Calculo, instrumento y aplicacion del peso.

10

Click here to load reader

Transcript of Calculo, instrumento y aplicacion del peso.

Page 1: Calculo, instrumento y aplicacion del peso.

Peso

Peso (P)

Diagrama de fuerzas que actúan sobre un cuerpo demasa m en reposo sobre una superficie horizontal, donde "mg" es el peso del cuerpo, y "N" la reacción del plano en el que se apoya.

Magnitud Peso (P)

Tipo Magnitud vectorial extensiva

Unidad SI Newton (N)

Otras unidades Kilopondio (kp)Kilogramo-fuerza (kgf)

En física clásica, el peso es una medida de la fuerza gravitatoria que actúa sobre un objeto.1 El peso equivale a la fuerza que ejerce un cuerpo sobre un punto de apoyo, originada por la acción del campo gravitatorio local sobre la masa del cuerpo. Por ser una fuerza, el peso se representa como un vector, definido por su módulo, dirección y sentido, aplicado en el centro de gravedad del cuerpo y dirigido aproximadamente hacia el centro de la Tierra. Por extensión de esta definición, también podemos referirnos al peso de un cuerpo en cualquier otro astro (Luna, Marte,...) en cuyas proximidades se encuentre.

Los conceptos newtonianos de la gravedad fueron desafiados por la relatividad en el siglo 20. El principio de equivalencia de Einstein coloca todos los observadores en el mismo plano. Esto condujo a una ambigüedad en cuanto a qué es exactamente lo que se entiende por la "fuerza de la gravedad" y, en consecuencia, peso. Las ambigüedades introducidas por la relatividad condujeron, a partir de la década de 1960, a un considerable debate en la comunidad educativa sobre cómo definir el peso a sus alumnos. La elección fue una definición newtoniana de peso como la fuerza de un objeto en reposo en el suelo debido a la gravedad, o una definición operacional definida por el acto de pesaje.[cita requerida] En la definición operacional, el peso se convierte en cero, en condiciones de

Page 2: Calculo, instrumento y aplicacion del peso.

ingravidez como en la órbita de la Tierra o la caída libre en el vacío. En tales situaciones, la visión newtoniana es que sigue existiendo una fuerza debido a la gravedad que no se mide (causando así un peso aparente de cero), mientras que la vista einsteiniana es que nunca existe una fuerza medible debido a la gravedad (incluso en el suelo ), sino que, en caída libre, ninguna fuerza puede medirse debido a que el suelo no ejerce la fuerza mecánica que ordinariamente se observó como "peso".

La magnitud del peso de un objeto, desde la definición operacional de peso, depende tan sólo de la intensidad del campo gravitatorio local y de lamasa del cuerpo, en un sentido estricto. Sin embargo, desde un punto de vista legal y práctico, se establece que el peso, cuando el sistema de referencia es la Tierra, comprende no solo la fuerza gravitatoria local, sino también la  fuerza centrífuga local debido a la rotación de la Tierra; por el contrario, el empuje atmosférico no se incluye, ni ninguna otra fuerza externa

Unidades de peso

Como el peso es una fuerza, se mide en unidades de fuerza. Sin embargo, las unidades de peso y masa tienen una larga historia compartida, en parte porque su diferencia no fue bien entendida cuando dichas unidades comenzaron a utilizarse.

Sistema Internacional de Unidades

Este sistema es el prioritario o único legal en la mayor parte de las naciones (excluidas Birmania y Estados Unidos), por lo que en las publicaciones científicas, en los proyectos técnicos, en las especificaciones de máquinas, etc., las magnitudes físicas se expresan en unidades del  sistema internacional de unidades (SI). Así, el peso se expresa en unidades de fuerza del SI, esto es, en newtons (N):

1 N = 1 kg · 1 m/s²Sistema Técnico de Unidades

En el Sistema Técnico de Unidades, el peso se mide en kilogramo-fuerza (kgf) o kilopondio (kp), definido como la fuerza ejercida sobre un kilogramo de masa por la aceleración en caída libre (g = 9,80665 m/s²)4

1 kp = 9,80665 N = 9,80665 kg·m/s²Otros sistemas

También se suele indicar el peso en unidades de fuerza de otros sistemas, como la dina, la libra-fuerza, la onza-fuerza, etcétera.

La dina es la unidad CGS de fuerza y no forma parte del SI. Algunas unidades inglesas, como la libra, pueden ser de fuerza o de masa. Las unidades relacionadas, como el slug, forman parte de sub-sistemas de unidades.

Page 3: Calculo, instrumento y aplicacion del peso.

[editar]Cálculo del peso

Contribución de las aceleraciones gravitatoria y centrífuga en el peso.

El cálculo del peso de un cuerpo a partir de su masa se puede expresar mediante la segunda ley de la dinámica:

donde el valor de   es la aceleración de la gravedad en el lugar en el que se encuentra el cuerpo. En primera aproximación, si consideramos a la Tierracomo una esfera homogénea, se puede expresar con la siguiente fórmula:

de acuerdo a la ley de gravitación universal.

En realidad, el valor de la aceleración de la gravedad en la Tierra, a nivel del mar, varía entre 9,789 m/s2 en el ecuador y 9,832 m/s2 en los polos. Se fijó convencionalmente en 9,80665 m/s2 en la tercera Conferencia General de Pesos y Medidas convocada en 1901 por la Oficina Internacional de Pesos y Medidas (Bureau International des Poids et Mesures).5 Como consecuencia, el peso varía en la misma proporción.

¿Con que instrumentos se mide?

INSTRUMENTOS DE MEDICION DE PESO

Cabe destacar cuál es la ciencia que tiene como objeto de estudio  los sistemas de pesajes. Se trata de la metrología. Es, como ya hemos dicho, una ciencia – al tiempo que es una técnica- cuyo objeto de estudio o análisis es el de los procedimientos de las medidas y los pesos, junto con los sistemas mediante los cuales se determinan las magnitudes físicas.

Page 4: Calculo, instrumento y aplicacion del peso.

Desde el punto de vista histórico, esta disciplina fue atravesando una serie de momentos y etapas, aunque de manera primigenia siempre manifestó una preocupación por todos los sistemas de pesas y medidas.

A partir del siglo XVI, por otro lado, apareció la necesidad de determinar las medidas del globo terrestre, lo cual dio como resultado una imperante resolución: la de elaborar un método mediante el cual se pudiera generar un sistema de pesos y medidas, pero a modo universal. Esto se vio con mayor notoriedad en la revolución industrial, época en donde aparecieron varios instrumentos de medición de peso, y tuvo su broche de oro con la creación de una oficina internacional encargada de los pesos y las medidas. Posteriormente se agregaría la construcción de ciertos patrones para el metro y para el kilogramo, ya en el año 1872.En la actualidad, la metrología se encuentra interesada por todo lo que tiene que ver con el proceso de medición per se, lo cual trae inevitablemente aparejado el análisis de todos los procesos de medición existentes, incluidos todos los instrumentos que son normalmente empleados cuando se quiere efectuar un determinado pesaje.

Asimismo se ocupan de otros asuntos, como el caso de la calibración efectuada de manera periódica, todo para contribuir a un fin netamente industrial junto con otro tipo de fin, relacionado con el de las investigaciones científicas.

Por otra parte, en ámbitos como el de la física y de la ingeniería, el proceso de medición se vincula siempre al acto de comparar las magnitudes físicas tanto de los objetos del mundo real como el de los sucesos del mundo real. La unidad que se toma es la de dichos objetos y sucesos, a los que anteriormente se califican de estándares. La medición, a través de los instrumentos de medición de peso, viento u otros,  siempre va a dar como resultado un determinado número, que es la relación entre el objeto de estudio y la unidad que se ha tomado como referencia. Justamente, los instrumentos de medición de peso son los encargados o, mejor dicho, son el medio ideal para realizar esta tarea de conversión. Por eso que los físicos y los empleados industriales siempre tienen a su disposición una amplia gama de instrumentos para llevar adelante todas las mediciones requeridas. Dichos instrumentos oscilan entre los de constitución y funcionamiento más simple como son los cronómetros y las reglas, hasta aquellos más complejos, como los microscopios y los medidores de láser. Otro instrumento de gran sofisticación es el acelerador de partículas.

Page 5: Calculo, instrumento y aplicacion del peso.

Instrumentos más utilizados para la medicion del pesoEn la industria metalúrgica, por ejemplo, se utilizan muchísimas variedades de instrumentos de medición de peso, los cuales cumplen un rol fundamental en tareas tales como la fabricación de componentes o de equipos y maquinarias de importantes tamaños. Uno de estos instrumentos es el calibrador universal, también conocido con el nombre de pie de rey. Se trata de una herramienta sumamente valiosa a la hora de medir con precisión los elementos pequeños como objetos diminutos, tornillos, entre muchos otros. En lo que respecta a su nivel de precisión, este elemento puede llegar incluso a la media décima de milímetro, aunque por lo general su precisión esté fija en la décima. Cuando se quieren efectuar mediciones exteriores se emplean dos patas largas, mientras que para la medición de espacios interiores se utilizan las patas más pequeñas. El calibre de profundidad, por su parte, es un instrumento muy similar al pie de rey, aunque cuenta con unos apoyos que le facilitan la medición de agujeros y otras zonas profundas.

Dinamómetro

Dinamómetro.

Page 6: Calculo, instrumento y aplicacion del peso.

Principio de funcionamiento de un dinamómetro.

Máquina de ensayo de tracción.

Saab 96 sobre un banco de potencia.

Se denomina dinamómetro a un instrumento utilizado para medir fuerzas o para pesar objetos. El dinamómetro tradicional, inventado por Isaac Newton, basa su funcionamiento en la elongación de un resorte que sigue la ley de elasticidad de Hooke en el rango de medición. Al igual que una báscula con muelle elástico, es una balanza de resorte, pero no debe confundirse con unabalanza de platillos (instrumento utilizado para comparar masas).

Estos instrumentos constan de un muelle, generalmente contenido en un cilindro que a su vez puede estar introducido en otro cilindro. El dispositivo tiene dos ganchos o anillas, uno en cada extremo. Los dinamómetros llevan marcada una escala, enunidades de fuerza, en el cilindro hueco que rodea el muelle. Al colgar pesos o ejercer una fuerza sobre el gancho exterior, el cursor de ese extremo se mueve sobre la escala exterior, indicando el valor de la fuerza.

El dinamómetro funciona gracias un resorte o espiral que tiene en el interior, el que puede alargarse cuando se aplica una fuerza sobre el. Una aguja o indicador muestra la fuerza.

El dinamómetro es un instrumento Físico muy versátil. Sus aplicaciones van dirigidas a

Page 7: Calculo, instrumento y aplicacion del peso.

la medición de fuerzas y tensiones. Se utiliza bastante en todo lo referente a las leyes del movimiento de la mecánica clásica.

El dinamómetro ordinario no es más que un resorte dentro de un envase cilíndrico. Cuando conocemos la Constante elásticade un resorte (cuantas unidades de fuerza se necesitan para deformar una unidad de longitud. Por ejemplo: 20 newtons por cada metro 20N/m) al estirarse éste, podemos calibrar un sistema para saber cuánta fuerza se está haciendo en función de la lectura realizada (magnitud de estiramiento del resorte). El sistema dentro del que puede estar el resorte puede variar desde un envase cilíndrico a un envase circular a escala que conste de una manecilla adecuadamente calibrada (como un velocímetro).

Aplicación industrial

En todas las industrias ligeras existe  la necesidad de estimar lasmasas de los objetos, en el caso de la industria de la azúcar, seutilizan balanzas para  saber la masa de las cañas de azúcar que sonpesadas juntas con un camión. Esa  balanza electrónica es capaz desoportar  588600 N (60 toneladas).En las industrias ligeras también utilizan  POLEAS  para poderlevantar madera, cajas pesadas, etc. Utilizan las poleas para reducirel esfuerzo humano. Ejm: Si se necesita levantar un mueble que pesa500 N, utilizando las poleas simples, ese peso se puede reducir a lamitad (250 N). También se puede reducir la fuerza a menos cantidad,pero eso depende de cuantas poleas se utilicen y el diámetro de ellas.

En el básquet, para encestar se necesita realizar un salto, para locual se necesita un fuerza mayor al  peso de la persona. Ejm: Si unjugador de básquet profesional  tiene una masa de 70 kg., su pesosería 686.7 N. Para realizar un salto el jugador necesitaría aplicaruna fuerza mayor a su peso, si el jugador aplica una fuerza en suspiernas de 1500 N puede realizar el salto, de otra manera no podríahacerlo.En el fútbol , si un jugador quiere hacer un tiro directo a laportería necesita aplicar una fuerza mayor al peso de la pelota paraque exista el movimiento, si la pelota pesa 5 N , el necesitaríaaplicar una fuerza en la pelota con dirección al arco de 100 N, paraque así el jugador pueda hacer un tiro fuerte.

Como podemos observar las diferentes magnitudes de las fuerzas sondiferentes en los 4 casos, en la industria ligera se utilizan fuerzasmayores, porque los productos son de mayores masas y se utilizanmaquinarias para levantarlos o transportarlos, las magnitudes de lasfuerzas utilizadas en los deportes son menores , porque son fuerzaslimitadas realizadas por el hombre .