintos, debido a la dependencia del comportamiento de los asfaltos ante la temperatura.

Page 43: Caract. Asfaltos Creep Repetido AEC

Análisis de asfaltos mediante Creep Repetido

44

CONCLUSIONES.

1- Se establecieron los métodos de prueba para los métodos SUPERPAVE refinado, Viscosidad a Corte Cero y Recuperación Elástica en Creep Repetido.

2- El método Creep-Recovery ofrece información muy importante sobre el comportamiento

del asfalto al recibir cargas repetidas y niveles de esfuerzo diferentes. Además permite evaluar la capacidad elástica real del asfalto, al dejarlo recuperar las deformaciones libremente sin la participación del Reómetro durante el periodo de recuperación.

3- Se encontró una buena correlación entre los tres métodos antes mencionados, fue

posible fundamentar las diferencias encontradas contra el método SUPERPAVE.

4- Los métodos SUPERPAVE refinado y Viscosidad a Corte Cero arrojan resultados

numéricos muy similares en cuanto a Grados de Desempeño PG y Temperaturas de falla.

5- Los resultados obtenidos en los métodos SUPERPAVE refinado y Viscosidad a Corte

Cero son comparables con los resultados obtenidos en la prueba de recuperación elástica en Creep Repetido. El asfalto modificado con Terpolimero Elastomerico Reactivo (R.E.T.) y Acido Polifosforico presento el mejor desempeño en todos los métodos. El asfalto modificado con polímero tipo SB, SBS y el asfalto oxidado con Acido Polifosforico, presentaron comportamiento similar en todos los métodos.

6- Existe correlación entre los resultados obtenidos mediante el Reómetro de Corte

dinámico y las deformaciones permanentes obtenidas en las pruebas de la maquina de pista.

7- En el método Creep Repetido el comportamiento de los asfaltos modificados se

mantiene a las dos temperaturas probadas, PG y Temperatura de falla.

Page 44: Caract. Asfaltos Creep Repetido AEC

Sandoval / Cremades

45

REFERENCIAS BIBLIOGRAFICAS 1.Shenoy A. “ Refinement of the Superpave Specification Parameter for Performance Grading of Asphalt”. Journal Of Transportation Engineering, Vol. 127, 357-362. (2001). 2.Shenoy A. “Model-fitting the Master Curves of the Dynamic Shear Rheometer Data to Extract a Rut-Controlling Term for Asphalt Pavements” Journal of Testing and Evaluation, Vol. 30, No. 2, March 2002. 3.Cremades I.,Sandoval I., “Caracterización de Asfaltos Mexicanos Mediante Pruebas Empíricas y Estudios Reológicos. III Congreso Mexicano del asfalto, Agosto 2003. 4.Rowe, D’Angelo and Sharrock, “Use of the Zero Shear Viscosity as a Parameter for the High Temperatura Binder Specification Parameter”, 2nd International Symposium on Binder Rheology and Pavement Performance, September 2002. 5.C. Binard, D. Anderson, L. Lapalu, J.P. Planche, Zero Shear Viscosity of modified and unmodified binders. 6. J. D’Angelo, R. Dongre, G. Reinke, “Evaluation of Repeated Creep and Recovery Test Metod as an alternative to SHRP+ requirements for polymer Modified Asphalt Binders. 7.Sandoval I., Cremades I., “Determinación del grado de desempeño del asfalto usando como parámetro de especificación la viscosidad a corte cero”, IV Congreso Mexicano del Asfalto, Agosto 2005. 8.J. D’ Angelo, R. Kluttz, R. Dongre. K. Stephens, L. Zanzotto., “Revision of the Superpave High Temperature Binder Specification: The Multiple Stress Recovery Test”. 9. D’Angelo, J., Dongre, R., “Development of a High Temperature Performance Based Binder Specification in the United States”. 10. J. de Visscher, H. Soenen, A. Vanelstraete, P.redelius,” A comparision of the Zero Shear Viscosity from Oscillation tests and the Repeated Creep test”. Agradecemos a la empresa productora de asfaltos mod ificados por proporcionarnos una muestra de su asfalto modificado.

Page 45: Caract. Asfaltos Creep Repetido AEC

Análisis de asfaltos mediante Creep Repetido

46