cálculo estructural de tuberías enterradas por el método

482

Click here to load reader

Transcript of cálculo estructural de tuberías enterradas por el método

Page 1: cálculo estructural de tuberías enterradas por el método

UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE CAMINOS,

CANALES Y PUERTOS

CÁLCULO ESTRUCTURAL DE TUBERÍAS ENTERRADAS POR EL MÉTODO DE

ELEMENTOS FINITOS, CON BASE EN EL INFORME TÉCNICO CEN/TR 1295-3

TESIS DOCTORAL

Daniel Gálvez Cruz

Ingeniero de Caminos, Canales y Puertos

Madrid, Marzo 2011

Page 2: cálculo estructural de tuberías enterradas por el método
Page 3: cálculo estructural de tuberías enterradas por el método

DEPARTAMENTO DE INGENIERÍA CIVIL: HIDRÁULICA Y ENERGÉTICA

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS

CÁLCULO ESTRUCTURAL DE TUBERÍAS ENTERRADAS POR EL MÉTODO DE

ELEMENTOS FINITOS, CON BASE EN EL INFORME TÉCNICO CEN/TR 1295-3

TESIS DOCTORAL

Daniel Gálvez Cruz

Ingeniero de Caminos, Canales y Puertos

DIRECTOR DE TESIS

D. Manuel Cegarra Plané

Dr. Ingeniero de Caminos, Canales y Puertos

Madrid, Marzo 2011

Page 4: cálculo estructural de tuberías enterradas por el método

RESUMEN

Los estudios desarrollados en esta tesis proponen una generalización del uso del método de

elementos finitos para el cálculo estructural de tuberías enterradas como “método común” de

dimensionamiento en Europa. Las ecuaciones constitutivas utilizadas en el modelo están

basadas en el comportamiento elástico de la tubería y elastoplástico del terreno, modelizado

éste último a través del modelo de Drucker-Prager de cinco parámetros con flujo asociado.

Se han estudiado, de entre los procedimientos de dimensionamiento actuales, aquellos que

permiten un dimensionamiento multimaterial, y especialmente los dos procedimientos de

cálculo que el informe técnico CEN/TR 1295-3 ha establecido como principales candidatos

para definir un “método común” de dimensionamiento de tuberías enterradas en Europa

(Opción 1 y opción 2). Tras el análisis de dichos procedimientos se han propuesto

modificaciones en la consideración de las hipótesis pésimas de carga y en las expresiones

para el cálculo de esfuerzos, basadas en datos obtenidos de la normativa vigente. Se ha

propuesto, igualmente, la generalización de los modelos para el dimensionamiento de

tuberías sometidas a presión interior y se han desarrollado las formulaciones

correspondientes a la estimación completa de los momentos flectores en la opción 2.

A su vez, se ha desarrollado un procedimiento de cálculo automatizado (mediante hoja de

cálculo) que ha sido calibrado utilizando los resultados publicados en el informe técnico

CEN/TR 1295-3, de forma que ha permitido realizar gran número de simulaciones para el

estudio comparativo entre las dos opciones de cálculo, con el fin de estudiar sus

predicciones frente a los diferentes parámetros.

Sobre el modelo de elementos finitos se han realizado numerosas simulaciones con el

objeto de evaluar las diferentes aproximaciones al modelo, en primer y segundo orden. Las

simulaciones realizadas se corresponden con los materiales y procedimientos de instalación

habituales en España. El modelo ha sido también calibrado mediante el contraste con los

resultados obtenidos aplicando las modificaciones propuestas, ya citadas anteriormente con

los modelos definidos por el CEN/TR 1295-3.

Los modelos realizados cubren un rango importante de instalaciones, tipos de tuberías y

alturas de cobertura. Todas las simulaciones realizadas con el modelo propuesto predicen

con exactitud los resultados obtenidos mediante las opciones de cálculo del informe técnico

CEN/TR 1295-3.

Los resultados demuestran la capacidad del modelo desarrollado para predecir, de forma

aceptable, las principales características de los comportamientos de los diferentes tipos de

tuberías enterradas, sometidas a las acciones de tierras, tráfico y presión interior entre otras.

Page 5: cálculo estructural de tuberías enterradas por el método

ABSTRACT

The studies developed in this thesis propose generalised use of the finite elements method

for the structural calculations of buried pipes as a “common sizing method” in Europe. The

constitutive equations used in the model are based on the pipe’s elastic behaviour and the

soil’s elastoplastic behaviour, modelling the latter using the five-parameter Drucker-Prager

model with associated flow.

This thesis studies, among current sizing procedures, those that allow multimaterial sizing, in

particular the two calculation procedures established by technical report CEN/TR 1295-3 as

the main candidates for defining a “common sizing method for buried pipes in Europe”

(Option 1 and Option 2). After analysing these procedures modifications have been proposed

in the consideration of worst-case load hypotheses and in stress calculation expressions,

based on data obtained from current regulations. Similarly, this thesis proposes

generalisation of the models for sizing pipes subject to internal pressure, developing the

formulations corresponding to the complete estimation of bending moments in option 2.

At the same time, an automated calculation procedure has been developed (using a

spreadsheet), calibrated using the results published in technical report CEN/TR 1295-3,

making it possible to conduct a large number of simulations for comparative study between

the two calculation options, aimed at analysing their forecasts against the different

parameters.

A large number of simulations have been carried out on the finite elements model with a view

to evaluating the different approaches to the model, in first and second order. The

simulations conducted correspond to common materials and installation procedures in Spain.

The model has also been calibrated through comparison with the results obtained by

applying the proposed modifications, already mentioned above with the models defined by

CEN/TR 1295-3.

The conducted models cover an important range of installations, pipe types and cover

heights. All simulations carried out using the proposed model accurately predict the results

obtained using the calculation options of technical report CEN/TR 1295-3.

The results demonstrate the developed model’s capacity to acceptably predict the main

features of the behaviour of different types of buried pipes, subject to the actions of soil,

traffic and internal pressure among others.

Page 6: cálculo estructural de tuberías enterradas por el método
Page 7: cálculo estructural de tuberías enterradas por el método

Tribunal nombrado por el Mgfco. y Excmo. Sr. Rector de la Universidad Politécnica de

Madrid, el día ………. de ………………..…de 2011

Presidente: D......................................................................................................................

Secretario: D......................................................................................................................

Vocal 1º: D......................................................................................................................

Vocal 2º: D......................................................................................................................

Vocal 3º D......................................................................................................................

Suplente 1º D......................................................................................................................

Suplente 2º D......................................................................................................................

Realizado el acto de defensa y lectura de la tesis el día ………. de ………………..… de 2011

en E.T.S de Ingenieros de Caminos, Canales y Puertos de la U.P.M, los miembros del

tribunal acuerdan otorgar la calificación de:

……………………………………………………………………………………………………………

EL PRESIDENTE LOS VOCALES

EL SECRETARIO

Page 8: cálculo estructural de tuberías enterradas por el método
Page 9: cálculo estructural de tuberías enterradas por el método

AGRADECIMIENTOS

En primer lugar deseo expresar mi más sincero agradecimiento al Dr. Manuel Cegarra por el

gran número de sugerencias y comentarios constructivos que me ha realizado durante todo

el desarrollo de la tesis y por la paciencia que ha tenido en la revisión de textos en la fase

final de la misma. Al Dr. Felipe Gabaldón por introducirme en el estudio del método de

elementos finitos y poner a mi disposición los medios necesarios para poder realizar los

modelos de tuberías enterradas en elementos finitos.

A mi empresa, AGUAS DE LAS CUENCAS DEL SUR, que me ha permitido compatibilizar

los trabajos de investigación y desarrollo de la tesis con la labores propias de mi puesto de

trabajo, y a mis compañeros y amigos por el aliento trasmitido durante estos años.

A Luis Balairón, director del laboratorio de hidráulica del CEDEX, por permitirme, en los

comienzos de mi investigación, participar primero como alumno y posteriormente como

ponente en los cursos de diseño e instalación de tuberías para el transporte de agua que

anualmente organiza con la universidad de Salamanca; y a Rodolfo Vegas, director de

marketing y soporte técnico de PLOMYPLAST, que gracias a su conocimiento de la

normativa actual, me permitió disponer de la misma, acceder a las últimas versiones de los

informes y normas CEN 1295 aún no publicados, e incluso participar en reuniones de trabajo

junto a AENOR para su transposición a guía técnica.

A Elisa Higueras, secretaria del departamento de Ingeniería Civil, Hidráulica y Energética de

la Universidad Politécnica de Madrid por su simpatía, atención y apoyo moral y a

Concepción García, directora de la Biblioteca de la Escuela de Ingenieros de Caminos,

Canales y Puertos de Madrid, por facilitarme toda la bibliografía necesaria para la realización

de esta tesis.

Finalmente, quiero agradecer a mi familia, en particular a mi madre, a mi padre, al que

siempre he llevado en el recuerdo y muy especialmente a mi mujer Lola y a mis hijos Diego

y Marta.

Page 10: cálculo estructural de tuberías enterradas por el método
Page 11: cálculo estructural de tuberías enterradas por el método

Índice general

- i -

ÍNDICE GENERAL

RESUMEN CAPÍTULO 1. INTRODUCCIÓN............................................................................................ 1 CAPÍTULO 2. ANÁLISIS DE LOS MÉTODOS ACTUALES DE CÁLCULO ESTRUCTURAL DE TUBERÍAS ENTERRADAS...................................................................... 7 CAPÍTULO 3. MODELOS DE COMPORTAMIENTO MECÁNICO DE LA TUBERÍA

ENTERRADA SEGÚN EL INFORME TÉCNICO CEN/TR 1295-3................ 55 CAPÍTULO 4. COMPORTAMIENTO DE LA TUBERÍA, EL TERRENO Y LA INTERFASE

TUBERÍA/TERRENO ................................................................................. 195 CAPÍTULO 5. MODELO DE COMPORTAMIENTO MECÁNICO DE LA TUBERÍA ENTERRADA EN ELEMENTOS FINITOS ................................................. 239 CAPÍTULO 6. CONCLUSIONES....................................................................................... 289 CAPÍTULO 7. BIBLIOGRAFÍA.......................................................................................... 297

ANEXO A. PROGRAMA DE CÁLCULO DEL INFORME TÉCNICO CEN/TR 1295-3.. 307 ANEXO B. RESULTADOS GRÁFICOS DE LOS MODELOS DEL INFORME TÉCNICO CEN/TR 1295-3 .......................................................................................... 343 ANEXO C. COMPARACIÓN DE RESULTADOS ENTRE EL CEN/TR 1295-3 Y EL MEF PROPUESTO ............................................................................................. 419

Page 12: cálculo estructural de tuberías enterradas por el método
Page 13: cálculo estructural de tuberías enterradas por el método

Índice

- i -

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN............................................................................................ 1

1.1. SITUACIÓN DE PARTIDA ............................................................................................. 1

1.2. OBJETIVO DEL TRABAJO ........................................................................................... 3

1.3. ESTRUCTURA DEL TRABAJO..................................................................................... 3 CAPÍTULO 2. ANÁLISIS DE LOS MÉTODOS ACTUALES DE CÁLCULO ESTRUCTURAL DE TUBERÍAS ENTERRADAS............................................................................................. 7

2.1. METODOLOGÍA ............................................................................................................ 7

2.1.1 CONCEPTOS BÁSICOS......................................................................................... 7

2.1.2 NOMENCLATURA .................................................................................................. 8

2.1.3 DEFINICIÓN DE ACCIONES ................................................................................ 11

2.1.4 DEFINICIÓN DE LAS HIPÓTESIS PÉSIMAS DE CARGA .................................... 12

2.2. MÉTODOS DE CÁLCULO DE LAS ACCIONES EN TUBERÍAS ENTERRADAS ....... 15 2.2.1 ACCIONES DEL TERRENO ................................................................................. 15

2.2.1.1. El método de Marston ..................................................................................... 15

2.2.1.2. El método ATV ................................................................................................ 21

2.2.1.3. El método del Fascículo 70 ............................................................................. 22

2.2.2 CARGAS DE TRÁFICO......................................................................................... 25

2.2.2.1. El método IET07.............................................................................................. 25

2.2.2.2. El método ATV ................................................................................................ 27

2.2.2.3. El método del Fascículo 70 ............................................................................. 28

2.2.3 ANÁLISIS DE LOS RESULTADOS OBTENIDOS ................................................. 30

2.2.3.1. Estudio de los coeficientes de Marston ........................................................... 30

2.2.3.2. Estudio de las cargas de tráfico....................................................................... 34

2.3. MÉTODOS ACTUALES PARA EL DIMENSIONAMIENTO DE TUBERÍAS ENTERRADAS EN ESPAÑA .............................................................................................. 34

2.3.1 DIMENSIONAMIENTO DE TUBERÍAS METÁLICAS ............................................ 35

2.3.1.1. Tuberías de acero ........................................................................................... 35

2.3.1.2. Tuberías de fundición...................................................................................... 38

2.3.2 DIMENSIONAMIENTO DE TUBERÍAS DE MATERIAL PLÁSTICO ...................... 42

2.3.2.1. Tubería de PVC y PE ...................................................................................... 42

2.3.2.2. Tubería de PRFV ............................................................................................ 44

2.3.3 DIMENSIONAMIENTO DE TUBERÍAS DE MATERIAL PÉTREO ......................... 47

2.3.3.1. Tuberías de hormigón armado con camisa de chapa ...................................... 47

2.3.4 ANÁLISIS DE LOS DIFERENTES MÉTODOS DE CÁLCULO .............................. 50

Page 14: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- ii -

2.4. CONSIDERACIONES FINALES ..................................................................................52 CAPÍTULO 3. MODELOS DE COMPORTAMIENTO MECÁNICO DE TUBERÍA ENTERRADA SEGÚN EL INFORME TÉCNICO CEN/TR 1295-3 .......................................55

3.1. GENERALIDADES.......................................................................................................55

3.2. OPCIÓN 1 DEL CEN/TR 1295-3 ..................................................................................56 3.2.1 Introducción...........................................................................................................56

3.2.2 Secciones tipo .......................................................................................................59

3.2.3 Nomenclatura ........................................................................................................59

3.2.4 Fundamentos ........................................................................................................63

3.2.5 Condiciones de instalación ....................................................................................65

3.2.5.1. Parámetros geométricos .................................................................................65

3.2.5.2. Procedimientos de construcción......................................................................65

3.2.5.3. Parámetros mecánicos....................................................................................67

3.2.5.4. Selección del tipo de instalación......................................................................68

3.2.6 Parámetros del suelo.............................................................................................72

3.2.6.1. Grupos de suelo ..............................................................................................72

3.2.6.2. Propiedades del suelo .....................................................................................73

3.2.6.3. Coeficientes de presión del suelo ....................................................................78

3.2.7 Rigidez del sistema tubería/terreno .......................................................................78

3.2.7.1. Rigidez vertical del sistema .............................................................................78

3.2.7.2. Rigidez horizontal del relleno...........................................................................80

3.2.8 Cargas iniciales .....................................................................................................83

3.2.8.1. Carga del relleno .............................................................................................83

3.2.8.2. Cargas superficiales ........................................................................................85

3.2.8.3. Cargas de tráfico .............................................................................................85

3.2.8.4. Sismo ..............................................................................................................87

3.2.8.5. Otras cargas....................................................................................................87

3.2.9 Distribución de cargas ...........................................................................................87

3.2.9.1. Coeficientes de concentración de carga..........................................................89

3.2.10 Presiones resultantes sobre la tubería...................................................................91

3.2.10.1. Presión vertical .............................................................................................94

3.2.10.2. Presión horizontal .........................................................................................95

3.2.10.3. Presión horizontal del relleno........................................................................97

3.2.10.4. Reacción horizontal del relleno .....................................................................98

3.2.11 Presión interna .................................................................................................... 102

3.2.11.1. Presión interna de servicio.......................................................................... 102

3.2.11.2. Presión interna de golpe de ariete .............................................................. 102

3.2.12 Deflexión de la tubería......................................................................................... 103

3.2.12.1. Deflexión vertical ........................................................................................ 103

3.2.12.2. Deflexión horizontal .................................................................................... 107

3.2.13 Momentos, fuerzas, tensiones y deformaciones .................................................. 108

Page 15: cálculo estructural de tuberías enterradas por el método

Índice

- iii -

3.2.13.1. Momentos de flexión y fuerzas normales.................................................... 108

3.2.13.2. Tensiones y deformaciones ........................................................................ 113

3.2.14 Análisis de estabilidad (solo para tuberías flexibles)............................................ 124

3.2.14.1. Imperfecciones ........................................................................................... 124

3.2.14.2. Análisis de estabilidad frente al pandeo...................................................... 125

3.2.15 Coeficientes de seguridad calculados ................................................................. 128

3.2.15.1. Coeficientes de seguridad frente cargas externas ...................................... 128

3.2.15.2. Coeficientes de seguridad por cargas externas y por presión interna ......... 130

3.2.16 Coeficientes de seguridad mínimos..................................................................... 132

3.2.16.1. Coeficientes de seguridad requeridos......................................................... 132

3.2.16.2. Seguridad frente a grandes deflexiones y fallo por fatiga............................ 133

3.2.17 Resumen de las mejoras propuestas .................................................................. 133

3.3. OPCIÓN 2 DEL CEN/TR 1295-3 ................................................................................ 134

3.3.1 Introducción......................................................................................................... 134

3.3.2 Secciones tipo..................................................................................................... 136

3.3.3 Nomenclatura...................................................................................................... 136

3.3.4 Condiciones de instalación.................................................................................. 139

3.3.4.1. Clasificación del suelo................................................................................... 139

3.3.4.2. Tipo de instalación ........................................................................................ 139

3.3.4.3. Compactación ............................................................................................... 141

3.3.5 Parámetros del suelo........................................................................................... 142

3.3.5.1. Modificación de los parámetros del suelo...................................................... 143

3.3.5.2. Valores de los parámetros después de la corrección .................................... 145

3.3.6 Rigidez del sistema tubería/terreno ..................................................................... 145

3.3.7 Cargas iniciales ................................................................................................... 147

3.3.7.1. Carga del relleno........................................................................................... 147

3.3.7.2. Cargas de servicio......................................................................................... 148

3.3.7.3. Otras cargas.................................................................................................. 150

3.3.8 Distribución de cargas......................................................................................... 150

3.3.9 Presiones resultantes sobre la tubería ................................................................ 152

3.3.9.1. Presión vertical.............................................................................................. 153

3.3.9.2. Presión horizontal.......................................................................................... 153

3.3.9.3. Presión por agua externa .............................................................................. 153

3.3.9.4. Presión exterior media................................................................................... 154

3.3.10 Deflexión de la tubería......................................................................................... 154

3.3.11 Momentos, fuerzas axiales, tensiones y deformaciones ...................................... 155

3.3.11.1. Momentos de flexión................................................................................... 155

3.3.11.2. Fuerzas axiales .......................................................................................... 157

3.3.11.3. Tensiones................................................................................................... 158

3.3.11.4. Deformaciones ........................................................................................... 159

3.3.12 Cargas críticas de Pandeo .................................................................................. 160

3.3.13 Coeficientes de seguridad calculados ................................................................. 160

3.3.13.1. Definición de los estados límites................................................................. 160

Page 16: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- iv -

3.3.13.2. Comprobación del estado límite último ....................................................... 161

3.3.13.3. Comprobación de los estados límites de servicio........................................ 163

3.3.14 Resumen de las mejoras propuestas................................................................... 164

3.4. MODELOS DE TUBERIA ENTERRADA SEGÚN CEN/TR 1295-3 ............................ 165 3.4.1 Casos estudiados................................................................................................ 166

3.4.2 Resultados obtenidos .......................................................................................... 167

3.4.3 Análisis de resultados.......................................................................................... 167

3.4.3.1. Tubería de hormigón armado ........................................................................ 167

3.4.3.2. Tubería de acero ........................................................................................... 175

3.4.3.3. Tubería de polietileno .................................................................................... 185

3.5. VENTAJAS E INCONVENIENTES DE LAS OPCIONES DE CÁLCULO ................... 192 CAPÍTULO 4. COMPORTAMIENTO DE LA TUBERÍA, EL TERRENO Y LA INTERFASE TUBERÍA/TERRENO ........................................................................................................ 195

4.1. MODELIZACIÓN DE LA TUBERÍA............................................................................ 195

4.1.1 Comportamiento de los materiales ...................................................................... 195

4.1.1.1. Materiales metálicos...................................................................................... 195

4.1.1.2. Materiales plásticos ....................................................................................... 197

4.1.1.3. Materiales pétreos......................................................................................... 203

4.1.2 Modelos de comportamiento ............................................................................... 205

4.1.2.1. Modelo elástico lineal .................................................................................... 205

4.1.2.2. Pandeo.......................................................................................................... 205

4.1.3 Caracterización de los materiales para tuberías .................................................. 207

4.1.3.1. Tuberías de materiales metálicos .................................................................. 208

4.1.3.2. Tuberías de materiales plásticos ................................................................... 208

4.1.3.3. Tuberías de hormigón ................................................................................... 209

4.2. MODELIZACIÓN DEL TERRENO.............................................................................. 209

4.2.1 Comportamiento del terreno ................................................................................ 210

4.2.2 Modelos de comportamiento ............................................................................... 212

4.2.2.1. Modelo elástico lineal .................................................................................... 212

4.2.2.2. Modelo elastoplástico .................................................................................... 213

4.2.3 Caracterización del suelo .................................................................................... 220

4.2.3.1. Clasificación del relleno................................................................................. 220

4.2.3.2. Tipología del relleno de una tubería enterrada .............................................. 222

4.2.3.3. Determinación de parámetros ....................................................................... 223

4.3. MODELIZACIÓN DE LA INTERFASE TUBERÍA/TERRENO..................................... 234 4.3.1 Modelo de comportamiento del contacto ............................................................. 235

4.3.1.1. Esfuerzos normales....................................................................................... 235

4.3.1.2. Esfuerzos tangenciales ................................................................................. 236

4.3.2 Parámetros de contacto....................................................................................... 236

Page 17: cálculo estructural de tuberías enterradas por el método

Índice

- v -

4.4. CONSIDERACIONES FINALES ................................................................................ 237 CAPÍTULO 5. MODELO DE COMPORTAMIENTO MECÁNICO DE TUBERÍA ENTERRADA EN ELEMENTOS FINITOS................................................................................................ 239

5.1. CONCEPTOS GENERALES...................................................................................... 239

5.2. MODELO DE ELEMENTOS FINITOS........................................................................ 240 5.2.1 Formulación de la matriz de rigidez..................................................................... 241

5.2.2 Formulación del elemento tipo viga de 2 nodos................................................... 242

5.2.3 Formulación del elemento cuadrilátero de 4 nodos ............................................. 246

5.2.4 Formulación del contacto .................................................................................... 249

5.2.4.1. Formulaciones del deslizamiento .................................................................. 250

5.2.4.2. Discretización de las superficies.................................................................... 250

5.2.4.3. Modelo de contacto en pequeños desplazamientos ...................................... 252

5.2.5 Ecuaciones constitutivas ..................................................................................... 253

5.3. PROGRAMA DE ELEMENTOS FINITOS SELECCIONADO ..................................... 254

5.4. MODELO COMPLETO............................................................................................... 255 5.4.1 Condiciones de contorno..................................................................................... 256

5.4.2 Elementos seleccionados.................................................................................... 257

5.4.3 Geometría del modelo y malla............................................................................. 257

5.4.4 Materiales............................................................................................................ 258

5.4.5 Comportamiento de los materiales ...................................................................... 259

5.4.6 Definición de las cargas ...................................................................................... 260

5.5. MODELOS DE TUBERIA ENTERRADA EN ELEMENTOS FINITOS........................ 260

5.5.1 Casos estudiados................................................................................................ 260

5.5.2 Modelo completo con parámetros mecánicos de la Op1 ..................................... 261

5.5.3 Modelo completo con parámetros mecánicos de la Op2 ..................................... 270

5.5.4 Resultados obtenidos.......................................................................................... 273

5.5.5 Análisis de resultados.......................................................................................... 273

5.5.5.1. Deformación causada por cargas externas ................................................... 273

5.5.5.2. Estado tensional............................................................................................ 276

5.5.5.3. Carga crítica de pandeo ................................................................................ 283

5.6. CONSIDERACIONES FINALES ................................................................................ 287 CAPÍTULO 6. CONCLUSIONES....................................................................................... 289

6.1. ASPECTOS GENERALES......................................................................................... 289

6.2. MODIFICACIÓN DE LOS MODELOS PROPUESTOS POR EL CEN/TR 1295-3 ...... 289

6.3. MODELO DE CÁLCULO PROPUESTO .................................................................... 291

Page 18: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- vi -

6.4. FUTURAS INVESTIGACIONES................................................................................. 294 CAPÍTULO 7. BIBLIOGRAFIA.......................................................................................... 297

7.1. NORMAS.................................................................................................................... 297

7.2. LIBROS...................................................................................................................... 298

7.3. TESIS DOCTORALES ............................................................................................... 300

7.4. ARTÍCULOS............................................................................................................... 300 ANEXO A. PROGRAMA DE CÁLCULO DEL INFORME TÉCNICO CEN/TR 1295-3 ....... 307

A.1. COMPARACIÓN DE LAS OPCIONES DE CÁLCULO............................................... 309

A.1.1 CARACTERÍSTICAS MECÁNICAS DE LA TUBERÍA............................................. 312 A.1.1.1. Propiedades elásticas....................................................................................... 312

A.1.1.2. Rigidez del tubo................................................................................................ 312

A.1.2 PARÁMETROS BÁSICOS DE INSTALACIÓN........................................................ 312

A.1.2.1. Tipos de instalación.......................................................................................... 312

A.1.2.2. Niveles de compactación.................................................................................. 313

A.1.2.3. Parámetros de cálculo ...................................................................................... 313

A.1.3 PARÁMETROS DEL SUELO................................................................................... 314

A.1.4 PARÁMETROS DE LA DISTRIBUCIÓN DE CARGAS............................................ 316 A.1.4.1. Criterio de rigidez del sistema........................................................................... 316

A.1.4.2. Distribución de cargas ...................................................................................... 317

A.1.4.3. Distribución de presiones ................................................................................. 318

A.1.5 CARGAS APLICADAS A LA TUBERÍA .................................................................. 319 A.1.5.1. Principios generales ......................................................................................... 319

A.1.5.2. Carga del relleno .............................................................................................. 319

A.1.5.3. Cargas de explotación ...................................................................................... 320

A.1.6 OVALIZACIÓN, ESFUERZOS, TENSIONES Y DEFORMACIONES ....................... 320 A.1.6.1. Ovalización....................................................................................................... 320

A.1.6.2. Esfuerzos, tensiones y deformaciones ............................................................. 321

A.1.7 COEFICIENTES DE SEGURIDAD........................................................................... 322

A.1.7.1. Procedimiento de diseño .................................................................................. 322

A.1.7.2. Análisis de estabilidad (Pandeo)....................................................................... 322

A.1.7.3. Coeficientes de seguridad ................................................................................ 323

Page 19: cálculo estructural de tuberías enterradas por el método

Índice

- vii -

A.2. PROGRAMA DE CÁLCULO ..................................................................................... 324

A.2.1 DIAGRAMA DE FLUJO DE LA OPCIÓN 1.............................................................. 324

A.2.2 DIAGRAMA DE FLUJO DE LA OPCIÓN 2.............................................................. 327

A.2.3 VALIDACIÓN DE LOS PROGRAMAS DE CÁLCULO ............................................ 330 A.2.3.1. Errores detectados en la Opción 1 ................................................................... 330

A.2.3.2. Errores detectados en la Opción 2 ................................................................... 339

ANEXO B. RESULTADOS GRÁFICOS DE LOS MODELOS DEL INFORME TÉCNICO CEN/TR 1295-3 ................................................................................................................. 343

B.1 INTRODUCCIÓN........................................................................................................ 345

B.2 RESULTADOS GRÁFICOS ....................................................................................... 345

B.2.1 RESULTADOS GRÁFICOS PARA TUBERÍA DE HORMIGÓN DN 500, 1.000, 1.500 Y 2.000 PARA UNA INSTALACIÓN TIPO ET1 GS 2/4 W Y N CON LOS MÉTODOS DE CÁLCULO DE LAS OPCIONES 1 Y 2 Y ALTURA DE INSTALACIÓN VARIABLE ................................................................................................................................. 347

B.2.2 RESULTADOS GRÁFICOS PARA TUBERÍA DE ACERO DN 813, 1.016, 1.626 Y 2.032 PARA UNA INSTALACIÓN TIPO ET2 GS 2/4 W Y N CON LOS MÉTODOS DE CÁLCULO DE LAS OPCIONES 1 Y 2 Y ALTURA DE INSTALACIÓN VARIABLE ................................................................................................................................. 365

B.2.3 RESULTADOS GRÁFICOS PARA TUBERÍA DE POLIETILENO DN 250, 500, 1.000 Y 1.600 PARA UNA INSTALACIÓN TIPO ET2 GS 2/4 W Y N CON LOS MÉTODOS DE CÁLCULO DE LAS OPCIONES 1 Y 2 Y ALTURA DE INSTALACIÓN VARIABLE................................................................................................................................. 383

B.2.4 RESULTADOS GRÁFICOS PARA TUBERÍA DE HORMIGÓN DN 500, 1.000, 1.500 Y 2.000 PARA UNA INSTALACIÓN TIPO ET4 GS 2/4 W Y N CON LOS MÉTODOS DE CÁLCULO DE LAS OPCIONES 1 Y 2 Y ALTURA DE INSTALACIÓN VARIABLE ................................................................................................................................. 401

ANEXO C. COMPARACIÓN DE RESULTADOS ENTRE EL CEN/TR 1295-3 Y EL MEF PROPUESTO ................................................................................................................... 419

C.1 INTRODUCCIÓN........................................................................................................ 421

C.2 RESULTADOS GRÁFICOS ....................................................................................... 421

Page 20: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- viii -

C.2.1 MODELOS PARA TUBERÍA DE ACERO DN 1.000 Y DN 2.000 PARA UNA INSTALACIÓN TIPO ET2 GS 2/4 W CON PARÁMETROS DE LA OP1, OP2 Y COMPORTAMIENTO ELÁSTICO Y ELASTOPLÁSTICO ....................................... 423

C.2.2 MODELOS PARA TUBERÍA DE POLIETILENO DN 1.000 Y DN 1.600 PARA UNA INSTALACIÓN TIPO ET2 GS 2/4 W CON PARÁMETROS DE LA OP1, OP2 Y COMPORTAMIENTO ELÁSTICO (E0) Y ELASTOPLÁSTICO................................ 431

C.2.3 MODELOS PARA TUBERÍA DE POLIETILENO DN 1.000 Y DN 1.600 PARA UNA INSTALACIÓN TIPO ET2 GS 2/4 W CON PARÁMETROS DE LA OP1, OP2 Y COMPORTAMIENTO ELÁSTICO (E50) Y ELASTOPLÁSTICO.............................. 439

C.2.4 MODELOS PARA TUBERÍA DE HORMIGÓN DN 1.000 Y DN 2.000 PARA UNA INSTALACIÓN TIPO ET4 GS 2/4 W CON PARÁMETROS DE LA OP1, OP2 Y COMPORTAMIENTO ELÁSTICO Y ELASTOPLÁSTICO ....................................... 447

Page 21: cálculo estructural de tuberías enterradas por el método

Índice

- ix -

ÍNDICE DE FIGURAS

CAPÍTULO 1 .............................................................................................................................................

CAPÍTULO 2 .............................................................................................................................................

Figura 2.1. Métodos de dimensionamiento de tuberías en España........................................................ 7

Figura 2.2. Hipótesis pésimas de carga para tuberías enterradas. ...................................................... 14

Figura 2.3. Esquema de instalación en zanja (IET 07). ........................................................................ 16

Figura 2.4. Esquema del equilibrio de fuerzas en una instalación en zanja (IET 07)........................... 17

Figura 2.5. Esquema de instalación en zanja terraplenada (IET 07).................................................... 18

Figura 2.6. Esquema de instalación en terraplén (IET 07). .................................................................. 20

Figura 2.7. Esquema de instalación en zanja (ATV 127)...................................................................... 21

Figura 2.8. Esquema de instalación en zanja (F 70)............................................................................. 23

Figura 2.9. Valores de C1/(B/De) en función de H/B y de k1 (F 70) ...................................................... 24

Figura 2.10. Valores del coeficiente C0 en función de H/B y 2α (F 70)................................................ 24

Figura 2.11. Esquemas de distribución de cargas por rueda (IET 07) ................................................. 26

Figura 2.12. Esquemas de distribución de cargas por rueda (ATV 127) .............................................. 27

Figura 2.13. Esquemas de distribución de cargas por rueda convoy BC (F 70) .................................. 29

Figura 2.14. Cargas de tráfico en función del diámetro y la profundidad de instalación (F 70) ........... 29

Figura 2.15. Coeficientes de reducción de carga en zanjas de talud vertical (IET07, F70 y ATV127) 31

Figura 2.16. Coeficientes de reducción de carga en zanjas de talud inclinado (ATV127) ................... 32

Figura 2.17. Distribución de cargas de tráfico (IET07, F70 y ATV127) ................................................ 33

Figura 2.18. Esquemas de tracción y flexión compuesta (IET 07) ....................................................... 48

CAPÍTULO 3 .............................................................................................................................................

Figura 3.1. Instalación en zanja (Op1) .................................................................................................. 59

Figura 3.2. Instalación en terraplén (Op1) ............................................................................................ 59

Figura 3.3. Instalaciones tipo (Op1) ...................................................................................................... 69

Figura 3.4. Módulos del suelo para diversas zonas de suelo (Op1)..................................................... 76

Figura 3.5. Proyección relativa de la tubería (Op1) .............................................................................. 79

Figura 3.6. Distribución de cargas del suelo para tuberías rígidas (Op1) ............................................ 88

Figura 3.7. Distribución de cargas del suelo para tuberías flexibles (Op1) .......................................... 88

Figura 3.8. Distribución de la presión circunferencial del relleno para tuberías apoyadas

sobre cama granular o suelo (Op1) .................................................................................... 92

Figura 3.9. Distribución de la presión circunferencial del suelo para tuberías rígidas

apoyadas sobre cuna de hormigón (Op1) .......................................................................... 92

Figura 3.10. Distribución de la presión exterior debida al agua (Op1).................................................. 93

Figura 3.11. Definiciones de los signos de los momentos y de las fuerzas normales (Op1) ............. 108

Figura 3.12. Coeficiente de pandeo αD para la presión crítica por agua externa (Op1) ..................... 126

Figura 3.13. Presiones aplicadas antes de cualquier flexión de la tubería (Op2) .............................. 134

Figura 3.14. Distribución de presiones (Op2) ..................................................................................... 135

Figura 3.15. Términos, definiciones y símbolos utilizados (Op2) ....................................................... 136

Figura 3.16. Tipos de instalación (Op2) .............................................................................................. 140

Figura 3.17. Esquema de las zonas en una instalación en zanja (Op2)............................................. 143

Figura 3.18. Distribución de la presión vertical inicial del suelo para tuberías rígidas (Op2) ............. 151

Page 22: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- x -

Figura 3.19. Distribución de la presión vertical inicial del suelo para tuberías flexibles (Op2) ........... 151

Figura 3.20. Distribución de presiones circunferenciales para tuberías flexibles apoyadas

en cama de arena (Op2) .................................................................................................. 152

Figura 3.21. Distribución de presiones circunferenciales para tuberías rígidas apoyadas

en cuna de hormigón (Op2) ............................................................................................. 152

Figura 3.22. Parámetros para el cálculo interactivo (Op2).................................................................. 154

Figura 3.23. Esquemas de los casos estudiados en el ANEXO B (Op1 y Op2) ................................. 166

Figura 3.24. Ovalizaciones por cargas externas a corto y largo plazo HA-ET1 W ............................. 169

Figura 3.25. Ovalizaciones por cargas externas a corto y largo plazo HA-ET1 N.............................. 170

Figura 3.26. Tensiones por cargas externas a corto y largo plazo HA-ET4 W ................................... 171

Figura 3.27. Tensiones por cargas externas a corto y largo plazo HA-ET4 N.................................... 172

Figura 3.28. Carga crítica de pandeo a corto y largo plazo HA-ET4 W .............................................. 173

Figura 3.29. Carga crítica de pandeo a corto y largo plazo HA-ET4 N............................................... 174

Figura 3.30. Ovalizaciones por cargas externas a corto y largo plazo AC-ET2 W ............................. 177

Figura 3.31. Ovalizaciones por cargas externas a corto y largo plazo AC-ET2 N.............................. 178

Figura 3.32. Tensiones por cargas externas a corto y largo plazo AC-ET2 W ................................... 179

Figura 3.33. Tensiones por cargas externas a corto y largo plazo AC-ET2 N.................................... 180

Figura 3.34. Tensiones por cargas externas y presión interna a corto y largo plazo AC-ET2 W ....... 181

Figura 3.35. Tensiones por cargas externas y presión interna a corto y largo plazo AC-ET2 N ........ 182

Figura 3.36. Carga crítica de pandeo a corto y largo plazo AC-ET2 W .............................................. 183

Figura 3.37. Carga crítica de pandeo a corto y largo plazo AC-ET2 N............................................... 184

Figura 3.38. Ovalizaciones por cargas externas a corto plazo PE-ET2 W ......................................... 186

Figura 3.39. Ovalizaciones por cargas externas a largo plazo PE-ET2 W ......................................... 187

Figura 3.40. Tensiones por cargas externas a corto plazo PE-ET2 W ............................................... 188

Figura 3.41. Tensiones por cargas externas a largo plazo PE-ET2 W ............................................... 189

Figura 3.42. Carga crítica de pandeo a corto plazo PE-ET2 W .......................................................... 190

Figura 3.43. Carga crítica de pandeo a largo plazo PE-ET2 W .......................................................... 191

CAPÍTULO 4 .............................................................................................................................................

Figura 4.1. Diagrama esfuerzo/deformación para metales ................................................................. 196

Figura 4.2. Capas que constituyen la pared de un tubo de PRFV...................................................... 199

Figura 4.3. Curvas de esfuerzo/deformación típicas para plásticos ................................................... 199

Figura 4.4. Curvas de tensión/deformación de plásticos en ensayos a corta duración...................... 201

Figura 4.5. Curvas de tensión, deformación/tiempo de plásticos en ensayos a larga duración ......... 202

Figura 4.6. Sección tipo de pared una tubería de hormigón armado con camisa de chapa............... 203

Figura 4.7. Curvas tipo de esfuerzo/deformación del hormigón en función del tiempo de curado ..... 204

Figura 4.8. Curvas de esfuerzo/deformación de una arena densa ..................................................... 210

Figura 4.9. Curvas de esfuerzo/deformación de una arena suelta ..................................................... 211

Figura 4.10. Curvas de esfuerzo/deformación de una arcilla sobreconsolidada y drenada ............... 211

Figura 4.11. Curvas de esfuerzo/deformación de una arcilla normalmente consolidada ................... 212

Figura 4.12. Curvas tipo de esfuerzo/deformación del suelo .............................................................. 212

Figura 4.13. Dominios elásticos abierto y cerrado .............................................................................. 213

Figura 4.14. Criterios de plastificación ................................................................................................ 215

Figura 4.15. Sección tipo de zanja ...................................................................................................... 220

Figura 4.16. Definición de los módulos del suelo según su ubicación y opción de cálculo ................ 225

Figura 4.17. Módulos de reacción del relleno adoptados.................................................................... 229

Figura 4.18. Módulos de reacción del terreno adoptados ................................................................... 230

Page 23: cálculo estructural de tuberías enterradas por el método

Índice

- xi -

Figura 4.19. Regiones de deslizamiento para el modelo de fricción de Coulomb.............................. 236

CAPÍTULO 5 .............................................................................................................................................

Figura 5.1. Elemento tipo viga............................................................................................................. 243

Figura 5.2. Funciones de forma del elemento hermítico..................................................................... 243

Figura 5.3. Elemento tipo sólido de cuatro nodos............................................................................... 246

Figura 5.4. Ubicación de los puntos de integración ............................................................................ 249

Figura 5.5. Esquemas de comportamiento mecánico del contacto .................................................... 250

Figura 5.6. Discretización “nodo a superficie”..................................................................................... 251

Figura 5.7. Esquema de resolución de problemas mediante un modelo de elementos finitos .......... 255

Figura 5.8. Condiciones de contacto y de contorno del modelo ......................................................... 256

Figura 5.9. Ejemplos de mallado automático ...................................................................................... 258

Figura 5.10. Esquemas de los casos estudiados en el ANEXO C (MEF) .......................................... 261

Figura 5.11. Deformación vertical U22 del modelo elástico sometido al peso propio

y cargas de tráfico con parámetros Op1. ....................................................................... 266

Figura 5.12. Deformación vertical U22 del modelo elástico sometido al peso propio

y cargas de tráfico con parámetros Op1. ....................................................................... 266

Figura 5.13. Tensiones S11 y S22 del modelo elástico sometido al peso propio

y cargas de tráfico con parámetros Op1. ....................................................................... 267

Figura 5.14. Tensiones S11 y S22 del modelo elástico sometido al peso propio,

cargas de tráfico y presión interior con parámetros Op1. .............................................. 267

Figura 5.15. Deformación vertical U22 del modelo elastoplástico sometido al peso propio

y cargas de tráfico con parámetros Op1. ....................................................................... 268

Figura 5.16. Deformación vertical U22 del modelo elastoplástico sometido al peso propio

y cargas de tráfico con parámetros Op1. ....................................................................... 268

Figura 5.17. Tensiones S11 y S22 del modelo elastoplástico sometido al peso propio

y cargas de tráfico con parámetros Op1. ....................................................................... 269

Figura 5.18. Tensiones S11 y S22 del modelo elastoplástico sometido al peso propio,

cargas de tráfico y presión interior con parámetros Op1. .............................................. 269

Figura 5.19. Deformación vertical U22 del modelo elástico sometido al peso propio

y cargas de tráfico con parámetros Op2. ....................................................................... 271

Figura 5.20. Deformación vertical U22 del modelo elástico sometido al peso propio

y cargas de tráfico con parámetros Op2. ....................................................................... 271

Figura 5.21. Tensiones S11 y S22 del modelo elástico sometido al peso propio

y cargas de tráfico con parámetros Op2. ....................................................................... 272

Figura 5.22. Tensiones S11 y S22 del modelo elástico sometido al peso propio,

cargas de tráfico y presión interior con parámetros Op2. .............................................. 272

Figura 5.23. Ovalización por cargas externas a largo plazo en tuberías de acero

para modelos de comportamiento elástico..................................................................... 274

Figura 5.24. Ovalización por cargas externas a largo plazo en tuberías de acero

para modelos de comportamiento elástico y elastoplástico ........................................... 275

Figura 5.25. Tensiones en C, S y B por cargas externas a largo plazo en tuberías de acero

para modelos de comportamiento elástico..................................................................... 278

Figura 5.26. Tensiones en C, S y B por cargas externas a largo plazo en tuberías de

polietileno (E0) para modelos de comportamiento elástico y elastoplástico................... 279

Figura 5.27. Tensiones en C, S y B por cargas externas a largo plazo en tuberías de

polietileno (E50) para modelos de comportamiento elástico y elastoplástico ................. 280

Page 24: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- xii -

Figura 5.28. Tensiones en C, S y B por cargas externas a largo plazo en tuberías de

hormigón para modelos de comportamiento elástico y elastoplástico ........................... 281

Figura 5.29. Tensiones en C, S y B por cargas externas a largo plazo en tuberías de

acero para modelos de comportamiento elástico y elastoplástico ................................. 282

Figura 5.30. Carga crítica de pandeo en tuberías de acero para modelos de

comportamiento elástico ................................................................................................. 284

Figura 5.31. Carga crítica de pandeo en tuberías de polietileno (E0) para modelos de

comportamiento elástico ................................................................................................. 285

Figura 5.32. Carga crítica de pandeo en tuberías de polietileno (E50) para modelos de

comportamiento elástico ................................................................................................. 286

CAPÍTULO 6 ............................................................................................................................................. CAPÍTULO 7 .............................................................................................................................................

Page 25: cálculo estructural de tuberías enterradas por el método

Índice

- xiii -

ÍNDICE DE TABLAS

CAPÍTULO 1 ............................................................................................................................................. CAPÍTULO 2 .............................................................................................................................................

Tabla 2.1. Nomenclatura de la norma AWWA M11 ................................................................................ 8

Tabla 2.2. Nomenclatura de la norma AWWA M45 ................................................................................ 8

Tabla 2.3. Nomenclatura de la norma FASCICULE 70........................................................................... 9

Tabla 2.4. Nomenclatura de la norma UNE 545 ..................................................................................... 9

Tabla 2.5. Nomenclatura de la norma ATV 127.................................................................................... 10

Tabla 2.6. Nomenclatura de la norma IET 07 ....................................................................................... 11

Tabla 2.7. Valores de kµ’ para diferentes tipos de terreno (IET 07). .................................................... 18

Tabla 2.8. Relación entre la razón de proyección y la razón de asentamiento (IET07). ...................... 19

Tabla 2.9. Valores de la razón de asentamiento en terraplén (IET07) ................................................. 21

Tabla 2.10. Cargas y radios auxiliares para los distintos tipos de carga (ATV 127) ............................ 28

Tabla 2.11. Coeficientes de impacto (ATV 127) ................................................................................... 28

Tabla 2.12. Deformación radial admisible (M11) .................................................................................. 36

Tabla 2.13. Módulos de reacción del relleno (M11) .............................................................................. 37

Tabla 2.14. Módulos de reacción y coeficientes de presión horizontal (F 70)...................................... 40

Tabla 2.15. Esfuerzo tangencial a flexotracción PVC y PE (ATV 127)................................................. 43

Tabla 2.16. Análisis de los diferentes métodos de diseño.................................................................... 53

CAPÍTULO 3 .............................................................................................................................................

Tabla 3.1. Nomenclatura de la Opción 1............................................................................................... 63

Tabla 3.2. Ejemplos de relaciones entre clases de compactación y procedimientos

de construcción (Op1).......................................................................................................... 71

Tabla 3.3. Ángulos de apoyo αv recomendados para tuberías enterradas (Op1) ................................ 72

Tabla 3.4. Valores recomendados para αh (Op1) ................................................................................. 72

Tabla 3.5. Parámetros básicos de cálculo (Op1) .................................................................................. 74

Tabla 3.6. Módulos del terreno original típicos para una presión del suelo de 20 kN/m2 (Op1)........... 75

Tabla 3.7. Coeficiente de corrección relativo al grado de compactación (Op1) ................................... 77

Tabla 3.8. Coeficiente de reducción por efecto del tiempo (Op1)......................................................... 78

Tabla 3.9. Relación entre el grupo de compactación y el índice de la presión del suelo (Op1) ........... 78

Tabla 3.10. Criterio de deformación (Op1)............................................................................................ 80

Tabla 3.11. Variables utilizadas en las fórmulas (3.13) a (3.14) (Op1)................................................. 81

Tabla 3.12. Coeficientes de deflexión vertical (apoyo en suelo) dependientes de αv (Op1) ............... 82

Tabla 3.13. Coeficientes de deflexión horizontal (apoyo en suelo) dependientes de αv (Op1)............ 82

Tabla 3.14. Coeficientes de deflexión horizontal y vertical dependientes de αh (Op1)........................ 83

Tabla 3.15. Relación entre φt y las condiciones de instalación (Op1)................................................... 85

Tabla 3.16. Valores estimados de la ovalización inicial relativa δv,i0 (Op1) ........................................ 105

Tabla 3.17. Coeficiente Kio para la fórmula (3.77) (Op1) .................................................................... 105

Tabla 3.18. Coeficientes para el momento de flexión en función de αv (Op1) ................................... 111

Tabla 3.19. Coeficientes para el momento de flexión y las fuerzas normales

en función de αh (Op1)..................................................................................................... 111

Tabla 3.20. Coeficientes para las fuerzas normales en función de αv (Op1) ..................................... 112

Page 26: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- xiv -

Tabla 3.21. Coeficientes a utilizar en las fórmulas (3.117) a (3.122) (Op1)........................................ 120

Tabla 3.22. Coeficientes aD y bD como funciones de χ (Op1) ............................................................. 121

Tabla 3.23. Coeficientes ai y bi para las fórmulas de la tabla 3.22 (Op1) ........................................... 122

Tabla 3.24. Tipos de imperfecciones geométricas típicas (Op1) ........................................................ 124

Tabla 3.25. Parámetro xkv para las imperfecciones y el comportamiento no lineal del material del

suelo (Op1)....................................................................................................................... 125

Tabla 3.26. Coeficientes de seguridad frente a rotura (Op1) .............................................................. 133

Tabla 3.27. Coeficientes de seguridad frente a pandeo (Op1) ........................................................... 133

Tabla 3.28. Nomenclatura de la opción 2............................................................................................ 138

Tabla 3.29. Descripción de los tipos de suelo (Op2)........................................................................... 139

Tabla 3.30. Propiedades del suelo y parámetros de instalación (Op2) .............................................. 142

Tabla 3.31. Coeficiente de reducción Cw debido al nivel freático (Op2) ............................................. 144

Tabla 3.32. Coeficiente de reducción Cs debido a la retirada de la entibación

de la pared de la zanja (Op2)........................................................................................... 144

Tabla 3.33. Coeficiente de reducción Ck1 debido a la retirada de la entibación

de la pared de la zanja (Op2).......................................................................................... 145

Tabla 3.34. Coeficientes de seguridad γM y de γM.γA (Op2)................................................................. 162

Tabla 3.35. Comprobaciones a estado límite último(Op2) .................................................................. 162

Tabla 3.36. Comprobaciones a estado límite de servicio (Op2) ......................................................... 164

Tabla 3.37. Diámetros y espesores de las tuberías estudiadas (Op1 y Op2)..................................... 166

CAPÍTULO 4 .............................................................................................................................................

Tabla 4.1. Parámetros mecánicos de los materiales metálicos .......................................................... 197

Tabla 4.2. Características de las curvas tensión/deformación de los materiales plásticos ................ 200

Tabla 4.3. Parámetros mecánicos de los materiales plásticos ........................................................... 203

Tabla 4.4. Parámetros mecánicos del hormigón armado.................................................................... 205

Tabla 4.5. Clasificación de los tipos de relleno (Según ASTM D2321)............................................... 223

Tabla 4.6. Módulos del suelo (Op1) .................................................................................................... 226

Tabla 4.7. Módulos del suelos (Op2)................................................................................................... 228

Tabla 4.8. Módulos del relleno y del terreno natural adoptados (Op1) ............................................... 228

Tabla 4.9. Módulos del relleno y del terreno natural adoptados (Op2) ............................................... 228

Tabla 4.10. Parámetros geotécnicos del relleno (Extracto de la tabla II.6 de DIAB. Y.G. (1992)) ..... 231

Tabla 4.11. Parámetros geotécnicos del relleno (DIAB. Y.G.) ............................................................ 232

Tabla 4.12. Parámetros geotécnicos del relleno (OTEO, C.).............................................................. 232

Tabla 4.13. Parámetros geotécnicos seleccionados del relleno ......................................................... 233

Tabla 4.14. Parámetros geotécnicos del terreno inalterado (DIAB Y.G.) ........................................... 233

Tabla 4.15. Parámetros geotécnicos del terreno inalterado (OTEO, C.) ............................................ 234

Tabla 4.16. Parámetros geotécnicos seleccionados del terreno natural ............................................ 234

Tabla 4.17. Parámetros del contacto (µ) ............................................................................................. 237

CAPÍTULO 5 .............................................................................................................................................

Tabla 5.1. Parámetros elásticos de los materiales de la tubería ........................................................ 258

Tabla 5.2. Parámetros geotécnicos seleccionados del relleno y del terreno natural .......................... 259

Tabla 5.3. Dimensiones de los diferentes tamaños de malla.............................................................. 262

Tabla 5.4. Parámetros de los materiales utilizados en el modelo asociado a la Op1......................... 263

Tabla 5.5. Definición de los tipos de contacto y de las superficies maestra y esclava....................... 264

Page 27: cálculo estructural de tuberías enterradas por el método

Índice

- xv -

Tabla 5.6. Parámetros de los materiales utilizados en el modelo asociado a la Op2 ........................ 270

CAPÍTULO 6 ............................................................................................................................................. CAPÍTULO 7 .............................................................................................................................................

Page 28: cálculo estructural de tuberías enterradas por el método
Page 29: cálculo estructural de tuberías enterradas por el método

Capítulo 1

Introducción

- 1 -

CAPÍTULO 1. INTRODUCCIÓN

1.1. SITUACIÓN DE PARTIDA

El desarrollo de un método especifico para el dimensionamiento de tuberías no se inició

hasta después del año 1910 en la Universidad de Iowa, donde se desarrolló un método para

estimar las cargas aplicadas sobre tuberías enterradas; el concepto original fue desarrollado

por TALBOT, A.N. (1908) y MARSTON, A. y ANDERSON, A.O. (1913). Marston prosiguió

con los trabajos hasta publicar en 1930 “La teoría de las cargas exteriores aplicadas a las

tuberías enterradas” y, posteriormente, se unió a Spangler para continuar sus

investigaciones (SPANGLER (1941, 1948, 1951 y 1962)).

La base principal de la teoría de Marston es que el relleno por encima de la tubería tiende a

compactarse por presión; este hecho moviliza las fuerzas de rozamiento con el terreno

existente. A causa de estas fuerzas de rozamiento, una parte del peso del relleno situado

por encima del tubo se reparte sobre el terreno existente y la otra parte actúa sobre el tubo,

la relación de cargas depende del modo de instalación de la tubería y de los parámetros del

terreno existente (ver CAPÍTULO 2).

La teoría de la Universidad de Iowa, llamada normalmente “Teoría del Silo o teoría de

Marston” se considera todavía válida y se utiliza en la mayor parte de la normativa de

cálculo estructural a nivel europeo y mundial.

Inicialmente, la utilización de esta teoría se limitaba a tuberías de pequeño diámetro

ubicadas a poca profundidad y sin la consideración de cargas móviles. Debido al creciente

empleo de tuberías enterradas, hubo una evolución respecto a los materiales y a las

dimensiones de los mismos, que obligaron a establecer, a nivel nacional, unos criterios de

dimensionamiento, con lo que hoy en día se encuentran un número muy variado de métodos

de cálculo.

Adicionalmente a la normalización de los procedimientos de cálculo, a finales del siglo XX,

las tuberías enterradas de gran diámetro se consideraban estructuras no convencionales,

que requerían metodologías de diseño complejas y procedimientos de ejecución específicos.

De estos casos surgió el desarrollo y aplicación de programas de elementos finitos al cálculo

estructural de tuberías para realizar un análisis más ajustado (DUNCAN, J.M. (1975)),

comprobando la influencia de diversos aspectos importantes que muchas veces no se

tenían en cuenta en los procesos analíticos normalizados.

En Europa, en los últimos veinte años, hay una tendencia a la utilización del método

desarrollado en la norma ATV-DWK 127-E (2000) para el dimensionamiento de tuberías

enterradas. No obstante, no se puede generalizar, debido a que, en Francia, es habitual el

cálculo mecánico de cualquier tipo de tubería enterrada mediante la metodología recogida

en el FASCICULE 70 (2003), el cual, también es un método multimaterial. Diferente es el

Page 30: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 2 -

caso de los Estados Unidos de América (EUA), donde para el dimensionamiento de

cualquier tipo de tubo, se suelen utilizar las teorías de Marston y Spangler aplicadas a

metodologías específicas para cada material (AWWA M9 (1979), M11 (1999), M41 (1996) y

M45 (1999)).

Las posibilidades, por lo tanto, resultan numerosas. Ante este panorama, la Unión Europea

(UE), a través del Comité Europeo de Normalización (CEN), está elaborando la norma EN

1295 relativa al cálculo estructural de tuberías enterradas a presión, de la cual su parte 3

pretende establecer un método de cálculo común a todas las tipologías y a todos los países

de la UE (en la actualidad están ya publicadas las partes 1 y 2, mientras que la parte 3 es

aún un informe técnico, CEN/TR 1295-3 (2007).

La norma UNE-EN 1295-1 (1997) informa de los distintos métodos nacionales existentes

para el cálculo mecánico de las tuberías enterradas, concluyendo que la gran mayoría de los

países hacen uso de las formulaciones de Marston y Spangler. En la norma UNE CEN/TR

1295-2 (2005), partiendo de ese entendimiento de base, se informa más detalladamente de

algunos métodos que precisan de explicaciones adicionales (principalmente los de las

normas ATV-DWK 127-E (2000) y FASCICULE 70 (2003)). Por último, el CEN/TR 1295-3

(2007) trata la convergencia de todos los métodos, centrándose en el entendimiento de

dichos métodos ATV-DWK 127-E (2000) y FASCICULE 70 (2003), tratando de aprovechar lo

mejor de cada uno de ellos.

Se pretende la adopción de un método de cálculo común para todas las tipologías de

tuberías, contemplando diferencias en el cálculo para que se respeten las particularidades

del comportamiento de las tuberías flexibles y rígidas. Para ello se prevén dos posibles

métodos: uno inspirado en ATV-DWK 127-E (2000) (Opción 1) y otro en FASCICULE 70

(2003) (Opción 2). Con cualquiera de ellos se quiere fijar una metodología de cálculo de

tensiones y deformaciones común, de forma que el dimensionamiento de las tuberías, a

partir del estado tensional y deformacional obtenido, se reserve a las distintas normas

específicas de cada material de tubería.

Por todo lo expuesto, se percibe la necesidad de un estudio más profundo de las dos

opciones de cálculo citadas, que permita desbloquear la situación actual y especificar cuál

de ellas se podrá considerar como el “método común” en Europa. Para ello es necesario

valorar ambos métodos y, también, si procede establecer un nuevo modelo en elementos

finitos que permita superar y, a su vez, completar los procedimientos de instalación y

condiciones especiales que las metodologías expuestas en CEN/TR1295-3 no recogen.

La adopción de un método multimaterial de cálculo de este estilo, tiene la indudable ventaja

de poder comparar los diferentes tipos de tuberías ante unas solicitaciones determinadas, si

bien la dificultad estriba en que, precisamente, esas diferencias de comportamiento de los

distintos tipos de material ante las cargas externas dificultan la adopción de una metodología

general para todas ellas.

Page 31: cálculo estructural de tuberías enterradas por el método

Capítulo 1

Introducción

- 3 -

1.2. OBJETIVO DEL TRABAJO

El objetivo de este trabajo es doble; por un lado, analizar en profundidad las metodologías

de cálculo establecidas en el informe técnico CEN/TR 1295-3 (2007), proponiendo mejoras,

entre otras, la consideración completa de las hipótesis pésimas de cálculo y la

automatización de su uso mediante un programa de cálculo; y, por otro lado, proponer un

nuevo modelo de calculo estructural de tuberías enterradas basado en el método de

elementos finitos con parámetros intrínsecos de la tubería y del terreno, que permita ofrecer

resultados análogos a los establecidos en el CEN/TR 1295-3 (2007) para instalaciones tipo y

permita también su uso en casos que, por sus condiciones de instalación, tipo de tubería y

otros, queden fuera de las mismas.

El análisis de comportamiento de las tuberías enterradas se ha realizado variando los

siguientes parámetros:

- Altura de cobertura

- Diámetro de la tubería

- Material de la tubería

- Tipos de instalación

- Parámetros geotécnicos (Módulo del suelo, grado de compactación, etc.)

Se ha procurado, de esta forma, englobar en el estudio todos los materiales, diámetros y

tipos de instalación habituales en Europa, con el fin de revisar en profundidad los resultados

obtenidos mediante las dos opciones de cálculo y comprobar el nuevo modelo propuesto.

1.3. ESTRUCTURA DEL TRABAJO

En el CAPÍTULO 1. “Introducción” se enmarca el problema existente en la actualidad con la

diversidad de normas existentes en referencia al cálculo mecánico de tuberías enterradas y

la intención por parte de la UE de plantear un “método común” que permita, a nivel de

dimensionamiento, una comparativa real entre los distintos tipos de materiales, habida

cuenta de la dificultad que están encontrado los comités CEN/TC 164 y 165 en la propuesta

definitiva, este trabajo aporta una información adicional interesante que puede ser

determinante para establecer finalmente el método común.

En el CAPÍTULO 2. “Análisis de los métodos actuales de cálculo estructural de tuberías

enterradas” se describe en primer lugar la metodología general para el establecimiento de

las acciones y las hipótesis pésimas de carga a considerar en el dimensionamiento de

tuberías enterradas, posteriormente se presentan los métodos de cálculo de las acciones

vigentes en la actualidad, se describen de forma extractada los diferentes métodos de

dimensionamiento actuales y por último se realiza un análisis comparativo entre ellos.

Page 32: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 4 -

En el CAPÍTULO 3. “Modelos de comportamiento mecánico de tubería enterrada según el

informe técnico CEN/TR 1295-3” se presentan de forma detallada los dos procedimientos de

cálculo definidos en el CEN/TR 1295-3, se realiza un análisis en profundidad de los mismos

mediante la revisión de los procedimientos de cálculo y se proponen unas mejoras que

completan y aclaran la redacción del texto tal y como se encuentra actualmente reflejado en

el informe técnico y por último se han realizado una serie de modelos para estudiar el

comportamiento real de las dos opciones de cálculo mediante el programa de cálculo

desarrollado en la presente tesis cuyos resultados están recogidos en el ANEXO B.

En el CAPÍTULO 4. “Comportamiento de la tubería, el terreno y la interfase tubería/terreno”

se analiza en profundidad el comportamiento de los materiales constitutivos de las tuberías

(Materiales metálicos, plásticos y pétreos), se establecen los modelos de comportamiento

que se van a definir en el modelo de elementos finitos (Modelo de comportamiento elástico

lineal y estudio de pandeo) y por último se definen los parámetros que se van a utilizar en el

modelo de elementos finitos.

Con respecto al terreno, se analiza en igual medida su comportamiento mecánico en base a

estudios anteriores, se definen las leyes de comportamiento del suelo a emplear en el

modelo (Modelo de comportamiento elástico lineal de dos parámetros y modelo constitutivo

elastoplástico con endurecimiento de Drucker-Prager con flujo asociado de cinco

parámetros) y por último se definen los parámetros del terreno que se van a utilizar en el

modelo de elementos finitos.

Finalmente se define las características del modelo de contacto entre tubería/terreno, para lo

que se presentan los modelos de contacto más habituales, se define el modelo de contacto

no lineal entre superficies con fricción y se especifican los parámetros de contacto que se

van a utilizar en el modelo de elementos finitos.

En el CAPÍTULO 5. “Modelo de comportamiento mecánico de la tubería enterrada en

elementos finitos” se comienza recordando los antecedentes de aplicación del método de

elementos finitos al cálculo estructural de tuberías enterradas, después describe la

formulación genérica de la matriz de rigidez para comportamiento elastoplástico, los

elementos seleccionados para el modelo de la tubería (tipo viga 2 nodos para tuberías de

pared delgada, y tipo sólido de 4 nodos para tuberías de pared gruesa), los elementos para

el modelo del terreno (tipo sólido de 4 nodos con integración reducida) y las condiciones de

contacto entre tubería y terreno.

Posteriormente se presenta el modelo de elementos finitos completo con su validación

mediante la comparación de los resultados obtenidos con los resultantes de la aplicación de

las dos metodologías de cálculo expuestas en el informe técnico CEN/TR 1295-3, cuyos

resultados están recogidos en el ANEXO C.

En el CAPÍTULO 6. “Conclusiones” se presentan los aspectos generales de los trabajos de

la tesis, entre los que destacan la modificación de los modelos propuestos por el informe

Page 33: cálculo estructural de tuberías enterradas por el método

Capítulo 1

Introducción

- 5 -

técnico CEN/TR 1295-3, la propuesta del nuevo modelo de cálculo propuesto para su uso en

el dimensionamiento de tuberías enterradas y por último se recogen las futuras líneas de

investigación.

En el CAPÍTULO 7. “Bibliografía” se presenta la bibliografía consultada, estructurada en

varios epígrafes (Normas, Libros, Tesis doctorales y Artículos)

Y para finalizar, se recogen en los ANEXOS, la comparación de los métodos, los diagramas

de flujo y la validación de los programas de cálculo asociados al informe técnico CEN/TR

1295-3 (ANEXO A), los resultados gráficos de los casos estudiados con las metodologías

del CEN/TR 1295-3 (ANEXO B) y por último los resultados gráficos del nuevo modelo de

elementos finitos (ANEXO C).

Page 34: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 6 -

Page 35: cálculo estructural de tuberías enterradas por el método

Capítulo 2

Análisis de los métodos actuales de cálculo estructural de tuberías enterradas

- 7 -

CAPÍTULO 2. ANÁLISIS DE LOS MÉTODOS ACTUALES DE CÁLCULO ESTRUCTURAL DE TUBERÍAS ENTERRADAS

2.1. METODOLOGÍA

2.1.1 CONCEPTOS BÁSICOS

Actualmente se utilizan, de forma habitual en España, al menos cinco métodos distintos de

dimensionamiento de tuberías enterradas en función del material constitutivo: AWWA M11

(1999), para tuberías de acero; AWWA M45 (1999), para tuberías de PRFV; FASCICULE 70

(2003) y UNE EN 545:2007 para tuberías de fundición; ATV-DWK 127-E (2000) y UNE EN

5331:1997, para tuberías de PVC y PE; y IET07 (2007), para tuberías de hormigón. Ello

reduce las posibilidades de comparar el comportamiento de los diferentes materiales en

situaciones en que técnicamente sea posible la instalación de dos o más tipos de tuberías

(ver figura 2.1).

Acero Fundición PVC y PE PRFV Hormigón

Estado tensional

por la presión

interna

DP < PN DP < PN IET07

Estado tensional

por la carga

combinada

- - ATV 127M45 o

ATV 127IET07

Estado tensional

por acciones

externas

- - ATV 127M45 o

ATV 127IET07

Deformación por

la carga

combinada

- - ATV 127M45 o

ATV 127-

Deformación por

las acciones

externas

SpanglerSpangler o

F-70ATV 127

Spangler o

ATV 127-

Pandeo o

colapsoLuscher F-70 ATV 127 Luscher -

Normativa M11F-70 o

UNE 545ATV 127 o UNE 53331

M45 IET07

Formula de tubos

delgados

Materiales de la tuberíaSolicitaciones

Figura 2.1. Métodos de dimensionamiento de tuberías en España

Para cualquier tipo de instalación de tubería enterrada, y en cada una de sus secciones más

desfavorables, debe realizarse el correspondiente cálculo mecánico de la misma, al objeto

de dimensionar y comprobar su correcto funcionamiento; para ello es necesario definir las

acciones a las que se encuentra sometida y establecer cuáles son las hipótesis pésimas de

carga de las que va a resultar el dimensionamiento de la misma.

Page 36: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 8 -

2.1.2 NOMENCLATURA

A continuación se presentan los parámetros de entrada y salida utilizados en el desarrollo

metodológico de las normas AWWA M11, M45, FASCICULE 70, UNE 545, ATV 127 e IET

07, con una breve descripción de su significado, las unidades habituales en que se

expresan, así como una referencia del apartado donde se emplea, la tabla donde se define

y/o la figura que lo representa.

Parámetro Descripción (M11) Unidades Referencia

apartado tabla figura B’ coeficiente de origen empírico del soporte elástico. - ec. 2.31 - -

d diámetro exterior del tubo m 2.3.1.1 - -

Dl factor de fluencia de la deflexión - 2.3.1.1 - -

dn diámetro de la fibra neutra del tubo m 2.3.1.1 - -

E módulo de elasticidad del acero kN/m2 2.3.1.1 - -

E’ módulo de reacción del relleno kN/m2 2.3.1.1 2.13 -

EI rigidez de la pared tubo kN.m 2.3.1.1 - -

FS coeficiente de seguridad - 2.3.1.1 - -

h altura de relleno m 2.3.1.1 - -

hw altura de agua sobre clave superior del tubo m 2.3.1.1 - -

I momento de inercia por unidad de longitud de la tubería m3 2.3.1.1 - -

K constante dependiente del tipo de apoyo - 2.3.1.1 - -

p presión máxima de diseño kN/m2 2.3.1.1 - -

Pc presión de colapso en tubos aéreos kN/m2 ec. 2.32 - -

qa presión admisible de pandeo kN/m2 ec. 2.30 - -

r radio de la tubería m 2.3.1.1 - -

Rw coeficiente de flotación de la tubería - 2.3.1.1 - -

s tensión admisible del acero kN/m2 2.3.1.1 - -

t espesor del tubo m ec. 2.28 - -

W carga total por unidad de longitud de la tubería (kN/m) kN/m 2.3.1.1 - -

∆x deflexión horizontal de la tubería (m) m 2.3.1.1 - -

ν coeficiente de Poisson del acero - - - -

Tabla 2.1. Nomenclatura de la norma AWWA M11

Parámetro Descripción (M45) Unidades Referencia

apartado tabla figura D diámetro medio del tubo m 2.3.2.2 - -

Df coeficiente de origen empírico - 2.3.2.2 - -

∆ya

deformación vertical máxima producida por las cargas externas m 2.3.2.2 - -

E módulo de elasticidad del tubo kN/m2 2.3.2.2 - -

FS coeficiente de seguridad - 2.3.2.2 - -

FSb, coeficiente de seguridad de apoyo - 2.3.2.2 - -

FSpr, coeficiente de seguridad de presión - 2.3.2.2 - -

HDB presión máxima de trabajo kN/m2 2.3.2.2 - -

Pc presión de diseño kN/m2 ec. 2.49 - -

rc, coeficiente de redondeo - 2.3.2.2 - -

Sb deformación a largo plazo del tubo m 2.3.2.2 - -

t espesor de la parte estructural del tubo m 2.3.2.2 - -

εb, relación entre la deformación máxima del tubo y la deflexión m/m 2.3.2.2 - -

σb tensión máxima debida a la flexión transversal del tubo kN/m2 ec. 2.50 - -

σb, tensión producida por la deflexión máxima permitida kN/m2 2.3.2.2 - -

σpr, tensión de trabajo producida por la presión interna kN/m2 2.3.2.2 - -

Tabla 2.2. Nomenclatura de la norma AWWA M45

Page 37: cálculo estructural de tuberías enterradas por el método

Capítulo 2

Análisis de los métodos actuales de cálculo estructural de tuberías enterradas

- 9 -

Parámetro Descripción (F-70) Unidades Referencia

apartado tabla figura b ancho de zanja en la clave superior del tubo m - - 2.8

C, C0, C1 y C2 Coeficiente de concentración - 2.2.1.3 -

2.9 y 2.10

De diámetro exterior m - - 2.8

e0 defecto geométrico inicial - 2.3.1.2 - -

Es módulo de reacción del relleno kN/m2 2.3.1.2 2.14 -

ET módulo de elasticidad de la fundición kN/m2 - - -

H altura de relleno m - - 2.8

k2 coeficiente de empuje lateral del relleno de protección - 2.3.1.2 2.14 -

n0 número de ondas de colapso - 2.3.1.2 - -

ov ovalización vertical máxima - ec. 2.35 - -

p presión media kN/m2 2.3.1.2 - -

pcr presión crítica de colapso kN/m2 ec.2.42 - -

pr presión vertical del relleno kN/m2 ec. 2.18 - -

pv presión vertical total kN/m2 2.3.1.2 - -

ras rigidez anular específica kN/m2 2.3.1.2 - -

s índice de rigidez del sistema tubería/terreno - 2.3.1.2 - -

ε deformación resultante por ovalización vertical - ec. 2.39 - -

σ tensión máxima producida por la ovalización kN/m2 2.3.1.2 - -

γ peso específico del relleno kN/m3 2.2.1.3 - -

λ coeficiente de impacto - 2.2.2.3 - -

kα coeficiente de deformación, función del ángulo de apoyo - ec. 2.38 - -

Kα coeficiente de momentos, función del ángulo de apoyo - ec. 2.40 - -

νs coeficiente de Poisson del relleno 2.3.1.2 - -

Tabla 2.3. Nomenclatura de la norma FASCICULE 70

Parámetro Descripción (UNE 545) Unidades Referencia

apartado tabla figura C coeficiente de seguridad - 2.3.1.2 - -

D diámetro medio del tubo m 2.3.1.2 - -

DN diámetro nominal de la tubería m 2.3.1.2 - -

e espesor de la pared del tubo m 2.3.1.2 - -

E' módulo de reacción del relleno kN/m2 2.3.1.2 - -

en espesor nominal m 2.3.1.2 - -

Ka factor de apoyo, en función del ángulo 2a - 2.3.1.2 - -

P presión interior kN/m2 ec. 2.33 - -

Rt resistencia mínima a tracción kN/m2 2.3.1.2 - -

Sc rigidez diametral del tubo (kN/m2) kN/m

2 2.3.1.2 - -

T tolerancia máxima m 2.3.1.2 - -

We carga debida al peso de tierras kN/m2 2.3.1.2 - -

Wt carga debida al tráfico kN/m2 2.3.1.2 - -

δ deformación vertical del tubo % ec. 2.34 - -

Tabla 2.4. Nomenclatura de la norma UNE 545

Parámetro Descripción (ATV-127) Unidades Referencia

apartado tabla figura

A área de la sección longitudinal de la pared del tubo por unidad de longitud m

2/m 2.3.2.1 - -

aF coeficiente de corrección para cargas de tráfico - ec. 2.27 - -

b anchura de zanja en la clave del tubo m - - 2.7

cv,qi coeficientes de deformación del tubo - 2.3.2.1 - -

critqv Carga crítica de pandeo kN/m2 2.3.2.1 - -

de diámetro exterior m - - 2.7

Page 38: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 10 -

Parámetro Descripción (ATV-127) Unidades Referencia

apartado tabla figura di diámetro interior m - - - dm diámetro medio m - - -

FA y FE fuerzas auxiliares kN 2.2.2.2 2.10 -

h altura de relleno m - - 2.7

K1 coeficiente de empuje lateral del relleno por encima de la clave del tubo - 2.2.1.2 - -

M suma de momentos por unidad de longitud kN.m/m 2.3.2.1 - -

N suma de fuerzas axiles por unidad de longitud kN/m 2.3.2.1 - -

pE prensión vertical del relleno kN/m2 2.2.1.2 - -

pF cargas de tráfico según la norma DIN 1072 kN/m2 ec. 2.26 - -

pv presión vertical por cargas de tráfico kN/m2 2.2.2.2 - -

qh presión lateral del relleno debido a la carga de tierras kN/m2 2.3.2.1 - -

qh* presión horizontal del relleno kN/m2 2.3.2.1 - -

qv presión vertical sobre el tubo debido a la carga de tierras KN/m2 2.3.2.1 - -

rA y rE radios auxiliares m 2.2.2.2 2.10 -

rm radio medio de la tubería m - - -

S0 rigidez del tubo kN/m2 2.3.2.1 - -

SBh rigidez horizontal del apoyo kN/m2 2.3.2.1 - -

W momento resistente de la sección m3/m 2.3.2.1 - -

αk

factor de corrección por curvatura, que tiene en cuenta

las fibras periféricas interiores, αki, y las exteriores, αke - ec. 2.44

a y b - -

β ángulo del talud de la zanja º 2.2.1.2 - 2.7

δ

ángulo de rozamiento entre el relleno y la pared lateral de la zanja º 2.2.1.2 - -

σ tensión total en la sección de estudio kN/m2 ec. 2.43 - -

∆dv desplazamiento vertical m ec. 2.46 - -

δv deformación vertical % ec. 2.45 - -

γs peso específico del relleno kN/m3 2.2.1.2 - -

ϕ coeficiente de impacto - 2.2.2.2 2.11 -

κ

coeficiente de Marston para instalación en zanja con pared vertical - ec. 2.16 - -

κβ coeficiente de reducción por el efecto Marston - ec. 2.17 - -

κv2

coeficiente de reducción para tener en cuenta el comportamiento elastoplástico del terreno y las deformaciones previas. - 2.3.2.1 - -

Tabla 2.5. Nomenclatura de la norma ATV 127

Parámetro Descripción (IET 07) Unidades Referencia

apartado tabla figura A1 sección de la armadura mas traccionada m

2 2.3.3.1 - 2.18

A2 sección de la armadura menos traccionada m2 2.3.3.1 - 2.18

Amin sección de armadura mínima m2 ec. 2.56 -

b ancho de zanja en la clave superior del tubo m 2.2.1.1 - 2.3

b ancho de la sección considerada m 2.3.3.1 - -

Ci coeficiente de Impacto - 2.2.2.1 - -

Cz coeficiente de Marston para instalación en zanja - 2.2.1.1 - -

Czt coeficiente de Marston para instalación en zanja terraplenada - 2.2.1.1 - -

Ct coeficiente de Marston para instalación en terraplén - 2.2.1.1 - -

d distancia de la fibra mas comprimida del hormigón al centro de gravedad de la armadura mas traccionada m 2.3.3.1 - 2.18

d1 distancia de la fibra mas traccionada del hormigón al centro de gravedad de la armadura mas traccionada m 2.3.3.1 - 2.18

d2 distancia de la fibra menos traccionada del hormigón al centro de gravedad de la armadura menos traccionada m 2.3.3.1 - 2.18

de diámetro exterior del tubo m - - fck resistencia de proyecto del hormigón a compresión kN/m

2 2.3.3.1 - -

Page 39: cálculo estructural de tuberías enterradas por el método

Capítulo 2

Análisis de los métodos actuales de cálculo estructural de tuberías enterradas

- 11 -

Parámetro Descripción (IET 07) Unidades Referencia

apartado tabla figura fyk límite elástico de proyecto de las armaduras pasivas kN/m

2 2.3.3.1 - -

h0 altura desde la clave del tubo hasta el plano de igual asentamiento m 2.2.1.1 - 2.5

hr altura de relleno m 2.2.1.1 - 2.4

hr’ altura de la clave del tubo sobre el terreno 2.2.1.1 - 2.6

hr” altura del terreno a la clave del tubo m 2.2.1.1 - 2.5

Mabs valor absoluto del momento flector kN.m 2.3.3.1 - -

N esfuerzo axil total (kN) kN 2.3.3.1 - -

q0 carga vertical debido a las cargas de tráfico kN/m ec. 2.20 - -

qQ presión vertical por cargas de tráfico a la profundidad hr KN/m2 2.2.2.1 - -

qr carga vertical del relleno (kN/m) kN/m 2.2.1.1 - -

ϕ ángulo de rozamiento interno º 2.2.1.1 - -

ϕ' ángulo de rozamiento entre el relleno y el terreno º 2.2.1.1 - -

δ razón de asentamiento en terraplén - 2.2.1.1 2.9 -

δ' razón de asentamiento en zanja terraplenada - 2.2.1.1 2.8 -

λ coeficiente de Rankine - 2.2.1.1 2.7 -

γc coeficiente de seguridad de la resistencia del hormigón - 2.3.3.1 - -

γf coeficiente de seguridad de las acciones 2.3.3.1 - -

γr peso específico del relleno (kN/m3) kN/m

3 2.3.3.1 - -

γs coeficiente de seguridad del límite elástico del acero - 2.3.3.1 - -

η razón de proyección para terraplén - 2.2.1.1 - -

η' razón de proyección para zanja terraplenada - 2.2.1.1 2.8 -

µ coeficiente de rozamiento interno del relleno - 2.2.1.1 - -

µ' coeficiente de rozamiento entre el material del relleno y las paredes laterales de la zanja - 2.2.1.1 2.7 -

Tabla 2.6. Nomenclatura de la norma IET 07

2.1.3 DEFINICIÓN DE ACCIONES

Las principales acciones que, en general, deben considerarse en el cálculo mecánico de una

tubería enterrada son las siguientes:

a) Acciones gravitatorias1. Son tanto las producidas por los elementos constructivos de la

tubería como las que puedan actuar por razón de su uso.

a.1) Peso propio. Es la carga debida al peso de la tubería.

a.2) Cargas permanentes o cargas muertas. Son las debidas a los pesos de los

elementos constructivos o instalaciones fijas que tenga que soportar la tubería.

a.3) Sobrecargas de uso. Son las derivadas del uso de la tubería y cuya magnitud y/o

posición puede ser variable en el tiempo. Es, básicamente, la carga debida al

peso del fluido en el interior de la tubería

b) Acciones del terreno. Son las producidas tanto por el peso del relleno como por el

empuje activo y/o pasivo del terreno. En su determinación se deben tener en cuenta las

condiciones de instalación de la tubería, así como que ésta sea rígida o flexible, el tipo

de apoyo, el tipo de relleno, la naturaleza del terreno, etc.

1 Se excluye la acción gravitatoria sobre el relleno, para tratarla por su importancia, en un apartado específico

Page 40: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 12 -

c) Acciones del tráfico. Son las producidas por la acción de los vehículos que puedan

transitar sobre la tubería.

d) Acciones hidráulicas. Producida por la presión interna actuante, incluyendo el golpe de

ariete.

e) Acciones debidas al nivel freático. Es el empuje hidrostático generado por el agua

subterránea.

f) Acciones reológicas. Son las producidas por las deformaciones que experimenten los

materiales en el tiempo por retracción, fluencia bajo las cargas u otras causas.

g) Acciones sísmicas. Son las producidas por las aceleraciones de las sacudidas

sísmicas.

h) Otras acciones. Como pueden ser las acciones producidas por efectos térmicos, las

acciones específicas durante el acopio, etc.

En cualquier caso, además de las acciones anteriores, deberán tenerse en cuenta en el

dimensionamiento mecánico de la tubería aquellas acciones específicas que puedan

producirse durante la instalación de la misma.

2.1.4 DEFINICIÓN DE LAS HIPÓTESIS PÉSIMAS DE CARGA

En la instalación de una tubería enterrada se puede considerar, de acuerdo con lo indicado

en la Guía Técnica sobre tuberías para el transporte de agua a presión, CEDEX (2003), que

las acciones más determinantes son la presión interior actuante (d), las acciones del terreno

(b) y las del tráfico (c), de manera que la hipótesis pésima de carga suele producirse por la

combinación de las acciones que se indican a continuación (las cuales se encuentran

resumidas en la figura 2.2), por tipologías de tuberías.

A) Materiales metálicos Tubos de acero

- Estado tensional debido a la acción exclusiva de la presión interna.

- Deformación causada por la acción exclusiva de las acciones externas.

- Pandeo o colapso producido por la acción de las acciones externas y de la presión

interna negativa.

Tubos de fundición

Tubos de diámetro grande (comportamiento flexible):

- Estado tensional debido a la acción exclusiva de la presión interna.

Page 41: cálculo estructural de tuberías enterradas por el método

Capítulo 2

Análisis de los métodos actuales de cálculo estructural de tuberías enterradas

- 13 -

- Deformación causada por la acción exclusiva de las acciones externas.

- Pandeo o colapso producido por la acción de las acciones externas y de la presión

interna negativa.

Tubos de diámetro pequeño (comportamiento rígido):

- Estado tensional debido a la acción exclusiva de la presión interna.

- Estado tensional debido a la acción exclusiva de las acciones externas.

B) Materiales plásticos Tubos de PVC y PE

- Estado tensional debido a la acción exclusiva de la presión interna.

- Estado tensional y deformación debido a la acción exclusiva de las acciones

externas.

- Estado tensional y deformación debido a la acción conjunta de las acciones externas

y de la presión interna.

- Pandeo o colapso producido por la acción de las acciones externas y de la presión

interna negativa.

Tubos de PRFV

- Estado tensional debido a la acción exclusiva de la presión interna.

- Estado tensional y deformación debido a la acción exclusiva de las acciones

externas.

- Estado tensional debido a la acción conjunta de las acciones externas y de la presión

interna.

- Pandeo o colapso producido por la acción de las acciones externas y de la presión

interna negativa.

C) Materiales pétreos Tubos de hormigón en masa, armado o pretensado con o sin camisa de chapa

- Estado tensional debido a la acción exclusiva de la presión interna.

- Estado tensional debido a la acción exclusiva de las acciones externas.

- Estado tensional debido a la acción conjunta de las acciones externas y de la presión

interna.

Page 42: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 14 -

Tipo de tubo

Solicitaciones condicionantes

Solo acciones internas

Solo acciones externas

Combinación de acciones

Estado tensional

Acero Deformaciones

Pandeo o colapsoFundición Estado tensional

Deformaciones

Estado tensional

PVC y PE Deformaciones

Pandeo o colapso

Estado tensionalPRFV Deformaciones

Pandeo o colapso

Hormigón Estado tensional

Figura 2.2. Hipótesis pésimas de carga para tuberías enterradas.

En resumen, las comprobaciones que hay que hacer en el dimensionamiento de las tuberías

enterradas, según indica CEDEX (2003), son las siguientes:

a) Estado tensional debido a la acción exclusiva de la presión interna. En cualquier

tipología de tubería debe comprobarse que, al actuar únicamente la presión hidráulica

interior, el estado tensional producido en la pared del tubo no excede el admisible.

b) Estado tensional debido a la acción conjunta de las acciones externas y de la presión interna. En los tubos de material plástico y material pétreo debe comprobarse

que la actuación conjunta de la presión interior y de las acciones externas produce un

estado tensional inferior al admisible.

c) Estado tensional debido a la acción exclusiva de las acciones externas. En los

tubos de material plástico y material pétreo debe comprobarse que, por la sola acción de

las cargas externas, no se alcanza el estado tensional último.

d) Deformación causada por la acción exclusiva de las acciones externas. En todas

las tipologías de tuberías, excepto en los tubos de material pétreo, debe comprobarse

que la deformación causada por la sola acción de las cargas externas no excede un

valor del orden del 3 ó el 6% del diámetro del tubo, según materiales y diámetros.

e) Deformación causada por la acción conjunta de las acciones externas y de la presión interna. En los tubos de materiales plásticos debe comprobarse que la

deformación causada por la acción conjunta de ambas acciones no excede el 5% del

diámetro del tubo.

f) Pandeo o colapso producido por la acción de las acciones externas y de la posible presión interna negativa. En los tubos de material metálico y material plástico debe

Page 43: cálculo estructural de tuberías enterradas por el método

Capítulo 2

Análisis de los métodos actuales de cálculo estructural de tuberías enterradas

- 15 -

comprobarse que no se produce la rotura por pandeo por la acción exclusiva de las

acciones exteriores, o en combinación con la posible presión interna negativa.

2.2. MÉTODOS DE CÁLCULO DE LAS ACCIONES EN TUBERÍAS ENTERRADAS

Para la determinación de las acciones pueden utilizarse distintos métodos de cálculo, si bien

para las acciones más determinantes (terreno y tráfico) los más frecuentes en España para

tuberías enterradas son los siguientes:

2.2.1 ACCIONES DEL TERRENO

Estas acciones se han venido calculando tradicionalmente en España mediante las teorías

de Marston, desarrolladas en la Universidad de Iowa, Estados Unidos, entre los años 1910 a

1930 (MARSTON, A. y ANDERSON, A.O. (1913) y MARSTON, A. (1930)).

Las teorías de Marston son sobre todo de aplicación para los tubos rígidos, en los cuales se

aplica un coeficiente de concentración a la carga obtenida.

En los tubos de acero, por el origen norteamericano de la mayoría de la normativa existente

al respecto, es también práctica habitual utilizar la teoría de Marston para el cálculo de las

acciones del terreno, si bien en este caso no se suele emplear ningún coeficiente de

concentración, lo que supone una seguridad adicional.

Por otro lado, entre los años 1980 a 1990, se ha desarrollado en Alemania el conocido

método ATV (ATV-DWK 127-E (2000)), de aplicación para el dimensionamiento mecánico

de tuberías de cualquier tipo de material, pero especialmente para las tuberías flexibles o

semiflexibles. Es el método que se emplea habitualmente en España para el cálculo de las

acciones del terreno en los tubos de material plástico, a través de la transposición realizada

a la norma UNE EN 53331:1997.

Por último, existe otro procedimiento diferente, desarrollado en Francia en el año 1992 que

es conocido como el método del Fascículo 70 (FASCICULE 70 (2003)), que es de carácter

genérico, pero que en España se utiliza para el dimensionamiento de los tubos de fundición

conjuntamente con la norma UNE EN 545:2007.

2.2.1.1. El método de Marston

La teoría clásica de Marston (MARSTON, A. (1930)), para el cálculo de las acciones

producidas en una tubería instalada en zanja por el peso de las tierras, fue originariamente

concebida para los tubos rígidos, en los cuales las deformaciones ante la acción de las

cargas externas son despreciables, y ampliada posteriormente por Schilk y Spangler (IET 07

(2007).

Page 44: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 16 -

Estas teorías consideran la compactación del terreno lateral, el peso del relleno, y las

fuerzas de rozamiento que se originan en el mismo y que producen aumento o disminución

del peso del relleno, en función del tipo de instalación.

A) Instalación en zanja

En este tipo de instalación, el relleno y la cama de apoyo sufren un asentamiento relativo

frente al terreno inalterado, y se producen unas fuerzas de rozamiento que originan un

aligeramiento del peso del relleno de la tubería (ver figura 2.3).

hr

de

b

h

Figura 2.3. Esquema de instalación en zanja (IET 07).

Este efecto favorable disminuye a medida que aumenta la anchura de la zanja lo que obliga

a calcular, también, el peso del relleno como si la tubería estuviera colocada en terraplén, y

considerar como real el menor de ambos, ya que la carga para el caso de instalación en

terraplén es siempre mayor que en cualquier otra instalación para una altura de relleno

determinado.

La carga (qr) depende del tipo de instalación y de las condiciones de compactación, para

una instalación en zanja donde el relleno lateral no esté compactado, la tubería soporta la

totalidad del peso del relleno, con el efecto favorable de su rozamiento contra los laterales

de la zanja, y por tanto la expresión de qr es:

bhCd

bdhCq rrz

e

errzr ....... γγ == (2.1a)

donde: qr, carga vertical del relleno (kN/m)

Cz, coeficiente de Marston para instalación en zanja (adimensional)

γr, peso específico del relleno (kN/m3)

hr, altura de relleno (m)

de, diámetro exterior (m)

Page 45: cálculo estructural de tuberías enterradas por el método

Capítulo 2

Análisis de los métodos actuales de cálculo estructural de tuberías enterradas

- 17 -

b, ancho de zanja en la clave superior del tubo (m)

Por otro lado, en caso de que el relleno lateral esté compactado (al menos hasta el 95% de

Proctor Normal), la distribución del peso, en el plano tangente la generatriz superior del tubo,

es virtualmente uniforme y, por tanto, la carga que actúa sobre la tubería será la

correspondiente a su proyección vertical, es decir:

errzr dhCq ...γ= (2.1b)

Donde Cz es el coeficiente de Marston para tubería colocada en zanja, que se deduce de

forma sencilla aplicando equilibrio de fuerzas en una sección del prisma (ver figura 2.4).

hr

de

b

q

q+dqγbdh

dh

h

Figura 2.4. Esquema del equilibrio de fuerzas en una instalación en zanja (IET 07)

Estableciendo el equilibrio de fuerzas en dirección vertical:

dhbqdhb

qdqq r ...'.2 γλµ +=++ (2.2)

Y operando:

bb

q

dh

dqr .'.2 γλµ =+ (2.3)

e integrando la expresión anterior, desde cero a hr; se obtiene:

−=

−b

h

r

r

r

eb

q'.2

2

1'..2

. λµ

µλ

γ (2.4)

e igualando con la ecuación (2.1a) se obtiene

qbλµ' dh

Page 46: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 18 -

b

h

eC

r

b

h

z

r

'.2

1'.2

λµ

λµ−

−= (2.5)

donde: λ, coeficiente de Rankine (adimensional)

µ’ = tg ϕ’, coeficiente de rozamiento entre el material del relleno y las paredes

laterales de la zanja, cuyo valor es función del tipo de suelo de acuerdo con la

tabla 2.7. (adimensional)

Tipo de relleno λλλλ µ µ µ µ’

No cohesivo. Rocas machacadas 0,19

No cohesivo. Rocas con gravas 0,17

Cohesivo. Arena arcillosa 0,15

Cohesivo. Arcillas ordinarias 0,13

Cohesivo. Arcillas plásticas 0,11

Tabla 2.7. Valores de λµ’ para diferentes tipos de terreno (IET 07).

B) Instalación en zanja terraplenada

En este tipo de instalación, el prisma central que está limitado por los planos que contienen

las paredes laterales de la zanja, es de mayor altura que los prismas exteriores, y por tanto,

estos prismas asientan menos que el prisma central (ver figura 2.5), y se producen unas

fuerzas de rozamiento, sobre este último, que originan un aligeramiento del peso del relleno

sobre la tubería.

de

hr

PLANO DE IGUAL ASENTAMIENTO

PRISMACENTRAL

PRISMAEXTERIOR

hr-h0

h0

b hr"=η'de

Figura 2.5. Esquema de instalación en zanja terraplenada (IET 07).

Page 47: cálculo estructural de tuberías enterradas por el método

Capítulo 2

Análisis de los métodos actuales de cálculo estructural de tuberías enterradas

- 19 -

La expresión de la carga de tierras depende igualmente que la anterior de que el relleno

lateral esté adecuadamente compactado o no.

Para relleno compactado: bhCq rrztr ...γ= (2.6a)

Para relleno no compactado: errztr dhCq ...γ= (2.6b)

El coeficiente de Marston, Czt, para tubería colocada en zanja terraplenada (ver figura 2.5)

vale:

Si hr ≤ h0

b

h

eC

r

b

h

zt

r

.2

1.2

λµ

λµ−

−= (2.7)

Si hr > h0 b

h

rr

b

h

zt eh

h

b

h

eC

0

0

.20

.2

).1(

.2

1 λµλµ

λµ

−−

−+−

= (2.8)

El valor de h0 se deduce de la fórmula:

1.2.2''0

.2 0

+=+−

ηδλµλµλµ

b

he b

h

(2.9)

donde: h0, altura desde la clave del tubo hasta el plano de igual asentamiento (m)

µ = tg ϕ, coeficiente de rozamiento interno del relleno (adimensional)

η‘ = hr”/b, razón de proyección para zanja terraplenada (adimensional)

hr”, altura del terreno a la clave superior del tubo (m)

δ‘, razón de asentamiento en zanja terraplenada (adimensional), cuyos valores

recomendados por la ASCE (ver tabla 2.8)

ηηηη’ δδδδ’

0,5 -0,3

1,0 -0,5

1,5 -1,0

2,0 -0,1

Tabla 2.8. Relación entre la razón de proyección y la razón de asentamiento (IET07).

C) Instalación en terraplén

En este tipo de instalación, el prisma central, que está limitado por los planos verticales

tangentes a la tubería, es de menor altura que los prismas exteriores, y por tanto, estos

prismas asientan más que el prisma central y se producen unas fuerzas de rozamiento,

sobre este último, que originan un aumento del peso del relleno sobre la tubería.

Page 48: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 20 -

de

hr

hr-h0

h0

hr'=η'de

PLANO DE IGUAL ASENTAMIENTO

Figura 2.6. Esquema de instalación en terraplén (IET 07).

La expresión de la carga de tierras en este caso es independiente de la compactación del

relleno lateral.

errtr dhCq ...γ= (2.10)

El coeficiente de Marston, Ct, para tubería colocada en terraplén (ver figura 2.6) vale:

Si hr ≤ h0

e

r

d

h

t

d

h

eC

e

r

.2

1.2

λµ

λµ

−= (2.11)

Si hr > h0 e

e

r

d

h

r

e

r

d

h

t eh

h

d

h

eC

0.20

.2

).1(

.2

1 λµλµ

λµ

−+−

= (2.12)

El valor de h0 se deduce de la fórmula:

1..2.2 0.2 0

++= ηδλµλµλµ

e

d

h

d

he e (2.13)

En donde: e

r

d

h'

η = hr’/de, razón de proyección para terraplén (adimensional).

hr’, altura de la clave superior del tubo sobre el terreno (m)

δ, razón de asentamiento en terraplén (adimensional), cuyos valores

recomendados por la ASCE (ver tabla 2.9)

Page 49: cálculo estructural de tuberías enterradas por el método

Capítulo 2

Análisis de los métodos actuales de cálculo estructural de tuberías enterradas

- 21 -

Tipo δδδδ

Roca o suelo no asentable 1,0

Suelo ordinario 0,5

Suelo asentable 0,3

Tabla 2.9. Valores de la razón de asentamiento en terraplén (IET07)

2.2.1.2. El método ATV

Este método, elaborado por la Asociación Técnica para el Saneamiento de Alemania está

desarrollado en la norma ATV-DWK 127-E (2000) y en España está recogido íntegramente

en la norma UNE EN 53331:1997.

h

de

b

β

E1

E3

Figura 2.7. Esquema de instalación en zanja (ATV 127).

Según este método, las fuerzas de rozamiento existentes en las paredes de la zanja pueden

reducir la tensión del terreno y justificar la aplicación de la teoría de Marston, bajo la

consideración de que las paredes de la zanja (superficies de fricción) permanezcan

inalteradas durante un largo periodo de tiempo (ver figura 2.7). De acuerdo con la teoría de

Marston, se puede concluir que la tensión vertical del terreno producida por el peso del

relleno a una profundidad determinada se obtiene mediante la siguiente expresión.

hp sE ..γκ β= (2.14)

donde: pE, tensión vertical del relleno (kN/m2)

κβ, coeficiente de reducción por el efecto Marston (adimensional)

γs, peso específico del relleno (kN/m3)

h, altura de relleno (m)

Por otro lado como requisito para la aplicación del coeficiente de reducción (κ) se debe

cumplir que el módulo de reacción del relleno sea menor que el modulo de reacción del

Page 50: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 22 -

terreno natural (E1≤ E3) y que el grado de compactación del relleno de zanja sea mayor del

90%.

Con incrementos de anchuras de zanja (b), el coeficiente de reducción (κ) tiende al valor 1.

Por tanto, en el caso de terraplén se obtiene:

hp SE .γ= (2.15)

Así mismo, se asume un incremento constante en la relación entre la tensión por encima del

tubo y la anchura de la zanja. Con esto, la consideración previa usual de condiciones en

zanja y condiciones en terraplén puede ser eliminada. La presión lateral en las paredes de la

zanja es determinante para la reducción de las cargas de tierra, poniendo énfasis en el ratio

K1 (coeficiente de empuje lateral del relleno) y el ángulo de rozamiento efectivo (δ).

De este modo, de acuerdo con la teoría de Marston, se obtiene:

δ

κ

δ

tan.2

1

1

tan.2 1

Kb

h

eK

b

h−

−= (2.16)

donde: κ, coeficiente de Marston para instalación en zanja con pared vertical (adimensional)

b, anchura de zanja en la clave superior del tubo (m)

K1, coeficiente de empuje lateral del relleno por encima de la clave del tubo (adim.)

δ, ángulo de rozamiento entre el relleno y la pared lateral de la zanja (º)

Y en función del talud de la zanja se obtiene:

+−=

90.

901

βκ

βκ β (2.17)

donde: β, ángulo del talud de la zanja (º)

2.2.1.3. El método del Fascículo 70

De manera análoga al anterior procedimiento, el método del FASCICULE 70 (2003)

elaborado por el Ministerio de Economía, finanzas e industria de Francia propone el uso del

método de Marston para el cálculo de las cargas de tierras.

Page 51: cálculo estructural de tuberías enterradas por el método

Capítulo 2

Análisis de los métodos actuales de cálculo estructural de tuberías enterradas

- 23 -

H

De

b

Figura 2.8. Esquema de instalación en zanja (F 70).

En este método, la presión vertical de tierras (pr) es igual a la presión debida al prisma de

tierras situado sobre la generatriz superior del tubo hasta el terreno natural corregido por un

coeficiente de concentración C, cuya distribución es uniforme a lo largo del diámetro exterior

de la conducción (ver figura 2.8).

Por consiguiente, se tiene:

HCpr ..γ= (2.18)

donde: pr, presión vertical del relleno (kN/m2)

γ, peso específico del relleno (kN/m3)

H, altura de relleno (m)

C, Coeficiente de concentración (adimensional)

El coeficiente de concentración C resulta del cálculo siguiente.

A) Instalación en zanja - En el caso de conducciones con un comportamiento flexible:

Se toma C = 1

- En el caso de conducciones con un comportamiento rígido:

Se efectúa el cálculo con ayuda del modelo de Marston.

Se obtiene el valor de C1 en función de H/b de b/De y k1, con ayuda de la figura 2.9.

Page 52: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 24 -

Figura 2.9. Valores de C1/(B/De) en función de H/B y de k1 (F 70)

(siendo b la anchura de la zanja en m en la generatriz superior de la tubería).

Si C1 ≤ 1 se mantiene C = 1

Si no:

*Se calcula C2 = C0 si H/De ≤ 2.5 (ver figura 2.10)

Figura 2.10. Valores del coeficiente C0 en función de H/B y 2α (F 70)

i

s

ras

ECC 009,002 −= si H/De > 2,5 (2.19)

Con Es, módulo de reacción del relleno (MPa)

Page 53: cálculo estructural de tuberías enterradas por el método

Capítulo 2

Análisis de los métodos actuales de cálculo estructural de tuberías enterradas

- 25 -

rasi, rigidez anular específica (MPa)

C0 función de H/De y 2α.

*Se toma C = Min (C1; C2).

B) Instalación en terraplén indefinido

- En el caso de conducciones con un comportamiento flexible:

Se toma C = 1

- En el caso de conducciones con un comportamiento rígido:

Se efectúa el cálculo con ayuda del modelo de Marston.

Se determina C2 como se ha indicado anteriormente, y

*Se toma: C = C2

El coeficiente de concentración (C) depende en particular de:

• Del comportamiento de la tubería en su entorno, definido por el criterio de rigidez.

• De las condiciones de puesta en obra (tipo de instalación, nivel de compactación,

modalidades de retirada de los blindajes).

• De la calidad de los materiales del relleno de protección (en particular los

coeficientes de empuje lateral del relleno por encima y en los laterales del tubo k1 y

k2 respectivamente)

• De la altura de relleno (H).

• De la presencia o no del nivel freático.

2.2.2 CARGAS DE TRÁFICO

En los tuberías de acero y hormigón, las acciones del tráfico se han venido calculando, de

forma clásica, mediante la teoría de Boussinesq (BOUSSINESQ, J.V. (1885)), la cual se

encuentra desarrollada de forma simplificada en la IET07 (2007).

En las tuberías de material plástico, de manera análoga a las acciones del terreno, suele

emplearse en España el método de la norma ATV-DWK 127-E (2000) para la determinación

de acciones de tráfico.

En las tuberías de fundición, de manera semejante a las acciones del terreno, se suele

emplear el método del FASCICULE 70 (2003) para establecer las cargas de tráfico.

2.2.2.1. El método IET07

Las cargas de tráfico se determinarán utilizando el procedimiento propuesto por el Instituto

Eduardo Torroja para Tubos de Hormigón, IET07 (2007). Con este procedimiento, la

Page 54: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 26 -

sobrecarga vertical que actúa sobre el plano de la generatriz superior de la tubería puede

calcularse mediante la expresión:

eQi dqCq .0 ⋅= (2.20)

En donde: q0, carga vertical debido a las cargas de tráfico (kN/m)

Ci = 1+0,3/hr, coeficiente de impacto, con hr en m (adimensional)

qQ, presión vertical por las cargas de tráfico a la profundidad hr (KN/m2)

de diámetro exterior del tubo (m)

A continuación se presentan las expresiones de la presión vertical a la profundidad (hr),

obtenidas para el caso de instalación en terraplén y sin tener en cuenta el coeficiente de

impacto para las cargas de 70 kN, 130 kN y 600 kN (ver figura 2.11).

EJE SIMPLE DE 70 kN

2,00 m

Q = 35 kN Q = 35 kN

1,70 0,300,3035 kN 35 kN0,20 a

b

EJE SIMPLE DE 130 kN

2,00 m

Q = 65 kN Q = 65 kN

1,40 0,600,6065 kN 65 kN0,20 a

b

TRIPLE EJE DE 600 kN

2,00 m

Q = 100 kN Q = 100 kN

1,40 0,600,60100 kN 100 kN0,20 a

b

100 kN 100 kN0,20 a

b

100 kN 100 kN0,20 a

b

1,50

m1,

50 m

Figura 2.11. Esquemas de distribución de cargas por rueda (IET 07)

A) Eje de 70 kN

Para 1 < hr ≤ 1,21 m 06,070,054,1

352 ++

=rr

Qhh

q (2.21)

Para hr > 1,21 m 46,050,354,1

702 ++

=rr

Qhh

q (2.22)

Page 55: cálculo estructural de tuberías enterradas por el método

Capítulo 2

Análisis de los métodos actuales de cálculo estructural de tuberías enterradas

- 27 -

B) Eje de 130 kN

Para hr ≥ 1,00 m 52,092,354,1

1302 ++

=rr

Qhh

q (2.23)

C) Eje de 600 kN

Para hr ≥ 1,00 32,812,854,1

6002 ++

=rr

Qhh

q (2.24)

2.2.2.2. El método ATV

El método empleado en la norma ATV-DWK 127E (2000) para las cargas de tráfico se basa

en la norma DIN 1072 y calcula dichas cargas mediante la teoría de Boussinesq. La carga

de tráfico (pv) como resultado de las cargas rodantes a una altura de cobertura (h) y para un

diámetro de tubería (dm) se calcula de acuerdo con la siguiente ecuación:

( )FFv papp ... ϕϕ == (2.25)

donde: pF, cargas de tráfico según la norma DIN 1072 (ver figura 2.12) (KN/m2)

CV 12

2,00 m

1,80 0,200,2020kN 20 kN0,20 ad

bd

HGV 30

2,00 m

Q = 50 kN Q = 50 kN

1,60 0,400,4050 kN 50 kN0,20 a

b

50 kN 50 kN0,20 a

b

50 kN 50 kN0,20 a

b

1,5

0 m

1,5

0 m

1,70 0,300,3040 kN 40 kN0,20 aa

ba

3,0

0 m

Q = Var. kN Q = Var. kN

HGV 60

2,00 m

Q = 100 kN Q = 100 kN

1,40 0,600,60100 kN 100 kN0,20 a

b

100 kN 100 kN0,20 a

b

100 kN 100 kN0,20 a

b

Figura 2.12. Esquemas de distribución de cargas por rueda (ATV 127)

2

5

22

2

3

22

1

1

..2

.3

1

11

.

+

+

+

−=

h

rh

F

h

rr

Fp

E

E

AA

AF

ππ (2.26)

Page 56: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 28 -

siendo: h, altura de relleno (m)

FA y FE, fuerzas auxiliares (kN)

rA y rE, radios auxiliares (m) (ver tabla 2.10)

Vehículo tipo FA kN

FE kN

rA m

rE m

HGV 60 100 500 0,25 1,82

HGV 30 50 250 0,18 1,82

CV 12 40 80 0,15 2,26

Tabla 2.10. Cargas y radios auxiliares para los distintos tipos de carga (ATV 127)

aF, coeficiente de corrección para cargas de tráfico

3

2

62

1,1

49,0

9,01

m

F

d

hha

++

−= (2.27)

siendo: dm, = 0,5.( de, + di,), diámetro medio (m)

de, diámetro exterior (m)

di, diámetro interior (m)

ϕ, coeficiente de impacto (adimensional) que se define en la tabla 2.11.

Vehículo tipo ϕϕϕϕ

HGV 60 1,2

HGV 30 1,4

CV 12 1,5

Tabla 2.11. Coeficientes de impacto (ATV 127)

2.2.2.3. El método del Fascículo 70

Al igual que los otros dos métodos de cálculo, el método del FASCICULE 70 (2003) define la

presión vertical producida por un tren de cargas de acuerdo con la teoría de Boussinesq.

Para este caso, la carga vertical de tráfico (per) se corresponde al sistema de cargas más

desfavorable generado por el convoy tipo BC (cruce de dos camiones de 30 Tm cada uno

sobre 3 ejes, ver figura 2.13), con coeficientes de mayoración dinámica.

Page 57: cálculo estructural de tuberías enterradas por el método

Capítulo 2

Análisis de los métodos actuales de cálculo estructural de tuberías enterradas

- 29 -

Convoy BC

2,00 m

Q = Var. kN Q = Var. kN

1,800,20

0,20 ab

0,25

4,50

m1,

50 m

0,25 ab

30 kN

60 kN

60 kN

30 kN

60 kN

60 kN

0,20

0,20

0,20 ab

0,25

0,25 a

b

30 kN

60 kN

60 kN

30 kN

60 kN

60 kN

2,00 m

Q = Var. kN Q = Var. kN

1,800,20 0,20

Figura 2.13. Esquemas de distribución de cargas por rueda convoy BC (F 70)

El valor de las cargas correspondientes se indica sobre la figura 2.14 obtenida del

FASCICULE 70 (2003).

pre

sió

n p

er

(kN

/m2)

diametro exterior (mm)

Figura 2.14. Cargas de tráfico en función del diámetro y la profundidad de instalación (F 70)

Los coeficientes dinámicos incluidos en la figura 2.14 son λ = 1,6 para la fila de ruedas

situadas en la vertical de la conducción y λ = 1 para las otras ruedas.

Page 58: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 30 -

2.2.3 ANÁLISIS DE LOS RESULTADOS OBTENIDOS

2.2.3.1. Estudio de los coeficientes de Marston

Para evaluar el comportamiento de los coeficientes de concentración de carga en una

instalación en zanja se han realizado una serie de cálculos mediante los métodos definidos

anteriormente. Los parámetros que definen el cálculo son básicamente dos: la relación entre

la altura de cobertura y el ancho en la clave del tubo (hr/b), y el producto entre el coeficiente

de Rankine y el coeficiente de rozamiento entre el relleno y las paredes de la zanja (λµ’ en la

teoría de Marston, k1 en el Fascículo 70 y K1.tanδ en la norma ATV 127). La norma ATV 127

define otro parámetro (β) (ver ecuación 2.17), que se corresponde con el ángulo del talud de

la zanja, y cuya misión es reducir el coeficiente a medida que el talud de la zanja va

aumentando.

En el primer conjunto de cálculos, que se recogen en la figura 2.15, se definen los

coeficientes de Marston para una instalación en zanja con talud vertical, un ratio hr/b variable

desde 0 hasta 5, y donde se han considerado los valores superior, inferior y medio de los

parámetros relativos al terreno definidos por las respectivas normas [kµ’ 0,19, 0,15 y 0,11

(Teoría de Marston), k1 (0,15, 0,09 y 0,03 (Fascículo 70) y K1.tanδ (0,50, 0,25 y 0) con K1 cte

= 0,5 (norma ATV 127).

Page 59: cálculo estructural de tuberías enterradas por el método

Capítulo 2

Análisis de los métodos actuales de cálculo estructural de tuberías enterradas

- 31 -

0,0

0

0,1

0

0,2

0

0,3

0

0,4

0

0,5

0

0,6

0

0,7

0

0,8

0

0,9

0

1,0

0

1,1

0 0,0

00,5

01,0

01,5

02,0

02,5

03,0

03,5

04

,00

4,5

05,0

0

h/b

Coeficiente de Marston

IET

07

(km

=0,1

9)

IET

07

(km

=0

,15

)IE

T0

7 (k

m=

0,1

1)

AT

V 1

27

(K

1.ta

=0

,50)

AT

V 1

27

(K

1ta

nδ=

0,2

5)

AT

V 1

27

(K

1.t

anδ=

0,0

)

F-7

0 (

k1=

0,1

5)

F-7

0 (

k1

=0

,09

)F

-70

(k1

=0

,03

)

Figura 2.15. Coeficientes de reducción de carga en zanjas de talud vertical (IET07, F70 y ATV127)

Page 60: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 32 -

0,0

0

0,1

0

0,2

0

0,3

0

0,4

0

0,5

0

0,6

0

0,7

0

0,8

0

0,9

0

1,0

0

1,1

0 0,0

00,5

01,0

01,5

02,0

02,5

03,0

03,5

04

,00

4,5

05,0

0

h/b

Coeficiente de Marston

AT

V 1

27

=4

5,

K1

.ta

nδ=

0,5

0)

AT

V 1

27 (β

=4

5,

K1

tanδ

=0

,25

)A

TV

12

7 (β

=45

, K

1.t

anδ

=0)

AT

V 1

27

=9

0,

K1

.ta

nδ=

0,5

0)

AT

V 1

27 (β

=9

0,

K1

tanδ

=0

,25

)A

TV

12

7 (β

=90

, K

1.t

anδ

=0)

Figura 2.16. Coeficientes de reducción de carga en zanjas de talud inclinado (ATV127)

Page 61: cálculo estructural de tuberías enterradas por el método

Capítulo 2

Análisis de los métodos actuales de cálculo estructural de tuberías enterradas

- 33 -

0,0

0

10,0

0

20,0

0

30,0

0

40,0

0

50,0

0

60,0

0

70,0

0

80,0

0

0500

1000

1500

2000

2500

3000

Dia

met

ro e

xter

ior

(mm

)

Presion vertical (kN/m2)

h=

0,8

m (

AT

V)

h=

1 m

(A

TV

)h=

2 m

(A

TV

)h

=3

m (

AT

V)

h=

4 m

(A

TV

)h

=5

m (

AT

V)

h=

0,8

m (

F7

0)

h=

1 m

(F

70)

h=

2 m

(F

70

)h

=3

m (

F7

0)

h=

4 m

(F

70

)h

=5

m (

F7

0)

h=

0,8

m (

IET

07

)h

=1

m (

IET

07)

h=

2 m

(IE

T0

7)

h=

3 m

(IE

T0

7)

h=

4 m

(IE

T0

7)

h=

5 m

(IE

T0

7)

Figura 2.17. Distribución de cargas de tráfico (IET07, F70 y ATV127)

Page 62: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 34 -

En el segundo grupo de cálculos, que se encuentran recopilados en la figura 2.16, se

definen los coeficientes de Marston para una instalación en zanja con taludes variables (90º

y 45º), un ratio (hr/b) variable de 0 a 5 y unos parámetros del terreno (K1.tanδ) variables

entre (0,5 a 0) .

De los resultados obtenidos (figura 2.15) se deduce que el comportamiento de las diferentes

normas se diferencia fundamentalmente en los parámetros que definen el terreno, porque el

procedimiento de cálculo está basado en todos los casos en el método de Marston, por otro

lado es muy importante destacar la diferencia existente en la figura 2.16, entre la norma

ATV127 y las otras, al considerar esta primera el coeficiente de reducción adicional por

efecto del ángulo del talud (β), consideración muy importante al aumentar los coeficientes de

Marston y por tanto la carga de tierras transmitida a la tubería.

2.2.3.2. Estudio de las cargas de tráfico

En base a las metodologías expuestas anteriormente se han calculado las cargas de tráfico

(para el tren de carga pésimo: carro de 60 t en la IET07, HGV60 en la ATV127 y convoy Bc

en el Fascículo 70) en función de la profundidad y el diámetro de tubería instalada (ver figura

2.17).

Con respecto a la distribución de cargas de tráfico (figura 2.17), se deduce que el

comportamiento variable de las cargas de tráfico con el diámetro del tubo lo establecen las

normas ATV y F70 para alturas de cobertura por debajo de 1 m, mientras que la norma

IET07 establece un valor de carga independiente del diámetro de la tubería instalada. En

general, la principal diferencia de los distintos procedimientos de cálculo, aparte de lo

anteriormente mencionado, es la consideración de diferentes coeficientes de impacto

establecidos según el tipo de carga o en función de la profundidad de instalación.

2.3. MÉTODOS ACTUALES PARA EL DIMENSIONAMIENTO DE TUBERÍAS ENTERRADAS EN ESPAÑA

En España, los procedimientos de diseño de tuberías enterradas se corresponden para los

materiales más “clásicos” (entre ellos: acero, fundición y hormigón armado) con

procedimientos específicos del material en cuestión, procedentes en la mayoría de los casos

de normas extranjeras, que por su implantación a nivel mundial son aplicadas aquí en

España transpuestas o no a la normativa nacional.

Mientras que los materiales más “modernos” (entre los que destacan todos los plásticos) se

dimensionan a través de una norma europea, trascrita a norma UNE (UNE EN 53331:1997)

y que deriva de una norma nacional de origen alemán (ATV-DWK 127E (2000)) y que define

el dimensionamiento para cualquier material constitutivo de la tubería.

Page 63: cálculo estructural de tuberías enterradas por el método

Capítulo 2

Análisis de los métodos actuales de cálculo estructural de tuberías enterradas

- 35 -

2.3.1 DIMENSIONAMIENTO DE TUBERÍAS METÁLICAS

2.3.1.1. Tuberías de acero

En las tuberías de acero enterradas, de acuerdo con las recomendaciones técnicas

establecidas por el CEDEX (2003), las hipótesis pésimas de carga y las solicitaciones

condicionantes son, respectivamente:

• Hipótesis I. Presión interna ............................................................... Estado tensional

• Hipótesis II. Acciones externas .......................................................... Deformaciones

• Hipótesis III. Acciones externas y Presión interna negativa................ Pandeo o colapso

La metodología y notación empleada (ver tabla 2.1) se corresponde con la descrita en la

norma AWWA M-11 (1999)

A) Dimensionamiento para presión interna

La comprobación a presión interior permite determinar el espesor necesario de la tubería

mediante la siguiente expresión, estableciendo como condición necesaria que la tensión

admisible del acero sea como máximo el 50% del límite elástico mínimo.

s

dpt

.2

.= (2.28)

donde: t, espesor del cálculo2 (m)

p, presión máxima de diseño (kN/m2)

d, diámetro exterior del tubo (sin incluir revestimientos) (m)

s, tensión admisible del acero (kN/m2)

B) Dimensionamiento para acciones externas

La comprobación de la resistencia de los tubos flexibles frente a las cargas externas se basa

en la limitación de las deformaciones diametrales. Para las tuberías de acero la rotura se

alcanza normalmente cuando el diámetro vertical sufre acortamientos del orden del 20 %.

Por razones funcionales y de seguridad se ha limitado la deformación diametral ente el 2 -

5% (ver tabla 2.12). Estos valores son los recomendados en la AWWA M11 (1999) para

tuberías de acero en función del tipo de revestimiento.

2 Las unidades aquí expresadas se corresponden con el S.I, si bien en el original se corresponden con unidades

del sistema anglosajón (in. para longitud, psi para presión, etc)

Page 64: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 36 -

Clase de revestimiento del tubo

Exterior Interior

Def. diametral admisible (%)

Flexible Flexible 5

Flexible Mortero de cemento 3 – 4

Mortero de cemento Mortero de cemento 2

Tabla 2.12. Deformación radial admisible (M11)

El valor de la ovalización se calculará mediante la fórmula de Iowa propuesta inicialmente

por SPANGLER, M.G. (1962) y modificada y adaptada por diversos autores u organismos.

En su formulación usual la deflexión horizontal se obtiene mediante la siguiente expresión:

( )3

3

'061,0 rEEI

rWKDx l

⋅⋅+

⋅⋅⋅=∆ (2.29)

donde: ∆x, deflexión horizontal de la tubería (m)

Dl, factor de fluencia de la deflexión (1 – 1,5)

K, constante dependiente del tipo de apoyo (0,1)

W, carga total por unidad de longitud de la tubería (kN/m)

r, radio de la tubería (m)

EI, rigidez de la pared tubo (kN.m)

siendo: E, módulo de elasticidad del acero (kN/m2)

I, momento de inercia por unidad de longitud de la tubería (m3)

E’, módulo de reacción del relleno (kN/m2)

El módulo de reacción del relleno es un parámetro de la rigidez del material del suelo, que

rodea la tubería. Este módulo es necesario para el cálculo de la deflexión y la tensión crítica

por pandeo. Se trata de un modulo mixto que ha sido introducido para eliminar la constante

de flexión utilizada en la formula de Iowa original.

Este módulo es el producto del modulo de resistencia pasiva del relleno utilizado en las

primeras modificaciones realizadas por Spangler y el radio del tubo y por tanto no es una

propiedad intrínseca del suelo y se define en función de cinco grupos de suelos y tres

niveles de compactación clasificados en base a la rigidez que adquieren una vez que se

encuentran compactados (ver tabla 2.13).

Page 65: cálculo estructural de tuberías enterradas por el método

Capítulo 2

Análisis de los métodos actuales de cálculo estructural de tuberías enterradas

- 37 -

Compactación (E’ en kN/m2) Tipo de terreno Nula Ligera

< 85% Proctor < 40% Den. rel.

Moderada 85-95% Proctor 40-70% Den. rel.

Alta >-95% Proctor > 70% Den. rel.

SC1 6.900 20.700 20.700 20.700

SC2 1.400 6.900 13.800 20.700

SC3 690 2.800 6.900 13.800

SC4 340 1.400 2.800 6.900

SC5 Requiere un análisis especial para determinar la densidad requerida, el

contenido de humedad y el grado de compactación.

Tabla 2.13. Módulos de reacción del relleno (M11)

C) Pandeo de la tubería

La tubería instalada en el terreno podría llegar a colapsar como consecuencia de la

inestabilidad elástica debida a las cargas externas o a las presiones negativas en el interior

de la tubería. La presión de pandeo admisible, de acuerdo con la AWWA M11 (1999) puede

ser determinada mediante la siguiente expresión:

21

3''32

1

⋅⋅⋅⋅

=

d

EIEBR

FSq wa (2.30)

donde: qa, presión admisible de pandeo (kN/m2)

FS, coeficiente de seguridad, función de h (altura de relleno).

= 2,5 para h/D ≥ 2

= 3,0 para h/D < 2

siendo: h, altura de rellenos (m)

d, diámetro de la tubería (m)

Rw, coeficiente de flotación de la tubería.

= 1-0,33 (hw/h), 0 ≤ hw ≤ h

siendo: hw, altura de agua sobre clave superior del tubo

B’, coeficiente de origen empírico del soporte elástico.

h

eB

⋅−+=

065.01

1' (2.31)

E’ y EI = valores definidos anteriormente

Como hipótesis complementaria y para la comprobación de los resultados obtenidos, el

CEDEX (2003) recomienda la posibilidad de emplear la formulación de Levy, usada para el

cálculo de la presión crítica en tubos aéreos, de modo que establezca un límite inferior a los

valores de espesor obtenidos por la formulación de Luscher.

Page 66: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 38 -

3

21

2

−=

n

cd

tEP

ν (2.32)

donde: Pc, presión de colapso en tubos aéreos (kN/m2)

dn, diámetro de la fibra neutra del tubo (para tuberías de pared delgada la diferencia

entre los diámetros interior, exterior y del eje neutral es despreciable)

t, espesor del tubo (m)

E, módulo de elasticidad del acero (210.000.000 kN/m2)

ν, coeficiente de Poisson del acero (0,30)

2.3.1.2. Tuberías de fundición

En las tuberías de fundición dúctil, de acuerdo con las recomendaciones técnicas

establecidas por el CEDEX (2003), las hipótesis pésimas de carga y las solicitaciones

condicionantes, en instalación en zanja son:

• Hipótesis I. Presión interna ............................................................... Estado tensional

• Hipótesis II. Acciones externas .......................................................... Deformaciones y

tensiones

• Hipótesis III. Acciones externas y Presión interna negativa................ Pandeo o colapso

La metodología y notación empleada (ver tabla 2.3 y 2.4) se corresponde básicamente con

lo descrito en la norma UNE EN 545:2007 y el FASCICULE 70 (2003).

A) Dimensionamiento para presión interna

En este caso es necesario comprobar que las presiones máximas de funcionamiento (PFA)

y la máxima admisible (PMA) son inferiores a las calculadas mediante la siguiente

formulación establecida en la norma UNE EN 545:2007:

DC

ReP t

.

..2= (2.33)

donde: P, presión interior (kN/m2)

e = en – T, espesor de la pared del tubo (m)

en, espesor nominal (= K(0,5 +0,001DN)) (m)

T, tolerancia máxima (=1,3+0,001DN) (m)

DN, diámetro nominal de la tubería (m)

Rt, resistencia mínima a tracción (420.000 kN/m2)

C, coeficiente de seguridad

= 3 para PFA (presión de funcionamiento admisible)

= 2,5 para PMA (presión máxima admisible)

D, diámetro medio del tubo ( = Dext – e) (m)

Page 67: cálculo estructural de tuberías enterradas por el método

Capítulo 2

Análisis de los métodos actuales de cálculo estructural de tuberías enterradas

- 39 -

B) Dimensionamiento para acciones externas

Debe comprobarse que, actuando únicamente las acciones externas, la deformación

máxima debida a la flexión transversal es tolerable y las tensiones son menores que la

admisible.

B.1) Deformaciones y tensiones según UNE EN 545:2007

Esta comprobación se puede realizar, en una primera aproximación, de acuerdo con la

metodología indicada en el Anexo F informativo de la norma UNE EN 545:2007, según el

cual los valores del deformación diametral admisibles que figuran en la norma aseguran que

el revestimiento interno de mortero de cemento no sufra daños y que la tensión del tubo no

supere el valor admisible.

El anexo F establece el cálculo de las ovalizaciones por cargas externas mediante la fórmula

de Spangler del siguiente modo:

( )( )'061,08

100

ES

WWK

c

tea

⋅+

+⋅=δ (2.34)

donde: δ, deformación vertical del tubo (%)

Ka, factor de apoyo, en función del ángulo 2α (0,110 a 0,083)

We, carga debida al peso de tierras (kN/m2)

Wt, carga debida al tráfico (kN/m2)

Sc, rigidez diametral del tubo (kN/m2)

E’, módulo de reacción del relleno3 (kN/m2)

B.2) Deformaciones y tensiones según Fascículo 70

Ovalización

La ovalización vertical máxima admisible en una tubería de fundición dúctil será ≤ 4%,

garantizando la integridad del revestimiento de mortero de cemento. La ovalización vertical

relativa4, de acuerdo con el FASCICULE 70 (2003), tiene por expresión:

21 ovovov += (2.35)

3 Los valores habituales que se recomiendan en la norma UNE EN 545:2001 son E’=0 para relleno sin

compactar, E’=1.000 kN/m2 para relleno mal compactado, E’=2.000 kN/m

2 para relleno moderadamente

compactado y E’=5.000 kN/m2 para relleno bien compactado.

4 En el CAPÍTULO 3 se puede observar la similitud entre las expresiones del Fascículo 70 y la opción 2 de

cálculo del informe técnico CEN/TR 1295-3

Page 68: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 40 -

con;

( ) 319.8

12.

2

2

1pE

ras

kk

pvov

s

s −−

+

=

ν

α

(2.36)

y m

cr

D

e

p

pov 0

2 .1

1

1.2

= (2.37)

donde: ov, ovalización vertical máxima (en tanto por uno)

pv, presión vertical total (pv = pr + pe) (kN/m2)

kα, coeficiente de deformación, función del ángulo de apoyo (en radianes), y cuya

expresión es:

( )α

αα

απ

αα

π

αααπα

sensen

sensenk

.12

coscos32

.4

21

4

cos.3

44824

132 +−

++

−−+−+= (2.38)

k2, coeficiente de empuje lateral del relleno de protección (ver tabla 2.14).

ras, rigidez anular específica (kN/m2)

Es, modulo de reacción del relleno5 (kN/m2) (ver tabla 2.14)

νs, coeficiente de Poisson del relleno

p, presión media (p = pwe + pv (1+ k2)/2) (kN/m2)

pcr, presión crítica de colapso (kN/m2)

e0, defecto geométrico inicial (= 1,2 + DN/2000) (mm)

Compactación

Nula Ligera Moderada Alta

Tipo de terreno

Es k2 Es k2 Es k2 Es k2

G1 700 0,15 2.000 0,35 5.000 0,50 10.000 0,60

G2 600 0,15 1.200 0,35 3.000 0,50 7.000 0,60

G3 500 0,00 600 0,15 2.500 0,35 4.500 0,50

G4 < 300 0,00 - 0,00 1.500 0,15 3.000 0,25

G5 - - - - - - 2.000 -

Tabla 2.14. Módulos de reacción y coeficientes de presión horizontal (F 70)

5 Los módulos de reacción del relleno que deben tenerse en cuenta se determinan a partir del estudio geotécnico

previo, en particular en el caso de su reutilización como rellenos. A falta de información específica sobre la

naturaleza de los suelos, el Fascículo 70 define el módulo de reacción y otros parámetros (entre otros k2) en

función de cinco grupos de terreno (G1 a G5) según la norma NF P 11300 y cuatro niveles de compactación.

Page 69: cálculo estructural de tuberías enterradas por el método

Capítulo 2

Análisis de los métodos actuales de cálculo estructural de tuberías enterradas

- 41 -

Deformaciones y tensiones

La deformación resultante (ε) para una tubería flexible de espesor homogéneo y sección

longitudinal rectangular se puede expresar en función de la ovalización vertical calculada

anteriormente mediante la siguiente expresión:

( )2

2

0

1

2

2

.1

..

12

4ov

D

enov

D

e

kk

kK

mm

−+

=

α

α

ε (2.39)

donde: ε, deformación resultante por ovalización vertical

Kα, coeficiente de momentos, función del ángulo de apoyo (α, en radianes), y cuya

expresión es:

−−+++= α

παπ

α

ααα

α

πα sen

sensenK

23

cos

8

3

4cos

4

3

2

12

(2.40)

Y a partir de esta expresión obtener la tensión máxima mediante la fórmula:

εσ .TE= (2.41)

donde: σ, tensión máxima producida por la ovalización (kN/m2)

ET, módulo de elasticidad de la fundición (170.000 kN/m2)

C) Pandeo de la tubería

La presión crítica de colapso (pcr) de acuerdo con el Fascículo 70 se puede calcular

mediante la siguiente expresión.

rasn

snpcr

−+−=

118

2

0

2

0 (2.42)

donde: s, índice de rigidez del sistema tubería/terreno

ras, rigidez anular específica (kN/m2)

n0, número de ondas de colapso (Siendo la parte entera superior o igual a 2 que

minimiza la siguiente expresión):

11

2

2

−+−

n

sn

Page 70: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 42 -

En el caso de que no exista interacción del suelo (s = 0), se obtiene que el número de ondas

de colapso es igual a dos (n0 = 2), de donde aparece la fórmula clásica de colapso para un

anillo libre ( Spcr .24= )

Para el caso de que la conducción tuviera un comportamiento rígido, el número de ondas de

colapso sería igual a dos (n0 = 2) y, en caso de que tuviera un comportamiento flexible, sería

mayor o igual a 3 (n0 ≥ 3).

2.3.2 DIMENSIONAMIENTO DE TUBERÍAS DE MATERIAL PLÁSTICO

2.3.2.1. Tubería de PVC y PE

En las tuberías de PVC-U y PE, de acuerdo con las recomendaciones técnicas establecidas

por el CEDEX (2003), las hipótesis pésimas de carga y las solicitaciones condicionantes,

con instalación en zanja son:

• Hipótesis I. Presión interna positiva ................................................... Estado tensional

• Hipótesis II. Acciones externas y presión positiva .............................. Estado tensional

y deformaciones

• Hipótesis III. Acciones externas ......................................................... Estado tensional

y deformaciones

• Hipótesis IV. Acciones externas y presión interna negativa................ Pandeo o colapso

La metodología y notación empleada (ver tabla 2.5) se corresponde básicamente con la

descrita en la ATV-DWK 127-E (2000).

A) Dimensionamiento para presión interna

En la hipótesis de actuación única de la presión interna del fluido, debe comprobarse que la

presión de diseño (DP) no sobrepasa el valor de la presión nominal del tubo (PN), de

acuerdo con la serie de valores estandarizados por la norma de producto. Adicionalmente se

debe comprobar que la tubería es capaz de resistir las sobrepresiones debidas al golpe de

ariete.

B) Dimensionamiento para acciones externas

B.1) Acciones externas y presión interna positiva

Debe comprobarse que, actuando conjuntamente ambas acciones, el coeficiente de

seguridad C a largo plazo para los esfuerzos tangenciales a flexotracción en clave, riñones y

base es superior al valor admisible, conforme los valores indicados en la tabla 2.15, y que la

deformación producida es inferior al 5% del diámetro del tubo.

Page 71: cálculo estructural de tuberías enterradas por el método

Capítulo 2

Análisis de los métodos actuales de cálculo estructural de tuberías enterradas

- 43 -

Esfuerzo a flexotracción (N/mm2)

Coef. Seguridad (C) Plazo

PVC PE Clase A Clase B

Corto 90 30 2,5 2,0

Largo 50 14,4 2,5 2,0

Tabla 2.15. Esfuerzo tangencial a flexotracción PVC y PE (ATV 127)

La determinación de estos esfuerzos tangenciales se realiza mediante la siguiente

expresión, calculando los parámetros que en ella intervienen según el método ATV 127.

kW

M

A

Nασ ±= (2.43)

donde: M, suma de momentos por unidad de longitud (kN.m/m)

N, suma de fuerzas axiles por unidad de longitud (kN/m)

A, área de la sección longitudinal de la pared del tubo por unidad de longitud (m2/m)

W, momento resistente de la sección (m3/m) ( = 1.t2/6)

αk, factor de corrección por curvatura, que tiene en cuenta las fibras periféricas

interiores, αki, y las exteriores, αke

m

kir

s

3

11+=α y

m

ker

s

3

11−=α (2.44a y b)

Al igual que el estado tensional, el estado de deformaciones debe realizarse para la acción

conjunta, mediante la siguiente expresión:

100..2 m

v

vr

d∆=δ (2.45)

donde: δv, deformación vertical (%)

∆dv, desplazamiento vertical (m)

( )*

,,,

0

...8

.2* hqhvhqhvvqvv

m

v qcqcqcS

rd ++=∆ (2.46)

siendo: cv,qv, cv,qh, cv,qh*, coeficientes de deformación del tubo

qv, presión vertical sobre el tubo debido a la carga de tierras (kN/m2)

qh, presión lateral del relleno debido a la carga de tierras (kN/m2)

qh*, presión horizontal del relleno (kN/m2)

S0, rigidez del tubo (kN/m2)

rm, radio medio de la tubería (m)

Page 72: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 44 -

B.2) Acciones externas

Debe comprobarse que, actuando únicamente las acciones externas al tubo, el coeficiente

de seguridad C a largo plazo para los esfuerzos tangenciales a flexotracción en calve,

riñones y base es superior al valor admisible y la deformación producida sea menor del 5%

del diámetro, mediante las ecuaciones (2.43 a 2.46).

C) Pandeo de la tubería

Se comprobará que actuando las cargas exteriores y la presión interna negativa, el

coeficiente de seguridad calculado (γ) frente a la carga crítica de pandeo es mayor o igual al

definido en la tabla 2.15.

Cq

critq

v

v ≥=γ (2.47)

En donde la carga critica de pandeo, para comportamiento flexible, se calculará mediante la

siguiente expresión:

Bhvv SScritq 0.8.22

κ= (2.48)

donde: κv2, coeficiente de reducción para tener en cuenta el comportamiento elastoplástico

del terreno y las deformaciones previas.

S0, rigidez del tubo (kN/m2)

SBh, rigidez horizontal del apoyo (kN/m2)

2.3.2.2. Tubería de PRFV

En los tubos de PRFV de acuerdo con las recomendaciones técnicas establecidas por el

CEDEX (2003), las hipótesis pésimas de carga y las solicitaciones condicionantes, suelen

corresponder a alguna de las combinaciones indicadas a continuación:

• Hipótesis I. Presión interna positiva ................................................... Estado tensional

• Hipótesis II. Acciones externas .......................................................... Estado tensional

y deformaciones

• Hipótesis III. Acciones externas y presión interna positiva ................. Estado tensional

• Hipótesis IV. Acciones externas y presión interna negativa................ Pandeo o colapso

La metodología en el caso de los tubos de PRFV es doble, debido a que se usan

habitualmente y de forma indistinta dos métodos de cálculo para el dimensionamiento

mecánico, que son la ATV-DWK 127-E (2000), explicada anteriormente y el manual de la

AWWA M45 (1999) que se describe a continuación con su notación original (ver tabla 2.2).

Page 73: cálculo estructural de tuberías enterradas por el método

Capítulo 2

Análisis de los métodos actuales de cálculo estructural de tuberías enterradas

- 45 -

A) Dimensionamiento para presión interna

En la hipótesis de actuación única de la presión interna del fluido, se comprobará que la

presión máxima de trabajo no exceda de la presión de diseño (Pc) calculada mediante la

siguiente expresión:

D

t

FS

HDBPc

.2. (2.49)

donde: Pc, presión de diseño (kN/m2)

HDB, presión máxima de trabajo (kN/m2)

FS, coeficiente de seguridad (1,8)

t, espesor de la parte estructural del tubo (m)

D, diámetro medio del tubo (m)

B) Dimensionamiento para acciones externas

En la hipótesis de actuación única de las cargas externas al tubo (terreno, sobrecargas

móviles o fijas y otras si existen), supuesto este vacío, se comprobará que las tensiones y

las deformaciones en el tubo no superan los valores admisibles, de acuerdo con lo indicado

a continuación.

B.1) Tensiones

El cálculo de las tensiones producidas por las cargas externas al tubo y la comprobación de

que no exceden los valores admisibles se realiza mediante la siguiente expresión:

FS

ES

D

t

D

yED bta

fb ≤

∆= ...σ (2.50)

donde: σb, tensión máxima debida a la flexión transversal del tubo (kN/m2)

Df, coeficiente de origen empírico (3,3 - 8)

E, módulo de elasticidad del tubo (kN/m2)

∆ya, deformación vertical máxima producida por las cargas externas (m)

Sb, deformación a largo plazo del tubo (m)

D, diámetro medio (m)

FS, coeficiente de diseño (1,5)

εb, relación entre la deformación máxima del tubo y la deflexión (m/m)

t, espesor del tubo (m)

Page 74: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 46 -

B.2) Deformaciones

El cálculo de la deformación vertical producida por las cargas externas al tubo se realizará

mediante la fórmula de Spangler (ver ecuación (2.29)).

B.3) Comprobación conjunta a presión interna y cargas externas

Con espesor total (tt) se realiza la comprobación conjunta a presión interna y cargas

externas mediante las siguientes expresiones:

pr

b

cb

pr

FS

ES

r

HDB

σ

σ1

(2.51)

b

pr

b

cb

FS

HDB

ES

r

σ

σ1

(2.52)

donde: FSpr, coeficiente de seguridad de presión (1,8)

FSb, coeficiente de seguridad de apoyo (= 1,5)

σpr, tensión de trabajo producida por la presión interna (kN/m2)

rc, coeficiente de re-redondeo (adimensional)

σb, tensión producida por la deflexión máxima permitida (kN/m2)

=

D

t

D

dED t

fb

δσ (2.53)

δd, deflexión máxima permitida (m)

tt, espesor total del tubo (m)

D, diámetro medio del tubo (m)

C) Pandeo de la tubería

La tubería instalada en el terreno podría llegar a colapsar como consecuencia de la

inestabilidad elástica debida a las cargas externas o a las presiones negativas en el interior

de la tubería. La presión de pandeo admisible, de acuerdo con el AWWA M45 (1999) se

puede determinada mediante la ecuación (2.30).

Page 75: cálculo estructural de tuberías enterradas por el método

Capítulo 2

Análisis de los métodos actuales de cálculo estructural de tuberías enterradas

- 47 -

2.3.3 DIMENSIONAMIENTO DE TUBERÍAS DE MATERIAL PÉTREO

En este grupo de tuberías, se encuentran englobadas principalmente las tuberías con base

de cemento, donde se encuentran las tuberías de hormigón en masa, tuberías de hormigón

armado con o sin camisa de chapa así como las tuberías de hormigón pretensado o

postesado con o sin camisa de chapa. En este apartado se va a incluir únicamente la

metodología de cálculo asociado a la tubería de hormigón con camisa de chapa, el resto de

procedimientos de diseño se pueden consultar en la norma IET07 (2007).

2.3.3.1. Tuberías de hormigón armado con camisa de chapa

En los tubos de hormigón armado de acuerdo con las recomendaciones técnicas

establecidas por el CEDEX (2003), las hipótesis pésimas de carga y las solicitaciones

condicionantes, se corresponden con alguna de las combinaciones indicadas a

continuación:

• Hipótesis I. Presión interna (estado tensional). En la hipótesis de actuación única de la

presión interna del fluido, debe comprobarse que la Presión máxima de diseño (MDP) no

excede la presión para la que se diseñó el tubo.

• Hipótesis II y III. Acciones externas y acción conjunta de la presión interna y las acciones

externas (estado tensional). Los tubos deben dimensionarse para que, en la hipótesis

pésima de carga, no se rebasen los estados límites últimos de utilización, de acuerdo

con lo indicado en la EHE-08 (2009).

La hipótesis pésima de carga, según los casos, corresponderá a situaciones de tubería

vacía (actuación única de las acciones externas) o de tubería en servicio (actuación conjunta

de las acciones externas y de la presión interna).

El dimensionamiento transversal de los tubos se recomienda que se realice de acuerdo con

los criterios que a continuación se indican para cada tipo de tubo. Los coeficientes de

seguridad serán los correspondientes a un nivel de control intenso, para el acero, el

hormigón y la ejecución. La metodología y formulación empleada se corresponde

básicamente con la descrita en la norma IET07 (2007).

A) Dimensionamiento para presión interna

La comprobación a presión interior permite determinar el espesor necesario de la camisa,

cuya principal misión es soportar la presión interna y lograr la estanqueidad del tubo, ya que

la presión máxima de diseño no debe exceder del valor calculado mediante la expresión

definida en (2.28) para el cálculo de tuberías de acero.

Page 76: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 48 -

B) Dimensionamiento para acciones externas

Para determinar el estado tensional en clave (C), riñones (S) y base (B) se utiliza, una vez

calculados los esfuerzos axiles y los momentos flectores en las secciones de estudio, una

expresión equivalente a la definida por la ecuación (2.43).

B.1) Solo acciones externas y acciones externas más presión interna positiva

Debe comprobarse que, en cualquiera de las dos hipótesis de carga, se cumplen los

estados límite último y de servicio (estado límite de rotura y estado límite de fisuración

controlada) a largo plazo para los esfuerzos a flexotraccción en las secciones de clave (C),

riñones (S) y base (B).

B.1.1) Comprobación del estado límite de rotura.

El estado límite de rotura de una sección se define por su agotamiento resistente o su

deformación plástica excesiva y se comprueba en las secciones de estudio, de acuerdo con

sus respectivas solicitaciones. Para ello se averigua en cada sección si las solicitaciones

producen un estado de tracción compuesta o flexión compuesta (ver figura 2.18).

A) tracción compuesta

A2

A1

d1

d2

dh Mabs

N

B) flexión compuesta

A2

A1

d1

d2

dh Mabs

N

Figura 2.18. Esquemas de tracción y flexión compuesta (IET 07)

Es tracción compuesta si:

( )2

2dd

N

M abs −≤ (2.54)

donde: Mabs, valor absoluto del momento flector (kN.m)

N, esfuerzo axil total (kN)

d, distancia de la fibra mas comprimida del hormigón al centro de gravedad de la

armadura mas traccionada (m)

Page 77: cálculo estructural de tuberías enterradas por el método

Capítulo 2

Análisis de los métodos actuales de cálculo estructural de tuberías enterradas

- 49 -

d1, distancia de la fibra mas traccionada del hormigón al centro de gravedad de la

armadura mas traccionada (m)

d2, distancia de la fibra menos traccionada del hormigón al centro de gravedad de la

armadura menos traccionada (m)

Entonces, si A1 es la sección de la armadura más traccionada, se obtiene:

( ) ( )

−+

+=

221

1

1.. ddN

M

AA

A

f

NA abs

sfyk γγ (2.55)

donde: A1, sección de la armadura mas traccionada (m2)

A2, sección de la armadura menos traccionada (m2)

fyk, límite elástico de las armaduras pasivas (kN/m2)

γf, coeficiente de seguridad de las acciones (adimensional)

γs, coeficiente de seguridad del límite elástico del acero (adimensional)

N, Mabs, d y d2 han sido definidas en la ecuación (2.54)

Las armaduras A1 y A2 deberán ser mayores o iguales que la mínima (Amin):

hf

fA

c

s

yk

ck ...04,0minγ

γ= (2.56)

donde: Amin, sección de armadura mínima (m2)

fck, resistencia del hormigón a compresión (kN/m2)

γc, coeficiente de seguridad de la resistencia del hormigón (adimensional)

h, canto de la sección de hormigón armado (m)

fyk y γs han sido definidas en la ecuación (2.55)

Es flexión compuesta si:

( )2

2dd

N

M abs −> (2.57)

Entonces, si A1 es la armadura más traccionada, se obtiene:

−−

+

−−

+=2

22

1

...

2.

1.97,0.21

.db

f

ddNM

d

dd

N

M

f

NA

sf

yk

abs

abs

sf

vk

γγγγ

(2.58)

siendo: b, anchura de la sección considerada, que será igual a la unidad cuando se opere

Page 78: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 50 -

con las unidades indicadas en las tablas de esfuerzos (m).

A1 deberá cumplir:

df

fA

c

s

yk

ck ...04,0minγ

γ≤ (2.59)

B.1.2) Comprobación del estado límite de fisuración controlada.

El estado límite de fisuración controlada se define por la aparición de la primera fisura, de

0,2 mm de abertura y 0,30 m de longitud ininterrumpida, y se comprobará en las secciones

de base (B), riñones (S) y clave (C), de acuerdo con sus respectivas solicitaciones.

La determinación de la anchura previsible de las fisuras es un problema muy complejo y de

naturaleza aleatoria, pues en él influye principalmente la resistencia del hormigón a tracción.

Experimentalmente se ha comprobado que se está en buenas condiciones con respecto al

estado límite de fisuración controlada, cuando se verifica simultáneamente:

• Que el valor de la tensión de trabajo del acero en servicio (σs), no supera los dos tercios

del límite elástico más bajo de los aceros empleados en el diseño.

• Que el diámetro (φ) en mm del redondo de las espiras, no rebasa los valores que figuran

en la norma IET07 (2007) y que los espesores de chapa no sean superiores a la mitad

de los diámetros del redondo, indicados en la norma.

• Que no se superen los valores de As/Acr (Área de la armadura total de tracción/ Área de

la sección que es cobaricéntrica con la armadura de tracción) indicados en la norma,

para evitar las posible fisuración por retracción.

2.3.4 ANÁLISIS DE LOS DIFERENTES MÉTODOS DE CÁLCULO

A continuación se presenta la comparación de los distintos procedimientos de cálculo de las

diferentes normas vigentes para cálculo de tuberías flexibles, haciendo especial hincapié en

sus similitudes para que se disponga de una radiografía clara de los procedimientos de

cálculo estructural de tuberías enterradas utilizados actualmente.

En el dimensionamiento por presión interna, todos los procedimientos de cálculo de tuberías

flexibles y/o semiflexibles verifican la ecuación de tensión circunferencial de tubos delgados:

e

DP mi

t2

.=σ (2.60)

Page 79: cálculo estructural de tuberías enterradas por el método

Capítulo 2

Análisis de los métodos actuales de cálculo estructural de tuberías enterradas

- 51 -

donde: σt, tensión circunferencial por presión interior (kN/m2)

Pi, presión interior del fluido (k/N/m2)

Dm, diámetro medio (m)

e, espesor de la pared del tubo (m)

Despejando en la ecuación (2.60) la presión interior y estableciendo la tensión de diseño

como la tensión máxima de trabajo, se puede comprobar fácilmente que las expresiones del

dimensionamiento por presión interna son equivalentes en todas las normas (AWWA M11,

Fascículo 70 y AWWA M45, (ver ecuaciones 2.28, 2.33 y 2.49 respectivamente)).

≈≈≈=

D

t

FS

HDB

DC

Re

d

ts

D

eP t

m

t

i

2

.

.222 σ

En el dimensionamiento por acciones externas (cargas externas o cargas externas más

presión interior) el cálculo de la deflexión se realiza en las normas AWWA y Fascículo 70

mediante la fórmula de Iowa modificada, propuesta por Spangler, definiendo el

comportamiento de la deflexión de la tubería a partir de los parámetros mecánicos del

sistema (tubería/terreno), mientras que la norma ATV 127 establece la deflexión mediante

una expresión basada en la correlación de cargas y coeficientes adimensionales

dependientes del tipo de instalación (ver ec. (2.46)).

La ventaja del uso de la formulación de Iowa es que se puede conocer el grado de influencia

de los parámetros mecánicos en el cálculo de la deflexión, pero, por el contrario, dependen

del módulo de reacción del terreno y no identifican la deflexión horizontal, cuestión que sí

resuelve la norma ATV 127.

La agrupación de la metodología del Fascículo 70 dentro del resto de métodos que siguen la

formulación de Spangler, se debe a que, considerando una serie de simplificaciones en la

ecuación (2.35) se obtiene una expresión comparable a la formulación de Iowa, como a

continuación se expone:

Conocida la ecuación (2.35) y considerando que ras = ET3I/Dm

3, ν = 0.3, p = 0 y e0 = 0 se

obtiene:

3

32

21..122,0.

..12

mST

m

rEIE

rpvk

k

ovovov+

=+=

α

Como la fórmula de Iowa no tiene en cuenta la presión inicial del terreno (antes de cualquier

deformación), se considera que ph = 0, con lo que k2 = 0, y comparándola con la ecuación

(2.29) de la AWWA M11, se obtiene:

Page 80: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 52 -

3

3

.122,0.

..

mST

m

rEIE

rpvkov

+= α y

+=∆

3'

3

.061,0.

..

rEIE

rWKDx l

Se puede observar que el factor de multiplicación del módulo de reacción del suelo es 0,122,

el doble del factor original 0,061, debido a que Spangler consideraba que las tensiones

tenían una distribución horizontal, en lugar de perpendiculares a la pared del tubo.

El coeficiente Dl tiene en cuenta las deformaciones que aumentan con el tiempo. Este hecho

está considerado en el Fascículo 70, al utilizar un módulo de reacción del suelo apropiado y

un módulo de elasticidad del material a largo plazo.

Por último, en el dimensionamiento por pandeo, para comportamiento de tuberías flexibles,

se puede demostrar de forma relativamente sencilla que todas las normas establecen una

formula semejante a la de Luscher.

En primer lugar, partiendo de la ecuación (2.30) definida en las normas AWWA M11 y M45 y

desarrollando la expresión, se obtiene la ecuación de Luscher:

( ) 3203

21

3.1

'.32.

'.32.

'''32

1

ms

w

waD

EIEC

D

EIE

FS

BR

D

EIEBR

FSq

ν−≈=

⋅⋅⋅⋅

=

Por otro lado, de la ecuación definida en la norma ATV 127 para el cálculo de la carga crítica

en tuberías flexibles (2.48) y asumiendo como simplificación que: SBh ∼ Es, y S0 = Ep3I/dm

3 se

deduce:

( ) 3213230.1

'.32...32..

..32...8..2

22

msm

Ps

vBh

m

P

vBhvvd

EIEC

d

IEES

d

IESScritq

νκκκ

−≈≈==

Y finalmente, la expresión establecida en el Fascículo 70 (ver ec. (2.42)) para la carga crítica

de colapso con un número de ondas de colapso suficientemente grande es equivalente a la

expresión de la fórmula de Luscher.

2.4. CONSIDERACIONES FINALES

De todo lo expuesto en este capítulo, se deduce la diversidad de metodologías existentes

para el dimensionamiento de tuberías enterradas (ver tabla 2.16), si bien se ha podido

comprobar que los principios generales para todas ellas son comunes, pues las acciones

principales (cargas de tierras y cargas de tráfico) se definen prácticamente igual para todos

los casos, empleando la teoría de Marston y la teoría del semiespacio de Bousinesq.

Page 81: cálculo estructural de tuberías enterradas por el método

Capítulo 2

Análisis de los métodos actuales de cálculo estructural de tuberías enterradas

- 53 -

En lo que respecta a tuberías flexibles, es de uso común la fórmula de tubos delgados para

la comprobación a presión interior, la fórmula de Iowa modificada para el cálculo de la

ovalización vertical, así como el uso de la fórmula de Luscher para el cálculo de la presión

crítica de pandeo. Las mayores diferencias aparecen en la definición de los esfuerzos,

debido a que hay un grupo numeroso de normas que ni siquiera los define (normas AWWA),

otro grupo que define el momento máximo en la sección pésima (Fascículo 70) y dos

normas que especifican los momentos y los axiles derivados de todas las solicitaciones de

carga para las tres secciones de cálculo (ATV 127 y IET07).

Acciones Hipótesis pésima Comentarios

Presión interior Estado tensional Todas las normas utilizan la formulación de tubos delgados para

definir el estado tensional por presión interna

Estado tensional - La norma M11 no establece comprobaciones tensionales, al

limitar la ovalización máxima a un 5%

- La norma M45 comprueba el estado tensional para acciones

externas y para acciones externas y presión interna mediante dos

expresiones diferentes

- La norma F-70 define los esfuerzos y la tensión en la sección

pésima (que para esta norma es la base)

- Las normas UNE 53331 e IET07 definen los esfuerzos y

tensiones en tres secciones de estudio (C, S y B)

Acciones externas

Acciones exteriores

+ presión interior

positiva

Deformaciones - Las normas M11, M45 y F-70 utilizan variaciones de la

formulación de Iowa modificada propuesta por Spangler.

- Las normas UNE 53331 y IET07 utilizan expresiones basadas

en la correlación de cargas y coeficientes adimensionales

Acciones exteriores

+ presión interior

negativa

Pandeo - En las normas referidas a tubos de comportamiento flexible

(M11, F-70, UNE 53331, ATV 127-E y M45) se utilizan

expresiones semejantes a la formula de Luscher.

- En la instrucción IET07 se define una expresión simplificada

para la definición de pandeo

Tabla 2.16. Análisis de los diferentes métodos de diseño

Page 82: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 54 -

Page 83: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 55 -

CAPÍTULO 3. MODELOS DE COMPORTAMIENTO MECÁNICO DE TUBERÍA ENTERRADA SEGÚN EL INFORME TÉCNICO CEN/TR 1295-3

3.1. GENERALIDADES

A mediados de los años ochenta, la Comisión Europea dio al CEN el encargo de desarrollar

un "Método de Diseño Estructural Común para Tuberías Enterradas", y el trabajo fue

asignado conjuntamente al CEN/TC 164 (Suministro de agua) y al CEN/TC 165 (Ingeniería

de las aguas residuales). Para evitar la duplicidad de los trabajos, en 1990 se creó un Grupo

de trabajo común (JWG) (CEN/TC 164/165 JWG1). Como primer paso el grupo desarrolló la

norma EN 1295-1 (1997), que describe los "principios y parámetros de entrada" para el

cálculo estructural de tuberías enterradas y que proporciona las directrices para la aplicación

de estos principios a los métodos de cálculo establecidos a niveles nacionales. En ella se

hacía referencia a estos métodos y se facilitaba las fuentes de información de los mismos.

El segundo paso consistió en desarrollar la norma UNE CEN/TR 1295-2 (2005), publicada

en Agosto del año 2005, que describe los métodos nacionales de cálculo e informa más

detalladamente de algunos de ellos (principalmente los de las normas ATV-DVWK 127-E

(2000) y FASCICULE 70 (2003))

En lo que respecta al desarrollo del “Método común”, el grupo de trabajo decidió asignar, en

1992, dicha tarea a un reducido grupo de expertos. De este modo se pensó en crear las

condiciones óptimas para tratarlo como una tarea difícil. No obstante, la tarea resultó ser

mucho más compleja de lo que se había previsto, debido a que en toda Europa existen

diferentes conceptos de cálculo. Después de muchos debates y análisis, el grupo de trabajo

llegó finalmente a una situación en la que se proporcionaron dos opciones para ser

examinadas por el comité técnico interno, el cual lo concluyó en Mayo del año 2002. Los

comentarios recibidos de los miembros del CEN variaban ampliamente desde ser muy duros

contra una o ambas opciones, hasta ser muy favorables a una de ellas.

A la vista de estos resultados, CEN/TC 164 y CEN/TC 165 decidieron que las dos opciones

no deberían ir a examen por el CEN, aunque ambas se podrían presentar en un anexo

informativo del documento. En el texto normativo corto se podría incluir una nota declarando

que todavía no estaba acordado un "Método común" único, pero que durante los próximos

cinco años las dos opciones deberían estar examinadas e informadas por expertos

europeos que trabajan en este campo. Mientras tanto, CEN/TC 164 y CEN/TC 165

continuaban sus esfuerzos para desarrollar el "Método común", no siendo hasta el año

2007, cuando se ha publicado el último informe técnico CEN/TR 1295-3 (2007) donde

todavía no se ha establecido de forma definitiva el método único.

Ante este panorama, parecía conveniente y necesario un estudio en profundidad de las

metodologías de cálculo actuales. De ello resultó, en el año 2006, un trabajo de

investigación tutelado (con igual autor y director que esta tesis) titulado “Análisis de los

Page 84: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 56 -

procedimientos actuales de cálculo estructural de tuberías enterradas, ventajas e

inconvenientes” donde se realizó una radiografía de los métodos actuales y de las primeras

versiones del informe técnico CEN/TR 1295-3. Culminado este trabajo y vista la

incertidumbre que existía sobre la propuesta definitiva del CEN/TC 164/165, se continuó con

los trabajos de investigación, en dos direcciones: por un lado, profundizar en el conocimiento

de las propuestas del informe técnico CEN/TR 1295-3, corrigiendo errores y erratas de

redacción detectadas y llegando a desarrollar un procedimiento de cálculo automático, para

cada una de las dos opciones de cálculo; y, por otro lado, investigar el planteamiento de un

nuevo procedimiento de cálculo, basado en el método de elementos finitos, que aprovechara

lo mejor de cada una de las opciones y que pudiera ser establecido como una metodología

normalizada. Todo ello constituye el objeto principal de esta tesis.

3.2. OPCIÓN 1 DEL CEN/TR 1295-3

Para tratar de simplificar la compresión de este texto y poderlo comparar con el informe

técnico CEN/TR 1295-3 (2007) se ha tratado de mantener la misma estructura del mismo,

entendiendo que estos cambios no afectan al procedimiento de cálculo, sino que exponen

los procedimientos de forma más clara a la expuesta en el citado informe o corrigen alguna

de las erratas detectadas en el mismo. Los textos igualmente están reescritos o adaptados a

una exposición más estructurada a los estudios de esta tesis.

Adicionalmente es necesario mencionar que la exposición del informe técnico aquí realizado

describe únicamente el cálculo de tuberías de sección circular, no haciendo referencia de

conductos de sección diferente a la circular, que el informe técnico si describe.

3.2.1 INTRODUCCIÓN

En la Opción 1 del informe técnico CEN/TR 1295-3 (2007) se consideran las siguientes

acciones:

a) Peso del relleno

b) Carga superficial que actúa sobre zonas limitadas o ilimitadas

c) Cargas de tráfico: cargas de carretera, de líneas férreas, y de aeropuertos

d) Peso propio de la tubería

e) Peso del fluido contenido en la tubería

f) Presión interna

g) Presión exterior del agua

h) Ovalización inicial

En comparación con la normativa existente, como son las normas ATV-DVWK 127-E (2000)

y ÖNORM B 5012 -1 y 2 (2005), se han incluido las siguientes especificaciones relativas a

las cargas de tráfico:

Page 85: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 57 -

- Las cargas de tráfico actúan como cargas a corto plazo, tanto en el diseño a corto

como a largo plazo.

- Se tiene en cuenta la influencia del tipo de pavimento sobre la carga que actúa sobre

la tubería mediante el coeficiente DT,mod.

- Los coeficientes de concentración de carga que se indican en el apartado “3.2.9.1

Coeficientes de concentración de carga” también se aplican a las cargas de tráfico,

con el límite máximo de 1,5.

- Se tiene en cuenta un efecto de la carga horizontal debido a las cargas de tráfico.

Normalmente, estas nuevas disposiciones reducen la influencia de las cargas de tráfico

sobre la tubería.

Para el cálculo de los parámetros del suelo, se pueden utilizar bien los obtenidos mediante

ensayos o bien los establecidos en la Opción1 cuando no se dispone de valores reales (ver

tablas 3.5 y 3.6). Los parámetros del suelo propuesto por la norma ENV 1046:2001 se dan

para siete grupos de suelos y se corresponden con los valores promedio de los suelos

donde se encuentran clasificados. La dependencia del valor de la rigidez del suelo sobre la

compactación y el nivel de esfuerzo se tiene en cuenta mediante la fórmula clásica de Ohde

(fórmulas 3.1 a 3.4). Así mismo se ha tenido en cuenta la influencia: de las aguas

subterráneas, de la anchura de la zanja y del efecto del tiempo sobre el módulo de rigidez

del suelo (fórmulas 3.5 a 3.7).

Las tuberías se clasifican en rígidas, semiflexibles y flexibles, en función del comportamiento

de la tubería enterrada.

En analogía con el comportamiento de una viga resistente a esfuerzo cortante, se ha

calculado un coeficiente de concentración de la carga comprendido entre 0,8 y 3,0, teniendo

en cuenta la condición de compatibilidad en las direcciones horizontal (apartado “3.2.9.1

Coeficientes de concentración de carga”) y vertical.

Se han propuesto los ángulos de distribución para la reacción horizontal (tabla 3.4)

y vertical (tabla 3.3).

El cálculo de las cargas que actúan sobre la tubería se fundamenta en el sistema interactivo

tubería/terreno. El desplazamiento horizontal compatible y el esfuerzo de reacción del

relleno se calculan mediante la teoría Kollbrunner/Boussinesq para todas las cargas, como

se indica en el apartado “3.2.10.4 Reacción horizontal del relleno”. La justificación de las

fórmulas se puede encontrar en NETZER W., OSTERMANN A. (1999).

Las deflexiones horizontales y verticales se calculan para todas las cargas en %, en mm y

con respecto al diámetro de la tubería. Las deflexiones a corto y a largo plazo se pueden

calcular por separado. Consecuentemente, para las tuberías de comportamiento flexible se

tiene en cuenta la ovalización inicial.

Page 86: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 58 -

Para el cálculo de los momentos de flexión, las fuerzas normales, las tensiones y las

deformaciones, que se experimentan en la base (B), punto medio (S) y coronación (C) de la

tubería, se proporcionan todos los datos necesarios para su cálculo (fórmulas y

coeficientes).

En tuberías sometidas únicamente a cargas externas, los esfuerzos se calculan mediante la

teoría de 1er orden, si bien, cuando la flexión es mayor del 5% y el coeficiente de presión

lateral K’ (ver fórmula (3.114)), es mayor que 0,6, dichos valores se deben recalcular

mediante la teoría de 2º orden.

Las tuberías flexibles y semiflexibles, sometidas a cargas externas y presión interior,

siempre se deben calcular aplicando las teorías de 1er y de 2º orden considerando en este

último caso el "efecto de restablecimiento del redondeo”.

El análisis de estabilidad propuesto se realiza conforme a los criterios definidos en la norma

ATV-DVWK 127-E (2000), si bien este análisis puede ser sustituido por el cálculo de la

teoría de 2º orden o por un análisis mediante modelos de elementos finitos.

Las comprobaciones necesarias se realizan utilizando coeficientes de seguridad globales.

En las tuberías sometidas únicamente a cargas externas se calcula el coeficiente de

seguridad a corto y largo plazo frente la resistencia a la flexión (o deformación última),

mediante las fórmulas (3.147) a (3.152).

En las tuberías sometidas a cargas externas y presión interior fabricadas con un material

que muestre una resistencia a flexión diferente de la resistencia a tracción, y ambas a la vez

sean diferentes para corto y largo plazo, el coeficiente de seguridad combinado se debe

calcular a partir de los cuatro coeficientes de seguridad parciales (fórmulas (3.154 a 3.161))

mediante la ecuación (3.162) ó (3.163) en función de que el material de la tubería sea o no

reforzado:

Los coeficientes de seguridad mínimos de acuerdo con las tablas 3.26 y 3.27 se

corresponden con una determinada probabilidad de fallo:

- 10-5 para la seguridad de clase A

- 10-3 para la seguridad de clase B

La probabilidad de fallo es inferior o igual a 10-5 ó 10-3, respectivamente, cuando los

coeficientes de seguridad calculados son superiores o iguales a los coeficientes de

seguridad mínimos definidos de las tablas 3.26 ó 3.27.

Los coeficientes de las tablas 3.26 y 3.27 se corresponden con los valores establecidos en

las normas ATV-DVWK 127-E (2000) y ÖNORM B 5012 -1 y 2 (2005), que están calculados

aplicando la teoría estadística de confiabilidad, teniendo en cuenta el método de cálculo y la

dispersión de parámetros empleados.

Page 87: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 59 -

3.2.2 SECCIONES TIPO

Se adjuntan las figuras 3.1 y 3.2, correspondientes a la instalación de una tubería en zanja y

terraplén, como ilustración del significado de los parámetros que definen la geometría de la

misma.

h

hw

de

b

β

αv

αh

Zona alta

(relleno superior)

Zona baja

(relleno de protección) Terreno natural

h

hw

de

b

β

αv

αh

Zona alta

(relleno superior)

Zona baja

(relleno de protección) Terreno natural

a) Zanja con paredes verticales; con entibación de

pared (izquierda) y sin entibación (derecha)

b) Zanja con paredes inclinadas

Figura 3.1. Instalación en zanja (Op1)

de

Zona baja

(relleno de protección)

Terreno natural

h

hw

be

Zona alta

(relleno superior)

Figura 3.2. Instalación en terraplén (Op1)

3.2.3 NOMENCLATURA

A continuación se presentan los parámetros de entrada y salida utilizados en el desarrollo

metodológico de la opción 1, con una breve descripción de su significado, las unidades

habituales en que se expresa, así como una referencia del apartado, tabla y/o figura donde

se define.

Page 88: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 60 -

Parámetro Descripción Unidades Referencia

apartado tabla figura

a proyección relativa de la tubería - - - 3.5

aeff proyección relativa efectiva de la tubería - ec. 3.29 - -

atraffic coeficiente de corrección de distribución de la carga de tráfico sobre la tubería

- ec. 3.25 - -

b ancho de zanja en la clave superior del tubo m - - 3.1

be ancho de terraplén en el punto medio del tubo m - - 3.2

bs ancho de zanja en el punto medio del tubo m - - 3.1

cci coeficiente de corrección de la curvatura interior - ec. 3.102 - -

cco coeficiente de corrección de la curvatura exterior - ec. 3.103 - -

c*hh

coeficiente de deflexión horizontal debido a la reacción horizontal de relleno

- - 3.14 -

chv coeficiente de deflexión horizontal debido a las cargas verticales

- - 3.13 -

Cp* desplazamiento impuesto en la tubería por una presión (q

*h = 1)

m3/N ec. 3.61 - -

c*v coeficiente de deflexión vertical - ec. 3.16 - -

cvh coeficiente de deflexión vertical debido a las cargas horizontales

- - 3.12 -

cvv coeficiente de deflexión vertical debido a las cargas verticales

- - 3.12 -

de diámetro exterior mm - - 3.1

de,v diámetro exterior en dirección vertical mm ec. 3.48 - -

di diámetro interior mm - - -

dm diámetro medio mm - - -

DPr grado de compactación del relleno % - 3.5 -

DT,mod coeficiente de modificación de las cargas de tráfico - 3.2.8.3.1 - -

Ejj,1 módulo del relleno para una profundidad de 1 m N/mm2 ec. 3.1 - -

Ejj,100% módulo base del relleno para una densidad Proctor Normal del 100%

N/mm2 - 3.3 -

Ejj,h módulo del relleno para una profundidad h N/mm2 ec. 3.3 - -

em coeficiente de ampliación para momentos de flexión (Teoría de 2º orden)

- ec. 3.117 - -

Enb módulo del terreno por debajo de la zanja N/mm2 ec. 3.4 - 3.4

Ens módulo del terreno en los laterales de la zanja N/mm2 - 3.6 3.4

Ep módulo de elasticidad del material del tubo N/mm2 - - -

Ets módulo del relleno de protección después de la reducción

N/mm2 3.2.6.2 - 3.4

Ets,h módulo del relleno de protección base N/mm2 3.2.6.2 - -

Ets,LT módulo del relleno de protección a largo plazo N/mm2 ec. 3.5b - -

Ets,ST módulo del relleno de protección a corto plazo N/mm2 ec. 3.5a - -

Ett módulo del relleno superior después de la reducción

N/mm2 - - 3.4

Ett,h módulo del relleno superior base N/mm2

Ett,LT módulo del relleno superior a largo plazo N/mm2 ec. 3.5d - -

Ett,ST módulo del relleno superior a corto plazo N/mm2 ec. 3.5c - -

ev coeficiente de ampliación para la deflexión vertical (Teoría de 2 orden)

- ec. 3.118 - -

F1, F2 coeficientes que dependen del ángulo de reacción horizontal

- - 3.11 -

fc coeficiente de corrección relativo al grado de compactación

- - 3.7 -

fR,GW coeficiente de reducción por nivel freático - ec. 3.6 - -

fR,T coeficiente de reducción por efecto del tiempo - - 3.8 -

fR,TW coeficiente de reducción debido a la anchura de zanja

- ec. 3.7 - -

fR,R coeficiente de reducción de esfuerzos por el restablecimiento del redondeo

- ec. 3.125 - -

FS,I coeficiente de seguridad mínimo requerido frente a - - 3.27 -

Page 89: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 61 -

Parámetro Descripción Unidades Referencia

apartado tabla figura

pandeo

FS,R coeficiente de seguridad mínimo requerido frente a rotura

- - 3.26 -

Gs grupo de suelo - 3.2.6.1 3.5 -

h altura de cobertura m - - 3.1

hw altura del nivel freático por encima de la clave superior del tubo

m - - 3.1

I1….I2 condiciones de instalación - 3.2.8 - -

K'

coeficiente entre la carga horizontal (incluida la presión horizontal del agua externa pero sin incluir la presión horizontal de reacción del relleno) y la carga vertical total (incluida la presión vertical del agua)

- ec. 3.114 - -

K* coeficiente de reacción horizontal del relleno - ec. 3.17 - -

K1 coeficiente de presión del relleno superior - - 3.9 -

K2 coeficiente de presión del relleno de protección - - 3.9 -

pi presión interna de servicio (excluido el golpe de ariete)

N/mm2 3.11 - -

pi,s presión de golpe de ariete N/mm2 3.11 - -

pS,O presión vertical del relleno en ausencia de zanja y tubo

N/mm2 ec. 3.19 - -

pS,v presión vertical del relleno en zanja y sin tubo N/mm2 ec. 3.20 - 3.6 y 3.7

pA,v presión vertical por cargas superficiales 3.2.8.2 - 3.6 y 3.7

pT carga de tráfico a una profundidad h N/mm2 ec. 3.27 - -

pT,v presión vertical por cargas de tráfico N/mm2 3.2.8.3 - -

pW1 presión constante por nivel freático N/mm2 - - 3.10

pW2 presión hidrostática por nivel freático N/mm2 - - 3.10

qA,v presión vertical por las cargas superficiales N/mm2 ec. 3.38 - -

qh presión horizontal por cargas verticales N/mm2

3.2.10.2 - 3.8 y 3.9

qh,d presión horizontal del relleno variable con h N/mm2 ec. 3.48 - 3.8 y 3.9

qh* presión de reacción horizontal N/mm2 ec. 3.67 - 3.8

qio presión horizontal actuante en el tubo como resultado de los esfuerzos durante el proceso de compactación

N/mm2 ec. 3.71 - -

qS,v presión vertical por peso del relleno N/mm2 ec. 3.37 - -

qT,v presión vertical por cargas de tráfico N/mm2 ec. 3.40 - -

qv presión vertical N/mm2 3.2.10.1 - 3.8 y 3.9

RS resistencia horizontal de la columna de relleno para (q

*h = 1)

N/m3 ec. 3.62 - -

rm radio medio mm - - -

Sp rigidez de la tubería N/m2 ec. 3.11 - -

SBh rigidez horizontal del relleno N/mm2 ec. 3.12 - -

SBv rigidez vertical del relleno N/mm2 ec. 3.10 - -

t espesor de la pared del tubo Mm - - -

u parámetro que describe la dependencia del módulo del suelo con respecto a la profundidad del recubrimiento

- - 3.5 -

VPs rigidez del sistema tubería/terreno - ec. 3.18 - -

Vs índice de rigidez - ec. 3.15 - -

z parámetro que describe la dependencia del módulo del suelo con respecto a la densidad del Proctor Normal

- - 3.5 -

Z1...Z9 variables intermedias de cálculo - - - -

αh ángulo de reacción horizontal º - 3.3 3.8

αv ángulo de apoyo vertical º - 3.4 3.8 y 3.9

β ángulo del talud de la zanja º - - 3.1

χ índice de deformación - 3.2.7.1 3.10 -

∆dh deflexión horizontal de la tubería mm ec. 3.76 - -

∆dv deflexión vertical de la tubería mm 3.2.12.1 - -

Page 90: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 62 -

Parámetro Descripción Unidades Referencia

apartado tabla figura

∆h desplazamiento horizontal total (por cargas permanentes y accidentales)

mm 3.2.10.4

δh deflexión horizontal resultante en el punto medio del tubo

- 3.2.12.2 - -

δh0,io deflexión horizontal resultante de la ovalización inicial

- ec. 3.84 - -

δv,io deflexión vertical por ovalización inicial - - 3.17 -

δp deflexión vertical del tubo - 3.2.7.1 - -

δS deflexión vertical del relleno en el lateral del tubo - 3.2.7.1 - -

ηf coeficiente de seguridad frente a rotura por flexión 3.2.15

ηt coeficiente de seguridad frente a rotura por tracción 3.2.15

ηR coeficiente de seguridad frente a rotura - 3.2.15 - -

εres deformación total resultante para tuberías en presión bajo condiciones a corto plazo para todas las cargas

% 3.2.13.2.3 - -

εres,1 deformación total resultante para tuberías en presión bajo condiciones a largo plazo para cargas permanentes

% 3.2.13.2.3 - -

εres,2 deformación total resultante para tuberías en presión bajo condiciones a largo plazo para cargas accidentales

% 3.2.13.2.3 - -

εtot deformación total resultante para tuberías sin presión bajo condiciones a corto plazo para todas las cargas

% 3.2.13.2.3 - -

εtot,1 deformación total resultante para tuberías sin presión bajo condiciones a largo plazo para cargas permanentes

% 3.2.13.2.3 - -

εtot,2 deformación total resultante para tuberías sin presión bajo condiciones a largo plazo para cargas accidentales

% 3.2.13.2.3 - -

εult deformación última % 3.2.15.1 - -

φi ángulo de rozamiento interno º - 3.5 -

φt ángulo de rozamiento relleno/terreno º - 3.15 -

γP peso específico del material del tubo kN/m3 - - -

γS peso específico del relleno kN/m3 - 3.5 -

γS,w peso específico sumergido del relleno kN/m3 - 3.5 -

γw peso específico del fluido kN/m3 -

κ90 coeficiente del efecto silo para zanjas verticales - ec. 3.22 - -

κβ coeficiente del efecto silo para zanjas inclinadas - ec. 3.21 - -

λmax coeficiente de concentración de carga máximo - ec. 3.28 - -

λP coeficiente de concentración de carga en terraplén - ec. 3.31 - -

λPT coeficiente de concentración de carga en zanja - ec. 3.32 - 3.6 y 3.7

λS coeficiente de concentración de carga en los laterales de la tubería

- ec. 3.34 - 3.6 y 3.7

λup límite superior del coeficiente de concentración de carga

- ec. 3.33 - -

σres tensión total resultante para tuberías en presión bajo condiciones a corto plazo para todas las cargas

N/mm2 3.2.13.2.3 - -

σres,1 tensión a largo plazo para cargas permanentes N/mm2 3.2.13.2.3 - -

σres,2 tensión total resultante para tuberías en presión bajo condiciones a largo plazo para cargas accidentales

N/mm2 3.2.13.2.3 - -

σtot tensión total resultante para tuberías sin presión bajo condiciones a corto plazo para todas las cargas

N/mm2 3.2.13.2.3 - -

σtot,1 tensión total resultante para tuberías sin presión bajo condiciones a largo plazo para cargas permanentes

N/mm2 3.2.13.2.3 - -

Page 91: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 63 -

Parámetro Descripción Unidades Referencia

apartado tabla figura

σtot,2 tensión total resultante para tuberías sin presión bajo condiciones a largo plazo para cargas accidentales

N/mm2 3.2.13.2.3 - -

σult tensión última N/mm2 3.2.15.1 - -

ξ

coeficiente de corrección de la rigidez horizontal del relleno, establecido en función de las diferencias entre los módulos del relleno de protección, Ets y del módulo lateral de la zanja Ens.

- ec. 3.13 - -

Tabla 3.1. Nomenclatura de la Opción 1

3.2.4 FUNDAMENTOS

El sistema conjunto tubería/terreno se representa mediante un modelo físico, que simplifica

la compleja realidad de una instalación real, ya que las solicitaciones para una instalación

normal se pueden calcular fácilmente con suficiente precisión. El modelo permite considerar

los factores más importantes así como las condiciones de la instalación. La compatibilidad

de los desplazamientos de la tubería y del terreno se tiene en cuenta de forma diferente

para las direcciones horizontal y vertical.

En dirección vertical se utiliza la analogía con el comportamiento de una viga sometida a

esfuerzo cortante, mientras que la interacción en dirección horizontal es tenida en

consideración por el principio de la mecánica continua del semiespacio elástico.

La redistribución de las cargas sobre la tubería se calcula para los casos de carga principal,

teniendo en cuenta la condición de compatibilidad en las direcciones horizontal y vertical.

El desplazamiento horizontal compatible y la reacción del suelo resultante se calculan para

todos los casos de carga. En general se consideran los siguientes casos de carga: del

relleno, superficiales, de tráfico, de ovalización inicial, del peso propio de la tubería y del

fluido.

Mediante el tratamiento específico de las condiciones de compatibilidad horizontal y vertical,

es posible tener en cuenta la influencia media de los asentamientos de suelo sobre la

distribución de la carga y las condiciones de deflexión con la mayor exactitud posible.

En el cálculo se tienen en cuenta el efecto del tiempo sobre la tubería y sobre las

propiedades del suelo. El comportamiento elástico no lineal del suelo se tiene en

consideración utilizando esfuerzo y compactación dependientes de los módulos de rigidez

del suelo.

En casos con mucha deflexión se pueden conseguir resultados más aceptables utilizando la

teoría de 2º orden. Las tuberías flexibles con cargas simultáneas internas y externas

también se pueden analizar teniendo en cuenta el "efecto de restablecimiento del redondeo"

mediante la teoría de 2º orden.

Page 92: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 64 -

Se realizan los siguientes análisis:

- A corto plazo (al terminar el llenado de la zanja):

o Comportamiento sin carga de tráfico y, si es aplicable, sin presión interna

o Carga de tráfico durante la fase de construcción, si es apropiado

o Presión de ensayo sin carga de tráfico (solo para tuberías con presión

interna)

- A largo plazo (condiciones de funcionamiento o servicio):

o Vida útil prevista de la tubería (50 años), incluyendo todas las condiciones de

carga aplicables

La duración de la acción de la carga tiene gran influencia en el análisis estructural y en el

cálculo de las tuberías enterradas; para ello se consideran la variación de los parámetros del

material de la tubería afectada por cargas a corto y largo plazo que requieran cálculos

independientes y los coeficientes de reducción para el módulo del suelo a largo plazo Ejj,LT

Básicamente, el cálculo se debe realizar para las condiciones a corto y largo plazo de la

tubería. No obstante, en la práctica se debe verificar cual de las dos condiciones de carga, a

corto o largo plazo, es la más desfavorable.

Los análisis a corto plazo se deben realizar utilizando las propiedades iniciales o a corto

plazo del material de la tubería.

Los coeficientes χ (índice de deformación), VPS (rigidez del sistema), c*v (coeficiente de

deflexión vertical), K* (coeficiente de la reacción horizontal del relleno), VS (índice de rigidez),

λmax (coeficiente de concentración de carga máximo), λP (coeficiente de concentración de

carga para terraplén), λS (coeficiente de concentración de carga en los laterales de la zanja),

λPT (coeficiente de concentración de carga para zanja estrecha) son diferentes a corto y

largo plazo.

Para las propiedades a largo plazo de la tubería enterrada, se deben aplicar dos

condicionantes:

1) Las cargas de tráfico siempre se tratan como cargas accidentales, por ello, para el

cálculo se deben utilizar las propiedades iniciales o a corto plazo del material de la

tubería y del suelo.

2) Para todas las cargas permanentes, los análisis correspondientes a largo plazo se

deben realizar utilizando las propiedades del material y las del suelo a largo plazo.

Para este análisis el procedimiento es el siguiente:

Page 93: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 65 -

- Se deben realizar dos cálculos independientes utilizando las propiedades a largo

plazo (Ejj,LT para el suelo, si es apropiado, EP,LT o SP,LT para la tubería) para todas las

cargas permanentes y las propiedades a corto plazo (Ejj,ST, EP,ST, o SP,ST) para las

cargas de tráfico (cargas accidentales).

- El análisis de seguridad para diferentes resistencias a corto y largo plazo y/o las

deformaciones últimas se detallan en el apartado “3.2.15 Coeficientes de seguridad

calculados”.

3.2.5 CONDICIONES DE INSTALACIÓN

3.2.5.1. Parámetros geométricos

Los parámetros geométricos básicos utilizados para la especificación de la instalación están

definidos en el apartado “3.2.2 Secciones tipo” y se corresponden con la Norma UNE-EN

1610 (1998).

3.2.5.2. Procedimientos de construcción

Los procedimientos utilizados en la construcción de una tubería tienen una gran influencia

en su comportamiento estructural y, por ello, para conseguir soluciones óptimas, es esencial

que las consideraciones sobre el cálculo de la estructura y las decisiones sobre los

procedimientos de construcción se tengan en cuenta entre sí y en su totalidad.

Los siguientes aspectos de la construcción y de la instalación son fundamentales para

obtener las mejores prestaciones de la estructura tubería/terreno:

- Selección de la anchura de la zanja

- Profundidad de excavación por debajo de la tubería

- Elección del material para las distintas zonas del relleno de protección

- Contenido de humedad de los materiales del relleno de protección cuando se vayan

compactando

- Espesor de las capas de los materiales del relleno de protección

- Colocación del material de la cama de apoyo bajo los riñones de la tubería

- Cantidad de energía de compactación aplicada a cada capa del relleno de protección

y su intensidad

- Elección del momento oportuno y la manera de retirar las entibaciones de las

paredes de la zanja

- Compactación del relleno superior por encima del relleno de protección.

Con objeto de asegurar que las influencias anteriores se reflejen de manera apropiada y

realista en el cálculo estructural de la tubería, se debe adoptar uno de los enfoques

siguientes:

Page 94: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 66 -

a) Obtener del terreno y de los fabricantes del tubo detalles de todas las dimensiones,

materiales, y procedimientos que sean aplicables y estén bajo su control.

b) Especificar en el pliego de prescripciones técnicas todos los asuntos que le

incumben y asegurar que cuando la construcción se realice, sea de acuerdo con las

especificaciones.

c) Si lo indicado en los puntos a) y b) anteriores no es posible, se deben asumir valores

"seguros", que representen la influencia de los procedimientos de construcción en

todas las etapas del cálculo.

Cualquiera que sea el enfoque que se adopte, se debe tener en cuenta el nivel, la cantidad y

la independencia de los procedimientos de control, supervisión y verificación a los que se

debe someter la construcción.

Además, se debe tener en cuenta cualquier interacción que se pueda producir entre los

procedimientos de construcción y los suelos originales donde se implanta la tubería.

En caso de que se introduzcan cambios en los procedimientos de construcción después de

realizado el diseño estructural, éste se debe verificar para asegurar que será satisfactorio en

las nuevas circunstancias.

La parte más importante de la instalación es la construcción del relleno de protección de la

tubería y los objetivos básicos de esta instalación deben consistir en asegurar que los

materiales del relleno de protección se coloquen en contacto con toda la circunferencia de la

tubería, y que tengan la densidad que proporcione los valores del módulo del suelo, y de la

presión horizontal requeridos por el diseño.

Con objeto de alcanzar la densidad requerida, la mayoría de los materiales del relleno de

protección precisan compactación mecánica. La cantidad de energía de compactación que

se tiene que aplicar para que el material alcance una cierta densidad y, por tanto, un cierto

módulo, depende del tipo de suelo y de su contenido de humedad.

Durante la compactación del relleno de protección de la tubería, parte de la energía que se

aplica será absorbida por el suelo original del fondo de la zanja y de las paredes de ésta

adyacentes al relleno de protección. Otra parte de la energía que se aplica será absorbida

por la tubería, donde se conserva como energía de deformación. Las deformaciones de la

tubería producidas por este último efecto, implica el desarrollo de la ovalización vertical

inicial, la cual, si su magnitud no es excesiva y su forma es próxima a la elíptica, puede ser

ventajosa. No obstante, es muy fácil que se produzcan deformaciones no elípticas

perjudiciales, si la colocación y la compactación del relleno de protección no se planifican y

realizan cuidadosamente.

En el caso de tuberías rígidas, las deformaciones causadas por los efectos indicados

anteriormente son muy pequeñas, pero la manera en que se coloca y se compacta el relleno

Page 95: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 67 -

de protección tiene una influencia similar sobre los movimientos y esfuerzos de flexión que

se producen.

En el caso de tuberías flexibles, la cantidad de energía de compactación absorbida por las

paredes de la zanja se puede reducir incorporando uno, o más, de los siguientes

condicionantes en el diseño de la tubería:

- Colocación de material del relleno de protección en capas finas, cada una de ellas

compactada con un gran número de pasadas con un equipo de compactación

relativamente ligero.

- Empleo de materiales del relleno de protección que solo requieran una pequeña

cantidad de energía de compactación para alcanzar altos valores de densidad y de

módulo de reacción del suelo.

- Empleo de tuberías de rigidez muy alta.

Se deberá asegurar que la rigidez de la tubería seleccionada, los materiales del relleno de

protección, y los procedimientos de compactación son compatibles unos con otros, con los

objetivos del diseño y con la supervisión que se realizará a pie de obra. Si estos requisitos

se omiten, probablemente, el resultado que se obtenga será que se excedan los valores

admisibles de los esfuerzos y de los niveles de deformación en las paredes de la tubería.

La colocación de las tuberías directamente sobre el fondo de la zanja, sin una cama de

apoyo inferior, aumenta mucho las incertidumbres que se tienen que admitir en el diseño.

Para todos los tipos de tubería, esta práctica hace extremadamente difícil asegurar el apoyo

uniforme en toda la longitud de la misma y, por tanto, si se considera este enfoque en el

diseño, se debería garantizar que la tubería se acomodará al pandeo longitudinal que

probablemente se produzca. Las tuberías rígidas y semirrígidas que se instalen

directamente sobre el fondo de la zanja, tienen la posibilidad de experimentar mayores

asentamientos de los que tendrían en el caso de disponer de cama de apoyo y las tuberías

flexibles colocadas sobre el fondo de la zanja son las que tienen la posibilidad de

experimentar las mayores deflexiones. La concentración de la reacción en la base de las

tuberías instaladas sobre el fondo de la zanja aumentará los momentos de flexión, los

esfuerzos y las deformaciones en todos los tipos de tuberías.

3.2.5.3. Parámetros mecánicos

Los diversos tipos de relleno de protección descritos en este apartado se han seleccionado

de manera que se proporcionen las suficientes opciones para cubrir los casos más

frecuentes. No obstante, siempre se deberán considerar en su totalidad las circunstancias

particulares de las tuberías, que bien por sus dimensiones o tipo de instalación, precisen

soluciones especiales.

Page 96: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 68 -

La capacidad de carga de una tubería es una combinación de la resistencia o rigidez de las

tuberías, y del apoyo proporcionado por el relleno de protección. Por ello, el proceso de

cálculo estructural precisa decidir la resistencia combinada requerida a obtener de diversas

maneras, por ejemplo, combinando tuberías muy flexibles con rellenos de protección rígidos,

o tuberías rígidas con rellenos de protección muy flexibles.

Las tuberías obtienen sus propiedades en fábrica y, normalmente, se verifican de acuerdo

con la norma de producto apropiada. Sin embargo, la calidad de los rellenos de protección

de la tubería es una función del tipo de material y del procedimiento de construcción. Por

ello, no se debería especificar un tipo de relleno de protección y de material que requieran

una calidad de trabajo a pie de obra que no se esté seguro de que se pueda conseguir.

Se debe ser consciente de que la combinación óptima de tubería y de relleno de protección

no siempre se puede identificar sólo por la consideración de la capacidad de carga. Los

rellenos de protección y, en particular, las camas de apoyo tienen una función igualmente

importante en limitar los asentamientos de la tubería. En consecuencia, en terrenos blandos,

la necesidad de limitar el asentamiento puede influir en la elección del relleno de protección

y, por tanto, forzar la elección de la resistencia de la tubería.

También se debe garantizar que se seleccionan rellenos de protección compatibles con el

suelo original donde se va a construir la tubería. Por ejemplo, el relleno de protección no

debería interferir con los niveles o movimientos de agua subterránea existentes, y debería

estar protegido contra tales movimientos de agua subterránea, que se llevan partículas finas

de suelo de los intersticios del material del relleno de protección, lo que hace que el suelo

circundante quede más suelto y el relleno de protección se debilite.

3.2.5.4. Selección del tipo de instalación

La opción 1 establece una serie de instalaciones tipo en función de las características de la

tubería y el relleno de protección, las cuales influyen decisivamente en los ángulos de apoyo

horizontal y vertical (αh y αv) y en la proyección relativa (a).

3.2.5.4.1. Tipos de instalación

En la figura 3.3 se muestran los cuatro tipos generales de instalación, que se describen a

continuación:

Page 97: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 69 -

ET1 ET3

a b c

a b

ET2 ET4

a b

Figura 3.3. Instalaciones tipo (Op1)

1

- Instalación tipo ET1: La tubería se instala directamente sobre el fondo de la zanja,

que previamente ha sido o no preparado. Si el fondo de la zanja ha sido tratado de

forma especial, el suelo original esta suelto (subtipo b) o está parcialmente excavado

(subtipo c). En este caso se tendrán las mismas propiedades del suelo relativas al

grupo de suelo y al grado de compactación para la cama superior y las zonas del

relleno de protección. El suelo original forma la cama inferior y, si tiene las mismas

propiedades que el resto del relleno de protección (subtipo a), se puede considerar

como tipo ET2.

- Instalación tipo ET2: La tubería tiene una cama de apoyo que está preparada con

el mismo material empleado para el relleno de protección. En este caso se tendrán

las mismas propiedades del suelo relativas al grupo de suelo y al grado de

compactación para la cama de apoyo y en las zonas del relleno de protección.

- Instalación tipo ET3: Las propiedades del suelo relativas al grupo de suelo y al

grado de compactación son diferentes para la cama de apoyo y para las zonas del

relleno de protección. A fin de verificar la validez de este tipo de relleno de

protección, se deben cumplir las siguientes condiciones:

o Las propiedades escalonadas2 de la cama de apoyo deben ser al menos un

escalón más altas que las del relleno de protección (requisito mínimo)

1 Una línea horizontal continua dentro del relleno de protección indica un límite entre materiales que tienen

propiedades diferentes. Una línea discontinua indica una etapa en construcción. 2 Las propiedades del suelo se escalonan utilizando los grupos de suelo (ver apartado “3.2.6.1 Grupos de suelo”)

o los grados de compactación (ver tabla 3.2). Un escalón se define como un cambio de un grupo de suelo o un

cambio de un grado de compactación.

Page 98: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 70 -

o Las propiedades escalonadas de la cama de apoyo no deben ser más de dos

escalones más altas que las del relleno de protección (requisito máximo para

tuberías flexibles)

- Instalación tipo ET4: La tubería tiene una cama de apoyo de hormigón. Este tipo de

relleno de protección solo se recomienda para ser utilizado con tuberías rígidas con

junta soldada.

3.2.5.4.2. Grados de compactación

Los diversos grados de compactación cubiertos por el informe técnico se definen para cada

uno de los grupos de suelo3. En cualquier caso es esencial considerar el grado de

compactación en los riñones, que está fuertemente influenciado por el tipo de suelo, la

anchura de la zanja y el diámetro de la tubería.

Se identifican tres grados de compactación, que son:

- Grado de compactación W (material bien compactado)

- Grado de compactación M (material moderadamente compactado)

- Grado de compactación N (material no compactado, vertido)

El grado de compactación es de la máxima importancia para el cálculo estructural de

tuberías enterradas y cuando las partes implicadas no están enteradas de la importancia de

asegurar que el grado de compactación seleccionado se obtenga a pie de obra, se puede

producir el fallo estructural de la tubería.

La tabla 3.2 proporciona ejemplos de los espesores máximos por capa y el número de

pasadas que se requiere para obtener los diversos grados de compactación con los

diferentes tipos de equipos y de materiales del relleno de protección. También están

incluidos los espesores mínimos recomendados para el recubrimiento, que se requieren por

encima de la tubería antes de que el equipo de compactación aplicable se pueda usar sobre

la misma.

3 En función de su ubicación respecto de la tubería (relleno de protección o relleno superior)

Page 99: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 71 -

Numero de pasadas

Espesor máximo de las capas en función del Gs

Equipo de puesta en obra

W M 1 2 3+4 5

Espesor mínimo sobre la coronación del tubo

antes de compactar

Compactador manual 3 1 0,15 0,10 0,10 0,10 0,20

Vibro apisonadora

min. 70 kg 3 1 0,30 0,25 0,20 0,15 0,30

Bandeja vibrante

min. 50 kg

min. 100 kg

min. 200 kg

min. 400 kg

min. 600 kg

4

4

4

4

4

1

1

1

1

1

0,10

0,15

0,20

0,30

0,40

-

0,10

0,15

0,25

0,30

-

-

0,10

0,15

0,20

-

-

-

0,10

0,15

0,15

0,15

0,20

0,30

0,50

Rodillo vibrante

min. 15 kN/m

min. 30 kN/m

min. 45 kN/m

min. 65 kN/m

6

6

6

6

2

2

2

2

0,35

0,60

1,00

1,50

0,25

0,50

0,75

1,10

0,20

0,30

0,40

0,60

-

-

-

-

0,60

1,20

1,80

2,40

Rodillo vibrante doble

min. 5 kN/m

min. 10 kN/m

min. 20 kN/m

min. 30 kN/m

6

6

6

6

2

2

2

2

0,15

0,25

0,35

0,50

0,10

0,20

0,30

0,40

-

0,15

0,20

0,30

-

-

-

-

0,20

0,45

0,60

0,85

Triple rodillo pesado

(no vibrante)

min. 50 kN/m

6 2 0,25 0,20 0,20 - 1,00

Tabla 3.2. Ejemplos de relaciones entre clases de compactación y procedimientos de construcción (Op1)

(ver Norma ENV 1046)

No obstante, el grado de compactación alcanzado y las propiedades del suelo pueden estar

fuertemente influenciados cuando se utilice entibado como soporte de la pared de la zanja.

El nivel de influencia es diferente dependiendo de si la entibación se retira durante o

después de las operaciones de relleno y compactación.

La retirada de la entibación de la pared de la zanja después de la compactación dará lugar a

una disminución de la densidad Proctor (grado de compactación) obtenida previamente y a

un aumento de los asientos:

- Si se retira una entibación ligera a continuación de terminar la operación de relleno,

el grado de compactación correspondiente utilizado para el cálculo se debe reducir

en un salto con respecto al grado de compactación existente antes de retirar el

soporte.

- Si se retira una entibación pesada a continuación de terminar la operación de relleno,

el grado de compactación correspondiente utilizado para el cálculo en cualquier caso

se debe reducir hasta el grado N (material no compactado).

Page 100: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 72 -

3.2.5.4.3. Ángulos de apoyo

Los ángulos de apoyo verticales (αv) recomendados dependen de la flexibilidad de la

tubería, del tipo de relleno de protección y del caso de instalación, y se definen en la

siguiente tabla:

Criterio de deformación Tipo de instalación Flexible Semi-flexible y rígido

W M N W M N

ET1 a, b 4 120º 90º 60º 60º 60º 30º

c 60º 60º 60º 60º 60º 60º

ET2 5 180º 180º 120º 120º 120º 90º

ET3 6 120º 120º 120º 120º 120º 120º

ET4 - - - 90º a 180º

Tabla 3.3. Ángulos de apoyo αv recomendados para tuberías enterradas (Op1)

Los valores para el ángulo de reacción horizontal del relleno (αh) se deben elegir de los

dados en la tabla 3.4 en función de las relaciones (Ets/Ens y b/de).

Ets/Ens ≤ 1 Ets/Ens > 1

b/De < 2 100º 180º

b/De ≥ 2 120º 140º

Tabla 3.4. Valores recomendados para αh (Op1)

3.2.6 PARÁMETROS DEL SUELO

3.2.6.1. Grupos de suelo

Los grupos de suelos aquí definidos se corresponden, con alguna pequeña modificación con

los establecidos por la norma experimental ENV 1046:2001 y son los siguientes:

- Grupo 1 (Gs 1): Suelos granulares de grano grueso predominantemente de tamaño

de grava, tal como grava de tamaño uniforme.

- Grupo 2 (Gs 2): Suelos bien graduados, mezclas de grava y arena, mezclas de

grava y arena de poca graduación, suelos granulares de grano grueso

predominantemente de tamaño de arena, tales como arenas de tamaño uniforme,

4 Los valores dados están basados en los mismos niveles de compactación que el relleno (tanto en riñones como

en la zona superior). 5 Idem 4

6 Para la instalación tipo ET3b, si el terreno existente es significativamente mas rígido que el relleno en la zona

de riñones el ángulo vertical se debe reducir a 30º

Page 101: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 73 -

arenas bien graduadas, mezclas de grava y arena, mezclas de poca graduación de

grava y arena.

- Grupo 3 (Gs 3): Suelos de granos mezclados con una baja fracción de finos y

cohesión moderada, tales como mezclas de gravas y arenas limosas, mezclas

arcillosas de grava y arena, arenas limosas.

- Grupo 4 (Gs 4): Suelos de granos mezclados con una alta fracción de finos y

cohesión moderada, tales como mezclas arcillosas de grava y arena, arenas limosas

y arena fina arcillosa.

- Grupo 5 (Gs 5): Suelos cohesivos de grano fino, tales como fangos inorgánicos,

arenas muy finas, polvo de roca, arenas finas limosas o arcillosas, arcilla inorgánica,

arcilla plástica.

- Grupo 6 (Gs 6): Suelos orgánicos, tales como suelos de granos mezclados con

aditivos de humus o yeso, fangos orgánicos y arcilla orgánica limosa, arcilla

orgánica, arcilla con aditivos orgánicos.

- Grupo 7 (Gs 7): Suelos orgánicos, tales como turba, otros suelos altamente

orgánicos, lodos.

Para su uso en una instalación en zanja o terraplén se deben utilizar solo los suelos de los

grupos 1 a 5 como material de relleno de protección de la tubería. Si los grupos 6 y 7 se

encuentran presentes como terreno natural, se deben realizar estudios específicos acerca

del comportamiento mecánico del mismo.

3.2.6.2. Propiedades del suelo

Salvo que se disponga de valores obtenidos “in situ” para las propiedades del suelo, se

deben tomar los valores definidos en las tablas 3.5 y 3.6

Los valores estimados para los grupos de suelo 1 a 5 están previstos de manera que, en

todos los casos, los valores para los suelos reales que estén clasificados dentro de un grupo

en particular sean mayores que los establecidos de forma que exista un coeficiente de

seguridad mayor o igual a uno.

3.2.6.2.1. Cálculo de parámetros

En función del grupo de suelo se definen sus parámetros básicos, que son: el peso

específico (γS), el peso sumergido (γS,w), el ángulo de rozamiento interno (φi), el módulo

edométrico base (Ejj,100%), el grado de compactación (Dpr) y dos parámetros de cálculo (z y

u).

Page 102: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 74 -

Dpr Gs

γγγγS

(kN/m3)

γγγγS,w

(kN/m3)

φφφφi

(º)

Ejj,100%

(MPa) z u

N M W

1 18 11 40 40,0 - - 100 100 100

2 18 11 35 16,0 5 0,5 90 93 97

3 18 11 30 9,0 5 0,6 87 90 95

4 20 12 25 6,0 6 0,7 87 90 95

5 20 12 20 4,0 6 0,8 84 87 92

6 14 a 18 5 a 10 10 2,0 6 0,9 - - -

7 10 a 15 0,5 a 5 0 0,1 0 1,0 - - -

Tabla 3.5. Parámetros básicos de cálculo (Op1)

Módulo edométrico del relleno (Ett,h, Ets,h)

Para determinar el modulo del relleno, de protección (Ets,h) y superior (Ett,h), se calcula

primero el módulo del suelo a un metro de profundidad, mediante la siguiente expresión:

310%100,1,

Z

jjjj EE = (3.1)

( )101,0 Pr3 −= DzZ (3.2)

donde: Ejj,1, módulo del relleno para una profundidad de 1 m (N/mm2)

Ejj,100%, módulo básico del relleno para una densidad Proctor Normal (PN) del 100%

(ver tabla 3.5) (N/mm2)

z, parámetro que describe la dependencia del módulo del suelo con respecto a la

densidad PN (ver tabla 3.5)

DPr, grado de compactación del relleno (ver tabla 3.5)

Posteriormente se calcula el módulo del relleno para profundidades distintas de 1 m y/o

presiones de suelo distintas de 20 kN/m2 aplicando la siguiente fórmula:

1,

,

,20

jj

u

vS

hjj Ep

E

= (3.3)

donde: pS,v, presión vertical del relleno en una zanja sin tubo, (ver fórmula (3.20) que debe

expresarse en esta ecuación en (kN/m2)

Ejj,h, módulo del suelo (relleno o terreno inalterado) en la profundidad real del

recubrimiento (N/mm2)

h, altura de cobertura (m)

u, parámetro que describe la dependencia del módulo del suelo con respecto a la

profundidad del recubrimiento (ver tabla 3.5)

Ejj,1, se determina de acuerdo con la fórmula (3.1)

Page 103: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 75 -

Modulo edométrico del terreno (Ens, Enb)

El módulo del terreno en las paredes de la zanja (Ens) se debe tomar de los definidos en la

tabla 3.6.

Gs Ejj,1

(MPa)

1 40,00

2 10,00

3 5,00

4 3,00

5 1,00

6 0,50

7 0,10

Tabla 3.6. Módulos del terreno original típicos para una presión del suelo de 20 kN/m2 (Op1)

(profundidad del recubrimiento ≈ 1 m)

Los módulos del terreno original para profundidades del recubrimiento distintas de 1 m y/o

presiones del suelo distintas de 20 kN/m2, se deben calcular aplicando la fórmula (3.3).

A falta de datos reales obtenidos mediante ensayos “in situ” para el módulo del terreno

original por debajo la cama de apoyo de la tubería (Enb), éste se debe determinar aplicando

la fórmula (3.4).

httnb EE ,10= (3.4)

3.2.6.2.2. Símbolos

Los subíndices de los diferentes módulos del suelo se utilizan para identificarlos en función

de su posición respecto del tubo (ver figura 3.4):

- Ett,h, módulo del relleno superior base (N/mm2)

- Ett, módulo del relleno superior después de la reducción (N/mm2)

- Ets,h, módulo del relleno de protección base (N/mm2)

- Ets, módulo del relleno de protección después de la reducción (N/mm2)

- Ens, módulo del terreno en los laterales de la zanja (N/mm2)

- Enb, módulo del terreno por debajo la zanja (N/mm2)

Los diversos módulos del suelo se deben determinar de acuerdo con las formulaciones

definidas anteriormente.

Page 104: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 76 -

Ett

Enb

Ens EnsEtsEts

Ets,h Ets,h

Ett

Enb

Ens Ens

EtsEts

Ets,h Ets,h

a) condición de zanja estrecha b) condición de zanja ancha y de terraplén

Figura 3.4. Módulos del suelo para diversas zonas de suelo (Op1)

3.2.6.2.3. Reducciones de los módulos

Los módulos del suelo resultantes (Ets,ST, Ets,LT, Ett,ST, y Ett,LT) para los materiales del relleno

de protección y del relleno superior se deben determinar aplicando la fórmula apropiada

dentro de las definidas a continuación:

htsTWRGWRSTts EffE ,,,, = (3.5a)

htsTRTWRGWRLTts EfffE ,,,,, = (3.5b)

httSTtt EE ,, = (3.5c)

httTRLTtt EfE ,,, = (3.5d)

donde: Ets,ST, módulo del relleno de protección a corto plazo (N/mm2)

Ets,LT, módulo del relleno de protección a largo plazo (N/mm2)

Ett,ST, módulo del relleno superior a corto plazo (N/mm2)

Ett,LT, módulo del relleno superior a largo plazo (N/mm2)

Ets,h, módulo del relleno de protección base (N/mm2)

Ett,h, módulo del relleno superior base (N/mm2)

fR,GW, coeficiente de reducción por nivel freático

fR,TW, coeficiente de reducción debido a la anchura de la zanja

fR,T, coeficiente de reducción por efecto del tiempo, que para el diseño a corto plazo

se debe tomar como "1" y para el diseño a largo plazo es igual al valor

correspondiente tomado de la tabla 3.8

Page 105: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 77 -

A) Por nivel freático

Para todos los grupos de suelo, excepto para el grupo (Gs 1), se debe considerar la

influencia del nivel freático en el área de la zanja aplicando el coeficiente de reducción (fR,GW)

de acuerdo con la fórmula (3.6):

120

75Pr

, ≤−

=D

f GWR (3.6)

donde: fR,GW, coeficiente de reducción por nivel freático

DPr, grado de compactación del relleno (ver tabla 3.5)

B) Por anchura de la zanja

Para responder a las posibles deficiencias de compactación en las zanjas estrechas, se

debe aplicar el coeficiente de reducción (fR,TW) de acuerdo con la siguiente fórmula, teniendo

en cuenta los casos de instalación (ver apartado “3.2.5.4 Selección del tipo de instalación”) y

por tanto los grados de compactación resultantes:

( )c

e

TWR fd

bf −

−−= 1433,01, (3.7)

donde: fR,TW, coeficiente de reducción debido a la anchura de la zanja

b, ancho de la zanja en la clave superior del tubo (m)

de, diámetro exterior (m)

fc, coeficiente de corrección relativo al grado de compactación, y debe ser el valor

apropiado definido en la tabla 3.7.

Grado de compactación

fc

W 1,00

M 0,70

N 0,30

Tabla 3.7. Coeficiente de corrección relativo al grado de compactación (Op1)

C) Por efecto del tiempo

Para responder a la posible dependencia del tiempo sobre las propiedades de los materiales

del relleno superior y de protección, se debe aplicar el coeficiente de reducción (fR,T) de

acuerdo con la tabla 3.8.

Page 106: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 78 -

Grupo de suelo

fR,T

1 1,00

2 1,00

3 1,00

4 0,75

5 0,75

6 0,50

7 0,25

Tabla 3.8. Coeficiente de reducción por efecto del tiempo (Op1)

3.2.6.3. Coeficientes de presión del suelo

Los coeficientes de presión del relleno superior (K1) y de protección (K2) (utilizados en las

fórmulas 3.9 y 3.23) se deben determinar aplicando los valores dados en la tabla 3.9.

K1,K2 Gs

W M N

1 0,40 0,40 0,40

2 a 3 0,40 0,30 0,20

4 a 7 0,60 0,50 0,40

Tabla 3.9. Relación entre el grupo de compactación y el índice de la presión del suelo (Op1)

3.2.7 RIGIDEZ DEL SISTEMA TUBERÍA/TERRENO

La capacidad de deformación vertical en tuberías flexibles (χ ≠ 0) depende tanto de la

rigidez vertical del sistema tubería/terreno, como de la rigidez horizontal del relleno.

3.2.7.1. Rigidez vertical del sistema

Se define como índice de deformación (χ), la relación entre las deflexiones verticales de la

tubería (δP) y del relleno lateral de la tubería (δS) bajo las mismas condiciones de carga, sin

contabilizar la presión horizontal de tierras.

S

P

δ

δχ = (3.8)

El índice de deformación (χ) se debe ajustar a cero (χ = 0) para tuberías apoyadas sobre

hormigón (ver ET4 en el apartado “3.2.5.4.1 Tipos de instalación”).

Este índice se debe determinar aplicando las siguientes fórmulas:

Page 107: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 79 -

( )p

Bv

vvS

ScK

.8..1 2−=χ (3.9)

donde: cvv, coeficiente de deflexión vertical debido a cargas verticales (ver tabla 3.12)

K2, coeficiente de presión del relleno de protección

SBv, rigidez vertical del relleno (N/mm2), ver la fórmula (3.10)

SP, rigidez de la tubería (N/mm2), ver la fórmula (3.11)

El coeficiente de deflexión vertical (cvv), relativo al ángulo de apoyo vertical asumido (αv),

debe ser el definido en la tabla 3.12. Dicho coeficiente es una función del tipo de relleno de

protección, del grado de compactación (ver apartado “3.2.5.4.2 Grados de compactación”) y

de una estimación preliminar del índice de deformación (χ) (tubería flexible o rígida). Si para

esta estimación preliminar, el valor calculado de (χ) (aplicando la fórmula (3.9)) no cumple el

criterio de deformación asumido, entonces se debe volver a calcular (χ) utilizando el nuevo

ángulo (αv) que corresponda al criterio de deformación modificado. En el caso de que el

nuevo criterio de deformación resultante tampoco cumpla el resultado previo de (χ), para los

cálculos adicionales se debe utilizar el más bajo de los dos valores de (αv) definidos. Para

tuberías circulares con apoyo inferior, en la fórmula (3.9) se debe utilizar el valor de (cvv)

para (αv = 60º).

Como segundo paso, se debe calcular la rigidez vertical del relleno aplicando la siguiente

fórmula, teniendo en cuenta la situación anterior.

aES tsBv = (3.10)

donde: Ets, módulo del relleno de protección después de la reducción (N/mm2)

a, proyección relativa de la tubería

La proyección relativa7 (a) es la relación entre la altura de la columna de suelo en el lado de

la tubería que está sujeta a asentamiento, y el diámetro exterior de la tubería (de) en la

dirección horizontal (ver figura 3.5).

de

a.d

e

a.d

e

a.d

e

Figura 3.5. Proyección relativa de la tubería (Op1)

7 La proyección relativa de la tubería (a) es igual a "1" para secciones transversales circulares de la tubería bajo

condiciones de instalación ET1 y ET2 (ver el apartado 3.2.5.4). Puede ser diferente de "1" para otras secciones

transversales y bajo condiciones de instalación diferentes.

Page 108: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 80 -

La relación entre la rigidez de la tubería (SP) y el módulo de elasticidad del material de la

tubería (EP) viene dada por la fórmula (3.11). Si una de estas propiedades es conocida o se

ha medido, la otra se debe calcular aplicando la siguiente fórmula.

3

3

.12

.

m

p

pd

tES = (3.11)

donde: Ep, módulo de elasticidad del material del tubo (N/mm2)

t, espesor de la pared del tubo (mm)

dm, diámetro medio (mm)

Se debe hacer constar que ambas propiedades, es decir, la rigidez y el módulo de

elasticidad de la tubería, dependen del tiempo y, en consecuencia, se deben utilizar de

acuerdo con el caso de carga y del periodo de tiempo en cuestión (valores a corto y largo

plazo).

El criterio de deformación resultante se muestra en la tabla 3.10.

Índice de deformación

(χ) Criterio de deformación

χ ≤ 0,05 Rígida

0,05 < χ < 1,00 Semi-flexible

χ ≥ 1,00 Flexible

Tabla 3.10. Criterio de deformación (Op1)

3.2.7.2. Rigidez horizontal del relleno

La rigidez horizontal del relleno (SBh), se calcula aplicando la siguiente fórmula:

1

.F

ES ts

Bh ζ= (3.12)

donde: SBh, rigidez horizontal del relleno (N/mm2)

F1, inverso del coeficiente de multiplicación debido a la propagación de esfuerzos en

el suelo (ver tabla 3.11)

ξ, coeficiente de corrección de la rigidez horizontal del relleno, establecido en función

de las diferencias entre los módulos del relleno de protección (Ets) y del modulo del

terreno natural en el lateral de la zanja (Ens) (ver las fórmulas (3.13) y (3.14))

El coeficiente de corrección (ξ), se calcula aplicando las siguientes fórmulas:

Page 109: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 81 -

( ) nsts EEfFf

F

.1

1

∆−+∆=ζ (3.13)

siendo: ∆f, decremento del coeficiente de multiplicación

( ) 1

2 1.982,0

1F

dbF

dbf

e

e ≤−+

−=∆ (3.14)

b, ancho de zanja en la clave superior del tubo (m)

de, diámetro exterior (m)

F2, coeficiente que depende del ángulo de reacción horizontal αh (tabla 3.11).

Ets, módulo del relleno de protección (N/mm2)

Ens, módulo del terreno en los laterales de la zanja (N/mm2)

aaaah F1 F2

100º 1,474 0,321

120º 1,667 0,283

140º 1,808 0,260

180º 1,925 0,244

Tabla 3.11. Variables utilizadas en las fórmulas (3.13) a (3.14) (Op1)

La rigidez horizontal del relleno (SBh) también se utiliza para calcular la deflexión horizontal

de la tubería (∆h) (ver fórmula (3.63)) y la reacción horizontal del relleno (qh*).

El índice de rigidez (VS) describe la relación entre la rigidez de la tubería, incluido el efecto

de rigidez debido a la reacción horizontal del relleno, y la rigidez vertical del relleno.

Las fórmulas (3.15) a (3.18) tienen en cuenta la carga vertical total (qv) y la carga horizontal

(qh) como cargas iniciales. La reacción horizontal del relleno (qh*) se calcula entonces como

una reacción a las cargas iniciales y a la carga horizontal del relleno, aplicando la condición

de compatibilidad en la dirección horizontal.

Por tanto, el índice de rigidez (VS), tiene en cuenta las cargas iniciales y la reacción

horizontal del relleno y se calcula aplicando el siguiente conjunto de fórmulas:

Bvv

p

sSc

SV

.

.8

*= (3.15)

donde: SP, rigidez de la tubería (N/mm2), (ver la fórmula (3.11))

SBv, rigidez vertical del relleno (N/mm2), (ver la fórmula (3.10))

c*v, coeficiente de deflexión vertical (ver la fórmula (3.16))

Page 110: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 82 -

***

.Kccc vhvvv += (3.16)

siendo: c*v, coeficiente de deflexión vertical

cvv, coeficiente de deflexión vertical debido a las cargas verticales

(ver tabla 3.12)

c*vh, coeficiente de deflexión vertical debido a las cargas horizontales

(ver tabla 3.14)

K*, coeficiente de reacción horizontal del relleno (ver fórmula (3.17)).

Angulo vertical

Coeficientes de deflexión vertical

aaaav cvv cvh cvd cv,ow cv,w

30º -0,11290 0,08358 0,04179 -0,2187 -0,10910

60º -0,10529 0,08358 0,04179 -0,1983 -0,09892

90º -0,09658 0,08358 0,04179 -0,1819 -0,09075

120º -0,08929 0,08358 0,04179 -0,1682 -0,08463

180º -0,08363 0,08358 0,04179 -0,1569 -0,07825

Tabla 3.12. Coeficientes de deflexión vertical (apoyo en suelo) dependientes de αv (Op1)

El coeficiente de reacción horizontal del relleno (K*) es una medida para la utilización de la

reacción horizontal de la cama de apoyo.

*

*

hhPS

hv

cV

cK

−= (3.17)

donde: chv, coeficiente de deflexión horizontal debido a las cargas verticales (tabla 3.13)

VPS, rigidez del sistema (ver la fórmula 3.18))

c*hh, coeficiente de deflexión horizontal debido a la reacción horizontal del relleno

(tabla 3.14).

Angulo vertical

Coeficientes de deflexión horizontal

aaaav chv chh chd ch,ow ch,w

30º 0,10980 -0,08363 -0,04183 0,2073 0,10160

60º 0,10258 -0,08363 -0,04183 0,1905 0,09475

90º 0,09558 -0,08363 -0,04183 0,1775 0,08825

120º 0,08908 -0,08363 -0,04183 0,1654 0,0823

180º 0,08358 -0,08363 -0,04183 0,1548 0,0770

Tabla 3.13. Coeficientes de deflexión horizontal (apoyo en suelo) dependientes de αv (Op1)

Page 111: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 83 -

Angulo horizontal

Coeficientes

aaaah c*hh c*

vh

100º -0,06158 0,05938

120º -0,06592 0,06413

140º -0,06858 0,06696

180º -0,07042 0,06900

Tabla 3.14. Coeficientes de deflexión horizontal y vertical dependientes de αh (Op1)

La rigidez del sistema tubería/terreno (VPS) se calcula aplicando la siguiente fórmula:

Bh

P

PSS

SV

.8= (3.18)

donde: SP, rigidez de la tubería (N/mm2), (ver la fórmula (3.11))

SBh, rigidez horizontal del relleno (N/mm2), (ver la fórmula (3.12))

3.2.8 CARGAS INICIALES

En este apartado se dan los procedimientos para el cálculo de las cargas que tienen

unidades de presión, y que actúan en la parte superior de la tubería antes de tener en

cuenta la interacción tubería/suelo.

3.2.8.1. Carga del relleno

La presión vertical del relleno (pS,0) suponiendo que no hay ni tubería ni zanja, viene dada

por la siguiente fórmula:

( ) wwswss hhhp ,0, γγ +−= (3.19)

donde: γS, peso específico del relleno (kN/m3)

γS,w, peso sumergido del relleno (kN/m3)

h, altura de cobertura (m)

hw, altura del nivel freático por encima de la clave superior del tubo (m)

La presión vertical del relleno (pS,v) en una zanja cuando no hay tubería viene dada por la

siguiente fórmula:

0,, svs pp βκ= (3.20)

donde: κβ, coeficiente del efecto silo para zanja inclinadas

Page 112: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 84 -

El valor del coeficiente (κβ) se debe calcular asumiendo primero que las paredes de zanja

son verticales (κ90 con β = 90º) y después ajustar el parámetro a las paredes inclinadas,

cuando se usen éstas, de acuerdo con la siguiente fórmula:

909090

1 κββ

κ β

+−= (3.21)

donde: β, ángulo del talud de la zanja (º)

κ90, coeficiente del efecto silo para zanjas verticales

La reducción de la presión vertical del suelo debida a (κ90) es una consecuencia del

rozamiento entre las paredes de la zanja y el relleno (teoría silo), que resulta del

asentamiento vertical del material de relleno:

1

90

11

Z

eZ−

−=κ (3.22)

donde: Z1, variable intermedia de cálculo, que se determina aplicando la siguiente fórmula:

tKb

hZ Φ= tan2 11 (3.23)

donde: h, altura de cobertura (m)

b, ancho de zanja en la clave superior del tubo (m)

K1, coeficiente de presión del relleno superior (ver tabla 3.9)

φt, ángulo de rozamiento relleno/terreno (º) (ver tabla 3.5)

El valor de diseño de (κβ) se debe ajustar a 1,0 cuando se cumpla cualquiera de las

siguientes condiciones:

a) En cálculos a largo plazo, salvo que las condiciones sean tales que se pueda asumir

que el efecto silo existe durante toda la vida de la tubería.

b) Cuando la tubería se instala en una zanja ancha (b ≥ 4.de) o en condición de

terraplén.

c) Cuando el ángulo de rozamiento entre el relleno y el terreno (φt) sea igual a cero.

d) En condiciones de suelo pobre, por ejemplo, arcillas blandas.

El ángulo de rozamiento entre el relleno y el terreno (φt) depende de las condiciones de

instalación y del grupo de suelo del relleno. Se identifican tres condiciones de instalación

respecto al ángulo de rozamiento de la zanja:

Page 113: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 85 -

- I1, existe un buen contacto directo entre el material de relleno y el terreno original

- I2, existe algo de contacto entre el material de relleno y el terreno original, por

ejemplo, el caso de retirada de la entibación de forma progresiva durante la

operación de relleno

- I3, no existe contacto entre el material de relleno y el terreno original, por ejemplo, el

caso de retirada de la entibación después de la operación de relleno

La relación entre estas condiciones de instalación y el ángulo de rozamiento entre el relleno

y el terreno viene dada en la tabla 3.15.

Condición de instalación

φt 8

(º)

I1 0,66.φt

I2 0,33.φt

I3 0,00

Tabla 3.15. Relación entre φt y las condiciones de instalación (Op1)

3.2.8.2. Cargas superficiales

La Opción 1 define la posibilidad de incluir cargas superficiales limitadas e ilimitadas (ver

CEN/TR 1295-3 (2007)), si bien, como no se consideran cargas superficiales en las

hipótesis realizadas dentro del ámbito de estudio de la presente tesis, no se ha desarrollado

este apartado.

3.2.8.3. Cargas de tráfico

Una tubería puede estar sometida a cargas de tráfico si está enterrada bajo una carretera o

en campo abierto. Es importante que la magnitud de la carga de tráfico y la condición de la

superficie (tipo de pavimento) se evalúen de forma realista y se especifique en el diseño.

Se debe tener en cuenta que las cargas de tráfico son cargas accidentales y, por tanto, se

deben tratar y aplicar como tales. Esto implica que el cálculo de las tuberías a largo plazo se

debe realizar combinando las condiciones a corto plazo para las cargas de tráfico, con las

condiciones a largo plazo para todas las cargas permanentes. Esto se refiere tanto a las

propiedades del suelo, como a las propiedades de la tubería.

8 Para establecer el ángulo de rozamiento entre el relleno y el terreno natural se asignará a éste, el menor de los

dos ángulos de rozamiento.

Page 114: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 86 -

3.2.8.3.1. Carretera

La presión vertical (pT,v) resultante de la carga de tráfico de carretera (pT) se puede calcular

como una función de la altura de cobertura y del diámetro de la tubería, aplicando la

siguiente fórmula:

TTtrafficvT pDap mod,, = (3.24)

El coeficiente atraffic es un coeficiente de corrección que tiene en cuenta la distribución de la

carga sobre la tubería, especialmente en casos de poca altura de cobertura, y se debe

calcular aplicando las siguientes fórmulas:

290,0

90,01

Zatraffic

+−= (3.25)

67,0

62

21,1

4

md

hhZ

+= (3.26)

donde: dm, = 0,5.(de + di) diámetro medio (m)

de, diámetro exterior (m)

di, diámetro interior (m)

h, altura de cobertura (m)

Para el procedimiento de cálculo, la altura mínima de cobertura bajo carreteras es de 0,6 m.

En la fórmula (3.27) se incluye un coeficiente de impacto global.

Para contabilizar los efectos de la deformación de la carretera y el carácter transitorio de las

cargas de tráfico, en la fórmula (3.24) se incluye el coeficiente (DT, mod).

Para el coeficiente (DT,mod) se debe utilizar uno de los siguientes valores:

- 0,6 para pavimentos rígidos

- 0,8 para pavimentos flexibles

- 1,0 para zonas no pavimentadas

La carga de tráfico de carretera (pT) se debe calcular aplicando la siguiente fórmula de

acuerdo con la Norma UNE-EN 1991-2 (2004):

25,1

.0826,0−= hpT (3.27)

donde: pT , carga de tráfico a una profundidad h por debajo del terreno (N/mm2)

Page 115: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 87 -

3.2.8.3.2. Ferrocarriles y Aeropuertos

La Opción 1 define la posibilidad de incluir cargas de tráfico para ferrocarriles y aeropuertos

(ver CEN/TR 1295-3 (2007)), si bien, como no se consideran cargas asociadas a ese tipo de

tráfico en las hipótesis realizadas dentro del ámbito de estudio de la presente tesis, no se ha

desarrollado este apartado.

3.2.8.3.3. Cargas de construcción

Estas cargas se han de considerar en grandes obras de ingeniería civil donde se utilizan con

frecuencia vehículos pesados sobre ruedas, tales como excavadoras y dumpers que pueden

superar las cargas de diseño de la tubería. En este caso se debe:

- Diseñar las tuberías para que soporten estas cargas

- Especificar la disposición de los cruces designados durante la fase de obra para que

dichas cargas no afecten a las tuberías.

Cualquiera que sea la opción adoptada, es importante que ésta quede claramente

especificada en el proyecto, para que tanto el contratista como el equipo de supervisión a

pie de obra estén perfectamente enterados de la situación. Cuando la profundidad del

recubrimiento sobre las tuberías durante la construcción sea inferior a la profundidad final de

diseño, se tendrá en cuenta este hecho cuando se evalúen los efectos en la fase de

construcción sobre la tubería propuesta.

3.2.8.4. Sismo

En las zonas donde la sísmicidad sea importante, ésta se debe tener en cuenta en el diseño

de las tuberías enterradas, de acuerdo con los principios y las reglas de aplicación

establecidas en las Normas UNE ENV 1998-1 (1998), UNE ENV 1998-4 (2004) y UNE ENV

1998-5 (1998), así como en los documentos de aplicación nacional para la norma

sismorresistente.

3.2.8.5. Otras cargas

Las cargas tales como el fluido contenido en la tubería, el peso propio de la misma, la

presión interna y la presión externa del agua se tratan en los apartados “3.2.12 Deflexión de

la tubería” y “3.2.13 Momentos, fuerzas, tensiones y deformaciones”, respectivamente.

3.2.9 DISTRIBUCIÓN DE CARGAS

Al igual que la intensidad de la carga, su distribución sobre la tubería tiene una influencia

muy importante en el comportamiento estructural de la misma. Esta distribución de cargas

depende del comportamiento de la tubería y del terreno circundante. La interacción

Page 116: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 88 -

tubería/terreno está influenciada por la compactación del relleno en los laterales y por

encima de la tubería y por la ejecución del apoyo de ésta.

h

4de

Superficie de terreno

λPT(pS,v+pA,v)λS(pS,v+pA,v)

pS,v+pA,v

Presión vertical de

relleno inicial

Figura 3.6. Distribución de cargas del suelo para tuberías rígidas (Op1)

Debido a que la tubería y el terreno en la zona de influencia tienen diferentes capacidades

de deformación, las presiones verticales del terreno a nivel de la generatriz superior de la

tubería, calculadas en el apartado “3.2.8 Cargas iniciales”, no se distribuyen de manera

uniforme. La medida de esta “no uniformidad” son los coeficientes de concentración de

carga (que pueden ser mayores o menores que uno) para las diversas presiones del suelo

en función del comportamiento del sistema tubería/terreno. La forma idealizada de la

distribución de carga para una tubería rígida instalada en una zanja ancha (b/de ≈ ∞) se

muestra en la figura 3.6, y para una tubería flexible en la figura 3.7.

h

4de

Superficie de terreno

λPT(pS,v+pA,v)λS(pS,v+pA,v)

pS,v+pA,v

Presión vertical de

relleno inicial

Figura 3.7. Distribución de cargas del suelo para tuberías flexibles (Op1)

Page 117: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 89 -

3.2.9.1. Coeficientes de concentración de carga

En primer lugar, se calcula el coeficiente de concentración de carga vertical (λmáx) para una

tubería con una rigidez infinita (χ = 0), posteriormente se calculan los coeficientes de

concentración de carga sobre el tubo asociados a instalaciones en terraplén y zanja y por

último se define el coeficiente de concentración de carga en los laterales de la misma.

Los coeficientes de concentración de carga se calculan solamente para las presiones (qv, qh

y qh*), producidas por las cargas del relleno y superficiales. En los otros casos de carga,

tales como la del fluido contenido en la tubería o la del peso propio de ésta, se desestiman,

ya que sus influencias son despreciables.

A) Para tuberías rígidas (máximo)

El cálculo del coeficiente de concentración de carga máximo (λmax) se deriva de la

consideración de una tubería de rigidez infinita (χ = 0), instalada en una zanja ancha

cubierta por una capa de suelo elástico resistente a esfuerzo cortante. El coeficiente de

concentración de carga máximo se calcula aplicando las siguientes fórmulas:

( )3

.60,1.62,02,25,31

55

max ≤+++

+=eeffeff

e

dhZaZa

dhλ (3.28)

donde: h, altura de cobertura (m)

de, diámetro exterior (m)

aeff, proyección relativa efectiva de la tubería

26,0. ≥= tstteff EEaa (3.29)

siendo: a, proyección relativa de la tubería

Ett, módulo del relleno superior después de la reducción (N/mm2)

Ets, módulo del relleno de protección después de la reducción (N/mm2)

Z5, variable intermedia de cálculo

( )ttnbeff EEaZ .25,05 −= (3.30)

siendo: Enb, módulo del terreno por debajo de la zanja (N/mm2)

Si el módulo del terreno por debajo de la zanja no se conoce, se considera que (Enb) se

debe tomar como 10.Ett (ver fórmula (3.4)).

Page 118: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 90 -

Para tuberías rígidas (χ ≤ 0,05), y para tuberías apoyadas sobre cuna de hormigón (ET4) o

apoyos similares, no se puede esperar una reducción importante del coeficiente máximo de

concentración de carga (λmax) a causa de la flexibilidad de la tubería. Por ello, en estos

casos se debe utilizar (λp = λmax).

B) Para instalaciones en terraplén

El coeficiente de concentración de carga (λP) para las condiciones de terraplén o de zanja

ancha (b/de ≥ 4), se debe calcular como una función del índice de rigidez (VS) aplicando la

siguiente fórmula.

25,0

1.

3

.3.

25,0

1.

3

4..

max2

max2

max

−+

−+

=

eff

effs

eff

effs

P

a

KaV

a

KaV

λ

λλ

λ siendo 0,8 ≤ λP ≤ 3,0 (3.31)

donde: λP, coeficiente de concentración de carga en terraplén

λmax, coeficiente de concentración de carga máximo (ver fórmula 3.28)

VS, índice de rigidez (ver fórmula (3.15))

aeff, proyección relativa efectiva de la tubería (ver la fórmula (3.29))

K2, coeficiente de presión del relleno de protección (tabla 3.9)

Para tuberías rígidas (χ ≤ 0,05) se utiliza (λP = λmax)

C) Para instalaciones en zanja

El coeficiente de concentración de carga (λPT) para una zanja estrecha (b/de < 4), se debe

calcular aplicando la siguiente fórmula:

up

P

e

P

PTd

λλλ ≤

−+

−=

3

4.

3

1 (3.32)

donde: λP, coeficiente de concentración de carga en terraplén

λPT, coeficiente de concentración de carga en zanja

b, ancho de zanja en la clave superior del tubo (m)

de, diámetro exterior (m)

El coeficiente de concentración de carga en zanjas estrechas, está limitado por la resistencia

a esfuerzo cortante del suelo. El límite superior (λup) de este coeficiente se calcula aplicando

la siguiente fórmula para h ≤ 10 m (rango habitual en instalaciones en zanja de tuberías

enterradas):

Page 119: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 91 -

λup = 4,0 – 0,15.h (3.33)

donde: λup, límite superior del coeficiente de concentración de carga

h, altura de cobertura (m)

D) En los laterales de la tubería

El coeficiente de concentración de carga en los laterales de la tubería (λS) resulta de la

condición de que la suma de todas las tensiones verticales sea constante y por ello, se

asume una distribución de las tensiones constante en las diversas zonas definidas en la

figura 3.6 y 3.7. Dicho coeficiente se debe calcular aplicando la siguiente fórmula:

3

4 Ps

λλ

−= (3.34)

donde: λs, coeficiente de concentración de carga en los laterales de la tubería

λP, coeficiente de concentración de carga en terraplén

Este coeficiente es independiente de las proporciones de la zanja, es decir, de que sea

zanja estrecha, zanja ancha o incluso terraplén.

3.2.10 PRESIONES RESULTANTES SOBRE LA TUBERÍA

Las investigaciones sobre modelos reales y modelos en elementos finitos han demostrado

que, en la realidad, las presiones verticales y horizontales resultantes no se distribuyen de

forma regular. Con objeto de permitir el análisis o el diseño estructural normalizado,

respectivamente, en el informe técnico CEN/TR 1295-3 (2007) se han idealizado las formas

de las presiones de reacción del siguiente modo (ver figuras 3.8 y 3.9).

Las cargas verticales del suelo, las cargas superficiales y las cargas vivas se distribuyen

simétricamente alrededor del eje vertical de la tubería sobre toda su anchura, y es aceptable

asumir una distribución uniforme a través de la anchura total de la tubería.

Por otro lado se asume que las presiones de reacción debidas a las cargas verticales se

distribuyen por igual dentro de la gama del ángulo de apoyo vertical (αv) (ver tabla 3.3).

Si bien, cuando la tubería está apoyada sobre una cama granular o suelo, se asume que la

distribución de esfuerzos por la reacción a todas las cargas verticales está dirigida en

dirección vertical, y distribuida uniformemente sobre la proyección horizontal del ángulo de

apoyo vertical (αv) (ver figura 3.8).

Page 120: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 92 -

Reacción vertical en el

apoyo

qv

qh

q*h

qh,d

αh

αv

Figura 3.8. Distribución de la presión circunferencial del relleno para tuberías apoyadas sobre

cama granular o suelo (Op1)

Mientras que, cuando la tubería está apoyada sobre una cuna de hormigón, se asume que

la distribución de esfuerzos por la reacción de todas las cargas verticales está dirigida de

forma radial y distribuida uniformemente sobre la cuerda del ángulo de apoyo vertical

definido por la cuna de hormigón (ver figura 3.9).

Reacción vertical en el apoyo

en cuna de hormigón

qv

qh qh,d

αv

Figura 3.9. Distribución de la presión circunferencial del suelo para tuberías rígidas apoyadas

sobre cuna de hormigón (Op1)

La carga horizontal está constituida por uno o más de los siguientes términos (ver figuras 3.8

y 3.9):

Page 121: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 93 -

- Presión horizontal resultante por cargas verticales (qh), que se asume distribuida

uniformemente.

- Presión horizontal variable en altura (qh,d), que se distribuye linealmente, en función

de la profundidad, sobre el diámetro de la tubería.

- Presión de reacción horizontal del relleno (q*h), causada por deformación horizontal

de la tubería. Se asume que se distribuye en forma de parábola. Para las tuberías

rígidas, la reacción lateral del relleno es despreciable.

La presión exterior debida al agua se distribuye hidrostáticamente. Este caso de carga se

puede separar en dos partes: una parte de presión constante y otra parte hidrostática para

un nivel de agua teórico situado a la altura de la generatriz superior de la tubería (ver figura

3.10).

Figura 3.10. Distribución de la presión exterior debida al agua (Op1)

Cuando se chequeen los criterios de diseño a largo plazo, se debe tener en cuenta los

posibles cambios en las propiedades del relleno y del material de la tubería en función del

tiempo. Otro parámetro que puede experimentar cambios es el efecto silo en la zanja, que

puede desaparecer durante la vida útil de la tubería (ver apartado “3.2.8.1 Carga del

relleno”). En zanjas anchas y en terraplenes, normalmente el efecto silo no se tiene en

consideración.

En general, el análisis de las tuberías enterradas se debe realizar para condiciones a corto y

largo plazo (ver apartado “3.2.4 Fundamentos”), es decir, se debe determinar la respuesta

de la tubería a cargas accidentales y a cargas permanentes. Para las condiciones a corto

plazo el desarrollo del cálculo es directo, es decir, todos los parámetros y propiedades

(tubería, suelo) se deben utilizar como valores iniciales y/o a corto plazo.

Para las condiciones a largo plazo este procedimiento es diferente. Las investigaciones

realizadas en este campo han concluido que, aún a largo plazo, algunas cargas afectan a

las propiedades iniciales o de corto plazo en la respuesta de la tubería, (ej. las cargas de

tráfico siempre son cargas accidentales y de aplicación instantánea, aún a largo plazo,

Page 122: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 94 -

mientras que las cargas del relleno son cargas permanentes que afectan a las propiedades

a largo plazo). Para tener en cuenta este fenómeno, se ha incluido, en algunas variables, un

subíndice “1” o “2”. El subíndice "1" significa que para el diseño a largo plazo, se deben

utilizar en los cálculos los valores de las propiedades a largo plazo; mientras que el

subíndice "2" indica que el diseño a largo plazo se debe realizar utilizando las propiedades

iniciales o a corto plazo, cuando sea aplicable, como ocurre con las cargas de tráfico.

3.2.10.1. Presión vertical

La presión vertical que actúa sobre la tubería se calcula como la suma de las presiones

verticales producidas por las distintas acciones consideradas.

vwvAvSv qqqq ,,,1 ++= (3.35)

vTv qq ,2 = (3.36)

donde: qv1, presión vertical resultante por cargas permanentes (N/mm2)

qv2, presión vertical resultante por cargas accidentales (N/mm2)

qS,v, presión vertical por peso del relleno (N/mm2)

qA,v, presión vertical por cargas superficiales (N/mm2)

qW,v, presión vertical por presión exterior del agua (N/mm2)

qT,v, presión vertical por cargas de tráfico (N/mm2)

A) Por carga del relleno

La presión vertical por el peso del relleno (qS,v) se calcula aplicando la fórmula apropiada

entre las siguientes, si se trata de una tubería flexible (instalada en zanja (3.37a), en

terraplén (3.37b)) o si se trata de una tubería rígida (3.37c):

vSPTvS pq ,, .λ= (3.37a)

vSPvS pq ,, .λ= (3.37b)

vSvS pq ,max, .λ= (3.37c)

donde: λPT, coeficiente de concentración de carga en zanja (a corto y largo plazo)

λP, coeficiente de concentración de carga en terraplén, (a corto y largo plazo)

λmáx, coeficiente de concentración de carga máximo (a corto y largo plazo)

pS,v, presión vertical del relleno en zanja y sin tubo (N/mm2).

B) Por cargas superficiales

La presión vertical por cargas superficiales (qA,v) se calcula aplicando la fórmula apropiada

entre las siguientes, del mismo modo que en el caso de carga de relleno:

Page 123: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 95 -

vAPTvA pq ,, .λ= (3.38a)

vAPvA pq ,, .λ= (3.38b)

vAvA pq ,max, .λ= (3.38c)

donde: qA,v, λPT, λP y λmáx han sido definidas anteriormente

pA,v, presión vertical por cargas superficiales (N/mm2)

C) Por presión exterior del agua

La presión vertical por la presión exterior del agua (qW,v) se calcula aplicando la siguiente

fórmula:

WWvW hq ., γ= (3.39)

donde: γw, peso específico del agua (kN/m3)

hw, altura del nivel freático por encima de la clave del tubo (m)

D) Por carga de tráfico

La presión vertical por cargas de tráfico (qT,v) se asume que es redistribuida y por ello se

determina aplicando los coeficientes de concentración de carga siguientes, del mismo modo

que en el caso de carga de relleno:

vTvTPTvT ppq ,,, 5,1. ≤= λ (3.40a)

vTvTPvT ppq ,,, 5,1. ≤= λ (3.40b)

vTvTvT ppq ,,max, 5,1. ≤= λ (3.40c)

donde: qT,v, λPT, λP y λmáx han sido definidas anteriormente

pT,v, presión vertical por cargas de tráfico (N/mm2)

3.2.10.2. Presión horizontal

Normalmente, la presión horizontal (qh) se considera que está distribuida uniformemente

sobre el diámetro de la tubería, pero para las tuberías con apoyo de hormigón se asume que

la distribución está por encima del apoyo hasta la generatriz superior de la tubería (ver figura

3.9).

La presión horizontal (qh) puede producirse por efecto de la carga vertical del relleno, por las

cargas de tráfico o por la componente horizontal de las cargas del relleno y se calcula

mediante las siguientes expresiones.

Page 124: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 96 -

hwhAhSh qqqq ,,,1 ++= (3.41)

hTh qq ,2 = (3.42)

donde: qh1, presión horizontal resultante por cargas permanentes (N/mm2)

qh2, presión horizontal resultante por cargas accidentales (N/mm2)

qS,h, presión horizontal por peso del relleno (N/mm2)

qA,h, presión horizontal por cargas superficiales (N/mm2)

qW,h, presión horizontal por presión exterior del agua (N/mm2)

qT,h, presión horizontal por cargas de tráfico (N/mm2)

A) Por carga del relleno

La presión horizontal por el peso del relleno se debe calcular aplicando la siguiente fórmula:

vSshS pKq ,2, ..λ= (3.43)

donde: K2, coeficiente de presión del relleno de protección

λS, coeficiente de concentración de carga en los laterales de la tubería (a corto y

largo plazo)

pS,v, presión vertical del relleno (N/mm2)

B) Por cargas superficiales

La presión horizontal por cargas superficiales se debe calcular aplicando la siguiente

fórmula:

vAshA pKq ,2, ..λ= (3.44)

donde: pA,v, presión vertical por cargas superficiales (N/mm2)

K2 y λS, han sido definidas anteriormente

C) Por presión exterior del agua

La presión horizontal debida al nivel freático se debe calcular aplicando la siguiente fórmula:

WWhW hq ., γ= (3.45)

donde: γw, peso específico del agua (kN/m3)

hw, altura del nivel freático por encima de la clave del tubo (m)

Page 125: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 97 -

D) Por carga de tráfico

Para cargas de tráfico por carretera sobre superficies pavimentadas (ver apartado “3.2.8.3

Cargas de tráfico”), la presión horizontal resultante que actúa sobre la tubería se debe

calcular aplicando la siguiente fórmula:

vTshT pKq ,2, ..λ= (3.46)

donde: pT,v, presión vertical por cargas de tráfico (N/mm2)

K2, λS y qT,v, han sido definidas anteriormente

Para cargas de tráfico por carretera sobre superficies sin pavimentar, la carga horizontal (qh2

= qT,h) depende de la anchura de la distribución de la carga vertical a nivel de la generatriz

superior de la tubería, de la siguiente manera:

Para (h + 0,4)/de ≥ 2 vTshTh pKqq ,2, ..2

λ== (3.47a)

Para 1 ≤ (h + 0,4)/de < 2 ( )[ ] vTseehTh pKDDhqq ,2, ..4,02

λ−+== (3.47b)

Para (h + 0,4)/de < 1 0,2== hTh qq (3.47c)

3.2.10.3. Presión horizontal del relleno

Se considera que la parte de la carga horizontal del relleno (qh,d) se distribuye de forma

triangular sobre la altura de la tubería (de,v).

La carga horizontal resultante que actúa sobre una tubería instalada por encima del nivel

freático, se debe calcular aplicando la siguiente fórmula:

γ.. ,2, vedh dKq = (3.48)

donde: qh,d, presión horizontal del relleno variable con la altura (N/mm2)

de,v, diámetro exterior en dirección vertical (mm)

γ, será (γs) si está instalada por encima del nivel freático y (γs,w) si está instalada por

debajo del nivel freático

K2, ha sido definido anteriormente

Esta componente horizontal no se debe tener en cuenta cuando se realice el cálculo

estructural de tuberías bajo condiciones de instalación en zanja.

Page 126: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 98 -

3.2.10.4. Reacción horizontal del relleno

La presión horizontal dependiente de la deflexión se calcula considerando la condición de

compatibilidad para el desplazamiento horizontal de la tubería y el desplazamiento horizontal

del relleno hacia el lateral de la tubería.

A) Desplazamiento horizontal

Como un primer paso, se debe calcular el desplazamiento horizontal de la tubería en el

punto medio de la misma (∆h,0) aplicando el siguiente juego de fórmulas. Todas las

influencias que se consideren aplicables para el diseño en cuestión, junto con los

coeficientes de deflexión se deben incluir sin tener en cuenta la reacción horizontal del

relleno9.

La fórmula general para determinar el desplazamiento (∆h,0) a corto plazo es:

( ) ( )∑∑ =∆=∆ ihiihh qcZ ..6,00 (3.49)

donde: chi, coeficientes de deflexión

qi, presiones de cálculo (N/mm2)

Z6, variable intermedia de cálculo

P

m

S

rZ

.86 = (3.50)

siendo: rm, radio medio (mm)

Sp, rigidez de la tubería (N/m2)

La fórmula específica para determinar el desplazamiento (∆h,0) a largo plazo es:

2,01,00 hhh ∆+∆=∆ (3.51)

donde: ∆h0,1, desplazamiento horizontal por cargas permanentes (mm)

∆h0,2, desplazamiento horizontal por cargas accidentales (mm)

La fórmula (3.52) es la expresión para determinar el desplazamiento debido a cargas

permanentes:

9 Se debe prestar atención a la dependencia respecto del tiempo de algunas de las propiedades y variables. A

partir de algunos proyectos especiales de investigación relacionados con las cargas de tráfico, y de las

mediciones de la deflexión de tuberías instaladas, se ha conocido que en el desarrollo del diseño, las cargas de

tráfico se deberían considerar como cargas accidentales tanto bajo las condiciones a corto como a largo plazo.

No obstante, cuando se realicen diseños a largo plazo, las posibles influencias debidas al envejecimiento pueden

ser importantes sobre las propiedades de algunos materiales de las tuberías.

Page 127: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 99 -

whowhhdhhhvhh ,0,0,01,01,01,0 ∆+∆+∆+∆+∆=∆ (3.52)

donde: ∆h0,v1, desplazamiento horizontal por presiones verticales (permanentes) (mm)

∆h0,h1, desplazamiento horizontal por presiones horizontales (permanentes) (mm)

∆h0,hd, desplazamiento horizontal por la presión horizontal del relleno (mm)

∆h0,ow, desplazamiento horizontal por el peso propio del tubo (mm)

∆h0,w, desplazamiento horizontal por el fluido contenido en la tubería (mm)

Y la fórmula (3.53) es la expresión para determinar el desplazamiento debido a cargas

accidentales tanto a corto como a largo plazo:

2,02,02,0 hhvhh ∆+∆=∆ (3.53)

donde: ∆h0,v2, desplazamiento horizontal por presiones verticales (accidentales) (mm)

∆h0,h2, desplazamiento horizontal por presiones horizontales (accidentales) (mm)

Las expresiones para obtener el desplazamiento horizontal a corto y largo plazo (utilizando

diferentes valores de Z6) son las siguientes:

161,0 .. vhvvh qcZ=∆ (3.54)

262,0 .. vhvvh qcZ=∆ (3.55)

161,0 .. hhhhh qcZ=∆ (3.56)

262,0 .. hhhhh qcZ=∆ (3.57)

hdhdhdh qcZ ..6,0 =∆ (si es aplicable) (3.58)

Powhowh tcZ γ... ,6,0 =∆ (3.59)

Wmwhwh rcZ γ... ,6,0 =∆ (3.60)

donde: t, espesor de la pared del tubo (mm)

γP, peso específico del material del tubo (kN/m3)

γw, peso específico del fluido (kN/m3)

El resto de parámetros se han descrito anteriormente.

Los coeficientes de deflexión utilizados en las fórmulas (3.54) a (3.60) se deben tomar de la

tabla 3.13.

Utilizando las fórmulas del desplazamiento impuesto en la tubería por una reacción

horizontal del relleno de valor unitario (qh* = 1)

Page 128: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 100 -

*

6

*

*.

.8. hh

P

hh

mP cZS

crC == (3.61)

donde: C*P, desplazamiento impuesto en la tubería para una presión (qh* = 1) (m3/N)

rm, radio medio (mm)

c*hh, coeficiente de deflexión horizontal debido a la reacción horizontal del relleno

Sp, rigidez de la tubería (N/m2)

y la resistencia horizontal de una columna de relleno de protección frente a la misma carga

( )2. hm

Bh

Ssenr

SR

α= (3.62)

donde: RS, resistencia horizontal de una columna de relleno para (q*h = 1) (N/m3)

SBh, rigidez horizontal del relleno (N/mm2)

rm, radio medio (mm)

αh, ángulo de reacción horizontal (º)

Considerando que las propiedades (RS y C*P) son variables a corto y largo plazo, el

desplazamiento horizontal compatible en el punto medio de la sección de la tubería (∆h) se

debe calcular para el caso general, mediante la siguiente expresión:

*

0

.1 Ps

h

hCR−

∆=∆ (3.63)

La fórmula específica para determinar el desplazamiento horizontal (∆h) a largo plazo tiene

dos términos diferentes:

2,1, hhh ∆+∆=∆ (3.64)

donde: ∆h,1, desplazamiento horizontal por cargas permanentes, cuya expresión sin

desfase vertical entre el relleno y el tubo es:

*

1,0

1,.1 PS

h

hCR−

∆=∆ (3.65)

siendo: ∆h0,1, desplazamiento horizontal por cargas permanentes (mm)

CP*, desplazamiento impuesto en la tubería para una presión (q*

h = 1) (m3/N)

RS, resistencia horizontal de una columna de relleno para (q*h = 1) (N/m3)

∆h,2, desplazamiento horizontal por cargas accidentales, cuya expresión sin

desfase vertical entre el relleno y el tubo es:

*

2,0

2,.1 PS

h

hCR−

∆=∆ (3.66)

Page 129: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 101 -

El resto de parámetros se han descrito anteriormente.

En el informe técnico CEN/TR 1295-3 (2007) se incluyen expresiones adicionales para el

cálculo de los desplazamientos del relleno en el caso de que el desfase vertical entre el

relleno y el tubo sea mayor que cero, casos que no se han incluido en el desarrollo de esta

tesis por estar fuera de su ámbito de estudio, al referirse ésta al dimensionamiento de

tuberías enterradas, donde este efecto sería excluyente para dar validez a cualquier

instalación.

B) Reacción horizontal del relleno

Se considera que la reacción horizontal (q*h) que actúa sobre la tubería como consecuencia

de la deflexión de ésta, se distribuye en forma parabólica (ver figura 3.8) sobre el ángulo (αh)

y, para el caso general, se debe calcular, como una función del desplazamiento horizontal

compatible, aplicando una de las siguientes fórmulas:

hSh Rq ∆= .*

(3.67)

donde: RS, resistencia horizontal de una columna de relleno para (q*h = 1) (N/m3)

∆h, desplazamiento horizontal total (por cargas permanentes y accidentales) (mm)

La fórmula específica para determinar la presión de reacción horizontal (q*h) a largo plazo

presenta dos términos diferentes:

*

2,

*

1,

*

hhh qqq += (3.68)

donde: q*h,1, reacción vertical por cargas permanentes (N/mm2)

q*h,2, reacción vertical por cargas accidentales (N/mm2)

Las expresiones, para el caso donde el desfase vertical es nulo son:

1,

*

1, . hSh Rq ∆= (3.69)

2,

*

2, . hSh Rq ∆= (3.70)

C) Reacción horizontal por compactación del relleno

La presión horizontal distribuida parabólicamente10 (qio) que actúa sobre la tubería como

resultado de los esfuerzos debidos al procedimiento de relleno, se debe calcular aplicando la

siguiente fórmula, donde (δv,io) se debe tomar de la tabla 3.16, si no está medido “in situ”.

10

Debido al hecho de que la rigidez de la tubería SP depende del tiempo, la presión horizontal (qio) también

depende del tiempo.

Page 130: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 102 -

*,

.8.

vh

P

iovioc

Sq δ= (3.71)

donde: δv,io, deflexión vertical por ovalización inicial definida en la tabla 3.16

SP, rigidez de la tubería (N/mm2)

El coeficiente utilizado en la fórmula se debe tomar de la tabla 3.14 para el mismo ángulo

(αh) utilizado en la fórmula (3.62).

3.2.11 PRESIÓN INTERNA

Cuando se diseñe una tubería a presión en la que se espera que se produzca golpe de

ariete, se deben cumplir los requisitos detallados a continuación.

3.2.11.1. Presión interna de servicio

La presión interna de servicio (pi) en el sistema (excluido el golpe de ariete), no debe

exceder a la presión nominal (PN) de la tubería.

ipPN ≥ (3.72)

donde: PN, presión nominal (N/mm2)

pi , presión interna de servicio (excluido el golpe de ariete) (N/mm2)

Para las tuberías de acero, que no disponen de presión nominal reglada, por lo numerosos

tipos de espesores y calidades de aceros existentes en el mercado, se deberá realizar, tal y

como se indica en las normas AWWA M-11 (1999), una comprobación de que el estado

tensional de la tubería sometida a la presión interior no supera la mitad del límite elástico.

3.2.11.2. Presión interna de golpe de ariete

La tolerancia de un golpe de ariete se incluye a fin de disponer de incrementos rápidos y

transitorios de presión, normalmente considerados en sistemas de transporte por tubería.

Esta tolerancia se puede utilizar en sistemas donde se espera que el golpe de ariete no

exceda de un millón de casos durante la vida del sistema prevista en el diseño. La presión

máxima en el sistema debida a la presión de servicio más la presión del golpe de ariete no

debe exceder de 1,25 veces la presión nominal de la tubería.

[ ] ( )Sii ppPN ,.8,0 +≥ (3.73)

donde: pi,S, presión de golpe de ariete (N/mm2)

Page 131: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 103 -

La presión máxima en sistemas sometidos a presiones cíclicas o permanentes, no debe

exceder la presión nominal de la tubería.

3.2.12 DEFLEXIÓN DE LA TUBERÍA

Las deflexiones se pueden expresar utilizando tres unidades diferentes, a saber:

- ∆dm, expresado en unidades de longitud

- δ, cambio relativo en el diámetro (adimensional)

- δ%, expresado en %

Las deflexiones verticales en instalaciones con tráfico pueden estar limitadas según la

normativa vigente, hasta un 2% en instalaciones sometidas a tráfico ferroviario.

Cuando no existan tales limitaciones, la deflexión vertical relativa debido a los requisitos de

estabilidad, no debe exceder del 5% (aplicando la teoría de 1º orden). No obstante, si es

necesario utilizar la teoría de 2º orden, se acepta una deflexión vertical relativa máxima de

hasta el 9% (ver apartado “3.2.13.2.2 Tensiones y deformaciones aplicando la teoría de 2º

orden”).

En el caso de que estén establecidas limitaciones adicionales relativas al comportamiento

elástico del material de la tubería en normas internacionales, europeas y/o nacionales, se

deben tener en cuenta dichas limitaciones en el diseño de la misma.

3.2.12.1. Deflexión vertical

La deflexión vertical relativa de la tubería (δv) se puede calcular como un problema en el

plano, es decir, teniendo en cuenta la carga sobre la sección transversal de la tubería (anillo)

sin tener en cuenta ninguno de los efectos longitudinales.

La deflexión total resultante de una tubería flexible se deriva de un número de partes, que

son consideradas individualmente. Algunas de éstas no dependen del tiempo (ovalización

inicial, carga de tráfico), y otras sí.

extvWvowviovv ,,,, δδδδδ +++= (3.74)

donde: δv,io, deflexión vertical relativa por ovalización inicial

δv,ow, deflexión vertical relativa por el peso propio de la tubería

δv,W, deflexión vertical relativa por el fluido contenido en la tubería

δv,ext, deflexión vertical relativa por cargas externas

La deflexión vertical relativa expresada como un porcentaje del diámetro medio (δv,%) se

puede expresar de la siguiente manera:

Page 132: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 104 -

%100.,% vv δδ = (3.75)

La deflexión vertical de la tubería (∆dv) expresada como el cambio del diámetro vertical, se

debe calcular a partir de la deflexión vertical relativa aplicando la siguiente fórmula.

mvv dd .δ=∆ (3.76)

donde: δv, deflexión vertical relativa total

dm, diámetro medio (mm)

Para el cálculo de la deflexión vertical se deben tener en cuenta los mismos casos de carga

que para el cálculo de (∆h0) (ver apartado “3.2.10.4. Reacción horizontal del relleno”).

A) Por ovalización inicial

Las tuberías flexibles tienen una deflexión vertical positiva inducida, es decir, un aumento

del diámetro vertical, causado por la presión del suelo activo resultante de la compactación

del material de relleno de la zona de la tubería. La magnitud de esta deformación depende

de la rigidez de la tubería y de la energía requerida para poner el material del relleno de

protección al nivel de compactación especificado. La tabla 3.16 proporciona valores

estimados de la magnitud de esta ovalización inicial (δv,i0) basados en mediciones realizadas

a pie de obra11.

Las ovalizaciones iniciales relativas definidas en la tabla 3.16 se pueden derivar de la

siguiente fórmula de la ovalización inicial prevista para todos los tipos de tuberías flexibles:

5,0

, Pioiov SK=δ (3.77)

donde: SP, rigidez de la tubería (N/mm2) (ver fórmula 3.11).

11

Cuando se instalen tuberías nuevas adyacentes a otras tuberías instaladas previamente, no se deben tener en

cuenta los efectos de la ovalización inicial (δv,i0) en el diseño de las nuevas tuberías, ni en el rediseño de las

tuberías existentes.

Page 133: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 105 -

δv,i012 Grupo de suelo del

relleno Rigidez del tubo

N/m2 W M N

Gs1

SP ≤ 1.250

1.250 < SP ≤ 2.500

2.500 < SP ≤ 5.000

5.000 < SP ≤ 10.000

10.000< SP

0,004

0,003

0,002

0,002

0

0,005

0,002

0,002

0,001

0

0

Gs2

SP ≤ 1.250

1.250 < SP ≤ 2.500

2.500 < SP ≤ 5.000

5.000 < SP ≤ 10.000

10.000< SP

0,020

0,014

0,010

0,007

0

0,009

0,006

0,004

0,003

0

0

Gs3+Gs4

SP ≤ 1.250

1.250 < SP ≤ 2.500

2.500 < SP ≤ 5.000

5.000 < SP ≤ 10.000

10.000< SP

0,028

0,020

0,014

0,010

0

0,014

0,010

0,007

0,005

0

0

Gs5

SP ≤ 1.250

1.250 < SP ≤ 2.500

2.500 < SP ≤ 5.000

5.000 < SP ≤ 10.000

10.000< SP

0,042

0,030

0,021

0,015

0,010

0,017

0,012

0,009

0,006

0,004

0

Tabla 3.16. Valores estimados de la ovalización inicial relativa δv,i0 (Op1)

El coeficiente (Kio) depende del grupo de suelo y del grado de compactación, y aparece

dado en la tabla 3.17.

δv,i0 Grupo de suelo W M N

Gs1 0,15 0,08 0

Gs2 0,70 0,30 0

Gs3+Gs4 1,00 0,50 0

Gs5 1,50 0,60 0

Tabla 3.17. Coeficiente Kio para la fórmula (3.77) (Op1)

B) Por el peso propio de la tubería

La deflexión vertical debida al peso propio de la tubería13 se debe calcular aplicando la

fórmula:

12

En el caso en que los valores de la tabla sean mayores a los especificados en la norma (la norma

de producto puede definir limitaciones a la ovalización inicial) para una instalación determinada,

dicha instalación no es viable. Si no se dan estas limitaciones, la ovalización inicial no se debe

considerar en el diseño estructural de la tubería.

13

Normalmente, esta deflexión es tan pequeña que se puede despreciar.

Page 134: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 106 -

P

Powv

owvS

tc

.8

..,

,

γδ = (3.78)

donde: cv,ow, coeficiente de deflexión vertical debida al peso propio (tabla 3.12)

t, espesor de pared del tubo (mm)

γP, peso específico del material del tubo (kN/m3)

SP, rigidez de la tubería (kN/m2) (ver fórmula (3.11).

C) Por el fluido contenido en la tubería

La deflexión vertical debida al fluido contenido en la tubería se debe calcular aplicando la

fórmula:

P

WmWv

WvS

dc

.16

..,

,

γδ = (3.79)

donde: cv,w, coeficiente de deflexión vertical debida al peso del fluido (tabla 3.12)

dm, diámetro medio (mm)

γW, peso específico del fluido (kN/m3)

SP, rigidez de la tubería (kN/m2)

D) Por cargas externas

21, vvextv δδδ += (3.80)

La parte (δv1) de la deflexión vertical relativa total debida a cargas permanentes, cubre las

influencias de la carga del relleno, de las cargas superficiales y de la presión exterior del

agua, de sus presiones horizontales resultantes y de sus deflexiones dependientes de

componentes debidas a la interacción del sistema tubería/terreno.

( )hdvdhvhhvhvvv

P

v qcqcqcqcS

.....8

1 *

1

*

111 +++=δ (3.81)

donde: cvv, coeficiente de deflexión vertical debida a las cargas verticales (tabla 3.12)

cvh, coeficiente de deflexión vertical debida a las cargas horizontales (tabla 3.12)

c*vh, coeficiente de deflexión vertical debida a reacción horizontal del relleno

(tabla 3.14)

cvd, coeficiente de deflexión vertical debida a la carga horizontal del relleno

(tabla 3.12)

qv1, presión vertical resultante por cargas permanentes (N/mm2)

qh1, presión horizontal resultante por cargas permanentes (N/mm2)

q*h,1, reacción vertical por cargas permanentes (N/mm2)

Page 135: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 107 -

qh,d, presión horizontal del relleno variable con la altura (N/mm2)

SP, rigidez de la tubería (kN/m2)

La parte (δv2) de la deflexión vertical relativa total debida a cargas accidentales, cubre las

influencias de la carga de tráfico, de su presión horizontal resultante y de la deflexión que

depende de componentes debida a cargas de tráfico.

( )*

2

*

222 ....8

1hvhhvhvvv

P

v qcqcqcS

++=δ (3.82)

donde: qv2, presión vertical resultante por cargas accidentales (N/mm2)

qh2, presión horizontal resultante por cargas accidentales (N/mm2)

q*h,2, reacción vertical por cargas accidentales (N/mm2)

cvv, cvh, c*vh y SP se han definido anteriormente

3.2.12.2. Deflexión horizontal

La respuesta de la tubería en cuanto a la deflexión horizontal debida a todas las cargas

importantes, se describe en detalle en el apartado “3.2.10.4. Reacción horizontal del

relleno”. Los resultados de este apartado se corresponden con la deflexión horizontal de la

tubería.

Partiendo de los resultados obtenidos en el citado apartado, la deflexión horizontal relativa,

(δh) se debe calcular aplicando la fórmula.

ioh

m

h

hd

,.2 δδ +∆

= (3.83)

donde: ∆h, desplazamiento horizontal total (por cargas permanentes y accidentales) (mm)

dm, diámetro medio (mm)

δh,io, deflexión horizontal, resultante de la ovalización inicial (δv,io) (ver apartado

“3.2.12.1 Deflexión vertical”) debida al peso propio de la tubería. Se debe determinar

aplicando la fórmula:

iov

vh

hh

iohc

c,*

*

, .δδ = (3.84)

Los coeficientes utilizados en la fórmula (3.84) se deben tomar de la tabla 3.14 para el

mismo ángulo (αh) utilizado en la fórmula (3.62).

La deflexión horizontal relativa expresada como un porcentaje del diámetro medio (δh%) se

puede obtener como sigue:

Page 136: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 108 -

%100.,% hh δδ = (3.85)

mhh dd .δ=∆ (3.86)

3.2.13 MOMENTOS, FUERZAS, TENSIONES Y DEFORMACIONES

En este capítulo sólo se determinan los esfuerzos, las tensiones y las deformaciones en la

dirección circunferencial, despreciando los efectos longitudinales.

Los signos para los momentos (M) y para las fuerzas normales (N) utilizados en este

capítulo se muestran en la figura 3.11.

+M

+M

+N

+N

Superficie interior

Superficie

exterior

Sección transversal

de la tubería

Figura 3.11. Definiciones de los signos de los momentos y de las fuerzas normales (Op1)

3.2.13.1. Momentos de flexión y fuerzas normales

En base a las presiones resultantes que actúan sobre la tubería, se determinan los

momentos de flexión y las fuerzas normales correspondientes a las diversas cargas.

1. Por la presión vertical resultante producida por las cargas del relleno, las cargas

superficiales y por la presión externa del agua (qv1), que actúan sobre la tubería.

2

11 .. mvqvqv rqmM = (3.87a)

mvqvqv rqnN .. 11 = (3.87b)

2. Por la presión vertical resultante producida por las cargas de tráfico (qv2) que actúan

sobre la tubería.

2

22 .. mvqvqv rqmM = (3.88a)

mvqvqv rqnN .. 22 = (3.88b)

Page 137: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 109 -

3. Por la presión horizontal resultante producida por las cargas del relleno, las cargas

superficiales y por la presión externa del agua (qh1) que actúan sobre la tubería.

2

11 .. mhqhqh rqmM = (3.89a)

mhqhqh rqnN .. 11 = (3.89b)

4. Por la presión horizontal resultante producida por las cargas de tráfico (qh2) que

actúan sobre la tubería.

2

22 .. mhqhqh rqmM = (3.90a)

mhqhqh rqnN .. 22 = (3.90b)

5. Por la reacción horizontal resultante producida por las cargas del relleno y las cargas

superficiales (q*h1) que actúan sobre la tubería.

2*

1*1* .. mhhqhq rqmM = (3.91a)

mhhqhq rqnN ..*

1*1* = (3.91b)

6. Por la reacción horizontal resultante producida por las cargas de tráfico (q*h2) que

actúan sobre la tubería.

2*

2*2* .. mhhqhq rqmM = (3.92a)

mhhqhq rqnN ..*

2*2* = (3.92b)

7. Por la presión horizontal14 dependiente de la profundidad producida por las cargas

del relleno y las cargas superficiales (qhd) que actúan sobre la tubería, cuando sean

aplicables.

2

.. mhdqhdqhd rqmM = (3.93a)

mhdqhdqhd rqnN ..= (3.93b)

8. Por peso propio de la tubería.15

2

... mPowow rtmM γ= (3.94a)

14

Estos esfuerzos no se consideran en instalaciones en zanja. 15

Normalmente, las tensiones y las deformaciones debidas al peso propio de la tubería son tan pequeñas que

pueden considerarse despreciables.

Page 138: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 110 -

mPowow rtnN ...γ= (3.94b)

9. Por el fluido contenida en la tubería.16

3

.. mwww rmM γ= (3.95a)

2.. mwww rnN γ= (3.95b)

10. Por la ovalización inicial de la tubería.

2

.. mioioio rqmM = (3.96a)

mioioio rqnN ..= (3.96b)

11. Por la presión interna del fluido y/o a la presión externa17 del agua en la tubería.

iipi dpN ..5,0= (3.97)

ewpe dpN ..5,0 1−= (3.98)

donde: qvi, presiones verticales actuantes sobre la tubería (N/mm2)

qhi, presiones horizontales actuantes sobre la tubería (N/mm2)

rm, radio medio (mm)

γP, peso específico del material del tubo (kN/m3)

γW, peso específico del fluido contenido en la tubería (kN/m3)

t, espesor de la pared del tubo (mm)

pi, presión interior (N/mm2)

pw1, presión exterior de agua (N/mm2)

di, diámetro interior (mm)

de, diámetro exterior (mm)

Los coeficientes para los momentos18 (m) y los coeficientes para las fuerzas normales (n) se

dan en las tablas 3.18, 3.19 y 3.20.

16

Normalmente, los esfuerzos y las deformaciones debidas al fluido contenido en la tubería son tan pequeños

que pueden considerarse despreciables. 17

El momento de flexión debido a cualquier diferencia entre las presiones interna y externa en una tubería

enterrada es pequeño y se puede omitir. 18

Los coeficientes solamente se aplican a tuberías circulares que tengan un momento de inercia constante sobre

la circunferencia. Para los casos de momento de inercia variable (por ejemplo, tubos de pared estructurada) no

son válidos estos coeficientes.

Page 139: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 111 -

ααααv Localización mqv mqh mow mw mqhd

Para cama de apoyo

30º

C

S

B

+0,296

-0,303

+0,468

-0,250

+0,250

-0,250

+0,489

-0,560

+1,127

+0,244

-0,280

+0,563

-0,104

+0,125

-0,146

60º

C

S

B

+0,286

-0,293

+0,377

-0,250

+0,250

-0,250

+0,459

-0,529

+0,840

+0,229

-0,264

+0,420

-0,104

+0,125

-0,146

90º

C

S

B

+0,274

-0,279

+0,314

-0,250

+0,250

-0,250

+0,419

-0,485

+0,642

+0,210

-0,243

+0,321

-0,104

+0,125

-0,146

120º

C

S

B

+0,261

-0,265

+0,275

-0,250

+0,250

-0,250

+0,381

-0,440

+0,520

+0,190

-0,220

+0,260

-0,104

+0,125

-0,146

180º

C

S

B

+0,250

-0,250

+0,250

-0,250

+0,250

-0,250

+0,345

-0,393

+0,441

+0,172

-0,196

+0,220

-0,104

+0,125

-0,146

Para cuna de hormigón

60º

C

S

B

+0,285

-0,292

+0,364

-0,249

+0,249

-0,243

+0,454

-0,524

0,799

+0,227

-0,262

+0,399

-

90º

C

S

B

+0,266

-0,271

+0,277

-0,245

+0,244

-0,224

+0,396

-0,460

+0,524

+0,198

-0,230

+0,262

-

120º

C

S

B

+0,240

-0,240

+0,202

-0,232

+0,228

-0,187

+0,314

-0,362

+0,291

+0,157

-0,181

+0,145

-

180º

C

S

B

+0,163

-0,125

+0,087

-0,163

+0,125

-0,087

+0,071

0

-0,071

+,0,035

0

-0,035

-

Tabla 3.18. Coeficientes para el momento de flexión en función de αv (Op1)

ααααh Localización mq*h = mio nq*h= nio

100º

C

S

B

-0,166

+0,198

-0,166

-0,511

0

-0,511

120º

C

S

B

-0,181

+0,208

-0,181

-0,577

0

-0,577

140º

C

S

B

-0,191

+0,215

-0,191

-0,627

0

-0,627

180º

C

S

B

-0,199

+0,220

-0,199

-0,667

0

-0,667

Tabla 3.19. Coeficientes para el momento de flexión y las fuerzas normales en función de αh (Op1)

Page 140: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 112 -

ααααv Localización nqv nqh now nw nqhd

Para cama de apoyo

30º

C

S

B

+0,099

-1,000

-0,099

-1,000

0

-1,000

+0,478

-1,571

-0,478

+0,739

+0,215

+1,261

-0,333

0

-0,667

60º

C

S

B

+0,080

-1,000

-0,080

-1,000

0

-1,000

+0,417

-1,571

-0,417

+0,708

+0,215

+1,292

-0,333

0

-0,667

90º

C

S

B

+0,053

-1,000

-0,053

-1,000

0

-1,000

+0,333

-1,571

-0,333

+0,667

+0,215

+1,333

-0,333

0

-0,667

120º

C

S

B

+0,027

-1,000

-0,027

-1,000

0

-1,000

+0,250

-1,571

-0,250

+0,625

+0,215

+1,375

-0,333

0

-0,667

180º

C

S

B

0

-1,000

0

-1,000

0

-1,000

+0,167

-1,571

-0,167

+0,583

+0,215

+1,417

-0,333

0

-0,667

Para cuna de hormigón

60º

C

S

B

+0,076

-1,000

-0,344

-0.998

0

-0.868

+0,407

-1,571

-1,249

+0,703

+0,215

+0,876

-

90º

C

S

B

+0,038

-1,000

-0,452

-0.989

0

-0.718

+0,285

-1,571

-1,587

+0,643

+0,215

+0,707

-

120º

C

S

B

-0,020

-1,000

-0,558

-0,960

0

-0,540

+0,105

-1,571

-1,918

+0,552

+0,215

+0,541

-

180º

C

S

B

-0,212

-1,000

-0,788

-0,788

0

-0,212

-0,500

-1,571

-2,642

+0,250

+0,215

+0,179

-

Tabla 3.20. Coeficientes para las fuerzas normales en función de αv (Op1)

Los distintos momentos de flexión y fuerzas normales (ver fórmulas (3.87) a (3.98)) se

deben calcular en la base (B), punto medio (S)19 y clave de la tubería (C), para condiciones a

corto y largo plazo, aplicando los valores de carga y coeficientes que resulten apropiados.

Una vez calculados los momentos de flexión y fuerzas normales se calcula el sumatorio de

momentos y fuerzas para cada uno de los grupos (1 o 2) asociados al comportamiento de la

tubería frente las acciones consideradas en cada una de las secciones de estudio.

iowowqhdqhqhqvs MMMMMMMM ++++++=∑ *111,1 (3.99a)

iowowqhdqhqhqvs NNNNNNNN ++++++=∑ *111,1 (3.99b)

*222,2 qhqhqvs MMMM ++=∑ (3.100a)

*222,2 qhqhqvs NNNN ++=∑ (3.100b)

19

Se ha modificado la denominación tradicional de “riñones” por punto medio por acercarse mejor al término

inglés “Springline”.

Page 141: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 113 -

Siendo s, cada una de las tres secciones de estudio (C, S o B)

3.2.13.2. Tensiones y deformaciones

Las tuberías que funcionan a presión están sometidas a cargas internas y externas que

pueden actuar de forma simultánea o independiente. Las cargas externas causan momentos

de flexión y fuerzas normales, con sus correspondientes tensiones, deformaciones y

deflexiones. La presión interior del fluido produce únicamente fuerzas normales con

tensiones y deformaciones de tracción anular constante.

Por otra parte, la presión interna también produce momentos de flexión y deflexiones,

cuando las tuberías son sometidas a deflexión por fuerzas externas. Estos momentos de

flexión reducen los momentos causados por las cargas externas y por ello también las

tensiones o deformaciones de compresión y deflexión. Este fenómeno se conoce como el

denominado "efecto de restablecimiento del redondeo" en las tuberías flexibles.

La reducción del estado tensional, deformación y deflexión procedentes de las cargas

externas por el "efecto de restablecimiento del redondeo" depende de la deflexión de la

tubería, de las presiones interna y externa y del comportamiento elástico del sistema

tubería/terreno.

Este efecto se puede calcular por medio de la teoría de 2º orden, ya que la forma real (no

circular) de la tubería es el factor predominante.

Las tuberías que funcionan a presión20 se deben calcular de manera que el caso más

desfavorable (máximos de tensión, deformación y/o deflexión) de las siguientes situaciones

de carga se cumpla para ambas condiciones a corto y largo plazo:

- Carga externa (tubería vacía, instalada en zanja o terraplén, y sometida a todas las

cargas excepto la de presión interna), que se calcula de acuerdo con el apartado

3.2.13.2.1.A

- Presión interna (presión interna total que actúa sobre la tubería sin ninguna cama

de apoyo), que se calcula como una forma de tubería no deformada (ver apartado

3.2.13.2.1.B)

- Carga externa y presión interna simultáneas, que se calcula teniendo en cuenta el

efecto de restablecimiento del redondeo para las tuberías flexibles y semiflexibles

(ver apartado 3.2.13.2.1.C)

20

Se ha establecido únicamente el procedimiento completo de dimensionamiento de tuberías a presión, porque

engloba el dimensionamiento de tuberías en gravedad al comprobar en la primera situación de carga la tubería

vacía sometida a cargas externas, la cual se corresponde con la hipótesis pésima para dimensionamiento de

tuberías en gravedad.

Page 142: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 114 -

En particular, a causa de este último caso, es necesario realizar los cálculos de tensiones y

deformaciones de forma independiente para el comportamiento a tracción y a flexión.

Además, se debe resaltar que las condiciones a corto y largo plazo, así como las categorías

de carga accidental y permanente se deben analizar de forma independiente, como ya se

indicó en el apartado “3.2.10 Presiones resultantes sobre la tubería”.

3.2.13.2.1. Tensiones y deformaciones aplicando la teoría de 1er orden

A) Tensiones y deformaciones por cargas externas

Las tensiones en la base (B), punto medio (S) y coronación (C) de la tubería causadas por

los momentos de flexión (Mj) y las fuerzas normales (Nj) para todos los casos de carga

aplicables, se deben calcular mediante la fórmula (3.101a), para la superficie interior y

(3.101b) para la superficie exterior:

2,

.6..

t

Mc

t

N

W

Mc

A

N j

ci

j

P

j

ci

j

ij +=+=σ (3.101a)

2,

.6..

t

Mc

t

N

W

Mc

A

N j

co

j

P

j

co

j

oj −=−=σ (3.101b)

donde: t, espesor de la pared del tubo (mm)

A = 1 × t, área de la sección de la pared del tubo (mm/m)

WP = 1 × t2/6, momento resistente de la sección anterior (mm2/m)

Nj, esfuerzo axil en la sección j (kN)

Mj, momento flector en la sección j (kN.m)

Cuando se calculan las tensiones21 y las deformaciones por flexión en la pared de la tubería,

se deben determinar los coeficientes de corrección que tienen en cuenta la curvatura de las

superficies interior (cci) y exterior (cco), aplicando las siguientes fórmulas:

m

cid

tc

.3

.21+= (3.102)

m

cod

tc

.3

.21−= (3.103)

donde: t, espesor de la pared del tubo (mm)

dm, diámetro medio (mm)

21

Las tensiones determinadas bajo las mismas condiciones, es decir, análisis a corto o a largo plazo, y para la

misma categoría de carga, es decir, carga accidental o carga permanente, tienen la propiedad aditiva.

Page 143: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 115 -

Las deformaciones22 en la base (B), punto medio (S) y coronación (C) de la tubería,

causados por los momentos resultantes (Mj) y las fuerzas normales (Nj) para todos los casos

de carga aplicables, se deben calcular mediante las fórmulas (3.104a y b).

Para la superficie interior (conocido el modulo de elasticidad del material de la tubería):

P

j

ci

P

j

PP

j

ci

P

j

ijEt

Mc

Et

N

EW

Mc

EA

N

.

.6.

...

. 2, +=+=ε (3.104a)

Para la superficie exterior (conocido el modulo de elasticidad del material de la tubería):

P

j

co

P

j

PP

j

co

P

j

ojEt

Mc

Et

N

EW

Mc

EA

N

.

.6.

...

. 2, −=−=ε (3.104b)

donde: Nj, esfuerzo axil en la sección j (kN)

A, área de la sección de la pared de la tubería (m2)

EP, módulo de elasticidad del material de la tubería (N/mm2)

cci cco, coeficientes de corrección por curvatura de las secciones interior y exterior

WP, momento resistente de la sección (mm2/m)

Mj, momento flector en la sección j (kN.m)

t, espesor de la pared del tubo (mm)

En caso de conocer la rigidez de la tubería, se calcula el módulo de elasticidad equivalente

mediante la formula (3.11).

Para tuberías con espesor de pared variable (como por ejemplo algunas tuberías de plástico

con pared estructurada) se debe utilizar el diámetro medio y el espesor de pared

correspondiente a la sección para la que se han determinado las tensiones y las

deformaciones, en las fórmulas (3.104a y b).

B) Tensiones y deformaciones por presión interior

La tensión de tracción debido a la presión interior del fluido (o externa, poniendo – pW1 en

vez de pi), se debe calcular del siguiente modo:

Para tuberías de pared delgada (t/dm ≤ 0,05)

t

N

t

rp

pii

iopitipit === .,,,, σσ (3.105)

22

Las deformaciones determinadas bajo las mismas condiciones, es decir, análisis a corto o a largo plazo, y para

la misma categoría, es decir, carga accidental o carga permanente, tienen la propiedad aditiva.

Page 144: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 116 -

Para tuberías de pared gruesa (t/dm > 0,05)

• Para la superficie interior

( )1.

.2

1

.222,,

−=

−=

cr

N

c

p

i

pii

ipitσ (3.106a)

• Para la superficie exterior

( ) ( )( )1.

1.

1

1.2

2

2

2

,,−

+=

+=

cr

cN

c

cp

i

pii

opitσ (3.106b)

donde: pi, presión interna de servicio (N/mm2)

ri, radio interior (mm)

t, espesor de la pared del tubo (mm)

Npi, esfuerzo axil producido por la presión interior (kN)

c, variable auxiliar

i

i

r

trc

+= (3.107)

La deformación por tracción debida a la presión interior del fluido (o exterior, poniendo – pW1

en vez de pi), se debe calcular como sigue:

Para tuberías de pared delgada (t/dm ≤ 0,05)

tE

N

tE

rp

P

pi

P

ii

ojtijt..

.,,,, === εε (3.108)

Para tuberías de pared gruesa (t/dm > 0,05)

• Para la superficie interior:

( ) ( )1..

.2

1.

.222,,

−=

−=

crE

N

cE

p

iP

pi

P

i

ipitε (3.109a)

• Para la superficie exterior:

( )( )

( )( )1..

1.

1.

1.2

2

2

2

,,−

+=

+=

crE

cN

cE

cp

iP

pi

P

i

ipitε (3.109b)

Page 145: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 117 -

donde: pi, presión interna de servicio (N/mm2)

ri, radio interior (mm)

EP, módulo de elasticidad del material del tubo (N/mm2)

t, espesor de la pared del tubo (mm)

Npi, esfuerzo axil producido por la presión interior (kN)

c, variable auxiliar (ver fórmula 3.107)

C) Tensiones y deformaciones por cargas externas y presión interna

Las tensiones y las deformaciones causadas por los momentos de flexión resultantes (Mj) y

las fuerzas normales (Nj) para todos los casos de carga aplicables (cargas externas +

presión interior), se deben calcular de forma independiente para el comportamiento a

tracción y a flexión, mediante las siguientes fórmulas (3.110) a (3.113b).

Comportamiento a tracción

Las tensiones y deformaciones de tracción en la base (B), punto medio (S) y coronación (C)

de la tubería, causadas por las fuerzas normales resultantes (Nj) para todos los casos de

carga externa aplicables, se deben calcular aplicando la fórmula (ver también la fórmula

(3.101)):

t

N

A

N jj

ojtijt === ,,,, σσ (3.110)

P

j

P

j

ojtijtEt

N

EA

N

..,,,, === εε (3.111)

donde los parámetros se han mencionado anteriormente.

Comportamiento a flexión

Las tensiones y deformaciones de flexión en la base (B), punto medio (S) y coronación (C)

de la tubería, causadas por los momentos de flexión resultantes (Mj) para todos los casos de

carga externa aplicables, se deben calcular aplicando las fórmulas:

Tensiones:

Para la superficie interior:

2,,

.6.

t

Mc

W

Mc

j

ci

P

j

ciijf ==σ (3.112a)

Para la superficie exterior:

Page 146: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 118 -

2,,

.6.

t

Mc

W

Mc

j

co

P

j

coojf −=−=σ (3.112b)

Los coeficientes de corrección (cci y cco) deben ser como los calculados con las

fórmulas (3.102 y 3.103).

Deformaciones:

Para la superficie interior:

P

j

ci

PP

j

ciijfEt

Mc

EW

Mc

.

.6

..

2,, ==ε (3.113a)

Para la superficie exterior:

P

j

co

PP

j

coojfEt

Mc

EW

Mc

.

.6

..

2,, −=−=ε (3.113b)

donde los parámetros se han mencionado anteriormente.

3.2.13.2.2. Tensiones y deformaciones aplicando la teoría de 2º orden

A) Tensiones y deformaciones por cargas externas

El cálculo basado en la teoría de 1er orden se realiza asumiendo una tubería de forma

circular no deformada. La distribución de carga y los coeficientes para el momento de flexión

y para las fuerzas normales son válidos para esta hipótesis y cambiarán cuando la tubería

se ovalice. La discrepancia entre los resultados obtenidos para las tuberías de forma circular

y los resultados para las tuberías deformadas, dependen del grado de deflexión, de la

distribución de carga y del comportamiento elástico de la tubería y del suelo. Estas

influencias son tenidas en cuenta en el cálculo mediante la teoría de 2º orden.

El resultado obtenido mediante el cálculo con la teoría de 2º orden siempre mostrará un

aumento del momento de flexión máximo y de la deflexión de la tubería en comparación con

el resultado obtenido mediante el cálculo con la teoría de 1er orden. Por ello, los resultados

del cálculo con la teoría de 2º orden se pueden obtener de los resultados del cálculo de la

teoría de 1er orden, modificados mediante un coeficiente adecuado.

Si la deflexión vertical obtenida mediante el cálculo con la teoría de 1er orden excede del 5%

y el índice de deformación (χ) es superior a 1,0, se debe aplicar la teoría de 2º orden. No

obstante, la teoría de 2º orden se debe aplicar en cualquier caso para tuberías con χ > 1,0 o

Page 147: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 119 -

si el índice (K’), que se define más adelante, excede el valor de 0,6, incluso si la deflexión

vertical de acuerdo con el cálculo mediante la teoría de 1er orden es menor del 5%.

En resumen, los criterios que definen la necesidad de utilizar la teoría de 2º orden son:

Si δv,% ≤ 5 y χ ≤ 1

Teoría de 1º orden

Si K’ ≤ 0,6

Si δv,% > 5 y χ > 1

Teoría de 2º orden

Si χ > 1 o K’ > 0,6 y δv,% < 5

El índice (K’) se debe calcular aplicando la fórmula:

vWvTvAvS

dhhWhThAhS

qqqq

qqqqqK

,,,,

,,,,,'

+++

++++= (3.114)

donde: K’, cociente entre la carga horizontal (incluida la presión horizontal del agua externa,

pero sin incluir la presión horizontal de reacción del relleno) y la carga vertical total

(incluida la presión vertical del agua)

El momento de flexión máximo (Mll) y la deflexión vertical (δv%,ll) correspondientes a la teoría

de 2º orden se deben calcular como una función del momento de flexión (M), la ovalización

relativa (δv%,), el índice de deformación (χ) y el parámetro (K’) de la siguiente manera:

mII eMM .= (3.115)

vvIIv e.%%, δδ = (3.116)

donde: δv%, porcentaje total de deflexión vertical debido a la teoría de 1er orden

χ, índice de deformación

em, coeficiente de ampliación para momentos de flexión

ev, coeficiente de ampliación para la deflexión vertical

Los coeficientes (em y ev) se deben calcular del siguiente modo:

( ) 1000..12

%% vmvmm bae δδ ++= (3.117)

( ) 1000..12

%% vvvvv bae δδ ++= (3.118)

Con los parámetros a determinar del siguiente modo:

Page 148: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 120 -

21. mmm aaa += χ (3.119)

21. mmm bbb += χ (3.120)

21. vvv aaa += χ (3.121)

21. vvv bbb += χ (3.122)

Los coeficientes (am1, am2, bm1, bm2, av1, av2, bv1, y bv2) se deben calcular aplicando las

fórmulas definidas en la tabla 3.21.

Coeficiente 0,2 ≤ K’ ≤ 0,6 0,6 < K’ ≤ 0,9

am1 0,945.e3,06.K’

0,078.e7,00.K’

am2 22,6.e1,76.K’

0,367.e8,45,.K’

bm1 0,598.e4,63.K’

0,0026.e13,5.K’

bm2 0,534.e5,84.K’

0,603.e5,71.K’

av1 0,150.e5,30.K’

0,112.e5,91.K’

av2 29,8.e1,41.K’

4,56.e4,45.K’

bv1 0,393.e5,08.K’

0,0058.e11,6.K’

bv2 1,75.e3,68.K’

0,367.e6,19.K’

Tabla 3.21. Coeficientes a utilizar en las fórmulas (3.117) a (3.122) (Op1)

Conocido el coeficiente de ampliación para el momento de flexión (em), se obtienen

mediante la ecuación (3.115) los momentos de flexión basados en la teoría de 2º orden y

con ellos se deben determinar las tensiones y/o deformaciones a corto y largo plazo, para

cargas accidentales y permanentes, aplicando las fórmulas (3.101) y (3.104).

B) Tensiones y deformaciones por cargas externas y presión interna

Las tuberías flexibles (índice de deformación χ > 0,05) pueden tener una deflexión

importante causada por las cargas externas. Por este motivo, la presión del fluido interno da

lugar a un restablecimiento importante del redondeo, que reduce la tensión y la deformación

previamente determinadas para una tubería de forma circular. La tensión o la deformación

resultante para estas tuberías es inferior a la suma de las tensiones o de las deformaciones

causadas por las cargas externas, más los esfuerzos o las deformaciones debidas a la

presión interior del fluido. La tensión o la deformación se deben calcular aplicando un

coeficiente de reducción (coeficiente de restablecimiento del redondeo) (fR,R) del modo que

se expone a continuación.

Las tensiones y las deformaciones siguiendo la teoría de 2º orden, se calculan en base a los

resultados obtenidos mediante la teoría de 1er orden (ver el apartado 3.2.13.2.1) mediante

las siguientes fórmulas:

IjtRRIIjt f ,,,,, .σσ = (3.123a)

Page 149: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 121 -

IjfRRIIjf f ,,,,, .σσ = (3.123b)

IpitRRIIpit f ,,,,, .σσ = (3.123c)

IjtRRIIjt f ,,,,, .εε = (3.124a)

IjfRRIIjf f ,,,,, .εε = (3.124b)

IpitRRIIpit f ,,,,, .εε = (3.124c)

donde: fRR, coeficiente de reducción de esfuerzos por restablecimiento del redondeo

σ,,II, tensión por teoría de 2º orden

σ,,I, tensión por teoría de 1º orden

ε,,II, tensión por teoría de 2º orden

ε,,I, tensión por teoría de 1º orden

Cuando se sumen los diversos esfuerzos o deformaciones parciales en las fórmulas

anteriores, se debe prestar atención a las diferencias entre las condiciones a corto y largo

plazo, entre las categorías de carga y entre las superficies interior o exterior.

En las fórmulas anteriores, el coeficiente (fR,R) expresa la reducción de los esfuerzos o de las

deformaciones debida a los efectos de restablecimiento del redondeo. Dicho coeficiente es

una función de la relación entre todos los esfuerzos debidos a las cargas externas e

internas, así como del índice de deformación, y se debe calcular aplicando la siguiente

fórmula:

( ) ( )77, .100.100 ZbZaf DDRR ++= (3.125)

donde: Z7, variable auxiliar de cálculo

( )

( )2

,

2

,

7 .. trFE

tr

FZ m

RS

ult

P

m

RS

ult εσ== (3.126)

siendo: σult y/o εult, propiedades últimas del material

FS,R, coeficiente de seguridad mínimo requerido frente a rotura (ver tabla 3.26)

aD bD, coeficientes para la fórmula (3.125) (ver tablas 3.22 y 3.23)

χ Funciones aD y bD

aD = (a2 –a1).ln(χ)/2,30 +a2 ≤ 1,0

bD = (b2 –b1).ln(χ)/2,30 +b2

aD = (a3 –a2).ln(χ)/2,30 +a2 > 1,0

bD = (b3 –b2).ln(χ)/2,30 +b2

Tabla 3.22. Coeficientes aD y bD como funciones de χ (Op1)

Page 150: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 122 -

Los coeficientes (ai y bi) para las fórmulas de la tabla 3.22 se deben determinar aplicando las

fórmulas dadas en la tabla 3.23 como funciones de la relación σt,pi/(Σσt,j + Σσf,j):

σt,pi/(Σσt,j + Σσf,j) Funciones aD y bD

a1 = 114.[σt,pi/(Σσt,j + Σσf,j)]-5,58

a2 = 29,3.[σt,pi/(Σσt,j + Σσf,j)]+4,00 ≤ 2

a3 = 0,264.[σt,pi/(Σσt,j + Σσf,j)]+5,27

a1 = 29,9.[σt,pi/(Σσt,j + Σσf,j)]+164

a2 = 5,32.[σt,pi/(Σσt,j + Σσf,j)]+52,2 > 2

a3 = 0,0112.[σt,pi/(Σσt,j + Σσf,j)]+5,90

b1 = 257.[σt,pi/(Σσt,j + Σσf,j)]+23,7

b2 = 91,3.[σt,pi/(Σσt,j + Σσf,j)]+14,0 ≤ 1

b3 = 38,9.[σt,pi/(Σσt,j + Σσf,j)]+9,93

b1 = 22,4.[σt,pi/(Σσt,j + Σσf,j)]+275

b2 = 1,08.[σt,pi/(Σσt,j + Σσf,j)]+104 > 1

b3 = -3,63.[σt,pi/(Σσt,j + Σσf,j)]+45,6

Tabla 3.23. Coeficientes ai y bi para las fórmulas de la tabla 3.22 (Op1)

3.2.13.2.3. Tensiones y deformaciones resultantes

A) Tensiones y deformaciones por cargas externas

Las tensiones y deformaciones resultantes son:

A corto plazo

- La tensión o deformación resultante (σtot, εtot) es la máxima tensión o deformación,

utilizando los momentos de flexión y las fuerzas normales calculadas de acuerdo con

las fórmulas (3.87) a (3.96) de las tres secciones estudiadas.

A largo plazo

- La tensión o deformación resultante (σtot,1, εtot,1) para todas las cargas permanentes

es la máxima tensión o deformación, utilizando los momentos de flexión y las fuerzas

normales calculadas de acuerdo con las fórmulas (3.87), (3.89), (3.91) y (3.93) a

(3.96) de las tres secciones estudiadas.

- La tensión o deformación resultante (σtot,2, εtot,2) para todas las cargas accidentales es

la máxima tensión o deformación, utilizando los momentos de flexión y las fuerzas

normales calculadas de acuerdo con las fórmulas (3.88), (3.90) y (3.92) de las tres

secciones estudiadas.

B) Tensiones y deformaciones por presión interna

Las tensiones y deformaciones resultantes son:

Page 151: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 123 -

A largo plazo

- La tensión o deformación resultante por tracción (σt,res,1, εt,res,1) para la presión

interior, es la tensión o deformación, utilizando la fuerza normal calculada de acuerdo

con la fórmula (3.97).

C) Tensiones y deformaciones por cargas externas y por presión interna

Las tensiones y deformaciones resultantes son:

A corto plazo

- La tensión o deformación resultante por flexión (σf,res, εf,res) es la máxima tensión o

deformación, utilizando únicamente los momentos de flexión calculados de acuerdo

con las fórmulas (3.87) a (3.96) de las tres secciones estudiadas.

- La tensión o deformación resultante por tracción (σt,res, εt,res) es la máxima tensión o

deformación, utilizando únicamente las fuerzas normales calculadas de acuerdo con

las fórmulas (3.87) a (3.98) de las tres secciones estudiadas.

A largo plazo

- La tensión o deformación resultante por flexión (σf,res,1, εf,res,1) para todas las cargas

permanentes es la máxima tensión o deformación, utilizando únicamente los

momentos de flexión calculados de acuerdo con fórmulas (3.87), (3.89), (3.91) y

(3.93) a (3.96) de las tres secciones estudiadas.

- La tensión o deformación resultante por tracción (σt,res,1, εt,res,1) para todas las cargas

permanentes es la máxima tensión o deformación, utilizando únicamente las fuerzas

normales calculadas de acuerdo con las fórmulas (3.87), (3.89), (3.91) y (3.93) a

(3.98) de las tres secciones estudiadas.

- La tensión o deformación resultante por flexión (σf,res,2, εf,res,2) para todas las cargas

accidentales es la máxima tensión o deformación, utilizando únicamente los

momentos de flexión calculados de acuerdo con las fórmulas (3.88), (3.90) y (3.92)

de las tres secciones estudiadas.

- La tensión o deformación resultante por tracción (σt,res,2, εt,res,2) para todas las cargas

accidentales es la máxima tensión o deformación, utilizando únicamente las fuerzas

normales calculadas de acuerdo con las fórmulas (3.88), (3.90) y (3.92) de las tres

secciones estudiadas.

Page 152: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 124 -

3.2.14 ANÁLISIS DE ESTABILIDAD (SOLO PARA TUBERÍAS FLEXIBLES)

3.2.14.1. Imperfecciones

Para cualquier análisis de estabilidad, se debe tener en cuenta el efecto de las

imperfecciones sobre las cargas críticas. Las imperfecciones son deformaciones iniciales

que resultan de las tolerancias de fabricación, de los efectos del transporte, de los esfuerzos

de apoyo y de la instalación de la tubería (como por ejemplo, las deflexiones elásticas de la

tubería).

En los casos en que las presiones verticales del suelo sean altas (resistencia pasiva del

suelo), también se debe tener en cuenta el comportamiento no lineal del suelo. Esto se

puede llevar a cabo para tuberías bajo cargas del relleno y de tráfico, y cuando la rigidez del

sistema (VPS) es baja, es decir, inferior a 5×10–3.

Forma Origen Magnitud δv

Localización φv

Imp

erf

ecció

n local

Cargas puntuales cerca de la tubería

Altura de cobertura (h ≤ de o h ≤ 0,6) en

superficies rígidas

Soldadura longitudinal (También

soldadura helicoidal)

Medir, si es posible

Mínimo 1% del diámetro del tubo

Habitualmente localizada en φv =

180º bajo la carga puntual

Ova

liza

ció

n

Material con fluencia (tuberías de

material plástico)

Grandes deflexiones elásticas (δv > 5%

junto con coeficientes de seguridad η <

5)

Tuberías de plástico: 100% de

deflexión elástica

Otros materiales: 50% deflexión

elástica

Habitualmente las deformaciones

son δv (hacia dentro) y δh (hacia

fuera)

Tabla 3.24. Tipos de imperfecciones geométricas típicas (Op1)

Las cargas críticas se deben reducir mediante diferentes coeficientes (κ), adecuados a la

forma y a la magnitud de las imperfecciones:

- para cargas de relleno y de tráfico: (κv) para imperfecciones locales y

comportamiento no lineal del suelo

- para presión del agua externa, es decir, el agua freática, o para presión interna

negativa: (κw1) para imperfecciones locales y (κw2) para ovalizaciones,

respectivamente.

Page 153: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 125 -

3.2.14.2. Análisis de estabilidad frente al pandeo

3.2.14.2.1. Cargas verticales

Las cargas críticas de pandeo23 (qv,crit) para cargas verticales de relleno y de tráfico se deben

determinar de la manera siguiente:

Para VPS ≤ 0,1: 5,0

, ...16−= PSPvcritv VSq κ (3.127a)

Para VPS > 0,1: ( )[ ]PSPvcritv VSq .313...8, += κ (3.127b)

donde: SP, rigidez de la tubería (N/m2)

VPS, rigidez del sistema tubería/terreno

κv, coeficiente de reducción por el comportamiento del material elásticoplástico

del suelo y por las imperfecciones, y se debe calcular aplicando la siguiente fórmula:

( ) 9,04log.36,0 ≤++= PSvv Vxκκ (3.128)

Áng.de rozamiento int. (º)

xkv

37º 0,53

35º 0,52

30º 0,50

25º 0,46

20º 0,40

10º 0,30

0º 0,15

Tabla 3.25. Parámetro xkv para las imperfecciones y el comportamiento no lineal del material del suelo (Op1)

Para los casos de material muy blando en la zona de la cama de apoyo de la tubería, la

carga crítica de pandeo (qv,crit) se debe evaluar aplicando la fórmula (3.130).

El coeficiente de seguridad calculado (η1qv) se define como la relación entre la carga crítica

de pandeo y la carga vertical total, y debe ser mayor que 2 o superior al valor mínimo

establecido en la tabla 3.27.

v

critv

qvq

q ,

,1 =η (3.129)

23

Las fórmulas solamente son válidas cuando la cama de apoyo de la tubería es homogénea.

Page 154: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 126 -

3.2.14.2.2. Presión externa del agua

Despreciando la presión vertical por el peso del relleno (qS,v) comparada con la presión

externa del agua, procedente del nivel freático (pw) la carga crítica de pandeo se debe

determinar de la siguiente forma:

PDwcritw Sp ...8, ακ= (3.130)

En la fórmula (3.130) el coeficiente de pandeo (αD) se muestra en la figura 3.12 como una

función de la rigidez del sistema (VPS) y de la relación entre el diámetro y el espesor de

pared (dm /t).

Figura 3.12. Coeficiente de pandeo αD para la presión crítica por agua externa (Op1)

En la fórmula (3.130) (κW) es el coeficiente de reducción para las imperfecciones. Se puede

utilizar para imperfecciones de onda única (pandeo local previo) como (κW1) o para

imperfecciones de onda doble (ovalización) como (κW2).

Una fórmula aproximada para este coeficiente de reducción en el caso de imperfecciones de

onda única es:

( )0

2

1 log.log. kVbVa PSPSw ++=κ (3.131)

con: ( ) 8.2 420 kkka +−= (3.132)

( ) 4.4.3 420 kkkb +−= (3.133)

Page 155: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 127 -

donde: k0, k2 y k4 dependen de dm /t y de δv de la forma siguiente:

( )6

0 1.005,0.0408,0.0256,09856,0 −+−= tdk mvδ (3.134)

( )( )6

2 1.005,0.1,01.2177,0.0633,08633,0 −++−= tdk mvv δδ (3.135)

( )( )62

4 1.005,0.0625,01.4625,0.121,0.186,07959,0 −+++−= tdk mvvv δδδ (3.136)

y para el caso de imperfecciones de doble onda (ovalización):

( )0

2

2 log.log. kVbVa PSPSw ++=κ (3.137)

con: ( ) 8.2 531 kkka +−= (3.138)

( ) 4.4.3 531 kkkb +−= (3.139)

donde: k1, k3 y k5 dependen de dm /t y de δv de la forma siguiente:

( )6

1 1.005,0.0544,0.0222,09722,0 −+−= tdk mvδ (3.140)

( )6

3 1.005,0.204,0.0667,08567,0 −+−= tdk mvδ (3.141)

( )( )2

5 1.005,0.1.0222,0.0633,09833,0 −++−= tdk mvv δδ (3.142)

Cuando simultáneamente se produzcan imperfecciones de onda única y de doble onda, el

coeficiente de reducción común se debe calcular mediante la siguiente expresión:

21. WWW κκκ = (3.143)

La verificación de la estabilidad con respecto al pandeo, como se analiza en el apartado

3.2.14.2.1, debe ser la indicada a continuación, por lo cual el coeficiente de seguridad

calculado (ηl,pw) debe ser mayor de 2, o superior al valor mínimo establecido en la tabla 3.27:

W

critw

pWp

p ,

,1 =η (3.144)

donde: ηl,pw, coeficiente de seguridad calculado frente a pandeo por agua externa

pw,crit, presíon crítica por efecto del agua externa

pw, presión exterior del agua que se corresponde con la presión hidrostática en la

parte más baja de la tubería, y se debe calcular aplicando la fórmula:

( )2eWWW dhp += γ (3.145)

Page 156: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 128 -

3.2.14.2.3. Cargas verticales y presión del agua externa actuando simultáneamente

La verificación de la interacción de ambos casos se realiza de acuerdo con las fórmulas

(3.127a), (3.127b), (3.129) y (3.145) según se indica a continuación y debe ser mayor que 2

o superior al valor mínimo establecido en la tabla 3.27.

critw

W

critv

vS

qp

p

p

q

q

,,

,

,1

1

+

=η (3.146)

donde: qS,v, presión vertical del relleno, incluido el empuje hidrostático

qv,crit, presíon crítica de pandeo por cargas verticales

pw, presión exterior del agua

pw,crit, presíon crítica de pandeo por efecto del agua externa

3.2.15 COEFICIENTES DE SEGURIDAD CALCULADOS

Con objeto de garantizar las propiedades necesarias a largo plazo, se deben comparar las

tensiones y deformaciones resultantes con los valores de tensión y/o deformación últimos,

los cuales están basados en las propiedades mínimas exigibles para los materiales

constitutivos de las tuberías en cuanto a tracción y flexión para corto y largo plazo. Dichas

propiedades se encuentran especificadas en las normas de producto.

3.2.15.1. Coeficientes de seguridad frente cargas externas

Los coeficientes de seguridad a corto y largo plazo son:

A corto plazo

La tensión o la deformación total (σtot, εtot) (ver apartado 3.2.13.2.3) se debe comparar con la

correspondiente propiedad de referencia a corto plazo (σult,ST o εult,ST) (ver formula 3.148 y

3.149). El coeficiente de seguridad calculado (ηR) frente a la rotura se debe determinar

aplicando la fórmula:

tot

STult

tot

STult

ε

σ

ση

,,== (3.147)

donde: σult,ST o εult,ST , tensión y/o deformación de referencia, que se pueden calcular a partir

de la carga de rotura (Fult) y de la deflexión máxima (δvult) mediante las siguientes

ecuaciones:

Page 157: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 129 -

2, .

3

t

dF mult

iultπ

σ = (3.148)

m

iultvfiultd

tD .. ,,, δε = (3.149)

considerando que el factor de forma (Df) es igual a 4.

A largo plazo

El análisis a largo plazo se debe realizar en tres etapas.

a) La tensión o la deformación total (σtot,1, εtot,1) (ver apartado 3.2.13.2.3) para todas las

cargas permanentes se debe comparar con la correspondiente propiedad de referencia a

largo plazo (σult,LT o εult,LT)(ver formula 3.148 y 3.149). El coeficiente de seguridad

calculado (ηR,1) frente a la rotura se debe determinar aplicando la fórmula:

1,

,

1,

,

1,

tot

LTult

tot

LTult

ε

σ

ση == (3.150)

b) La tensión o la deformación total (σtot,2, εtot,2) (ver apartado 3.2.13.2.3) para todas las

cargas accidentales, se debe comparar con la propiedad de referencia a corto plazo

aplicable (σult,ST o εult,ST) El coeficiente de seguridad calculado, (ηR,2) frente a la rotura se

debe determinar aplicando la fórmula:

2,

,

2,

,

2,

tot

STult

tot

STult

ε

σ

ση == (3.151)

c) Los dos coeficientes de seguridad parciales se deben superponer para determinar el

coeficiente de seguridad total, aplicando la fórmula:

2,1,

111

RRR ηηη+= (3.152)

Para los dos casos de análisis, a corto y largo plazo, los coeficientes de seguridad

calculados (ηR) deben ser iguales o mayores que el coeficiente de seguridad mínimo

requerido (FS,R) dado en la tabla 3.26 para los diversos materiales de tubería.

ηR ≥ FS,R (3.153)

Page 158: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 130 -

3.2.15.2. Coeficientes de seguridad por cargas externas y por presión interna

En las tuberías que funcionan a presión, se debe contabilizar la situación de carga

combinada, es decir, las cargas externas, tales como las del relleno o de tráfico, y las cargas

internas, tales como la presión interior del fluido. Aunque las hipótesis básicas para la

superposición del comportamiento a tracción y a flexión son las mismas, las fórmulas finales

para los materiales de tubería reforzada o sin reforzar son algo diferentes (ver fórmulas

(3.162) y (3.163)). No obstante, las etapas a seguir para esta superposición son similares a

las indicadas en el apartado 3.2.15.1.

A corto plazo

a) La tensión o la deformación resultante de flexión (σf,res, εf,res) (ver apartado 3.2.13.2.3) se

debe comparar con la correspondiente propiedad de referencia a corto plazo (σf,ult,ST o

εf,ult,ST) El coeficiente de seguridad calculado (ηf), frente a la rotura por flexión de debe

determinar aplicando la fórmula:

resf

STultf

resf

STultf

f

,

,,

,

,,

ε

ε

σ

ση == (3.154)

b) La tensión o la deformación resultante de tracción (σt,res, εt,res) (ver apartado 3.2.13.2.3)

se debe comparar con la correspondiente propiedad de referencia a corto plazo (σt,ult,ST o

εt,ult,ST). El coeficiente de seguridad calculado (ηt) frente a la rotura por tracción de debe

determinar aplicando la fórmula:

rest

STultt

rest

STultt

t

,

,,

,

,,

ε

ε

σ

ση == (3.155)

A largo plazo

El análisis a largo plazo se debe realizar en tres etapas, antes de la superposición final para

obtener el coeficiente de seguridad final.

a) Las tensiones o las deformaciones resultantes de flexión y de tracción (σf,res,1, σt,res,1 o

εf,res,1, εt,res,1) (ver apartado 3.2.13.2.3) para todas las cargas permanentes se deben

comparar con las propiedades de referencia a largo plazo (σf,ult,LT, σt,ult,LT o εf,ult,LT, εt,ult,LT.)

Los coeficientes de seguridad calculados frente a la rotura por flexión y por tracción (ηf,1,

ηt,1) se deben determinar aplicando las fórmulas:

1,,

,,

1,,

,,

1,

resf

LTultf

resf

LTultf

ε

σ

ση == (3.156)

Page 159: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 131 -

1,,

,,

1,,

,,

1,

rest

LTultt

rest

LTultt

ε

σ

ση == (3.157)

b) Las tensiones o las deformaciones resultantes de flexión y de tracción (σf,res,2, σt,res,2 o

εf,res,2, εt,res,2) (ver apartado 3.2.13.2.3) para todas las cargas accidentales se deben

comparar con las propiedades de referencia a corto plazo (σf,ult,ST, σt,ult,ST o εf,ult,ST, εt,ult,ST)

Los coeficientes de seguridad calculados frente a la rotura por flexión y por tracción (ηf,2,

ηt,2) se deben determinar aplicando las fórmulas:

2,,

,,

2,,

,,

2,

resf

STultf

resf

STultf

ε

σ

ση == (3.158)

2,,

,,

2,,

,,

2,

rest

STultt

rest

STultt

ε

σ

ση == (3.159)

c) Los dos coeficientes de seguridad parciales se deben superponer para determinar el

coeficiente de seguridad total frente a la rotura por flexión y rotura por tracción, aplicando

las fórmulas:

2,1,

111

fff ηηη+= (3.160)

2,1,

111

ttt ηηη+= (3.161)

Como ya se ha dicho, la superposición es diferente para tuberías fabricadas con materiales

sin reforzar que con materiales reforzados. Para la determinación del coeficiente de

seguridad combinado (ηR) se debe aplicar la fórmula:

• Para materiales sin reforzar (Materiales homogéneos):

ft

Rηη

η11

1

+= (3.162)

• Para materiales reforzados (Materiales compuestos):

211

1

ft

Rηη

η+

= (3.163)

Para los dos casos de análisis, a corto y largo plazo, los coeficientes de seguridad

calculados (ηR) deben ser iguales o mayores que el coeficiente de seguridad mínimo

requerido (FS,R) dado en la tabla 3.26 para los diversos materiales de tubería.

Page 160: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 132 -

ηR ≥ FS,R (3.164)

3.2.16 COEFICIENTES DE SEGURIDAD MÍNIMOS

La determinación de los coeficientes de seguridad se basa en la teoría de la probabilidad, en

la que se tienen en consideración la dispersión de las variables relativas a la capacidad de

carga de la tubería (por ejemplo, resistencia, dimensiones), y las cargas (por ejemplo,

propiedades del relleno, cargas dinámicas, condiciones de la cama de apoyo, etc.).

Teniendo en cuenta las diferentes dispersiones de las resistencias, de las dimensiones, de

las rigideces y de los métodos de ensayo, y también de la variación de la capacidad de

soporte del relleno, se obtienen diferentes coeficientes de seguridad para la misma

probabilidad de fallo en función de los distintos materiales de las tuberías.

3.2.16.1. Coeficientes de seguridad requeridos

Se identifican dos tipos de fallo, que son rotura e inestabilidad por pandeo. Los coeficientes

de seguridad requeridos, que dependen de las dos clases de seguridad, se dan en las tablas

3.26 y 3.27. Las clases de seguridad están asociadas con diferentes probabilidades de fallo,

(pf).

Los coeficientes de seguridad se establecen24:

- Para hormigón, fundición, polietileno de alta densidad, PVC, con respecto al percentil

del 5% de la resistencia a tracción circunferencial

- Para hormigón armado, con valores de cálculo normalizados

- Para acero, con el percentil del 5% del límite de fluencia

- Para PRFV (poliéster reforzado con fibra de vidrio) hasta la deflexión anular mínima

última normalizada

Clase de seguridad A (Mayor riesgo), donde el fallo podría implicar:

- riesgo de daños para las personas y para los edificios

- riesgo de contaminación del agua subterránea

- interrupciones prolongadas del servicio

- consecuencias financieras importantes

Clase de seguridad B (Menor riesgo), donde el fallo podría implicar:

- riesgo nulo de daños para las personas y para los edificios

- peligro nulo para el agua subterránea

- interrupciones cortas del servicio

24

Los coeficientes de seguridad mínimos requeridos que se dan en las tablas 3.26 y 3.27, se correspoden con

los establecidos en el informe técnico CEN/TR 1295-3.

Page 161: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 133 -

- consecuencias financieras leves

FS,R

Clase de seguridad Material

A B

Acero 1,75 1,40

Fundición 1,75 1,40

Hormigón A. 2,20 1,70

PVC 2,50 2,0

PEAD 2,50 2,0

PRFV 2,00 1,60

Tabla 3.26. Coeficientes de seguridad frente a rotura (Op1)

FS,I

Clase de seguridad Material

A B

Todos 2,0 1,60

Tabla 3.27. Coeficientes de seguridad frente a pandeo (Op1)

3.2.16.2. Seguridad frente a grandes deflexiones y fallo por fatiga

No se ha desarrollado este aspecto, al quedar fuera del alcance de los estudios de esta

tesis, aunque si está considerado por el informe técnico CEN/TR 1295-3 (2007)

3.2.17 RESUMEN DE LAS MEJORAS PROPUESTAS

A continuación se resumen las mejoras propuestas por esta tesis al modelo de cálculo

basado en la opción 1 del informe técnico CEN/TR 1295-3 (2007).

1) Se ha modificado la estructura de presentación del informe técnico para seguir una

estructura más lógica, comenzando con la descripción de los tipos de instalaciones,

la definición de los parámetros del suelo y la descripción de las cargas iniciales, para

posteriormente desarrollar los métodos de cálculo de esfuerzos, tensiones y

deformaciones.

2) Limitación de los procedimientos de cálculo a situaciones donde el desfase vertical

entre el relleno y el tubo es nulo, al considerar que aquellas hipótesis que lo

consideran están fuera de los planeamientos necesarios para ser utilizados en un

dimensionamiento de tubería enterrada (Apartado 3.2.10.4).

3) Definición, en la comprobación por presión interna, de una comprobación adicional a

la existente, que consiste en un sencillo cálculo tensional para aquellas tuberías que

no estén identificadas por su PN, como pueden ser las tuberías de acero (Apartado

3.2.11).

Page 162: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 134 -

4) Definición de las fórmulas de sumatorio de momentos y fuerzas para cada uno de los

grupos (1 o 2) asociados al comportamiento de la tubería frente a las acciones

consideradas en cada una de las secciones de estudio (Apartado 3.2.13).

5) Revisión en profundidad de las hipótesis de cálculo establecidas en la redacción

original; reestructuración de lo referente al cálculo de tensiones, especificando en

primer lugar las hipótesis a considerar y posteriormente definiendo las formulaciones

a aplicar utilizando la teoría de 1º orden y 2º orden para las hipótesis descritas.

(Apartado 3.2.13).

6) Definición de las tensiones resultantes organizadas según las hipótesis de cálculo y

su análisis temporal (corto o largo plazo) (Apartado 3.2.13)

7) Elaboración de un programa de cálculo automatizado que recoge todas las

propuestas planteadas en esta tesis (ANEXO A).

3.3. OPCIÓN 2 DEL CEN/TR 1295-3

3.3.1 INTRODUCCIÓN

La Opción 2 está constituida por un modelo que puede describir el comportamiento del

sistema tubería/terreno desde el estado rígido al flexible de una forma continua. Esta opción

permite definir los límites entre sistemas rígidos, semirrígidos y flexibles.

La interacción tubería/terreno se modeliza mediante la utilización de muelles elásticos

interdependientes que se aplican perpendicularmente a las paredes laterales (la rigidez de

estos muelles ha de ser representativa del módulo del suelo).

En la figura 3.13 se muestra la denominada "distribución inicial de presiones", es decir, las

presiones aplicadas antes de cualquier flexión de la tubería y, en consecuencia, antes de

cualquier interacción tubería/terreno. Pv

Ph

αv

X

Y

Figura 3.13. Presiones aplicadas antes de cualquier flexión de la tubería (Op2)

Page 163: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 135 -

Donde (pv) es la carga constituida por la presión vertical del relleno, más la presión vertical

debida a las cargas de servicio (cargas de tráfico, cargas superficiales y cargas de

construcción) y (ph) es la presión horizontal derivada de las cargas verticales.

En las tuberías flexibles, la presión vertical debida a la carga del relleno es igual a la presión

del prisma de relleno situado por encima de la parte superior de la tubería. Para las tuberías

rígidas, la presión del prisma de relleno se aumenta de acuerdo con el modelo de Marston.

La carga de tráfico se calcula de acuerdo con la Norma UNE-EN 1991-2 (2004). Los

parámetros mecánicos del suelo dependen principalmente de la naturaleza del relleno de

protección de la tubería y del nivel de compactación.

Las condiciones de colocación de las capas (intensidad de compactación, método de

retirada de la entibación de la zanja (en caso de ser necesario), la presencia de aguas

subterráneas), se tienen en cuenta y dan lugar a una reducción de los parámetros del suelo.

La distribución de presiones es equivalente a la superposición de las dos distribuciones

representadas en la figura 3.14, denominadas componente de desviación y componente

esférica.

αv

q2

αv

q1

a) Componente de desviación b) Componente esférica

Figura 3.14. Distribución de presiones (Op2)

La componente de desviación produce la ovalización elíptica de la tubería, mientras la

componente esférica, similar a una presión hidrostática (phyd) aumenta la flexión cuando phyd

> 0 y produce el efecto de "restablecimiento del redondeo" cuando (phyd < 0).

( )w

hv

hyd ppp

p −+

=2

(3.165)

Page 164: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 136 -

donde: pw, presión interior de servicio (kN/m2)

pv, presión vertical total (kN/m2)

ph, presión horizontal resultante (kN/m2)

Este efecto, producido por la componente esférica sobre la tubería flexible, puede tenerse

en cuenta para la consideración de los efectos de segundo orden y de las imperfecciones

geométricas iniciales.

Estas consideraciones conducen a una clasificación del sistema tubería/terreno en tres

clases: "rígido", "semirrigido" y "flexible", con un criterio que depende de las propiedades de

la tubería y del suelo que la rodea.

La comprobación de la seguridad durante el uso se basa en conceptos de estado límite

(estado límite último y estado límite de servicio). Para el estado límite último la

comprobación se aplica a la carga admisible, la resistencia mecánica y/o la estabilidad de

pandeo. El estado límite de servicio define el estado que, si se excede, pone en peligro el

funcionamiento normal y las condiciones de durabilidad de la tubería (por ejemplo,

ovalización).

3.3.2 SECCIONES TIPO

A continuación se presentan las secciones tipo y los parámetros geométricos utilizados en el

dimensionamiento de tuberías enterradas en zanja o terraplén mediante la opción 2.

h

hw

De

b

Zona alta

(relleno superior)

Zona baja

(relleno de protección) Terreno natural

ts

ht

h

hw

De

b

Zona alta

(relleno superior)

Zona baja

(relleno de protección) Terreno natural2α

hr

a) Zanja con paredes verticales con (izquierda) y sin

(derecha) entibación

b) Zanja con paredes inclinadas

Figura 3.15. Términos, definiciones y símbolos utilizados (Op2)

3.3.3 NOMENCLATURA

A continuación se presentan los parámetros de entrada y salida utilizados en el desarrollo

metodológico de la opción 2, con una breve descripción de su significado, las unidades

Page 165: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 137 -

habituales en que se expresa, así como una referencia del apartado, tabla y/o figura donde

se define.

Parámetro Descripción Unidades Referencia apartado tabla figura

A0 coeficiente de amplificación por ovalización de 2º orden

- ec. 3.192 - -

atraffic coeficiente de corrección - ec. 3.181 - -

B/b ancho de zanja en la clave superior del tubo m - - 3.15

C0 coeficiente de carga (ver también η) - 3.3.7.1 - -

C coeficiente de concentración por el efecto silo - 3.3.7.1 - -

C1 coeficiente de concentración por el efecto silo - ec.3.178a - -

C2 coeficiente de concentración por el efecto silo - ec.3.178b - -

CS coeficiente de reducción por retirada de la entibación

- - 3.32 -

CW coeficiente de reducción por presencia de agua - - 3.31 -

CK1 coeficiente de reducción de k1 por retirada de la entibación

- - 3.33 -

De diámetro exterior m - - 3.15

Di diámetro interior m - - -

Dm diámetro medio m - - -

Dpr Grado de compactación % - 3.30 -

E módulo de elasticidad del material del tubo MPa - - -

Ei módulo de elasticidad del material del tubo a corto plazo

MPa 3.3.4.1 - -

E*s módulo del relleno de protección base MPa - 3.30 -

Es módulo del relleno de protección después de la corrección

MPa 3.3.5 - -

Et módulo de elasticidad del material del tubo a largo plazo

MPa 3.3.4.1 - -

FCC carga de fisuración kN/m 3.3.13.3 - -

FCR carga de rotura kN/m 3.3.13.2 - -

GS grupo de suelo - - 3.29 -

H altura de cobertura m - - 3.15

hw altura del nivel freático por encima de la clave superior del tubo

m 3.15

I momento de inercia de la pared del tubo m4/m ec. 3.172 - -

J(n0) coeficiente para fuerzas axiales en el punto medio del tubo

- 3.3.11.2 - -

Kα coeficiente de distribución de esfuerzos para el cálculo del momento

- ec. 3.195 - -

K*1 coeficiente cizalladura base - - 3.30 -

K1 coeficiente cizalladura después de las correcciones

- ec. 3.170 - -

K*2 coeficiente de presión horizontal base - - 3.30 -

K2 coeficiente de presión horizontal después de las correcciones

- ec. 3.169 - -

kα coeficiente de deformación - ec. 3.191 - -

Kαc coeficiente de distribución de esfuerzos en coronación (C)

- ec.

3.195a - -

Kαs coeficiente de distribución de esfuerzos en el punto medio (S)

- ec.

3.195b - -

Kαb coeficiente de distribución de esfuerzos en la base (B)

- ec.

3.195c - -

M momento flector kNm/m 3.3.11 - -

MC momento flector resistente kNm/m ec. 3.210 - -

MS momento flector de servicio kNm/m 3.3.13.3.1 - -

Mu momento flector último kNm/m 3.3.13.2.1 - -

N fuerza axial kN/m 3.3.11.2 - -

n0 número de ondas de pandeo - 3.3.12 - -

OV1 ovalización vertical producida por el componente m ec. - -

Page 166: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 138 -

Parámetro Descripción Unidades Referencia apartado tabla figura

desviador 3.190a

OV2 ovalización vertical producida por la componente de carga esférica

m ec.

3.190b - -

P presión vertical máxima de las cargas de servicio kN/m2 ec. 3.179 - -

P presión exterior media kN/m2 3.3.9.4 - -

pcr presión crítica de colapso kN/m2 ec. 3.204 - -

pC presión máxima por cargas de construcción kN/m2 3.3.7.2.3 - -

ph presión horizontal resultante kN/m2 ec. 3.186 - -

p0 presión vertical por cargas uniformemente distribuidas

kN/m2 3.3.7.2.2 - -

pp presión vertical por cargas de servicio/superficiales kN/m2 ec. 3.184 - -

ps presión vertical por peso del relleno kN/m2 ec. 3.177 - -

pt,v presión vertical por carga de tráfico kN/m2 ec. 3.180 - -

pu presión media última kN/m2 3.3.13 - -

pv presión vertical total kN/m2 ec. 3.185 - -

pvu presión vertical última kN/m2 3.3.13 - -

pw presión interior de servicio kN/m2 3.3.9.4 - -

pwe presión exterior por la presencia del nivel freático kN/m2 ec. 187 - -

S rigidez anular del tubo kN/m2 ec. 3.171 - -

Sc criterio de rigidez relativa - ec. 3.175 - -

Sc* criterio de rigidez - ec. 3.176 - -

Si rigidez del tubo a corto plazo kN/m2 ec. 3.173 - -

St rigidez del tubo a largo plazo kN/m2 ec. 3.174 - -

t espesor de la pared del tubo m - - -

ts anchura del entibado m - - 3.15

Z2 variable auxiliar - - - -

2α* ángulo de apoyo base º - 3.30 -

2α ángulo de apoyo después de la corrección º ec. 3.168 - -

δ0 deflexión horizontal inicial m 3.3.10 - -

δDv reducción del diámetro vertical m 3.3.10 - -

ε deformación máxima en la pared del tubo - ec. 3.201 - -

εf deformación por flexión en la pared del tubo - ec. 3.202

a, b - -

εt deformación axial en la pared del tubo - ec. 3.203

a, b - -

εc deformación característica por flexión en la pared del tubo

- 3.3.13.2.1 - -

γs peso específico del relleno kN/m3 - - -

γss peso específico del relleno sumergido kN/m3 - - -

γA coeficiente de seguridad en combinaciones de carga

- - 3.34 -

γcr coeficiente de seguridad frente a pandeo - 3.3.13.2.1 - -

γM coeficiente de seguridad frente a esfuerzos del material del tubo

- - 3.34 -

η coeficiente de carga - 3.3.11 - -

νS coeficiente de Poisson del relleno de protección - - - -

ν coeficiente de Poisson del material del tubo - - - -

σ tensión máxima en la pared del tubo kN/m2 3.3.11.3 - -

σ1 parte de σ que depende de pv y p kN/m2 ec.3.200a - -

σ2 parte de σ que depende de δ0 kN/m2 ec.3.200b - -

σc tensión característica por flexión en la pared de la tubería

kN/m2 3.3.13.2.1 - -

σu tensión última kN/m2 3.3.13.2.1 - -

ψ coeficiente de reducción para las tensiones en tuberías sometidas a presión interna

- ec. 3.199 - -

Tabla 3.28. Nomenclatura de la opción 2

Page 167: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 139 -

3.3.4 CONDICIONES DE INSTALACIÓN

Este capítulo cubre los siguientes temas relativos a las condiciones de instalación:

- Clasificación del suelo

- Relleno de protección y camas de apoyo

- Compactación

- Parámetros de cálculo relativos a la instalación

Los parámetros de cálculo correspondientes se dan en tablas al final de este capítulo.

3.3.4.1. Clasificación del suelo

En la opción 2 se consideran tres grupos principales de suelos que constituyen los

diferentes grupos donde se identificarán el relleno y el terreno inalterado:

- Suelos preparados de forma especial (SP1, SP2 y SP3)

- Suelos naturales encontrados comúnmente (SN1, SN2, SN3)

- Suelos malos, prohibidos en la zona de relleno (SB1, SB2)

En la tabla 3.29 figura la descripción precisa de cada tipo de suelo.

Nr Tipo Descripción

0 SP1 Material granular con cemento (suelo cemento)

1 SP2 Gravas y suelos granulares con predominio del tamaño grava

2 SP3 Gravas o mezcla de gravas y arenas, suelos granulares con predominio de arenas, así

como arenas y mezcla de arenas y gravas.

3 SN1 Suelo granular mixto con una pequeña fracción de finos y una cohesión moderada

(Arenas limosas)

4 SN2 Suelo granular mixto con una alta fracción de finos y una cohesión moderada (Arcillas

arenosas)

5 SN3 Suelos cohesivos con una granulometría fina (Arcillas)

6 SB1 Suelos orgánicos (suelos granulares mixtos con humus o yeso, arcillas orgánicas)

7 SB2 Suelos orgánicos (turba u otros suelos con alto contenido orgánico

Tabla 3.29. Descripción de los tipos de suelo (Op2)

3.3.4.2. Tipo de instalación

Los diversos tipos de instalación que se describen en esta opción se han seleccionado con

objeto de proporcionar suficientes casos para cubrir los requisitos más usuales. Sin

embargo, en el dimensionamiento de tuberías enterradas se deben considerar si las

circunstancias particulares de cada instalación requieren soluciones especiales que no estén

especificadas entre los modelos de instalación propuestos.

Page 168: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 140 -

La capacidad de carga de una tubería es una combinación de la resistencia o de la rigidez

de las tuberías, y del apoyo proporcionado por el relleno de protección.

La resistencia de las tuberías se obtiene durante la fabricación de éstas y, normalmente, se

verifica de acuerdo con la norma específica de producto. Sin embargo, la resistencia de los

rellenos de protección de la tubería es una función del material de relleno y de los

procedimientos de construcción. Por ello no es prudente especificar un tipo de relleno de

protección y un material de éste que requiera una calidad de trabajo que no se pueda

obtener a pie de obra.

También hay que asegurarse que se adoptan rellenos de protección compatibles con el

terreno original en el que se va a instalar la tubería. Por ejemplo, que el relleno de

protección no interfiera con los niveles o movimientos de aguas subterráneas existentes

previamente en el terreno, debido a que, en caso de no ser protegido, se terminarían

introduciendo partículas de finos del suelo entre los intersticios del material del relleno

debilitando tanto al suelo circundante como al propio material de relleno.

La Opción 2 especifica los siguientes tipos de instalación que se muestran en la figura 3.16:

- Instalación tipo T1A. La tubería presenta un relleno de protección uniforme

alrededor de toda la tubería.

- Instalación tipo T1B. La tubería presenta un relleno de protección uniforme hasta

los arranques de la misma.

- Instalación tipoT2. La tubería presenta una cama de apoyo inferior preparada de

forma especial.

- Instalación tipo T3. La tubería descansa directamente sobre el fondo de la zanja

(preparado o sin preparar).

- Instalación tipo T4. La tubería se apoya en una cuna de hormigón.

T1A T1B T2 T3 T4

Figura 3.16. Tipos de instalación (Op2)

Page 169: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 141 -

La instalación tipo (T1A) con una buena compactación es la que, normalmente, se

recomienda para tuberías flexibles, tales como tuberías metálicas (acero y fundición) y de

material plástico (PE, PVC y PRFV).

Con las tuberías flexibles, la parte más importante de la instalación es la ejecución del

relleno de protección de la tubería, por lo que el objetivo básico es garantizar que los

materiales del relleno de protección se colocen en contacto con toda la circunferencia de la

tubería, y con un nivel de compactación adecuado al módulo del relleno requerido por el

diseño.

Los ángulos de la cama de apoyo y los módulos del relleno correspondientes a estos tipos

de instalación se dan en el apartado "3.3.5 Parámetros del suelo".

3.3.4.3. Compactación

Con objeto de conseguir la densidad requerida, la mayoría de los materiales del relleno

requieren compactación mecánica. La cantidad de energía de compactación que se debe

aplicar para conseguir que el material adquiera una densidad particular y, por lo tanto, los

módulos requeridos, depende del tipo de relleno y del contenido de humedad.

Durante la compactación del relleno de la tubería, parte de la energía aplicada será

absorbida por el terreno natural del fondo y de los laterales de la zanja. La energía restante

será absorbida por la tubería, que la almacenará como energía de deformación. Este último

efecto puede producir una ovalización vertical cuando se trate de tuberías flexibles. Esto

también podría conducir muy fácilmente a deformaciones no elípticas incontroladas de tales

tuberías. Por esta razón, no siempre se pueden conseguir altos niveles de compactación en

el caso de tuberías flexibles de diámetros pequeños.

Para reducir la cantidad de energía de compactación absorbida por una tubería flexible, se

pueden puede establecer las siguientes especificaciones:

1) Colocación del material del relleno de protección en capas finas, cada una de ellas

compactada mediante un número grande de pasadas de compactación relativamente

suaves.

2) Empleo de materiales del relleno de protección que requieran solamente una

cantidad pequeña de energía de compactación para alcanzar un alto grado de

compactación

3) Empleo de tuberías de alta rigidez

En cualquier caso, se debe asegurar que la rigidez de tubería elegida, los materiales del

relleno de protección y los procedimientos de compactación sean compatibles entre sí, con

los objetivos del diseño y también con la supervisión proporcionada a pie de obra.

Page 170: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 142 -

El grado de compactación alcanzado y las propiedades del suelo pueden estar fuertemente

influenciados cuando se utiliza entibación de la pared de la zanja. El grado de influencia

depende de si la entibación se retira durante o después de realizar las operaciones de

relleno y de compactación (ver tablas 3.32 y 3.33).

3.3.5 PARÁMETROS DEL SUELO

Una vez definidas las características mecánicas de la tubería a dimensionar y las

características de la instalación, profundidad, tipo de instalación, tipo de terreno natural y

relleno de protección y nivel de compactación, se definen los parámetros básicos de cálculo.

Partiendo de la instalación definida, tipo de relleno y nivel de compactación, se obtienen los

parámetros 2α*, E*

s y K*2 de la tabla 3.30, tanto del relleno de protección como del terreno

inalterado.

Ins. Gs Clase Dpr 2α* Es* K1

* K2* Notas

0 SP1. Suelo

cemento - - 20,00 0,15 0,50 -

No 85/90 60 2,50 0,15 0,35

Moderado 90/92 90 5,00 0,15 0,35 1 SP2 (especial)

Gravas Bien 95 120 7,50 0,15 0,50

Inalterado - - 4,00 - -

No <85 60 0,70 0,15 0,15

Moderado 85/90 90 2,00 0,15 0,35 2

SP3 (especial)

Arenas

Bien 90/92 120 5,00 0,15 0,50

Inalterado - - 2,00 - -

No <85 60 0,60 0,15 0,15

Moderado 85/90 90 1,20 0,15 0,35 3

SN1 (normal)

Arenas

limosas Bien 90/92 120 3,00 0,15 0,50

Inalterado - - 1,50 - -

No <85 60 0,50 0,15 0,00

Moderado 85/90 90 1,00 0,15 0,15 4

SN2 (normal)

Arcilla arenosa

Bien 90/92 90 2,50 0,15 0,15

Inalterado - - 0,60 - -

No <85 60 <0,30 0,15 0,00

Moderado 85/90 60 0,60 0,15 0,00 5

SN3 (normal)

Arcillas

Bien 90/92 60 0,60 0,15 0,00

6 SB1:orgánicos Inalterado - - 0,50 - - Prohibido en rellenos

T1A

7 SB2:orgánicos Inalterado - - 0,00 - - Prohibido en rellenos

T1B

Según el material de la cama

de apoyo y el nivel de

compactación (ver T1A)

El valor medio entre los

dos materiales (ver

valores T1A)

T2 60 Ver valores T1A Solo para tuberías

rígidas y semirrígidas

T3 30 Ver valores T1A Solo para tub. rígidas

T4 - 20 Solo para tub. rígidas

Tabla 3.30. Propiedades del suelo y parámetros de instalación (Op2)

Page 171: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 143 -

3.3.5.1. Modificación de los parámetros del suelo

Los parámetros definidos en la tabla 3.30, se ven afectados por una serie de coeficientes

que reducen su valor, por la anchura de zanja, presencia de nivel freático y la existencia, y

proceso de retirada de la entibación en zanja.

A) Corrección del módulo del suelo por la anchura de zanja

Una vez definido el módulo presiométrico del suelo a partir de la tabla 3.30, se calcula el

módulo de cálculo E*s del siguiente modo:

h

b

Zona baja

(relleno de protección) Terreno natural

E2

E1

Zona alta

(relleno superior)

E3

1

2

3

De

Figura 3.17. Esquema de las zonas en una instalación en zanja (Op2)

- Si la relación entre la anchura de la zanja (b) y el diámetro exterior (De) es mayor o

igual a 4, el terreno natural (3) no afecta al relleno de protección (2), (ver ec.

(3.166a)).

- En otros casos:

Si el módulo (E2) de la zona (2) es superior al módulo (E3) de la zona (3), y en

ausencia de un geotextil, el cálculo del módulo (E*s) se efectúa según la fórmula

(3.166b).

Si el módulo (E2) de la zona (2) es inferior al módulo (E3) de la zona (3), es el

módulo de la zona (2) quién se mantiene, cualquiera que sea la anchura de la

zanja. (ver ec. (3.166c)).

Page 172: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 144 -

Resumiendo, las fórmulas que definen el valor del E*s son:

Si 4≥eD

b 2

*EEs = (3.166a)

Si 4<eD

b si 32 EE >

−+=

31 32

3

* EE

D

bEE

e

s (3.166b)

si 32 EE < 2

*EEs = (3.166c)

donde: E*s, modulo de cálculo (sin reducciones) (kN/m2)

E2, modulo del relleno de protección (kN/m2)

E3, modulo del terreno inalterado (kN/m2)

b, ancho de zanja en la clave superior del tubo (m)

De, diámetro exterior (m)

B) Reducción debida al nivel freático

Cuando afecte el nivel freático a la tubería, los valores base de (2α*, Es

* y K2*) se deben

multiplicar por el coeficiente de reducción (Cw)25dado en la tabla 3.31.

Material de relleno Cw

Gs0, Gs1, Gs2 1,00

Gs3 0,75

Gs4 0,75

Gs5 0,50

Tabla 3.31. Coeficiente de reducción Cw debido al nivel freático (Op2)

C) Reducción debida a la retirada de la entibación

Cuando se utiliza la entibación de la pared de la zanja, los valores de (2α*, Es* y K2*) se

deben reducir de acuerdo con el coeficiente (Cs) dado en la tabla 3.32.

Tipo de retirada de soporte (B-De)/b≤6 6<(B-De)/b≤26 26≤ (B-De)/b

Retirada antes de compactar cada capa 1,00 1,00 1,00

Retirada después de compactar cada capa 0,60 2(B-De)/100b+0,48 1,00

Retirada después de compactar toda la zanja 0,20 4(B-De)/100b-0,04 1,00

Tabla 3.32. Coeficiente de reducción Cs debido a la retirada de la entibación de la pared de la zanja (Op2)

25

Si se dispone de un geotextil anticontaminante, el coeficiente Cw , para el cálculo de Es, es en todos los casos

igual a 1

Page 173: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 145 -

El coeficiente de cizalladura base (K1*) también está influenciado por la retirada de la

entibación de la pared de la zanja. De este modo (K1*) se multiplica por un coeficiente de

reducción (Ck1), cuyos valores se dan en la tabla 3.33.

Tipo de retirada de soporte Ck1

Retirada antes de compactar cada capa 1,00

Retirada después de compactar cada capa 0,60

Retirada después de compactar toda la zanja 0,20

Tabla 3.33. Coeficiente de reducción Ck1 debido a la retirada de la entibación de la pared de la zanja (Op2)

3.3.5.2. Valores de los parámetros después de la corrección

*.. ssws ECCE = (3.167)

*2..2 αα sw CC= (3.168)

*

22 .. KCCK sw= (3.169)

*

111 .KCK k= (3.170)

donde: Cw, coeficiente de reducción por presencia de agua

Cs, coeficiente de reducción por la retirada de la entibación

Ck1, coeficiente de reducción de (K1) por la retirada de la entibación

3.3.6 RIGIDEZ DEL SISTEMA TUBERÍA/TERRENO

Con objeto de obtener el comportamiento del conjunto de la tubería y el terreno y poder

evaluar de este modo, el coeficiente de concentración de cargas, se define la rigidez del

sistema tubería/terreno a partir de las características mecánicas del tubo y del módulo del

relleno.

El parámetro que define la rigidez del tubo se denomina rigidez anular (S) y se debe obtener

de las normas de producto. Cuando el material de la tubería es homogéneo, la rigidez anular

de la tubería (S) se define como:

( ) 321 mD

EIS

ν−= (3.171)

donde: E, modulo de elasticidad del material del tubo (MPa)

I, momento de inercia de la pared del tubo (m4/m)

ν, coeficiente de Poisson del material del tubo

Dm, diámetro medio del tubo (m)

Page 174: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 146 -

Cuando la sección de pared de la tubería sea uniforme y de forma rectangular (1.t), el

momento de inercia se debe calcular aplicando la fórmula siguiente:

12

3t

I = (3.172)

donde: t, espesor de la pared del tubo (m)

Cuando el material de la tubería esté sometido a fluencia, las normas correspondientes

deben dar la rigidez o el modulo de elasticidad (S o E) tanto a corto como a largo plazo (Si o

Ei, para valores iniciales y St o Et para valores a largo plazo). Estos valores corresponden a

los valores iniciales divididos por el coeficiente de fluencia evaluado para la vida útil prevista.

( ) 321 m

i

iD

IES

ν−= (3.173)

i

t

itE

ESS = (3.174)

donde: Ei, modulo de elasticidad del material del tubo a corto plazo (MPa)

Et, modulo de elasticidad del material del tubo a largo plazo (MPa)

Si, rigidez del tubo a corto plazo (MPa)

St, rigidez del tubo a largo plazo (MPa)

Conocida la rigidez anular y el módulo del relleno, se define el criterio de rigidez relativa

mediante el parámetro Sc:

( )218 s

s

cS

ES

ν−= (3.175)

donde: Sc, criterio de rigidez relativa del sistema tubería/terreno

Es, modulo de elasticidad del suelo (kN/m2)

S, rigidez del tubo (kN/m2)

νs, coeficiente de Poisson del relleno de protección

El comportamiento del sistema tubería/terreno es rígido, cuando Sc ≤ 9; semiflexible, cuando

9 < Sc < 24; y flexible cuando Sc 24. Por ello, para simplificar, se utiliza un criterio de

rigidez Sc* tal que,

cc SS −= 9*

(3.176)

De manera que la tubería se considera rígida cuando Sc* ≥ 0.

Page 175: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 147 -

3.3.7 CARGAS INICIALES

La carga total está constituida por las siguientes cargas y las subsiguientes deformaciones

impuestas para los casos de carga externa y de carga externa combinada con presión

interna:

Hipótesis de carga A. Solo cargas externas

- presión vertical del relleno (ps)

- presión vertical debida a las cargas de servicio: (pT) debida a cargas de tráfico, (pp)

debida a cargas de superficie permanentes, o (pc) debidas a cargas de construcción

- presión horizontal (ph), debida a las cargas del suelo y a las cargas de servicio

- presión del agua externa (pwe), debida a la posible presencia de una capa de agua

freática

B. Cargas externas más presión interna

- presión vertical del relleno (ps)

- presión vertical debida a las cargas de servicio: (pT) debida a cargas de tráfico, (pp)

debida a cargas de superficie permanentes, o (pc) debidas a cargas de construcción

- presión horizontal (ph) debida a las cargas del relleno y a las cargas de servicio

- presión del agua externa (pwe) debida a la posible presencia de una capa de agua

freática

- presión interior del fluido (pw) contenido en la tubería

3.3.7.1. Carga del relleno

La presión vertical del relleno (ps) es igual a la presión debida al prisma de tierras situado

sobre la generatriz superior del tubo hasta el terreno natural, corregida por un coeficiente de

concentración C, y se distribuye uniformemente sobre el diámetro exterior de la tubería.

Por consiguiente, se tiene:

( )[ ]wsswss hhhCp γγ +−= (3.177)

donde:γs, peso específico del relleno (kN/m3)

γss, peso específico del relleno sumergido (kN/m3)

h, altura de cobertura, (m)

hw, altura del nivel freático por encima de la clave superior del tubo (m)

C, coeficiente de concentración

Page 176: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 148 -

A) Instalación en zanja - En el caso de conducciones con un comportamiento flexible (S*

c<0):

Se toma C = 1

- En el caso de conducciones con un comportamiento rígido (S*c>0):

Se efectúa el cálculo con ayuda del modelo de MARSTON.

Se obtiene el valor de C1 mediante la fórmula (3.178a)

−=

−b

hK

e

ehDK

bC

12

1

2

1 12

(3.178a)

Si C1 ≤ 1 se mantiene C = 1

Si no:

*Se calcula C2

−= 1

2

12

1

2b

hK

e ehK

DC (3.178b)

*Se toma C = Min (C1; C2).

B) Instalación en terraplén indefinido

- En el caso de conducciones con un comportamiento flexible (S*c<0):

Se toma C = 1

- En el caso de conducciones con un comportamiento rígido (S*c>0):

Se efectúa el cálculo con ayuda del modelo de MARSTON y se utiliza la ec. (3.178b).

3.3.7.2. Cargas de servicio

Esta presión vertical (p) es debida a tres cargas de servicio aplicadas en la parte superior de

la tubería:

- cargas de tráfico: pT,v

- cargas de superficie permanentes: pp

- cargas de construcción: pc

Estos parámetros se definen en los apartados siguientes y se combinan de la siguiente

manera:

( )cpvT pppp ,max , += (3.179)

Page 177: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 149 -

3.3.7.2.1. Cargas de tráfico

La carga vertical (pT,v) resultante de la carga de tráfico de carretera (pT) se puede calcular

como una función de la profundidad del recubrimiento y del diámetro de la tubería, aplicando

la siguiente fórmula:

A

ttrafficvt papγ

1, = (3.180)

donde: γA, coeficiente de seguridad que se define en el apartado 3.3.13. Dado que atraffic.pt

representa el Estado Límite de Servicio definido en la Norma EN 1991-2 y es casi

igual al tráfico definido en el Estado Límite Último del fascículo 70, atraffic.pt se debe

dividir por este coeficiente de seguridad γA para obtener un Estado Límite de Servicio

que sea equivalente al indicado en norma F-70.

atraffic, coeficiente de corrección tenido en cuenta para la distribución de la carga

sobre la tubería, especialmente en el caso de poca profundidad del recubrimiento, y

se debe calcular aplicando las siguientes fórmulas:

29,0

9,01

Zatraffic

+−= (3.181)

67,0

62

21,1

4

mD

hhZ

+= (3.182)

siendo: Z2, variable intermedia utilizada para el cálculo

h, altura de cobertura (m)

Dm, diámetro medio (m)

Para este procedimiento de cálculo, la profundidad mínima del recubrimiento bajo carretera

es de 0,6 m. En la fórmula (3.183) se incluye un coeficiente de impacto global.

La carga de tráfico (kN/m2) se calcula de acuerdo con la Norma UNE-EN 1991-2 (2004).

25,1

3,8−= hpt (3.183)

donde: pt, carga de tráfico (kN/m2)

h, altura de cobertura (m)

Page 178: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 150 -

3.3.7.2.2. Cargas superficiales

La presión vertical (pp) es debida a las cargas de servicio superficiales y en el caso

específico de colocación de capas en una zanja estrecha con cargas permanentes

distribuidas uniformemente (po), viene dada por:

bhK

op epp 12−= (3.184)

donde: po, carga uniformemente distribuida (kN/m2)

K1, coeficiente de cizalladura

h, altura de cobertura (m)

b, ancho de zanja en la clave superior del tubo (m)

3.3.7.2.3. Cargas de construcción

La presión vertical (pc) es la presión máxima debida a cargas de construcción eventuales.

3.3.7.3. Otras cargas

El peso propio y el peso del fluido exterior, por lo general, se ignoran en el cálculo y no

tienen una formulación específica en esta opción.

3.3.8 DISTRIBUCIÓN DE CARGAS

Al igual que la intensidad de las cargas, la distribución de éstas sobre la tubería tiene una

influencia muy importante en la respuesta estructural de la misma. Estas cargas inducen

deflexiones en la tubería y presiones de reacción del suelo. Esta reacción está influenciada

por la compactación del relleno de protección, del relleno superior y la ejecución de la cama

de apoyo de la tubería; es más, su intensidad depende de la magnitud de las deflexiones.

Dado que el modelo de cálculo aplicado en este apartado incluye la interacción

tubería/terreno, la interacción de la distribución de la presión del terreno y el relleno

constituye una parte integral de la respuesta del modelo. Estas cargas se denominan cargas

"iniciales".

No obstante, dado que la tubería y el relleno en la zona de influencia tienen diferentes

capacidades de deformación, las presiones verticales del relleno, a través de la zona

influenciada a nivel de la generatriz superior de la tubería, no se distribuyen uniformemente.

La consecuencia de esta falta de uniformidad se traduce en el coeficiente de concentración

de carga (C) para las diversas presiones del suelo.

Para un comportamiento rígido del sistema tubería/terreno, los asentamientos diferenciales

del relleno se producen en la zona situada en los lados de la tubería. Este efecto aumenta la

Page 179: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 151 -

presión vertical del suelo a partir del valor calculado e induce un coeficiente de

concentración C ≥ 1, por encima de la generatriz superior de la tubería (ver figura 3.18).

Para un comportamiento flexible del sistema tubería/suelo, los asentamientos diferenciales

del suelo se producen en la zona situada por encima de la tubería. Este efecto ya está

integrado en el modelo de cálculo. Por ello, en este caso, el coeficiente de concentración es

siempre C =1 (ver figura 3.19).

h

Superficie de terreno

Ci.γs.h + p

γs.h + p

Figura 3.18. Distribución de la presión vertical inicial del suelo para tuberías rígidas (Op2)

h

Superficie de terreno

γs.h + p

Figura 3.19. Distribución de la presión vertical inicial del suelo para tuberías flexibles (Op2)

Los siguientes cálculos no tienen en cuenta las cargas debidas a discontinuidades

longitudinales de la cama de apoyo (condiciones de apoyo aleatorias), y/o a las condiciones

de relleno inadecuadas que dan lugar a flexión longitudinal de las tuberías.

Page 180: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 152 -

3.3.9 PRESIONES RESULTANTES SOBRE LA TUBERÍA

Las presiones verticales (pv) se distribuyen simétricamente alrededor del eje vertical de la

tubería sobre toda la anchura de ésta y es aceptable asumir una distribución uniforme a lo

largo de toda la anchura de la misma (ver figura 3.20).

Reacción vertical en el

apoyo

Pv

Ph

Figura 3.20. Distribución de presiones circunferenciales para tuberías flexibles apoyadas

en cama de arena (Op2)

Las presiones horizontales (ph) se distribuyen simétricamente alrededor del eje horizontal de

la tubería sobre toda la altura de ésta y es aceptable asumir una distribución uniforme a lo

largo de toda la altura de la misma (ver figura 3.21).

Reacción vertical en el apoyo

en cuna de hormigón

Pv

Ph

Figura 3.21. Distribución de presiones circunferenciales para tuberías rígidas apoyadas

en cuna de hormigón (Op2)

Page 181: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 153 -

Se asume que las presiones de reacción debidas a cargas verticales se distribuyen por igual

dentro de la gama del ángulo de apoyo vertical 2α. Se asume que tales presiones de

reacción están dirigidas verticalmente tanto para tuberías apoyadas sobre cama granular,

como sobre cuna de hormigón (ver figuras 3.20 y 3.21).

3.3.9.1. Presión vertical

La presión vertical (pv) es la combinación de las siguientes presiones:

ppp sv += (3.185)

donde: ps, presión vertical del relleno (kN/m2)

p, presión vertical máxima de las cargas de servicio, donde p = max(pt,v + pp,pc)

3.3.9.2. Presión horizontal

La presión horizontal (ph) debida a cargas del relleno y a las cargas de servicio sobre la

tubería, se considera que es uniforme y se corresponde con el eje de la tubería:

vh pKp 2= (3.186)

donde: pv, presión vertical total (kN/m2)

K2, coeficiente de presión horizontal del suelo

3.3.9.3. Presión por agua externa

La tubería, si se instala bajo el nivel freático, se puede cargar con una presión externa (pwe)

que se considera uniforme e igual a la ejercida a nivel del punto medio (S).

+=

2

m

wwwe

Dhp γ (3.187)

donde: pwe, presión exterior por la presencia del nivel freático (kN/m2)

γw, peso específico del agua (kN/m3)

Dm, diámetro medio (m)

hw, altura del nivel freático respecto a la clave del tubo (m)

Normalmente, este tipo de carga se ignora en las tuberías que muestran comportamiento

rígido.

Page 182: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 154 -

3.3.9.4. Presión exterior media

Las distribuciones de la presión inicial del suelo, pv y ph, son equivalentes a la superposición

de las dos componentes:

- la componente de desvío, (pv – ph)/ 2, que induce la ovalización;

- la componente esférica, (pv + ph)/ 2, que aumenta la deflexión e inicia la forma de

pandeo.

Pv

Ph

α

X

Y

(pv – ph)/ 2 q1q2

(pv – ph)/ 2

(pv + ph)/ 2

(pv + ph)/ 2

α

α

a) Componente de desvío b) Componente esférica

Figura 3.22. Parámetros para el cálculo interactivo (Op2)

Para tubería sometida a cargas, externas, la presión exterior media que actúa sobre la

tubería sometida a cargas externas mas presión externa de agua, es:

we

hv ppp

p ++

=2

(3.188)

Para tubería sometida a cargas externas y presión interna, la presión exterior media que

actúa sobre la tubería sometida a cargas externas, más presión externa y presión interior del

fluido, es:

wwe

hv pppp

p −++

=2

(3.189)

donde: pv, presión vertical (kN/m2)

ph, presión horizontal (kN/m2)

pwe, presión exterior del agua (kN/m2)

pw, presión interior de servicio (kN/m2)

3.3.10 DEFLEXIÓN DE LA TUBERÍA

La ovalización (δDv/Dm) es la suma de los dos términos OV1 y OV2.

Page 183: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 155 -

( ) 3198

12

2

2

1pE

S

Kk

pOV

s

s

v

−−

+

=

ν

α

(3.190a)

( )mD

AOV 0

02 12δ

−= (3.190b)

donde: pv, presión vertical (kN/m2)

kα, coeficiente de deformación, cuya expresión es:

( )α

αα

απ

αα

π

αααπα

sensen

sensenk

12

coscos32

4

21

4

cos3

4824

132 +−

++

−−−

++= (3.191)

K2, coeficiente de carga horizontal del suelo

S, rigidez de la tubería (kN/m2)

Es, modulo del relleno (kN/m2)

νs, coeficiente de Poisson del relleno

A0, coeficiente de amplificación por ovalización de 2º orden

crppA

−=

1

10 (3.192)

pcr, presión critica de colapso (kN/m2)

δ0, deflexión inicial (m)

Dm, diámetro medio (m)

p , presión exterior media (kN/m2)

En el caso de que se produzca un comportamiento semiflexible del sistema tubería/terreno,

(9 < Sc < 24) la tubería se curva elípticamente y la ovalización se puede escribir de forma

simplificada, eliminando el segundo término (OV2), con un grado de precisión aceptable,

resultando ser igual a la expresión (3.190a).

3.3.11 MOMENTOS, FUERZAS AXIALES, TENSIONES Y DEFORMACIONES

3.3.11.1. Momentos de flexión

En la opción 2 sólo se define una ecuación del momento de flexión (correspondiente a su

valor máximo), si bien en realidad dicha ecuación es variable en función de un parámetro

Kαi, que es a su vez función del ángulo de apoyo (2α) y de la ubicación de la sección de

estudio, por lo que se considera oportuno incluir todas las ecuaciones que definen los

diferentes momentos en cada sección de estudio para su posterior comprobación con los

resultados obtenidos en la opción 1.

Page 184: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 156 -

3.3.11.1.1. Momentos de flexión en tuberías sometidas a cargas externas

Los momentos de flexión, al igual que el criterio utilizado en la opción 1, son positivos

cuando la superficie exterior está bajo compresión, y vienen dados por la siguiente

expresión general.

( )( )2

811

391

4

400

2

0

22

m

c

im

vi

DSAn

S

KK

DpM δ

η

α

−−+

−+

= (3.193a)

Para las tuberías de comportamiento rígido, la expresión (3.193a) se puede simplificar, al

poderse considerar los términos Sc, η y (A0-1) despreciables, mediante la siguiente

expresión:

−=

44

2

2K

KD

pM i

m

vi α (3.193b)

donde: Mi, momento flector en la sección i de estudio (kN.m/m)

pv, presión vertical (kN/m2)

Dm, diámetro medio (m)

Kαi, coeficiente de distribución de esfuerzos, función del ángulo de apoyo 2α y de la

sección de cálculo (ver 3.195a, 3.195b y 3.195c)

K2, coeficiente de presión horizontal del relleno

Sc, criterio de rigidez relativa

n0, número de ondas de pandeo

A0, coeficiente de amplificación por ovalización de 2º orden

S, rigidez del tubo (kN/m2)

δ0, deflexión inicial (m)

η, coeficiente de carga

S

p

8=η (3.194)

La expresión anterior tiene que ser particularizada en función de la sección de cálculo (base

(B), punto medio (S) y coronación (C)) mediante el parámetro Kαi:

C:

+−++=

3

cos

84cos

4

3

2

12 απ

α

ααα

α

πα

sensenK t (3.195a)

S:

−++−=

8

5

4cos

4

3

2

1 π

α

ααα

α

πα

sensenK s (3.195b)

Page 185: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 157 -

B:

−−+++= α

παπ

α

ααα

α

πα sen

sensenK b

23

cos

8

3

4cos

4

3

2

12

(3.195c)

donde: 2α ángulo de apoyo, expresado en radianes

y estableciendo que los momentos en base (B) y coronación (C) mantienen el signo definido

por la expresión (3.193a), pero el momento en el punto medio cambia el signo de la citada

expresión, es decir, que (MB = MC = Mi y MS = - Mi)

3.3.11.1.2. Momentos en tuberías sometidas a cargas externas y presión interna

Los momentos de flexión se calculan mediante las fórmulas (3.193) a (3.195c) dadas en el

apartado 3.3.9.1, con los parámetros (η, A0) calculados para la hipótesis de carga inicial.

3.3.11.2. Fuerzas axiales

La opción 2 define la formulación de los esfuerzos axiles en los tres puntos de estudio (base

(B), punto medio (S) y coronación (C)), lo que refuerza la hipótesis de que la expresión

inicial para el cálculo de los momentos no sea única sino variable y dependiente del

parámetro (Kαi).

3.3.11.2.1. Fuerzas axiales en tuberías sometidas a cargas externas

Las fuerzas axiales en las secciones principales (base (B), punto medio (S) y coronación

(C)), son positivas para compresión en la opción 2, si bien para poder ser comparadas con

los resultados obtenidos de la opción 1 se les asigna un cambio de signo de forma que se

convierten en positivas para tracción, con lo que vienen dadas por las siguientes

expresiones:

C. ( )( )

−−+

−+

−−

−−−= 00

2

0

2 811

391

222

1

22δ

ηαα SAn

S

KKDpKDp

DpN

c

btmvm

v

m

t (3.196a)

S. ( )( )

−−−

−+−= )(00

2

0

2

0811

2

1

22n

m

v

m

s JSAnKD

pD

pN δ (3.196b)

B. ( )( )

−−−+

−+

−+

−−−= 00

2

0

2 811)1(

391

222

1

22

0 δηαα SAn

S

KKDpKDp

DpN

n

c

btmvm

v

m

b (3.196b)

donde: J(n0) = 0, si n0 es un número entero impar y 2)(

0

0)1(

n

nJ −= , si n0 es un número entero par

Page 186: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 158 -

Kαi, coeficiente de distribución de esfuerzos función del ángulo de apoyo 2α y de la

sección de cálculo (ver 3.195a, 3.195b y 3.195c)

El resto de parámetros se han definido anteriormente

3.3.11.2.2. Fuerzas axiales en tuberías sometidas a cargas externas y presión interna

Las fuerzas axiales en las secciones principales, se calculan mediante las fórmulas (3.196a)

a (3.196c), con los parámetros (η, A0) calculados para la hipótesis de carga inicial.

3.3.11.3. Tensiones

La opción 2 define una única expresión para la determinación de la tensión máxima.

Siguiendo con el criterio anteriormente expuesto se han desarrollado aquí todas las

expresiones necesarias para definir las tensiones en los tres puntos de estudio (base (B),

punto medio (S) y coronación (C)) para las hipótesis de carga A y B (apartado 3.3.7 “Cargas

iniciales”).

3.3.11.3.1. Tensiones en tuberías sometidas a cargas externas

Si el material de la tubería es homogéneo en toda la sección, la tensión es ( εσ E= ), que en

función del momento y el axil se puede expresar para cualquiera de los tres puntos de

estudio (i) como:

t

N

tM i

ii +−

=2

21

σ (3.197)

donde: Mi, momento flector en la sección i (kN.m/m)

ν, coeficiente de Poisson del tubo

t, espesor de la pared del tubo (m)

Ni, esfuerzo axil en la sección i (kN/m)

Si el material de la tubería no es homogéneo, la evaluación de los esfuerzos se realiza de

acuerdo con el análisis estructural de cada sección de forma particularizada.

3.3.11.3.2. Tensiones en tuberías sometidas a cargas externas y presión interior

Las tensiones para las condiciones a corto y largo plazo, se deben calcular aplicando las

fórmulas siguientes:

( ) ( )t

Dppp mw

ivii2

, 02,1, ++= δσψσσ (3.198)

donde: ψ, coeficiente de reducción cuya expresión es la siguiente:

Page 187: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 159 -

( )

( ) 3198

198

2

2

w

s

s

s

s

pES

ES

+−

+

−+

=

ν

νψ (3.199)

σ1(p,pv), σ2(δ0), tensiones producidas por las cargas existentes y la deformación

inicial, respectivamente, y se calculan mediante las siguientes expresiones (N/mm2)

( )t

N

tMpp v

v

ppi

pivi

,,

2

2

,1,

16, +

−=

νσ (3.200a)

( )t

N

tM

i

ii

0

0

,

2

2

,02,

16

δ

δ

νδσ +

−= (3.200b)

3.3.11.4. Deformaciones

3.3.11.4.1. Deformaciones en tuberías sometidas a cargas externas

En cada sección, la deformación es la suma de la deformación por flexión εf evaluada sobre

la superficie interior, y de la deformación axial εt, idéntica en toda la sección.

tf εεε += (3.201)

La deformación por flexión εf viene dada, en función del momento flector, por la siguiente

expresión:

2

21

6Et

M if

νε

−= (3.202)

donde: Mi, momento flector en la sección i (kN.m/m)

ν, coeficiente de Poisson del tubo

E, módulo de elasticidad del material del tubo

t, espesor de la pared del tubo (m)

S; rigidez anular del tubo (kPa)

La deformación axial εt viene dada por:

Et

N i

t =ε (3.203)

donde: Ni, esfuerzo axil en la sección i (kN/m)

Page 188: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 160 -

3.3.11.4.2. Deformaciones en tuberías sometidas a cargas externas y presión interior

Si el material de la tubería es homogéneo en toda la sección, la deformación se puede

obtener combinando las expresiones definidas anteriormente (3.202 y 3.203).

Si el material de la tubería no es homogéneo, la evaluación de las deformaciones se realiza

de acuerdo con el análisis estructural de cada sección de forma particularizada.

3.3.12 CARGAS CRÍTICAS DE PANDEO

La presión crítica de pandeo, se calcula mediante la siguiente fórmula:

( )( )( )22

0

2

011

18s

s

crn

ESnp

ν−−+−= (3.204)

donde: n0, número de ondas de pandeo

S, rigidez del tubo (kN/m2)

Es, modulo del relleno (kN/m2)

νs, coeficiente de Poisson del relleno

Siendo n0 un número entero mayor o igual a dos, que minimiza la fórmula anterior. Cuando

n0 es suficientemente grande (n0 ≥ 4), la fórmula anterior es equivalente a la siguiente

expresión:

( ) 321

32

ms

s

crD

EIEp

υ−= (3.205)

muy similar a la denominada fórmula de LUSCHER, U. (1966).

3.3.13 COEFICIENTES DE SEGURIDAD CALCULADOS

En el caso de tuberías que funcionan a presión, los cálculos de los estados límites de

servicio y último se deben realizar para los dos casos de carga siguientes:

- Tuberías sometidas exclusivamente a cargas externas

- Tuberías sometidas a cargas externas mas presión interna

3.3.13.1. Definición de los estados límites

El principio de seguridad general consiste en garantizar que estos estados límites no se

exceden, a pesar de las variaciones aleatorias que afectan a las características de los

materiales, definidas por sus valores característicos y a los valores de las cargas.

Page 189: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 161 -

Se deben considerar dos estados límites principales:

- Estado límite último, que corresponde al alcance de la capacidad máxima de carga

y que, por tanto, afecta a la resistencia mecánica y/o a la estabilidad de pandeo.

- Estado límite de servicio, son aquellos que si se exceden comprometen el

funcionamiento normal y las condiciones de durabilidad, por ejemplo, produciendo

agrietamiento u ovalización excesivos.

En ciertos casos especiales, que quedan fuera del ámbito de esta tesis, se debe tener en

consideración adicionalmente, el estado límite de fatiga que requiere cálculos específicos

para su determinación.

3.3.13.2. Comprobación del estado límite último

Cada comprobación se debe realizar a largo plazo, si bien algunas de ellas también se

realizan a corto plazo.

Las cargas existentes aplicadas serán bien sólo las cargas externas, para tuberías sin

presión, o bien las cargas externas más las presión interna, para tuberías con presión

interna.

Dependiendo del comportamiento rígido o flexible de la tubería, las comprobaciones se

realizan aplicando:

- Para comportamiento rígido: la resistencia instantánea (fuerza, momento o tensión)

- Para comportamiento flexible: la estabilidad al pandeo y la resistencia (tensión o

deformación).

3.3.13.2.1. Comprobación de la resistencia mecánica última

Esta comprobación consiste en demostrar que, bajo el efecto de las cargas existentes, la

carga resultante a largo plazo no excede la resistencia mecánica de referencia obtenida al

dividir la resistencia característica por un coeficiente de seguridad (γM). Para las tuberías que

se pueden inspeccionar (DN ≥ 1000) con posibilidad de rotura frágil o muy flexibles (rigidez <

0,010 MPa), γM se debe multiplicar por 1,1.

Aunque la opción 2 establece los valores de pvu y pu (multiplicando los parámetros pv y p por

un coeficiente γA que considera la posibilidad de que se superen las combinaciones de

carga) para calcular el momento último (Mu), se considera más correcto, obtener los valores

máximos del momento, tensión y deformación (Mmax, σmax y εmax) en las tres secciones de

estudio para las dos hipótesis de carga que se han calculado con anterioridad y con estos

resultados obtener los valores últimos, multiplicándolos por el coeficiente γA.

Page 190: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 162 -

max.MM Au γ= (3.206)

max.σγσ Au = (3.207)

max.εγε Au = (3.208)

Este procedimiento para calcular el momento último, es algo más conservador que el

establecido en informe técnico, pues el coeficiente γA afecta al término de la ecuación de

momentos, función de la deformación inicial, hecho que no ocurre en el planteamiento inicial

de la opción 2, al calcular el momento último en función de pvu y pu.

Los valores de γM y de γM. γA dados en la tabla 3.34 se deben cuantificar para cada tipo de

tubería según su material constitutivo.

γγγγM γγγγM. γγγγA26

Materiales

No visitable Visitable No visitable Visitable

Acero 1,20 1,20 1,50 1,50

Fundición 1,20 1,20 1,50 1,50

PVC y PE 1,70 1,87 2,12 2,33

PRFV 1,50 1,65 1,88 2,06

Hormigón 1,40 1,40 1,75 1,75

Tabla 3.34. Coeficientes de seguridad γM y de γM. γA (Op2)

Dependiendo del material de la tubería, las comprobaciones a realizar son las siguientes:

Materiales * A rotura A tensión A deformación A pandeo

Acero X X X

Fundición X X X

PVC y PE X X X

PRFV X X X

Hormigón X X

Tabla 3.35. Comprobaciones a estado límite último(Op2)

A) Comprobación de la carga de rotura y momento mínimo de rotura

FCR y MC deben cumplir lo siguiente:

u

m

MCR MD

F .2π

γ≥ (3.209)

uMC MM .γ≥ (3.210)

26

El valor del coeficiente γA para todos los casos es 1,25

Page 191: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 163 -

donde los valores de la carga mínima de rotura (FCR) y el momento mínimo de rotura (Mc) se

obtienen mediante el ensayo de aplastamiento o flexión transversal.

B) Comprobación de tensión y deformación máxima

La tensión y la deformación máxima calculada (σu y εu) debe cumplir que:

uMc σγσ ≥ (3.211)

uMc εγε ≥ (3.212)

donde los valores de la tensión y deformación característica garantizada (σc y εc) se definen

en la norma del producto. En caso de no disponer de la deformación característica, se

puede utilizar, como primera aproximación la expresión tradicional de la deformación de la

pared del tubo, (ver ec. 3.149)

C) Comprobación de la estabilidad al pandeo en estado límite

Las tuberías flexibles son propensas a inestabilidad por pandeo durante las fases de

instalación y servicio. Esta comprobación consiste en demostrar que, bajo el efecto de las

cargas externas (presión del suelo, cargas de servicio y presión del agua externa), la presión

resultante p no excede de la presión crítica de referencia de la tubería, obtenida dividiendo

la presión crítica pcr, definida en el apartado 3.3.12, por un coeficiente γcr = 2,5.

La presión crítica de colapso (pcr) debe cumplir lo siguiente:

pp crcr γ≥ (3.213)

donde: p , presión media (kN/m2)

pcr, presión crítica de colapso (kN/m2)

γcr, coeficiente de seguridad frente a pandeo, igual a 2.5

3.3.13.3. Comprobación de los estados límites de servicio

Esta comprobación consiste en demostrar que, bajo el efecto de las cargas existentes a

corto y largo plazo (que serán bien sólo las cargas externas, para tuberías sin presión, o

bien las cargas externas más las presión interna, para tuberías con presión interna), las

cargas resultantes no exceden las cargas correspondientes a los estados límites de servicio.

Dependiendo del material de la tubería, las comprobaciones a realizar son las siguientes:

Page 192: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 164 -

Materiales Fisuración Ovalización

Acero X

Fundición X

PVC y PE X

PRFV X

Hormigón X

Tabla 3.36. Comprobaciones a estado límite de servicio (Op2)

3.3.13.3.1. Estado límite de apertura de fisura

FCC debe cumplir lo siguiente:

s

m

cc MD

Fπ2

≥ (3.214)

donde: FCC, carga mínima garantizada de apertura de fisura admisible en servicio (kN)

Ms, momento de flexión en estado límite de servicio, (ver apartado 3.3.11 (kN.m/m))

Si el criterio a tener en cuenta es la iniciación de la fisura longitudinal, como es el caso del

hormigón armado, esta apertura máxima de fisura admisible es de 0,3 mm, para tuberías

con una capa de armadura, y de 0,5 mm, para tuberías con dos capas de armadura, y no se

permiten grietas circulares.

3.3.13.3.2. Estado límite de ovalización

La ovalización se calcula de acuerdo con lo indicado en el apartado 3.3.10 “Deflexión de la

tubería”. Se debe verificar su conformidad con la ovalización máxima admisible, de acuerdo

con las normas vigentes para cada tipo de tubería.

Como ejemplo, las tuberías de fundición con revestimiento de mortero de cemento

establecen la ovalización máxima admisible en un 4%.

3.3.14 RESUMEN DE LAS MEJORAS PROPUESTAS

A continuación se recogen en forma de resumen las mejoras propuestas en esta tesis al

modelo de cálculo basado en la opción 2 del informe técnico CEN/TR 1295-3 (2007).

1) Definición y desarrollo matemático de la corrección del módulo de reacción del

relleno por la anchura de zanja, obtenida de la norma FASCICULE 70 (2003)

(Aparado 3.3.5.1 “Modificación de los parámetros del suelo”)

Page 193: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 165 -

2) Establecimiento de las hipótesis de carga para los casos de tubería con presión

interna, anteriormente no especificados en la redacción de la opción 2 (Apartado

3.3.7 “Cargas iniciales”).

3) Formulación matemática de los coeficientes de Marston, para los casos de

instalación en zanja y terraplén indefinido, de forma que no sea necesario la

utilización de las figuras B.11 y B.12 del informe técnico CEN/TR 1295-3 (Apartado

3.3.7.1 “Cargas del relleno”).

4) Revisión de las cargas consideradas y redacción completa del apartado asociado a

las mismas, con una estructura más lógica y ordenada a la realizada en la actual

redacción del informe técnico (Apartado 3.3.7 “Cargas iniciales”).

5) Ampliación del procedimiento de cálculo de esfuerzos con la definición y desarrollo

matemático de los momentos en las tres secciones de estudio y reasignación de

signos en las expresiones de los axiles, de forma que los resultados obtenidos sean

comparables con los obtenidos por la opción 1 (Apartado 3.3.11 “Momentos,

esfuerzos axiles, tensiones y deformaciones”).

6) Nuevo procedimiento de cálculo de esfuerzos, tensiones y deformaciones para la

hipótesis de cargas externas con presión interna, cuya formulación en la redacción

original era prácticamente inexistente (Apartado 3.3.11 “Momentos, esfuerzos axiles,

tensiones y deformaciones”).

7) Nueva propuesta de cálculo para los momentos, tensiones y deformaciones últimas a

partir de los resultados de la sección pésima calculada mayorado con el coeficiente

γA, evitando de esta forma calcular el momento último a partir de una carga

mayorada como lo establece el procedimiento actual (Apartado 3.3.13.2.1

“Comprobación de la resistencia mecánica última”).

8) Realización de un programa de cálculo para el dimensionamiento de tuberías

enterradas siguiendo la metodología propuesta (ver ANEXO A).

3.4. MODELOS DE TUBERIA ENTERRADA SEGÚN CEN/TR 1295-3

Para estudiar el comportamiento de las dos opciones de cálculo definidas en el informe

técnico CEN/TR 1295-3 (2007) se han estudiado una serie de casos y se han resuelto

mediante el programa de cálculo definido en el ANEXO A y cuya justificación teórica se

recoge íntegramente a la largo del CAPÍTULO 3.

Page 194: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 166 -

3.4.1 CASOS ESTUDIADOS

Se han estudiado un total de 576 casos para valorar comportamiento de las dos opciones de

cálculo que cubren un amplio espectro de las instalaciones de tuberías más habituales que

se realizan en España. Para ello se ha supuesto la instalación de una tubería enterrada en

zanja con paredes verticales, de anchura variable, en función del diámetro exterior del tubo y

profundidad variable entre 1 y 5 m sometido a cargas de tráfico y sin afección del nivel

freático (Ver figura 3.23).

Se han estudiado tuberías de comportamiento flexible (Acero y Polietileno) con la instalación

tipo ET2, recomendada para este tipo de casos y para unos grupos de suelos intermedios

(Gs II) y (Gs IV) con unos niveles de compactación de muy buenos (W) a no compactados

(N), para poder observar el comportamiento en todo el rango de compactación. Por otro

lado, las tuberías de comportamiento rígido (Hormigón) se han estudiado para los tipos de

instalación ET1 y ET4, con los mismos grupos de suelo y los diferentes niveles de

compactación.

h

De

b = 2.De

h

De

b = 2.De

h

De

b = 2.De

ET 1 ET2 ET4

Figura 3.23. Esquemas de los casos estudiados en el ANEXO B (Op1 y Op2)

Se han estudiado para las dos opciones de cálculo (opción 1 y opción 2), para cada material

cuatro diámetros (Ver tabla 3.37) y para cada diámetro nueve alturas de instalación desde 1

m (mínima altura recomendada para la instalación de tuberías enterradas hasta 5 m, cada

0,5 m, a corto y largo plazo, con lo que el total de casos estudiados supera los quinientos.

Acero Polietileno Hormigón

De e DN e Di e

813

1013

1626

2032

7,10

9,50

11,90

17,50

250

500

1000

1600

9,60

19,10

38,20

61,20

500

1000

1500

2000

55

80

115

155

Tabla 3.37. Diámetros y espesores de las tuberías estudiadas (Op1 y Op2)

Page 195: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 167 -

A continuación se presenta un esquema resumido que representa todos los casos

estudiados: Materiales tipos de grupos grado de casos

instalación de suelo compact. estudiados

Acero W 72

TUBERÍAS FLEXIBLES ET2 II/IV N 72

Polietileno W 72

N 72

ET1 II/IV W 72

TUBERÍAS RÍGIDAS Hormigón N 72

cCCH ET4 II/IV W 72

N 72

3.4.2 RESULTADOS OBTENIDOS

Los resultados gráficos de todos los casos estudiados se han recogido en el ANEXO B. En

la propia memoria de la tesis sólo se han incorporado alguna de las salidas de resultados

gráficos que permiten aclarar las consideraciones realizadas en el análisis de resultados.

3.4.3 ANÁLISIS DE RESULTADOS

En líneas generales, los resultados de las dos opciones de cálculo son semejantes y se

pueden considerar ambos como válidos, si bien es necesario realizar un análisis

pormenorizado de los resultados obtenidos, con el fin de establecer las diferencias o

similitudes que pueden ser interesantes a la hora de realizar el modelo de elementos finitos.

3.4.3.1. Tubería de hormigón armado

Los resultados obtenidos responden al comportamiento típico de una tubería rígida:

ovalizaciones muy pequeñas que son prácticamente independientes de la profundidad de

instalación (dentro de los rangos de estudio) y del nivel de compactación del relleno (varían

entre 0,1% y 0,2% para las instalaciones ET1 y ET4); las tensiones son moderadas y no

sufren grandes variaciones a lo largo de las distintas profundidades de instalación, si bien

están influenciadas por el tipo de instalación seleccionado, debido a que en la instalación

tipo ET4 se reducen las tensiones máximas cerca de un 30% con respecto a las obtenidas

en la instalación tipo ET1; y por último las cargas críticas de pandeo son muy elevadas (23

MPa para DN 2.000) y prácticamente independientes de la altura de cobertura y del nivel de

compactación del relleno.

De forma más pormenorizada los resultados obtenidos en los estudios de ovalización,

estado tensional y cargas críticas han tenido el siguiente comportamiento:

Page 196: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 168 -

• Ovalización. Los resultados obtenidos son prácticamente independientes del tipo de

instalación (ET1 o ET4). Para el caso de tubería instalada con rellenos bien

compactados (W), la opción 2 establece valores de ovalización superiores a los

definidos por la opción 1, mientras que, para el caso de instalación con rellenos no

compactados (N), las ovalizaciones calculadas por una u otra opción son

prácticamente iguales. Por tanto, los resultados de ovalización, aunque difieren de

una opción a otra, son válidos, debido a que ambas opciones establecen valores que

no superan el 0,2%.

• Tensión por cargas externas. Los resultados obtenidos dependen del tipo de

instalación elegida. Para el caso de la instalación tipo ET1, las tensiones son

superiores a las definidas en la instalación tipo ET4 en las dos opciones de cálculo.

Para el caso de tubería instalada con rellenos bien compactados (W), la opción 1

establece tensiones máximas por cargas externas superiores a las definidas por la

opción 2 en instalaciones con una profundidad pequeña, mientras que, para el caso

de instalación con rellenos no compactados (N), este efecto se produce en todos los

casos estudiados.

Este efecto que se verá repetido en los análisis del resto de tuberías se debe a la

consideración, por parte de la opción 1, del modulo edométrico variable con la

profundidad, lo que al rigidizar el sistema tubería/suelo permite reducir las tensiones

sobre el tubo. En el caso de relleno no compactado, se puede apreciar que el citado

efecto se reduce y prácticamente son todos los casos estudiados donde la tensión

máxima obtenida por la opción 1 es mayor que la opción 2. Las tensiones máximas

están en todos los casos localizadas en la base de la tubería.

• Tensión por cargas externas más presión interna. Las tensiones máximas

producidas por las cargas externas más la presión interna se comportan de forma

análoga a lo descrito anteriormente.

• Carga crítica. Los resultados obtenidos a partir de las dos opciones de cálculo son

independientes del tipo de instalación y establecen valores del mismo orden de

magnitud, si bien en todos los casos el valor superior viene fijado por la opción 2.

Adicionalmente es interesante reseñar que los establecidos por la opción 1 son

prácticamente independientes de la altura de cobertura, cuando en realidad son

variables con la profundidad; este hecho se debe a que la rigidez de la tubería es lo

suficientemente grande, como para resultar despreciable frente a la variación de la

rigidez del relleno con la profundidad.

Se incluyen a continuación las figuras 3.24 a 3.29, que avalan las consideraciones

expuestas en este apartado.

Page 197: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 169 -

0,0

0

0,1

0

0,2

0

0,3

0

0,4

0

0,5

0

0,6

0

0,7

0

0,8

0

0,9

0

1,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)

DN

50

0 (

Op1

)D

N 1

000

(O

p1

)D

N 1

50

0 (

Op1

)D

N 2

00

0 (

Op1

)D

N 5

00 (

Op2

)D

N 1

000

(O

p2

)D

N 1

50

0 (

Op2

)D

N 2

00

0 (

Op2

)

Figura 3.24. Ovalizaciones por cargas externas a corto y largo plazo HA-ET1 W

(Tubería de Hormigón)

Page 198: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 170 -

0,0

0

0,1

0

0,2

0

0,3

0

0,4

0

0,5

0

0,6

0

0,7

0

0,8

0

0,9

0

1,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)

DN

50

0 (

Op1

)D

N 1

00

0 (

Op1

)D

N 1

50

0 (

Op1

)D

N 2

000

(O

p1)

DN

50

0 (

Op2

)D

N 1

00

0 (

Op2

)D

N 1

50

0 (

Op2

)D

N 2

000

(O

p2)

Figura 3.25. Ovalizaciones por cargas externas a corto y largo plazo HA-ET1 N

(Tubería de Hormigón)

Page 199: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 171 -

-20,0

0

-15,0

0

-10,0

0

-5,0

0

0,0

0

5,0

0

10,0

0

15,0

0

20,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 5

00 (

Op1)

C D

N 1

000 (

Op

1)

C D

N 1

500 (

Op1)

C D

N 2

000

(O

p1)

S D

N 5

00 (

Op1)

S D

N 1

00

0 (

Op1)

S D

N 1

500 (

Op1)

S D

N 2

000 (

Op1)

B D

N 5

00 (

Op1)

B D

N 1

00

0 (

Op1)

B D

N 1

500 (

Op1)

B D

N 2

000 (

Op1)

C D

N 5

00 (

Op2)

C D

N 1

000 (

Op

2)

C D

N 1

500 (

Op2)

C D

N 2

000

(O

p2)

S D

N 5

00 (

Op2)

S D

N 1

00

0 (

Op2)

S D

N 1

500 (

Op2)

S D

N 2

000 (

Op2)

B D

N 5

00 (

Op2)

B D

N 1

00

0 (

Op2)

B D

N 1

500 (

Op2)

B D

N 2

000 (

Op2)

Figura 3.26. Tensiones por cargas externas a corto y largo plazo HA-ET4 W

(Tubería de Hormigón)

Page 200: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 172 -

-20,0

0

-15,0

0

-10,0

0

-5,0

0

0,0

0

5,0

0

10,0

0

15,0

0

20,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 5

00 (

Op1)

C D

N 1

000 (

Op

1)

C D

N 1

500 (

Op1)

C D

N 2

000

(O

p1)

S D

N 5

00 (

Op1)

S D

N 1

00

0 (

Op1)

S D

N 1

500 (

Op1)

S D

N 2

000 (

Op1)

B D

N 5

00 (

Op1)

B D

N 1

00

0 (

Op1)

B D

N 1

500 (

Op1)

B D

N 2

000 (

Op1)

C D

N 5

00 (

Op2)

C D

N 1

000 (

Op

2)

C D

N 1

500 (

Op2)

C D

N 2

000

(O

p2)

S D

N 5

00 (

Op2)

S D

N 1

00

0 (

Op2)

S D

N 1

500 (

Op2)

S D

N 2

000 (

Op2)

B D

N 5

00 (

Op2)

B D

N 1

00

0 (

Op2)

B D

N 1

500 (

Op2)

B D

N 2

000 (

Op2)

Figura 3.27. Tensiones por cargas externas a corto y largo plazo HA-ET4 N

(Tubería de Hormigón)

Page 201: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 173 -

0,0

0

10,0

0

20,0

0

30,0

0

40,0

0

50,0

0

60,0

0

70,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Carga crítica de pandeo (MPa)

DN

500

(O

p1)

DN

10

00

(O

p1)

DN

15

00 (

Op

1)

DN

200

0 (

Op1

)

DN

500

(O

p2)

DN

10

00

(O

p2)

DN

15

00 (

Op

2)

DN

200

0 (

Op2

)

Figura 3.28. Carga crítica de pandeo a corto y largo plazo HA-ET4 W

(Tubería de Hormigón)

Page 202: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 174 -

0,0

0

10,0

0

20,0

0

30,0

0

40,0

0

50,0

0

60,0

0

70,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Carga crítica de pandeo (MPa)

DN

500

(O

p1)

DN

10

00

(O

p1)

DN

15

00 (

Op

1)

DN

200

0 (

Op1

)

DN

500

(O

p2)

DN

10

00

(O

p2)

DN

15

00 (

Op

2)

DN

200

0 (

Op2

)

Figura 3.29. Carga crítica de pandeo a corto y largo plazo HA-ET4 N

(Tubería de Hormigón)

Page 203: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 175 -

3.4.3.2. Tubería de acero

Los resultados obtenidos describen el comportamiento de una tubería flexible, que no pierde

propiedades con el tiempo, y cuya respuesta estructural está íntimamente unida con la

calidad y el nivel de compactación del relleno. La ovalización obtenida para el caso de

relleno bien compactado es moderada y variable con la profundidad de instalación (2,5% a

0,4% en la opción 1 y 1,0% a 1,4% en la opción 2) y para el caso de relleno no compactado

es muy grande (12% a 4% en la opción 1 y 4% a 5% en la opción 2), llegando a ser superior

a la ovalización admisible (5% o 9%). Las tensiones máximas, en todos los casos, son

variables con la profundidad, decrecientes de mayor a menor en la opción 1 y

moderadamente creciente en la opción 2. Por último la carga crítica de pandeo es

dependiente del nivel de compactación del relleno (1,2 MPa a 0,8 MPa para DN 2000).

• Ovalización. Para el caso de tubería instalada con rellenos bien compactados (W),

las ovalizaciones calculadas mediante la opción 1, para alturas de cobertura

menores o iguales de 1 m, son mayores a las obtenidas mediante la opción 2 ((2,5%

frente a 1% para DN 2.000). Para el resto de los casos el criterio es el inverso. Para

el caso de instalación con rellenos no compactados (N), las diferencias son aún

mayores: como la opción 1 establece el cálculo de 2º orden (al cumplirse las

condiciones de exigidas para ello), las ovalizaciones calculadas inicialmente por la

teoría de 1º orden se ven aumentadas por el coeficiente (ev)27, con lo que las

ovalizaciones calculadas se incrementan y llegan, en algún caso, a superar el valor

de ovalización máxima admisible (establecido en 5% para la teoría de 1º orden y 9%

para la teoría de 2º orden). Por el contrario, las ovalizaciones calculadas por la

opción 2 se encuentran todas dentro del rango admisible (4% a 5%).

• Tensión por cargas externas. Para el caso de tubería instalada con rellenos bien

compactados (W), la opción 1 establece tensiones máximas por cargas externas

superiores a las definidas por la opción 2, a partir de instalaciones con altura de

cobertura menor o igual a 1,5 metros (150 MPa en la opción 1 frente a 60 MPa en la

opción 2 para DN 2.000 con h = 1 m). Para el resto de los casos el criterio es el

inverso. Para el caso de instalación con rellenos no compactados (N), los resultados

se amplifican, desplazándose el límite hasta los 2 m, debido a que por las

condiciones existentes de instalación se debe aplicar al cálculo tensional la teoría de

2º orden (600 MPa en la opción 1 frente a 220 MPa en la opción 2 para DN 1.600

con h = 1 m).

Es de destacar que, en los resultados de tensión máxima por cargas externas

obtenidos mediante la opción 1, para el caso de relleno no compactado (N), todas las

instalaciones con altura de instalación de 1 m superan el límite elástico del material

(establecido para el acero en 275 MPa) y, por tanto, no son válidos como resultados

de dimensionamiento.

27

Coeficiente de ampliación de la deflexión vertical por efecto de la teoría de 2º orden.

Page 204: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 176 -

• Tensión por cargas externas más presión interna. Para el caso de tubería

instalada con rellenos bien compactados (W), los resultados son análogos a los

establecidos en el caso de la tubería de hormigón mientras que en el caso de relleno

no compactado (N) se puede apreciar el efecto de coeficiente de reducción

establecido por la teoría de 2º orden (fRR) sobre los resultados de las instalaciones

con altura de cobertura menor o igual a 1,5 m, al considerar que por efecto del

restablecimiento del redondeo se produce una reducción de las tensiones en la

tubería.

• Carga crítica. Para ambos casos (W, N) los resultados obtenidos mediante la opción

2 permanecen constantes, mientras que los resultados de la opción 1 son variables

con la profundidad. Con respecto a los valores calculados para el caso de tubería

instalada con rellenos bien compactados (W), la opción 2 establece valores de carga

crítica de pandeo superiores a la opción 1, para alturas de cobertura menores o

iguales a 3 m. Para el resto de los casos el criterio es el inverso, mientras que, para

el caso de instalación con rellenos no compactados (N), dicho límite se traslada

hasta 3,5 m.

Es interesante destacar que las dos opciones de cálculo definen una reducción

drástica de las cargas críticas de pandeo, cuando se está analizando el caso de

tubería instalada con relleno no compactado.

Se incluyen a continuación las figuras 3.30 a 3.37, que avalan las consideraciones

expuestas en este apartado.

Page 205: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 177 -

0,0

0

0,5

0

1,0

0

1,5

0

2,0

0

2,5

0

3,0

0

3,5

0

4,0

0

4,5

0

5,0

0 0,5

01,0

01

,50

2,0

02

,50

3,0

03,5

04

,00

4,5

05

,00

5,5

0

Alt

ura

de

co

be

rtu

ra (

m)

Ovalización vertical (%)

DN

813

(O

p1)

DN

10

16 (

Op

1)

DN

162

6 (

Op1

)D

N 2

032

(O

p1)

DN

813

(O

p2)

DN

10

16 (

Op

2)

DN

162

6 (

Op2

)D

N 2

032

(O

p2)

Figura 3.30. Ovalizaciones por cargas externas a corto y largo plazo AC-ET2 W (Tubería de Acero)

Page 206: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 178 -

0,0

0

1,0

0

2,0

0

3,0

0

4,0

0

5,0

0

6,0

0

7,0

0

8,0

0

9,0

0

10,0

0

11,0

0

12,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)D

N 8

13

(O

p1)

DN

10

16

(O

p1)

DN

162

6 (

Op1

)D

N 2

032

(O

p1)

DN

813

(O

p2)

DN

10

16

(O

p2)

DN

162

6 (

Op2

)D

N 2

032

(O

p2)

DN

813

(O

p1)

1ºo

rden

DN

16

26

(O

p1)

1ºo

rde

n

DN

203

2 (

Op1

) 1ºo

rde

n

Figura 3.31. Ovalizaciones por cargas externas a corto y largo plazo AC-ET2 N (Tubería de Acero)

Page 207: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 179 -

-15

0,0

0

-10

0,0

0

-50,0

0

0,0

0

50,0

0

10

0,0

0

15

0,0

0

20

0,0

0 0,5

01

,00

1,5

02,0

02

,50

3,0

03,5

04

,00

4,5

05,0

05

,50

Alt

ura

de

co

be

rtu

ra (

m)

Tensíon máxima (MPa)

C D

N 8

13 (

Op

1)

C D

N 1

01

6 (

Op1

)C

DN

16

26

(O

p1

)C

DN

20

32

(O

p1

)

S D

N 8

13

(O

p1

)S

DN

10

16

(O

p1

)S

DN

162

6 (

Op

1)

S D

N 2

03

2 (

Op

1)

B D

N 8

13

(O

p1

)B

DN

10

16

(O

p1

)B

DN

162

6 (

Op

1)

B D

N 2

03

2 (

Op

1)

C D

N 8

13 (

Op

2)

C D

N 1

01

6 (

Op2

)C

DN

16

26

(O

p2

)C

DN

20

32

(O

p2

)

S D

N 8

13

(O

p2

)S

DN

10

16

(O

p2

)S

DN

162

6 (

Op

2)

S D

N 2

03

2 (

Op

2)

B D

N 8

13

(O

p2

)B

DN

10

16

(O

p2

)B

DN

162

6 (

Op

2)

B D

N 2

03

2 (

Op

2)

Figura 3.32. Tensiones por cargas externas a corto y largo plazo AC-ET2 W (Tubería de Acero)

Page 208: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 180 -

-600,0

0

-400,0

0

-200,0

0

0,0

0

200,0

0

400,0

0

600,0

0

800,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 8

13 (

Op1)

C D

N 1

016 (

Op1)

C D

N 1

626 (

Op1)

C D

N 2

032 (

Op1)

S D

N 8

13 (

Op1)

S D

N 1

016 (

Op1)

S D

N 1

626 (

Op

1)

S D

N 2

032 (

Op1)

B D

N 8

13 (

Op1)

B D

N 1

016 (

Op1)

B D

N 1

626 (

Op

1)

B D

N 2

032 (

Op1)

C D

N 8

13 (

Op2)

C D

N 1

016 (

Op2)

C D

N 1

626 (

Op2)

C D

N 2

032 (

Op2)

S D

N 8

13 (

Op2)

S D

N 1

016 (

Op2)

S D

N 1

626 (

Op

2)

S D

N 2

032 (

Op2)

B D

N 8

13 (

Op2)

B D

N 1

016 (

Op2)

B D

N 1

626 (

Op

2)

B D

N 2

032 (

Op2)

Figura 3.33. Tensiones por cargas externas a corto y largo plazo AC-ET2 N (Tubería de Acero)

Page 209: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 181 -

-10

0,0

0

-50,0

0

0,0

0

50,0

0

10

0,0

0

15

0,0

0

20

0,0

0

25

0,0

0 0,5

01

,00

1,5

02,0

02

,50

3,0

03,5

04

,00

4,5

05,0

05

,50

Alt

ura

de

co

be

rtu

ra (

m)

Tensíon máxima (MPa)

C D

N 8

13

(O

p1)

C D

N 1

016

(O

p1

)C

DN

16

26 (

Op1

)C

DN

20

32

(O

p1)

S D

N 8

13

(O

p1

)S

DN

101

6 (

Op

1)

S D

N 1

626

(O

p1

)S

DN

203

2 (

Op1

)

B D

N 8

13

(O

p1

)B

DN

101

6 (

Op

1)

B D

N 1

626

(O

p1

)B

DN

203

2 (

Op1

)

C D

N 8

13

(O

p2)

C D

N 1

016

(O

p2

)C

DN

16

26 (

Op2

)C

DN

20

32

(O

p2)

S D

N 8

13

(O

p2

)S

DN

101

6 (

Op

2)

S D

N 1

626

(O

p2

)S

DN

203

2 (

Op2

)

B D

N 8

13

(O

p2

)B

DN

101

6 (

Op

2)

B D

N 1

626

(O

p2

)B

DN

203

2 (

Op2

)

Figura 3.34. Tensiones por cargas externas y presión interna a corto y largo plazo AC-ET2 W (Tubería de Acero)

Page 210: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 182 -

-300,0

0

-200,0

0

-100,0

0

0,0

0

100,0

0

200,0

0

300,0

0

400,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 8

13 (

Op1)

C D

N 1

016 (

Op1)

C D

N 1

626 (

Op1

)C

DN

2032 (

Op1)

S D

N 8

13 (

Op1)

S D

N 1

016 (

Op1)

S D

N 1

626

(O

p1)

S D

N 2

032 (

Op

1)

B D

N 8

13 (

Op1)

B D

N 1

016 (

Op1)

B D

N 1

626

(O

p1)

B D

N 2

032 (

Op

1)

C D

N 8

13 (

Op2)

C D

N 1

016 (

Op2)

C D

N 1

626 (

Op2

)C

DN

2032 (

Op2)

S D

N 8

13 (

Op2)

S D

N 1

016 (

Op2)

S D

N 1

626

(O

p2)

S D

N 2

032 (

Op

2)

B D

N 8

13 (

Op2)

B D

N 1

016 (

Op2)

B D

N 1

626

(O

p2)

B D

N 2

032 (

Op

2)

Figura 3.35. Tensiones por cargas externas y presión interna a corto y largo plazo AC-ET2 N (Tubería de Acero)

Page 211: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 183 -

0,0

0

0,2

0

0,4

0

0,6

0

0,8

0

1,0

0

1,2

0

1,4

0

1,6

0

1,8

0 0,5

01,0

01

,50

2,0

02

,50

3,0

03,5

04

,00

4,5

05

,00

5,5

0

Alt

ura

de

co

be

rtu

ra (

m)

Carga crítica de pandeo (MPa)

DN

813 (

Op

1)

DN

1016

(O

p1)

DN

1626

(O

p1)

DN

2032

(O

p1)

DN

813 (

Op

2)

DN

1016

(O

p2)

DN

1626

(O

p2)

DN

2032

(O

p2)

Figura 3.36. Carga crítica de pandeo a corto y largo plazo AC-ET2 W

(Tubería de Acero)

Page 212: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 184 -

0,0

0

0,2

0

0,4

0

0,6

0

0,8

0

1,0

0

1,2

0

1,4

0

1,6

0

1,8

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Carga crítica de pandeo (MPa)

DN

81

3 (

Op1

)D

N 1

01

6 (

Op

1)

DN

162

6 (

Op1

)D

N 2

03

2 (

Op

1)

DN

81

3 (

Op2

)D

N 1

01

6 (

Op

2)

DN

162

6 (

Op2

)D

N 2

03

2 (

Op

2)

Figura 3.37. Carga crítica de pandeo a corto y largo plazo AC-ET2 N

(Tubería de Acero)

Page 213: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 185 -

3.4.3.3. Tubería de polietileno

Los resultados obtenidos describen de forma análoga a la anterior el comportamiento de una

tubería flexible, si bien en este caso, al estudiar un material que pierde cualidades con el

tiempo, los efectos del mismo, en cuanto a ovalización, estado tensional y carga crítica son

muy ostensibles, al contrario de lo que pasaba en las tuberías de hormigón y acero.

• Ovalización. Para el caso de tubería instalada con rellenos bien compactados (W), a

corto plazo, la opción 1 establece únicamente un valor de ovalización por encima de

los definidos por la opción 2 (sólo para el caso de instalación a 1 m de profundidad),

el resto de los casos es la opción 2 la que establece los valores máximos de

ovalización.

A largo plazo, este comportamiento se mantiene, si bien los resultados obtenidos por

la opción 1 se aproximan y en algún caso pueden estar por encima de la solución

establecida por la opción 2 para instalaciones con altura de cobertura >3,5 m.

Para el caso de instalación con rellenos no compactados (N), el efecto descrito

anteriormente se incrementa, tanto a corto como a largo plazo, debido a que la

opción 1 establece los valores de ovalización, utilizando la teoría de 2º orden que

incrementa los resultados obtenidos por la teoría de 1º orden, mediante el coeficiente

de amplificación (ev).

• Tensión por cargas externas. El comportamiento en tensiones es semejante al

descrito en las tuberías de acero, si bien, a largo plazo, en instalaciones con relleno

no compactado, las tensiones obtenidas para instalaciones menores o iguales a 3 m

tienen unos incrementos de tensión muy superiores a los definidos en las tuberías de

acero.

• Carga crítica. El comportamiento de las cargas críticas de pandeo determinadas por

las dos opciones de cálculo sigue el patrón de comportamiento descrito para tuberías

de acero, si bien, en este caso, los resultados establecidos por cada una de las dos

opciones de cálculo, para los casos estudiados, tienen menos dispersión que los

obtenidos para las tuberías de acero.

Se incluyen a continuación las figuras 3.38 a 3.43, que avalan las consideraciones

expuestas en este apartado.

Page 214: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 186 -

0,0

0

0,5

0

1,0

0

1,5

0

2,0

0

2,5

0

3,0

0

3,5

0

4,0

0

4,5

0

5,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)

DN

25

0 (

Op1

)D

N 5

00

(O

p1)

DN

100

0 (

Op1

)D

N 1

600

(O

p1)

DN

25

0 (

Op2

)D

N 5

00

(O

p2)

DN

100

0 (

Op2

)D

N 1

600

(O

p2)

Figura 3.38. Ovalizaciones por cargas externas a corto plazo PE-ET2 W

(Tubería de Polietileno)

Page 215: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 187 -

0,0

0

0,5

0

1,0

0

1,5

0

2,0

0

2,5

0

3,0

0

3,5

0

4,0

0

4,5

0

5,0

0 0,5

01,0

01

,50

2,0

02

,50

3,0

03

,50

4,0

04

,50

5,0

05

,50

Alt

ura

de

co

ber

tura

(m

)

Ovalización vertical (%)

DN

250 (

Op

1)

DN

500 (

Op

1)

DN

1000

(O

p1

)D

N 1

600

(O

p1

)

DN

250 (

Op

2)

DN

500 (

Op

2)

DN

1000

(O

p2

)D

N 1

600

(O

p2

)

Figura 3.39. Ovalizaciones por cargas externas a largo plazo PE-ET2 W

(Tubería de Polietileno)

Page 216: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 188 -

-5,0

0

-4,0

0

-3,0

0

-2,0

0

-1,0

0

0,0

0

1,0

0

2,0

0

3,0

0

4,0

0

5,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 2

50 (

Op1)

C D

N 5

00 (

Op1)

C D

N 1

000 (

Op

1)

C D

N 1

600 (

Op1)

S D

N 2

50 (

Op1

)S

DN

500 (

Op1)

S D

N 1

00

0 (

Op1)

S D

N 1

600 (

Op1)

B D

N 2

50 (

Op1

)B

DN

500 (

Op1)

B D

N 1

00

0 (

Op1)

B D

N 1

600 (

Op1)

C D

N 2

50 (

Op2)

C D

N 5

00 (

Op2)

C D

N 1

000 (

Op

2)

C D

N 1

600 (

Op2)

S D

N 2

50 (

Op2

)S

DN

500 (

Op2)

S D

N 1

00

0 (

Op2)

S D

N 1

600 (

Op2)

S D

N 2

50 (

Op2

)S

DN

500 (

Op2)

S D

N 1

00

0 (

Op2)

S D

N 1

600 (

Op2)

Figura 3.40. Tensiones por cargas externas a corto plazo PE-ET2 W

(Tubería de Polietileno)

Page 217: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 189 -

-5,0

0

-4,0

0

-3,0

0

-2,0

0

-1,0

0

0,0

0

1,0

0

2,0

0

3,0

0

4,0

0

5,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 2

50 (

Op1)

C D

N 5

00 (

Op1)

C D

N 1

000 (

Op

1)

C D

N 1

600 (

Op

1)

S D

N 2

50 (

Op1

)S

DN

500 (

Op1

)S

DN

100

0 (

Op1)

S D

N 1

60

0 (

Op1)

B D

N 2

50 (

Op1

)B

DN

500 (

Op1

)B

DN

100

0 (

Op1)

B D

N 1

60

0 (

Op1)

C D

N 2

50 (

Op2)

C D

N 5

00 (

Op2)

C D

N 1

000 (

Op

2)

C D

N 1

600 (

Op

2)

S D

N 2

50 (

Op2

)S

DN

500 (

Op2

)S

DN

100

0 (

Op2)

S D

N 1

60

0 (

Op2)

S D

N 2

50 (

Op2

)S

DN

500 (

Op2

)S

DN

100

0 (

Op2)

S D

N 1

60

0 (

Op2)

Figura 3.41. Tensiones por cargas externas a largo plazo PE-ET2 W (Tubería de Polietileno)

Page 218: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 190 -

0,0

0

0,1

0

0,2

0

0,3

0

0,4

0

0,5

0

0,6

0

0,7

0

0,8

0

0,9

0

1,0

0

1,1

0

1,2

0 0,5

01,0

01

,50

2,0

02

,50

3,0

03

,50

4,0

04

,50

5,0

05

,50

Alt

ura

de

co

ber

tura

(m

)

Carga crítica de pandeo (MPa)

DN

250 (

Op

1)

DN

500 (

Op

1)

DN

1000

(O

p1)

DN

1600

(O

p1)

DN

250 (

Op

2)

DN

500 (

Op

2)

DN

1000

(O

p2)

DN

1600

(O

p2)

Figura 3.42. Carga crítica de pandeo a corto plazo PE-ET2 W

(Tubería de Polietileno)

Page 219: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 191 -

0,0

0

0,1

0

0,2

0

0,3

0

0,4

0

0,5

0

0,6

0

0,7

0

0,8

0

0,9

0

1,0

0

1,1

0

1,2

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Carga crítica de pandeo (MPa)

DN

25

0 (

Op1

)D

N 5

00

(O

p1

)D

N 1

00

0 (

Op1

)D

N 1

60

0 (

Op

1)

DN

25

0 (

Op2

)D

N 5

00

(O

p2

)D

N 1

00

0 (

Op2

)D

N 1

60

0 (

Op

2)

Figura 3.43. Carga crítica de pandeo a largo plazo PE-ET2 W

(Tubería de Polietileno)

Page 220: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 192 -

3.5. VENTAJAS E INCONVENIENTES DE LAS OPCIONES DE CÁLCULO

De los estudios realizados sobre las dos metodologías de cálculo establecidas en el informe

técnico CEN/TR 1295-3 se puede concluir lo siguiente:

Las ventajas que tiene el uso de la opción 1 para el dimensionamiento de tuberías

enterradas son:

a) Utiliza parámetros del suelo intrínsecos del material y se aproxima de una forma más

exacta a su comportamiento real (variables con la profundidad), lo que permite usar

los parámetros obtenidos de investigaciones geotécnicas realizada “in situ” para el

dimensionamiento en cuestión.

b) El desarrollo teórico de la misma viene heredado de la norma ATV-DVWK 127-E,

vigente desde el año 2000 y ampliamente utilizada en España para el diseño de

tuberías de material plástico.

c) Tiene la capacidad de considerar todas las cargas que se producen en una

instalación de tubería enterrada (Carga del suelo, cargas de tráfico, cargas de

construcción, presión interior, presión exterior, peso propio del tubo, peso del fluido

e, incluso, sismo.

d) Permite determinar los esfuerzos (Momentos y axiles) producidos por las diversas

cargas en las tres secciones de estudio (base (B), punto medio (S) y coronación (C)).

e) Establece el uso de dos teorías básicas para el cálculo de las ovalizaciones y las

tensiones: en el primer caso se asume que la tubería mantiene una forma circular no

deformada (1º orden), y en el segundo se asume que la tubería está ovalizada (2º

orden). Fundamentalmente, la teoría de 1º orden se aplica a instalaciones con

ovalizaciones pequeñas (como las que se producen en instalaciones de tuberías

flexibles con un nivel de compactación muy bueno o en instalaciones de tuberías

rígidas) y la teoría de 2º orden se aplica a instalaciones con ovalizaciones medianas

o grandes (como las que se producen en instalaciones de tuberías flexibles sin

compactación).

f) Establece los coeficientes de seguridad en función de los criterios de probabilidad de

fallo y discrimina dos tipos de fallo, en función de la importancia del mismo, criterio

semejante al ya utilizado en la clasificación de Presas.

Y los principales inconvenientes son:

a) La definición de solo cuatro tipos de instalación es insuficiente para cubrir todo el

espectro de posibles combinaciones de instalaciones a realizar en la fase de

proyecto.

Page 221: cálculo estructural de tuberías enterradas por el método

Capítulo 3

Modelos de comportamiento mecánico de tubería enterrada según el informe técnico CEN/TR1295-3

- 193 -

b) La opción 1, queda limitada a su uso para tuberías de tamaño “normal” excluyéndose

su uso para el dimensionamiento de tuberías de gran diámetro, en donde factores

como la heterogeneidad del relleno no está considerada y puede ser determinante en

el dimensionamiento.

c) Solo es posible determinar el estado tensional en las tres secciones de estudio (base

(B), punto medio (S) y coronación (C))

d) En el desarrollo original del informe técnico no se establece, tan claro como está

expuesto en esta tesis, las hipótesis pésimas de dimensionamiento y las

formulaciones completas de las mismas, trabajo que se ha desarrollado dentro del

ámbito de esta tesis.

Por otro lado, las ventajas que tiene el uso de la opción 2 para el dimensionamiento de

tuberías enterradas son:

a) Que con un pequeño número de parámetros es capaz de modelizar una complejo

modelo estructural de comportamiento mixto tubería/terreno.

b) El desarrollo teórico de la misma viene heredado de la norma FASCICULE 70,

vigente desde el año 2003 y ampliamente utilizada en España para el diseño de

tuberías de material metálico, en particular fundición.

c) Considera todas las acciones determinantes en el dimensionamiento de tuberías

enterradas (tierras, tráfico, presión interior y presión exterior), si bien ignora aquellas

que considera de segundo orden (peso del tubo, peso del fluido).

d) El concepto de seguridad que aplica se basa en la verificación de los estados límites

(últimos y de servicio), de forma que se asegure que estos estados no se excedan, a

pesar de las variaciones aleatorias que puedan afectar a la resistencia de los

materiales o los valores de las cargas.

Y los principales inconvenientes son:

a) El uso de parámetros derivados, como es el modulo de reacción del relleno, hace

complicado la posibilidad de utilizar otros que no sean los especificados en el informe

técnico.

b) El desarrollo teórico vigente en la redacción de la opción 2, sigue la consideración de

cálculo establecida en la norma FASCICULE 70 (2003), en lo relativo a calcular única

y exclusivamente el momento en la base, al considerar que es el máximo. Esta

consideración ha sido sustituida por un análisis completo de las tres secciones de

Page 222: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 194 -

estudio, equivalente al que realiza la opción 1, de forma que se puedan obtener

mediante la opción 2 los esfuerzos en las tres secciones de estudio.

c) El uso de esta opción de cálculo está restringido a tuberías de diámetro medio por

las simplificaciones que establece, entre otras, como por ejemplo las cargas

despreciadas.

Por último, el comportamiento general de una opción respecto a la otra es:

- La Opción 1 define valores más conservadores que los establecidos por la Opción 2

para el cálculo de ovalizaciones, tensiones y cargas críticas de pandeo en

instalaciones con poca altura de cobertura.

- La Opción 1 define valores menos conservadores que los establecidos por la Opción

2 para el cálculo de ovalizaciones, tensiones y cargas críticas de pandeo en

instalaciones con mucha altura de cobertura.

Page 223: cálculo estructural de tuberías enterradas por el método

Capítulo 4

Comportamiento de la tubería, el terreno y la interfase tubería/terreno

- 195 -

CAPÍTULO 4. COMPORTAMIENTO DE LA TUBERÍA, EL TERRENO Y LA INTERFASE TUBERÍA/TERRENO

4.1. MODELIZACIÓN DE LA TUBERÍA

El comportamiento estructural de una tubería depende en gran medida del material de que

está constituida, máxime con la variedad de características que presentan los materiales

utilizables, aunque básicamente se pueden destacar dos grupos de materiales:

a) Materiales isótropos y homogéneos en toda la sección de la tubería de

comportamiento elastoplástico (como los metales: acero y fundición), y que resisten altas

tensiones sin grandes deformaciones y de comportamiento plástico (como el polietileno y el

cloruro de polivinilo, PVC), con deformaciones en función del tiempo de aplicación de las

cargas y de la temperatura.

b) Materiales compuestos (como el hormigón armado (con su mayor resistencia a

compresión que a tracción), y el poliéster reforzado con fibra de vidrio (PRFV)). El

comportamiento estructural de estos materiales compuestos es muy diverso en función de la

proporción de sus componentes y de los sistemas de fabricación, que pueden variar

sustancialmente.

4.1.1 COMPORTAMIENTO DE LOS MATERIALES

4.1.1.1. Materiales metálicos

Los materiales metálicos que son empleados más habitualmente son el acero al carbono y

la fundición dúctil, respecto a otros materiales metálicos, que también presentan interés,

pero que constituyen un porcentaje relativamente pequeño de aplicación a tuberías, como

son el acero inoxidable, el aluminio, el cobre, etc.

Ambos, el acero y la fundición, tienen como base el metal de hierro, con una aleación de

carbono, aparte de otros elementos en menor cuantía, y lo que los diferencia entre sí

fundamentalmente, desde el punto de vista de composición química, es precisamente el

contenido de carbono: pequeño en el acero (del orden de 0,17 – 0,22 %) y más apreciable

en la fundición (del orden de 2,20 – 4,00 %). La forma en que la fundición tenga dispuesto

su carbono da lugar a unas variantes muy interesantes desde el punto de vista de las

tuberías, pues la fundición que ya últimamente se emplea en tuberías es solamente la

fundición dúctil, que lleva el carbono en forma de grafito esferoidal (fundición nodular),

habiéndose eliminado completamente el empleo de la fundición gris, que resultaba de

comportamiento frágil, a los efectos estructurales.

Ambos son materiales de comportamiento elástico ante las cargas que los soliciten, siempre

que no se superen los correspondientes límites elásticos, pero aún pueden trabajar en caso

Page 224: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 196 -

extremo en zona plástica, antes de llegar a la rotura. En el caso de estar en la zona elástica,

las tensiones y las deformaciones no dependen del tiempo de aplicación de la carga, ni

tampoco de la temperatura (dentro de los valores admisibles en casos normales).

Los dos materiales presentan altas resistencias mecánicas, sobre todo muy apreciables

trabajando a tracción, solicitación muy frecuente en el caso de las tuberías, lo que les hace

materiales muy aptos para resistir altas presiones de servicio.

ε

RmA

RuARehAReA

σ

0 A B C

FundiciónAcero

RmF

ReF

RuF

Re, limite elástico convencional (0,20% Def.) Rm, limite máximo

Reh, limite elástico aparente Ru, limite último de rotura

Figura 4.1. Diagrama esfuerzo/deformación para metales

La curva típica del comportamiento de los materiales metálicos (ver figura 4.1) de acuerdo

con lo descrito por ALAMAN SIMON, A (1990) tiene un primer periodo en el que las

deformaciones son proporcionales a las cargas unitarias a que está sometido el material. En

este período el material está en comportamiento elástico, caracterizado por el hecho de que,

al cesar la carga, el material vuelve a su estado inicial. Terminado este primer período,

comienza el período plástico, en el cual, cuando cesan las cargas, el material no recupera

su estado inicial, sino que queda una deformación remanente. La carga unitaria

correspondiente al punto de transición entre el primer período y el segundo se denomina

límite elástico (ReA o ReF).

Aumentando el esfuerzo la tensión llega a un limite, a partir del cual, el alargamiento

continua haciéndose mas ostensible, mientras que la tensión no aumenta, pudiendo incluso

bajar o tener un periodo de oscilaciones, puestas de manifiesto en el gráfico por una línea

ondulada. Este fenómeno se produce habitualmente en el acero y se denomina cedencia, y

el valor de la tensión al producirse este fenómeno es el llamado límite elástico aparente,

llamándose límite elástico aparente superior (RehA) al valor de la carga en el comienzo de la

deformación plástica.

Page 225: cálculo estructural de tuberías enterradas por el método

Capítulo 4

Comportamiento de la tubería, el terreno y la interfase tubería/terreno

- 197 -

Terminado el fenómeno de cedencia (si se produce), al seguir aumentando el esfuerzo de

tracción, continua aumentando la tensión en el material hasta llegar a un límite máximo (RmA

o RmF), que es el denominado tensión de rotura, llamada así porque es la tensión a la que

se produce la rotura, es decir, la fragmentación de los cristales. No se corresponde esta

tensión con la que existe en el material cuando éste visiblemente se rompe (RuA o RuF)

debido a que, rotos los cristales y disminuida la sección, la fuerza necesaria hasta la

separación va siendo menor.

Comportamiento en diseño

En el dimensionamiento de las tuberías metálicas, la normativa vigente (AWWA M11 (1999),

AWWA M41 (1996) y FASCICULE 70 (2003)) y también el informe técnico CEN/TR 1295-3

(2007) establecen que el comportamiento del material siempre se debe encontrar en el

rango elástico, no superando, en ningún caso, el 50% del límite elástico (acero) o el 40% de

la resistencia mínima a tracción (fundición).

La definición del material metálico en el modelo se corresponde con un material homogéneo

de comportamiento elástico definido por dos parámetros: Módulo de elasticidad (E) y

coeficiente de Poisson (ν).

Parámetros Ud. Acero Fundición

Peso específico kN/m3 78,48 70,50

Coef. de Poisson - 0,30 0,25

Módulo de elasticidad MPa 210.000 170.000

Límite elástico MPa 275,00 280,00

Tensión de rotura MPa 410,00 420,00

Rigidez del tubo (φ 1.000) kN/m2 14,43 34,86

Deflexión máxima % 5,00 5,00

Tabla 4.1. Parámetros mecánicos de los materiales metálicos

4.1.1.2. Materiales plásticos

Como indica su propia denominación, se trata de materiales de comportamiento mecánico

no elástico, trabajando siempre en zona plástica, por su propia estructura molecular y

polimérica. Así que las deformaciones y tensiones que se producen en las tuberías de

materiales plásticos, a consecuencia de las acciones que recaen sobre ellas, son función del

tiempo que dura la aplicación de las acciones. También son susceptibles de manera

apreciable a la temperatura de servicio, disminuyendo, en general, sus características

mecánicas en cuanto sube la temperatura. No obstante, se tiene en cuenta dicha

disminución de resistencia con el tiempo, tomando los correspondientes coeficientes de

seguridad (curvas de regresión), disponiéndose ya de suficiente experiencia acumulada de

sus años de servicio, para poder garantizar su buen comportamiento a lo largo del período

de proyecto (usualmente 50 años).

Page 226: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 198 -

Los plásticos, como materiales constitutivos de tuberías, se dividen en dos grandes grupos:

termoplásticos y termoestables. Los primeros pueden manipularse, mediante la acción

combinada de calor y presión, para cambiar de forma tantas veces como se quiera, sin

variar su composición química ni su estructura molecular. Son termoplásticos el polietileno

(PE) y el policloruro de vinilo (PVC). Los termoestables experimentan durante su fabricación

un proceso químico irreversible, que impide su manipulación para cambio de forma

posteriormente; un ejemplo de plástico termoestable es el poliéster reforzado con fibra de

vidrio (PRFV).

• Polietileno (PE). Hay cuatro clases de resina de este tipo de plástico utilizables como

material de tubería: las denominadas PE 40, PE 63, PE 80 y PE 100, en orden

creciente de resistencia mecánica. En general, la fabricación de los tubos es por

extrusión y la de las piezas especiales por inyección en moldes o mediante

manipulación, soldando trozos de tubos.

• Policloruro de vinilo (PVC). El material empleado en la fabricación de los tubos es

resina de poli (cloruro de vinilo) no plastificado (PVC-U). En general, la fabricación de

los tubos se hace por extrusión y la de las piezas especiales por inyección en moldes

o bien a partir del propio tubo. En principio, no se utiliza este material en

instalaciones expuestas a las radiaciones solares.

• Poliéster reforzado con fibra de vidrio (PRFV). Se trata de un material compuesto con

base de resina de poliéster, a la que se le añaden otros materiales que

fundamentalmente son fibra de vidrio y arena de cuarzo. La fabricación de los tubos

se realiza por uno de los tres procedimientos siguientes: arrollamiento mecánico

sobre mandril, centrifugación o contacto; las piezas especiales, a su vez, se fabrican

de una de las tres maneras siguientes: moldeo por contacto, moldeo mecanizado o

por soldadura de trozos de tubo. El tubo consiste en una única pieza estructural

constituida por tres capas perfectamente adheridas entre sí (ver figura 4.2): 1ª capa,

revestimiento interior, a base de resina termoestable (poliéster); su misión es

proporcionar las características hidráulicas, químicas y la resistencia a la abrasión. 2ª

capa, parte estructural, básicamente constituida por resina termoestable (poliéster),

fibra de vidrio y, según el procedimiento de fabricación empleado, carga estructural

de cuarzo u otro material inerte; es la que soporta fundamentalmente los esfuerzos

mecánicos. 3ª capa, revestimiento exterior, formado por resina termoestable

(poliéster) y, según el procedimiento de fabricación utilizado, cargas o aditivos que

garanticen sus propiedades; su misión es garantizar la protección del tubo

CEGARRA, M. (2010).

Page 227: cálculo estructural de tuberías enterradas por el método

Capítulo 4

Comportamiento de la tubería, el terreno y la interfase tubería/terreno

- 199 -

Capa de fibra

(resistencia

circunferencial)

Capa exterior

Capa interior

CAPAS PROTECTORAS

Capa de fibra

(resistencia

circunferencial)

Capa central

(rigidez)

CAPAS ESTRUCTURALES

Figura 4.2. Capas que constituyen la pared de un tubo de PRFV

A) Comportamiento mecánico general de los plásticos

La resistencia mecánica de los plásticos no es muy grande, lo que los hace apropiados para

tuberías que trabajen a presiones bajas o medias, quedando excluida su utilización para el

caso de altas presiones de servicio; en los diámetros pequeños admiten presiones

apreciables, sin embargo, según va creciendo el diámetro la presión de servicio se va

haciendo cada vez más pequeña.

El comportamiento de esfuerzo/deformación típico de los materiales termoplásticos se

presenta en la figura 4.3 obtenida de SEYMOUR, R. y CARRAHER, C.E. (2002).

Blandos y

fragiles (a)

Duros y

fragiles (b)Blandos y

tenaces (c)

Duros y

resistentes (d)

Duros y tenaces (e)

ε

σ

σ

ε

RfRe

Re, Resistencia elástica Rf, Resistencia final

Figura 4.3. Curvas de esfuerzo/deformación típicas para plásticos

Page 228: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 200 -

Dicho comportamiento se obtuvo mediante la realización de ensayos a corta duración,

clasificando su comportamiento en 5 categorías. La clase (a) incluye los polímeros blandos y

débiles, entre ellos el poliisobutileno, que se caracteriza por un bajo módulo de “elasticidad”,

un bajo punto de fluencia y un moderado alargamiento en función del tiempo. El coeficiente

de Poisson para polímeros clase (a) es de 0,5.

Por otro lado, el coeficiente de Poisson de los polímeros duros y frágiles de clase (b), como

puede ser el poliestireno, se acerca a 0,3. Los polímeros de clase (b) se caracterizan por un

módulo de “elasticidad” alto, un punto de fluencia poco definido y una deformación pequeña

antes de rotura. Sin embargo, los polímeros de clase (c), como el PVC plastificado y PE

blando, tienen un bajo módulo de “elasticidad”, gran alargamiento, un coeficiente de poisson

de alrededor de 0,5-0,6 y un punto de fluencia bien definido. Puesto que los polímeros de

clase (c) se alargaran después del punto de fluencia, el área bajo la curva de esfuerzo-

deformación que representa la tenacidad será mayor que para la clase (b).

El PVC rígido es un exponente de los polímeros duros y resistentes de la clase (d). Estos

polímeros tienen un alto módulo de “elasticidad” y una alta resistencia a la fluencia. La curva

para los polímeros duros y tenaces de clase (e), como por ejemplo los copolímeros ABS,

experimentan un alargamiento moderado antes del punto de fluencia seguido de una

deformación irreversible. En general, el comportamiento de todas las clases es “hookeano”

antes del punto de fluencia. La deformación recuperable reversible antes del punto de

fluencia, en el intervalo llamado “elástico”, es fundamentalmente el resultado de la flexión y

alargamiento de los enlaces covalentes de la cadena principal del polímero. Después del

punto de fluencia, el mecanismo predominante es el deslizamiento irreversible de las

cadenas de polímero.

A continuación se presentan en la tabla 4.2, en forma de resumen los rasgos característicos

en relación con las propiedades del polímero.

Descripción del polímero

Módulo de “elasticidad”

Tensión límite

Tensión final Alargamiento en la rotura

Blando, débil (a) Bajo Baja Baja Moderada

Duro, frágil (b) Alto Ninguna Moderada Bajo

Blando, tenaz (c) Bajo Baja Moderada Alto

Duro, resistente (d) Alto Alta Alta Moderado

Duro, tenaz (e) Alto Alta Alta Alto

Tabla 4.2. Características de las curvas tensión/deformación de los materiales plásticos

Comportamiento a corto y largo plazo

Dado que las propiedades mecánicas dependen del tiempo, los polímeros de la clase (a)

pueden comportarse como los de la clase (d) si se aplican los esfuerzos rápidamente, y

viceversa, los detalles de este comportamiento pueden consultarse en VICENT VELA, M.C,

ALVAREZ BLANCO, S. ZARAGOZA CARBONELL, J.L. (2006), a continuación se presenta

Page 229: cálculo estructural de tuberías enterradas por el método

Capítulo 4

Comportamiento de la tubería, el terreno y la interfase tubería/terreno

- 201 -

una descripción resumida del comportamiento de los materiales plásticos sometidos a

ensayos a corto y largo plazo.

Con carácter general, cuando se realizan ensayos de corta duración se obtienen curvas

tensión/deformación del siguiente tipo (ver figura 4.4):

Ensayo de corta duración

A

B

A1

B1

C1 D1

ε

σ

O

OA, OA1 Deformaciones elásticas (ángulos y oscilación de los enlaces)

AB, A1B1 Deformaciones viscoelásticas (desovillamiento)

C1D1 Refuerzo por orientación molecular

Figura 4.4. Curvas de tensión/deformación de plásticos en ensayos a corta duración

La línea OAB muestra el comportamiento de un material de bajo alargamiento en la rotura.

Para una velocidad del ensayo suficientemente grande desaparece la zona AB y el material

presenta rotura frágil.

En la zona plástica B1C1D1 aparecen esfuerzos superiores al del punto de fluencia B1 dando

lugar a un fenómeno de endurecimiento.

La pendiente del tramo “elástico” (OA) mide los correspondientes módulos de “elasticidad” a

corto plazo (E0), cuyos valores habituales son para los materiales termoplásticos, entre

1.000 y 3.600 MPa, y para los termoestables, entre 7.000 y 30.000 MPa

Cuando se realizan los ensayos de larga duración, se produce el fenómeno de fluencia, esta

provoca una deformación que depende del tiempo y resulta de la aplicación de un esfuerzo

constante de forma que el módulo de elasticidad varía con el tiempo y toma el nombre de

módulo de fluencia de retardo, y vale Ef=σ/ε(t). Suponiendo que un material se comporta

como el modelo definido en la figura 4.5:

Si la carga aplicada es suficientemente pequeña no habrá riesgo de rotura hasta que

transcurra un tiempo prácticamente infinito, en el cual se alcanzaría el alargamiento de

rotura, pues hacia él se tiende asintóticamente.

Si transcurrido un tiempo ts (habitualmente se establece 50 años para el diseño de tuberías)

la probeta alcanza el punto C2, de deformación εs, que se supone que es el tolerable por

Page 230: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 202 -

fluencia y el esfuerzo (σ) que la ha provocado se toma como esfuerzo admisible, con lo que

se puede establecer un módulo equivalente, denominado módulo de “elasticidad” a largo

plazo (E50), cuyos valores habituales son, para los materiales termoplásticos, entre 150 y

1.750 MPa y, para los termoestables, entre 3.500 y 16.000 MPa

Ensayo de larga duración

D1

A2

B2

C2

D2σ

ε

t

εr

εs

tsO Otts

C2

Figura 4.5. Curvas de tensión, deformación/tiempo de plásticos en ensayos a larga duración

De un modo global se puede hacer el siguiente análisis referente a los ensayos de larga

duración: en la primera parte OA2 se produce una deformación “elástica” (instantánea); en la

segunda parte A2B2 una deformación elástica retardada (viscoelástica), siendo B2 el punto

de fluencia; y por último en B2C2D2 se produce una deformación viscosa (fluencia).

Comportamiento en diseño

En el dimensionamiento de las conducciones de material plástico (tanto termoplástico como

termoestable) se considera que el comportamiento del material está dentro de la rama

“elástica” si bien, como se ha descrito anteriormente, estos parámetros son variables a corto

y largo plazo para considerar el efecto de fluencia característico en este tipo de materiales.

En los materiales termoplásticos se define el módulo de “elasticidad” a corto y largo plazo

(E0 y E50) y el coeficiente de Poisson (ν), mientras que en los materiales termoestables se

define la rigidez nominal a corto y largo plazo (S0 y S50) y el coeficiente de Poisson (ν).

La definición del material en el modelo, es en ambos casos homogéneo, ya que si bien las

tuberías de material termoestable estén compuestas por varias capas, asumiendo las

simplificaciones establecidas tanto en la norma ATV-DWK 127-E (2000) como en el informe

técnico CEN/TR 1295-3 (2007) se pueden considerar como un material homogéneo, cuyas

características mecánicas estarán definidas por el fabricante, debido a que para este tipo de

tuberías la estandarización solo corresponde a la rigidez nominal (SN), dependiendo el resto

de parámetros de los distintos métodos de fabricación, así como de las dimensiones y tipos

de material empleados en la fabricación del tubo.

Page 231: cálculo estructural de tuberías enterradas por el método

Capítulo 4

Comportamiento de la tubería, el terreno y la interfase tubería/terreno

- 203 -

Parámetros Ud. PVC PE PRFV

(SN 5.000)

Peso específico kN/m3 14,20 9,50 17,50

Coef. de Poisson - 0,35 0,40 0,18

Módulo de “elasticidad”

Corto plazo MPa 3.600 1.000 -

Largo plazo MPa 1.750 150 -

Rigidez del tubo φ 1.000 1.000/30,6 1.000/59,3

Corto plazo N/m2 8.600 17.640 5.000

Largo plazo N/m2 4.180 2.650 2.000

Deflexión máxima

Corto plazo % 5,00 5,00 18,90

Largo plazo % 5,00 5,00 11,30

Tensión de rotura 1

Corto plazo (t) MPa 90,00 30,00 320,00

(f) 75,00

Largo plazo (t) MPa 50,00 14,40 128,00

(f) 30,00

Tabla 4.3. Parámetros mecánicos de los materiales plásticos

4.1.1.3. Materiales pétreos

Son materiales compuestos, que combinan con una matriz pétrea (cemento y áridos;

mortero u hormigón) otros materiales (armaduras de acero, fibras diversas) que mejoran su

comportamiento mecánico a tracción.

El hormigón presenta buena resistencia mecánica, si exceptuamos su mal comportamiento a

tracción, lo que se mejora con armaduras y fibras, pero sigue quedando el problema de la

estanqueidad, lo que obliga a la disposición de una camisa de chapa de acero embebida en

la masa del hormigón, que se encarga de asegurar la estanqueidad, que de otra manera las

fisuras del material pétreo no garantizarían (ver figura 4.6).

Armadura

exterior

Camisa de chapa Posible mallazo en

el revestimiento

interior

CAPAS ESTRUCTURALES

Figura 4.6. Sección tipo de pared una tubería de hormigón armado con camisa de chapa

1 En las tuberías de PRFV se definen dos tipos de tensión de rotura, (t), tensión de rotura a tracción y (f), tensión

de rotura a flexión.

Page 232: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 204 -

El diagrama característico tensión-deformación del hormigón (ver figura 4.7) depende de

numerosas variables: edad del hormigón, duración de la carga, forma y tipo de la sección,

naturaleza da la solicitación tipo de árido, estado de humedad, etc., a continuación se

presentan unos diagramas simplificados obtenidos de la Instrucción EHE-08 (2009).

t = 2 min t = 70 dias

t = 100 min

Límite de

fluencia

εc

σc/fc

Ec instantáneoLímite de rotura bajo

carga constante

Figura 4.7. Curvas tipo de esfuerzo/deformación del hormigón en función del tiempo de curado

Las curvas tienen un primer período en el que las deformaciones son proporcionales a las

cargas unitarias a que está sometido el material. En este período el material está en

comportamiento elástico, caracterizado por el hecho de que, al cesar la carga, el material

vuelve a su estado inicial.

Terminado este primer período, comienza el comportamiento plástico en el cual, cuando

cesan las cargas, el material no recupera su estado inicial, sino que queda una deformación

remanente. Al seguir aumentando el esfuerzo de compresión, continúa aumentando la

tensión en el material hasta llegar a un límite máximo (fck) que es la resistencia de cálculo

del hormigón, alcanzándose el límite de rotura bajo carga constante

Comportamiento en diseño

Está basado en la hipótesis de comportamiento elástico-lineal de los materiales

constituyentes y en la consideración del equilibrio de la estructura sin deformar. Es

especialmente adecuado para Estados Límite de Servicio aunque también es válido para

Estados límite último en vigas continuas, tal y como indica la Instrucción EHE-08 (2009).

La hipótesis de comportamiento elástico-lineal es la más utilizada para el análisis de

estructuras de hormigón. Esta aproximación implica que la respuesta estructural es lineal y

que se aceptan la reversibilidad de las deformaciones y la superposición de los efectos

originados por diversas acciones. En el modelo, a pesar de su heterogeneidad, se considera

como un material homogéneo con un módulo de elasticidad y un coeficiente de Poisson

equivalente a la sección compuesta, siguiendo los procedimientos establecidos por las

Page 233: cálculo estructural de tuberías enterradas por el método

Capítulo 4

Comportamiento de la tubería, el terreno y la interfase tubería/terreno

- 205 -

normas actuales ATV-DVWK 127-E (2000) y FASCICULE 70 (2003) y en el informe técnico

CEN/TR 1295-3 (2007).

Parámetros Ud. HA

Peso específico kN/m3 24,00

Coef. de Poisson - 0,20

Módulo de elasticidad MPa 30.000

Tensión de rotura MPa 25

Rigidez del tubo (φ 1.000) kN/m2 1.280

Tabla 4.4. Parámetros mecánicos del hormigón armado

4.1.2 MODELOS DE COMPORTAMIENTO

4.1.2.1. Modelo elástico lineal

El comportamiento elástico se modela como lineal e isótropo, y se puede expresar como:

εDσ .= (4.1)

donde: σσσσ, vector de tensiones elásticas

D, matriz constitutiva elástica

εεεε, vector de deformaciones elásticas

Los parámetros de la matriz constitutiva son el módulo de Young (E) y el coeficiente de

Poisson (ν) que definen el comportamiento del material. Esta ley se adapta bien a la primera

parte de las curvas tensión/deformación de todos los materiales constitutivos de la tubería

dentro del rango de pequeñas deformaciones, que es donde se encuentran los cálculos de

dimensionamiento que se quieren realizar (ABAQUS Theory Manual (2007)).

Para tener en cuenta el efecto de pérdida de resistencia con el paso del tiempo (efecto de

fluencia (muy acusado en los materiales plásticos)) es necesario realizar dos cálculos, el

primero a corto plazo (E0 o S0) y el segundo a largo plazo (E50 o S50).

4.1.2.2. Pandeo

El pandeo elástico se puede obtener mediante el cálculo por autovalores. Este cálculo es

una aproximación aceptable para estructuras donde la respuesta previa al pandeo es

aproximadamente lineal, como ocurre en las tuberías flexibles enterradas. La carga de

pandeo estimada se obtiene como un multiplicador de una carga de perturbación tipo, la

cual se añade al estado de cargas inicial, los detalles de este procedimiento se pueden

consultar en ABAQUS Theory Manual (2007), a continuación se presenta una descripción

resumida del cálculo de autovalores.

Page 234: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 206 -

El problema físico se resuelve mediante un análisis de autovalores, en donde se buscan las

cargas que producen que la matriz de rigidez tenga un resultado singular, a fin de que el

problema tenga soluciones no triviales. KMN es la matriz de rigidez tangente cuando se

aplican las cargas, y ννννM son las soluciones no triviales de los desplazamientos.

Los autovalores son utilizados habitualmente para calcular las cargas críticas de pandeo en

estructuras rígidas (procedimiento clásico). Las estructuras rígidas trasmiten las cargas de

diseño fundamentalmente por esfuerzos axiales, más que transversales. Su respuesta

implica habitualmente una pequeña deformación antes del pandeo. Un ejemplo sencillo de

una estructura rígida es la columna de Euler, la cual responde muy rígidamente frente a

cargas axiales de compresión hasta que se alcanza la carga crítica, cuando se curva

rápidamente y muestra una rigidez mucho menor. Sin embargo, incluso cuando la respuesta

de la estructura es no lineal antes del colapso, el análisis de autovalores de pandeo puede

proporcionar estimaciones aceptables de formas de pandeo.

Las cargas de pandeo se calculan relativas al estado inicial de la estructura. Si el

procedimiento de autovalores de pandeo es el primer paso en el análisis de la estructura, las

condiciones iniciales configuran el estado inicial; de lo contrario, el estado inicial es el estado

actual del modelo al final del último paso del análisis general. Así, el estado inicial puede

incluir precargas (cargas muertas), PN. Las precargas son habitualmente cero en los

problemas clásicos de autovalores.

Si se incluyen no linealidades geométricas en los pasos anteriores al análisis de pandeo por

autovalores, la geometría del estado inicial es la deformada del último paso previo al

análisis. Si se omiten las no linealidades geométricas, el estado inicial es la configuración

original del cuerpo.

Para resolver el problema de autovalores, se define un incremento de carga tipo, QN; la

magnitud de esta carga no es importante, ya que será escalada por un multiplicador de

carga, λi, encontrado en el problema de autovalores:

( ) 00 =+ ∆

M

i

NM

i

NMK νK λ (4.2)

donde: K0NM, matriz de rigidez del estado inicial, la cual incluye los efectos de las

precargas , PN (si existen).

K∆NM incremento de tensiones y cargas de la matriz de rigidez, producida por

el incremento de carga tipo, QN

λi, autovalores

ννννiM, formas de pandeo (autovectores)

M y N, grados de libertad del modelo completo

i, i-ésismo modo de pandeo

Page 235: cálculo estructural de tuberías enterradas por el método

Capítulo 4

Comportamiento de la tubería, el terreno y la interfase tubería/terreno

- 207 -

Las cargas criticas de pandeo son PN + λiQN y, normalmente, el valor más interesante de λi

es el mínimo. La precarga tipo, PN, y el incremento de carga tipo, QN, pueden ser diferentes.

Por ejemplo, PN podría ser una carga debida al peso del terreno, mientras QN ser causada

por la aplicación de una presión interna negativa.

Las formas de pandeo, ννννiM, son vectores normalizados y no representan las magnitudes

actuales de la deformación producida por la carga crítica. Están normalizados, de ahí que la

componente de desplazamiento máximo tiene una magnitud de 1. Estas formas de pandeo

son frecuentemente la salida más práctica del análisis por autovalores, puesto que predicen

el modo de probable fallo de la estructura.

4.1.3 CARACTERIZACIÓN DE LOS MATERIALES PARA TUBERÍAS

Existe una amplia gama de materiales que sirven para fabricar tuberías. A continuación se

listan de entre ellos los de utilización más general, agrupados de la siguiente manera:

METALES: Acero (A) (al carbono, y aleado con diferentes elementos que le

confieren alta resistencia)

Fundición dúctil (FD)

Otros (aluminio, cobre, etc.)

PLÁSTICOS: Polietileno (PE) (de diversas clases de resina, que dan densidades

diferentes: alta, media y baja densidad)

Policloruro de vinilo (no plastificado) (PVC-U)

Poliester reforzado con fibra de vidrio (PRFV)

Otros plásticos (polibutileno, propileno, poliuretano, etc.)

CON CEMENTO: Hormigón en masa (HM), armado (HA) o pretensazo (HP) (con o sin

camisa de chapa de acero) (cCCA / sCCA).

De los materiales citados hay seis fundamentales: cuatro que son de un solo componente

(acero, fundición, polietileno, policloruro de vinilo); los otros dos son materiales compuestos,

con una base o matriz (resinas plásticas, pasta de cemento) a la que se le añaden áridos,

fibras o armaduras (poliester reforzado con fibra de vidrio, hormigón en masa, armado o

pretensado). Los restantes materiales (cobre, aluminio, polibutileno, propileno, poliuretano,

etc.) son utilizables, en principio, en casos en los que se requieren propiedades muy

específicas.

A su vez, cada uno de estos materiales citados admite un cierto grado de variabilidad,

ofreciendo diversas soluciones relativamente diferentes (por ejemplo, el acero con sus

diversos tipos o grados de calidad mecánica; el polietileno, con sus diversas clases, según

su densidad; etc.).

Page 236: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 208 -

4.1.3.1. Tuberías de materiales metálicos

Acero

- Densidad: 7.800 kg / m3

- Resistencia mínima a tracción: 360 a 650 MPa (según normativa europea)

- Límite elástico mínimo: 225 a 355 MPa

- Módulo elástico: 210.000 MPa

- Coeficiente de Poisson: 0,3

Fundición (FD)

- Densidad: 7.050 kg / m3

- Resistencia mínima a tracción: 420 MPa

- Límite convencional de elasticidad: 270 – 300 MPa

- Módulo elástico: 170.000 MPa

- Coeficiente de Poisson: 0,25

4.1.3.2. Tuberías de materiales plásticos

Polietileno (PE)

- Densidad: 950 a 965 kg/m3. Se trata de polietileno de alta densidad (PEAD 100)

- Tensión mínima requerida (MRS): 10 MPa.

- Tensión de diseño: 8 MPa.

- Resistencia a la tracción: ≥ 19 MPa.

- Módulo “elástico”: 1.000 MPa (a corto plazo) y 150 MPa (a largo plazo).

- Coeficiente de Poisson: 0,40

Policloruro de vinilo no plastificado (PVC-U)

- Densidad: 1.350 a 1460 kg/m3.

- Tensión mínima requerida (MRS): ≥ 25 MPa.

- Tensión de diseño: 10 - 12,5 MPa, para coef. seguridad respectivos (C = 2,5 - 2).

- Resistencia a la tracción: ≥ 47 MPa (valor mínimo).

- Módulo “elástico”: 3.600 MPa (corto plazo); 1.750 MPa (largo plazo).

- Coeficiente de Poisson: 0,35

Poliester reforzado con fibra de vidrio (PRFV)

- Densidad: 1.900 kg/m3.

- Tensión de rotura a tracción (a corto plazo/largo plazo): 320/128 MPa.

- Tensión de rotura a flexión (a corto plazo/largo plazo): 75/30 MPa.

Page 237: cálculo estructural de tuberías enterradas por el método

Capítulo 4

Comportamiento de la tubería, el terreno y la interfase tubería/terreno

- 209 -

- Rigidez circunferencial específica = representa su rigidez a flexión transversal por unidad

de longitud del tubo a corto o a largo plazo.

- Rigidez nominal (rigidez circunferencial específica a corto plazo): 2.500, 5.000 y 10.000

Pa.

- Coeficiente de Poisson: 0,18

4.1.3.3. Tuberías de hormigón

- Densidad: 2.400 kg/m3.

- Módulo elástico (a compresión): 28.000 - 35.000 MPa.

- Coeficiente de Poisson: 0,20

4.2. MODELIZACIÓN DEL TERRENO

Los métodos clásicos de cálculo del comportamiento del terreno sometido a cargas externas

se basan en la teoría de la elasticidad, pero la realidad de los suelos es diferente. La

consideración del comportamiento elástico del suelo no deja de ser una simplificación

importante en muchos casos, en los que un modelo constitutivo elastoplástico del tipo

Drucker-Prager sería más cercano a la realidad. Estas hipótesis se pueden estudiar hoy en

día con la utilización del método de elementos finitos.

El estudio del comportamiento no elástico obliga a la creación de modelos de elementos

finitos no lineales. La no linealidad puede presentarse bajo varios puntos de vista, pero en el

presente trabajo se centra en el estudio de la no linealidad debida al material: como

consecuencia de que el suelo no es un material elástico, por lo que es preciso introducir

criterios de plasticidad en su comportamiento.

La resolución de modelos no lineales implica que los resultados se alcancen a través de

sucesivas iteraciones. En el caso del programa seleccionado para el desarrollo de esta tesis

(ABAQUS Student Edition), se recurre al método de Newton-Raphson.

Cualquier material elastoplástico, y el suelo es un buen ejemplo de ello, se comporta de

forma elástica cuando las tensiones a las que se le somete son bajas. Esta propiedad

permite simplificar en la práctica el cálculo de tuberías enterradas y trabajar con el suelo

como si de un material elástico se tratase. Sin embargo, existe un determinado nivel de

tensiones a partir del cual el material comienza a sufrir deformaciones plásticas,

deformaciones permanentes, y ya no responde al incremento de las tensiones aplicadas de

manera lineal. Se dice que ha entrado en plasticidad. Cuando un material está sometido a

tensión en un sólo eje, es sencillo delimitar cuál es el nivel de tensión que lo hace entrar en

plasticidad, simplemente comparando la tensión axial con el límite elástico del material.

Pero, cuando existen tensiones en varios ejes, se ha demostrado que el nivel de tensión que

produce la entrada en plasticidad en una dirección determinada, se ve afectado por las

tensiones que puedan existir en otras direcciones.

Page 238: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 210 -

La combinación de tensiones multiaxiales que actúan sobre el material, se puede asimilar a

un único valor de tensión uniaxial, que podría compararse directamente con el límite

elástico. El valor de tensión uniaxial que provoque un estado de resistencia idéntico al que

provoca el conjunto de tensiones multiaxiales, se define como tensión equivalente (σe).

Cuando la tensión equivalente (σe), es mayor que (σy), tensión de plastificación, el material

entra en plasticidad. Si es menor, se comporta siguiendo las leyes de la elasticidad. Se

asume comportamiento elástoplástico y se toma en cuenta la expansión volumétrica del

material como consecuencia de la plastificación (dilatancia).

4.2.1 COMPORTAMIENTO DEL TERRENO

Antes de comenzar a estudiar los diferentes modelos de comportamiento del terreno, se

considera interesante revisar las teorías clásicas de este comportamiento estudiadas por

SKEMPTON, A.W y BISHOP, A.W. (1954), que consideraban dicho comportamiento en

función del tipo de terreno, de su grado de saturación, de la evolución de su estado con el

tiempo, de la carga aplicada y de su estado crítico; poniendo especial atención en las curvas

tensión/deformación para las dos grandes categorías de suelos (arenosos (SW) y arcillosos

(CL). El comportamiento típico de estos dos suelos se presenta a continuación de forma

resumida.

Variación de tensión

Variación de volumen

1

ε (%)

(σ1−σ3)

432

Figura 4.8. Curvas de esfuerzo/deformación de una arena densa

En la figura 4.8 se representa la curva típica esfuerzo/deformación de la arena densa de

acuerdo con el análisis de SKEMPTON A.W. y BISHOP, A.W. (1954). De la interpretación

de esta curva se pueden establecer 4 partes diferenciadas. La primera parte corresponde a

un fuerte aumento de la tensión y una disminución del volumen; la segunda se caracteriza

por un aumento del volumen del suelo, mientras que la tensión cortante aumenta hasta

llegar al máximo. En la tercera parte, las tensiones disminuyen y el suelo reduce su

dilatación rápidamente y finalmente, en la última parte para grandes deformaciones se

alcanza un nivel de tensión estable, donde el volumen del suelo prácticamente no varía más.

Page 239: cálculo estructural de tuberías enterradas por el método

Capítulo 4

Comportamiento de la tubería, el terreno y la interfase tubería/terreno

- 211 -

Variación de tensión

Variación de volumen

ε (%)

(σ1−σ3) 41

Figura 4.9. Curvas de esfuerzo/deformación de una arena suelta

En la figura 4.9 se presenta el comportamiento de la arena suelta, de la que se deduce que

únicamente aparecen las partes (1) y (4): La primera parte tiene un comportamiento menos

rectilíneo que la arena densa, llegando a alcanzar el máximo cortante, para posteriormente

estabilizarse en la parte 4.

Variación de tensión

Variación de volumen

ε (%)

(σ1−σ3)1 43

2

Figura 4.10. Curvas de esfuerzo/deformación de una arcilla sobreconsolidada y drenada

La figura 4.10 muestra el comportamiento de la arcilla sobreconsolidada y drenada, dónde

se pueden ver las cuatro partes características de la arena densa, con un máximo más

acentuado en tensión y deformaciones más débiles. La figura 4.11 muestra la curva

esfuerzo/deformación de la arcilla normalmente consolidada donde solo se presentan las

partes 1 y 4 como en la arena suelta.

Page 240: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 212 -

Variación de tensión

Variación de volumen

ε (%)

(σ1−σ3) 41

Figura 4.11. Curvas de esfuerzo/deformación de una arcilla normalmente consolidada

Del comportamiento observado en las curvas tensión/deformación realizadas por

SKEMPTON, A.W. y BISHOP, A.W. (1954) se deduce que la arena suelta y la arcilla

naturalmente consolidada presentan un comportamiento semejante a un material

elastoplástico ideal, mientras que la arena densa y la arcilla sobreconsolidada y drenada

tienen un comportamiento semejante a un material elastoplástico con endurecimiento

/reblandecimiento, como se muestra en la figura 4.12.

Plasticidad

idealPlasticidad con

endurecimiento

σ

ε

F F

R

Figura 4.12. Curvas tipo de esfuerzo/deformación del suelo

Dada la complejidad del comportamiento real del suelo, es necesario estudiar en

profundidad las distintas teorías de elasticidad, plasticidad ideal y plasticidad con

endurecimiento para encontrar el modelo que mejor se ajuste a dicho comportamiento.

4.2.2 MODELOS DE COMPORTAMIENTO

4.2.2.1. Modelo elástico lineal

La teoría de la elasticidad lineal se basa en la ley de Hooke generalizada que ya ha sido

expuesta en el apartado 4.1.2.1 (ver ecuación (4.1)).

Los parámetros de la matriz constitutiva (D) son módulo de young (E) y coeficiente de

Poisson (ν) que definen el comportamiento del material. Esta ley se adapta bien a la primera

Page 241: cálculo estructural de tuberías enterradas por el método

Capítulo 4

Comportamiento de la tubería, el terreno y la interfase tubería/terreno

- 213 -

parte de las curvas tensión/deformación de la arena densa y de la arcilla sobreconsolidada y

drenada dentro del rango de pequeñas deformaciones.

4.2.2.2. Modelo elastoplástico

En la teoría de la plasticidad se considera que el suelo sufre deformaciones permanentes en

el transcurso de las solicitaciones.

Se pueden distinguir dos tipos de plastificación:

1. La plastificación por cortante que conduce a la rotura del suelo

2. La plastificación por compresión que corresponde a la compresibilidad del suelo

Si se admiten estos dos fenómenos, se tendrá en el espacio de tensiones un dominio

cerrado delimitado por una o más curvas (figura 4.13b). En el interior de esta superficie el

suelo se comporta de manera elástica en general; la plastificación aparecerá después de

que el punto que representa el estado de tensiones llega a la frontera del dominio.

σ

τ

σ

τ

Dominio elástico

abiertoDominio elástico

cerrado

Superficies de FluenciaSuperficie de Fluencia

(a) (b)

Figura 4.13. Dominios elásticos abierto y cerrado

Por el contrario, si se admite únicamente la plastificación por cortante, el dominio elástico

interior por el cual el suelo está en equilibrio está abierto (figura 4.13a). Cuando el punto

representativo del estado de tensión llega a la frontera de la superficie, llamada superficie de

fluencia, se producen deformaciones plásticas. La función matemática que corresponde a la

superficie se llama función de fluencia (F). Esta función puede depender únicamente del

estado de las tensiones, con lo que en este caso tenemos una plasticidad perfecta, o

dependerá todavía del estado de deformación, teniendo entonces una plasticidad con

endurecimiento.

A) Criterios de plastificación

Los criterios de plastificación establecen los límites del comportamiento a partir de las

combinaciones de las tensiones en un punto. Cuando la combinación de las componentes

Page 242: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 214 -

del tensor de tensiones supera tensión equivalente, el comportamiento es plástico. En caso

contrario, el cuerpo se comporta elásticamente.

Para materiales isotrópicos, los criterios de plastificación se pueden expresar en términos de

los valores principales de tensión o de los invariantes del tensor de tensiones. A

continuación se presentan los criterios de plastificación más habituales.

A.1) Criterio de Tresca

En 1864 Tresca estableció su criterio basado en la teoría de la máxima tensión tangencial.

Cuando la mayor de las tres tensiones tangenciales máximas supera un cierto valor (por

ejemplo, el valor de tensión de límite elástico (K) en un ensayo de corte directo) comienza la

plastificación. Si se admite el criterio habitual (σ1 > σ2 > σ3) la expresión matemática de este

criterio es:

KF 231 −−= σσ (4.3)

donde σ1, σ3, tensiones principales máxima y mínima

A.2) Criterio de Mohr-Coulomb

Este criterio fue propuesto originariamente por Coulomb para suelos en 1773. Las

aportaciones de Mohr datan de 1882. La expresión matemática del criterio es:

( ) ( ) φσσφσσ cos2sin 3131 cF −++−= (4.4)

donde σ1, σ3, son las tensiones principales máxima y mínima

c, φ, cohesión y ángulo de rozamiento interno

Se puede comprobar fácilmente que el criterio de Tresca es una particularización del de

Mohr-Coulomb cuando φ = 0, por lo que es posible que Tresca se viera influido por

Coulomb.

A.3) Criterio de Drucker-Prager

Propuesto en 1952 por Drucker y Prager para materiales como suelos y rocas. La expresión

matemática del criterio contiene términos correspondientes a la fricción y cohesión del

material, así como términos que dependen de la presión hidrostática, ya que en el estado

inicial, existen tensiones normales en los materiales que se estudian (el medio considerado

puede estar a unos metros de profundidad y sometido, por tanto, a una cierta presión). La

expresión matemática del criterio es:

KJIF −+= 21

21α (4.5)

Page 243: cálculo estructural de tuberías enterradas por el método

Capítulo 4

Comportamiento de la tubería, el terreno y la interfase tubería/terreno

- 215 -

donde: I1: Primer invariante del tensor de tensiones: I1 = σ1 + σ2 + σ3

J2: Segundo invariante del desviador de tensiones: J2 = 1/6 [(σ1 - σ2)2 + (σ2 - σ3)

2 + (σ3 - σ1)2]

Los coeficientes α y K tienen las siguientes expresiones:

( )φ

φα

2129 tg

tg

+= (4.6)

( )φ2129

3

tg

cK

+= (4.7)

Donde c, φ son la cohesión y el ángulo de rozamiento interno del material.

plano πeje hidrostático

Trescavon Mises

σ3

σ2

σ1

σ2σ1

σ3

plano πeje hidrostático

Mohr-CoulombDrucker-Prager

σ3

σ2

σ1

σ2σ1

σ3

Figura 4.14. Criterios de plastificación

B) Plasticidad ideal

Se produce la plastificación cuando se alcanza la máxima tensión en la arena densa y la

arcilla sobreconsolidada y cuando se alcanza el nivel de tensión estable (fase 4) para la

arena suelta y la arcilla normalmente consolidada (figura 4.9 y 4.11). En todos los casos la

rotura se define por el criterio de Mohr-Coulomb.

( ) ( ) φφσσσσσ cos2sin3131 cF −++−= (4.8)

Page 244: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 216 -

Donde: σ1, σ3: tensiones principales máxima y mínima

φ, c: ángulo de rozamiento interno y cohesión del suelo

En el rango plástico, las relaciones tensión deformación no son lineales y, por tanto, el

estado de deformaciones no se puede obtener directamente del de tensiones, ya que las

deformaciones dependen de múltiples factores. La consecuencia inmediata es que se deben

utilizar formulaciones incrementales que relacionen el incremento de deformación plástica

con los incrementos de tensión. La deformación plástica total se obtiene por integración de

estos incrementos, los detalles de este procedimiento pueden consultarse en LUBLINER, J.

(2008); a continuación se presenta una descripción resumida de la formulación de

plasticidad ideal.

Los incrementos de deformación plástica se obtienen a partir de la función de fluencia (F),

que define el criterio de plastificación según la expresión:

σε

∂=

Fdd

p λ (4.9)

donde dλ, es el parámetro de consistencia y puede variar según lo hace el flujo plástico.

Es necesario destacar que en el cálculo realizado por el Método de Elementos Finitos

(procedimiento desarrollado en detalle en el CAPITULO 5) el valor de F(σ) se calcula en

todos los puntos de la malla, siendo mayor que cero (F(σ) > 0) en los nodos en plasticidad,

por lo que hay que conseguir que F(σ+dσ) = 0 para que la solución sea admisible.

Para ello se procede a un reequilibrio por el método de las tensiones iniciales

(ZIENKIEWICZ, O.C et al 1991), mediante un desarrollo límite de la fórmula de Taylor:

( ) ( )σ

σσσσ∂

∂+=+

FdFdF

T (4.10)

Así pues, para calcular la corrección de las tensiones que corresponden a la deformación

plástica se utilizan las ecuaciones (4.8 y 4.9), partiendo de la ecuación general:

p

dd εDσ = (4.11)

y sustituyendo de la ecuación (4.9) se obtiene:

σDσ

∂=

Fdd λ (4.12)

Page 245: cálculo estructural de tuberías enterradas por el método

Capítulo 4

Comportamiento de la tubería, el terreno y la interfase tubería/terreno

- 217 -

Considerando que para obtener la solución admisible se debe obtener que F(σ+dσ) = 0 la

expresión del parámetro de consistencia es:

( )

σD

σ

σ

∂−=

FF

Fd

Tλ (4.13)

donde D es la matriz constitutiva elástica.

La teoría de la plasticidad ideal puede ser aplicada como modelo simple del comportamiento

del suelo, debido a que el modelo elastoplástico puro ha sido utilizado con mucha asiduidad

en los primeros modelos realizados por ZIENKIEWICZ, O.C. et al, (1968) y SALENCON, J.

(1974). Si bien este modelo se ajusta de forma adecuada a los casos estudiados de arena

suelta y arcilla normalmente consolidada, no deja de ser una simplificación de un modelo

más complejo de plasticidad con endurecimiento, como es el modelo de Drucker-Prager que

se va a estudiar a continuación.

C) Plasticidad con endurecimiento

Este modelo ha sido adoptado en la modelización final del terreno, pues se ha detectado la

presencia de deformaciones plásticas (permanentes) antes del máximo cortante que

aparece en la arena densa y la arcilla sobreconsolidada y drenada, por lo que es necesario

considerar el efecto del endurecimiento; con lo que la función de carga dependerá del

estado de las tensiones y de un parámetro de endurecimiento (k). Dónde F(σσσσ,k) = 0 en el

transcurso de las plasticidad; los detalles de este procedimiento pueden consultarse en

LUBLINER, J. (2008); a continuación se presenta una descripción resumida de la

formulación de plasticidad con endurecimiento.

σε

∂=

Gdd

p λ (4.14)

donde: G, función de potencial plástico

En el cálculo por el método de los elementos finitos se cumple que F(σσσσ,k) > 0 en los nudos

de la malla después del endurecimiento.

Para volver a restablecer el equilibrio se aplica un incremento de tensión tal que:

( ) 0, =++ dkkdF σσ (4.15)

( ) ( ) 0,, =∂

∂+

∂+=++

k

Fdk

FdkfdkkdF

T

σσσσσ (4.16a)

Page 246: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 218 -

o σ

DεDσ∂

∂==

Gddd

p λ (4.16b)

ε

εε

ε ∂

∂=

∂=

kdd

kdk

Tpp

T

p (4.17)

p

TkG

ddkεσ ∂

∂= λ (4.18)

( )k

FkGd

FGdkF

p

TT

∂+

∂+=⇒

εσσD

σσ λλ,0 (4.19)

La teoría de la plasticidad con endurecimiento mejora los resultados obtenidos por el modelo

elastoplástico puro utilizados por DIAB, Y.G. (1992) y el modelo elastoplástico que lo define

establece que el suelo se deforma elásticamente en una primera fase de solicitaciones, por

lo que son necesarios dos parámetros para modelizar esta fase (módulo de Young (E) y

coeficiente de Poisson (ν)) y la plastificación se evalúa mediante el criterio de Drucker-

Prager, por lo que son necesarios tres parámetros (ángulo de rozamiento interno (φ),

cohesión (c) y ángulo de dilatancia (ψ)).

El criterio de plastificación de Drucker-Prager, cuyo desarrollo completo se puede consultar

en ABAQUS Theory Manual (2007), es realmente una modificación del criterio de Mohr-

Coulomb, que se propuso para evitar los problemas en la determinación de la dirección

plástica que aparecían en ciertos estados de tensión. Así, el criterio de Drucker-Prager

adopta una forma cónica en su representación en el espacio tridimensional de tensiones, lo

cual evita por completo el problema expuesto (ver figura 4.14).

Esta aclaración es importante por cuanto los parámetros del material que requiere el modelo

de Drucker-Prager (β, d), (β, ángulo de rozamiento interno de Drucker-Prager y d, cohesión

de Drucker-Prager) se calculan a partir de las propiedades mecánicas derivadas del modelo

de Mohr-Coulomb, que son universalmente conocidas: el ángulo de rozamiento interno (φ) y

la cohesión (c) (ver ecuaciones (4.20 y 4.21)).

Por último, interviene otro parámetro en la completa definición de la región plástica del

modelo: el ángulo de dilatancia (ψ). En el ámbito de la teoría del potencial plástico, la

dirección de la deformación plástica se obtiene como el gradiente de la función de potencial

plástico (G) (ver ecuación (4.14)), siendo λ una función escalar que define la magnitud de la

deformación plástica. Si se observa la ecuación (4.14) resulta inmediato establecer que la

dirección de la deformación plástica siempre será normal a la función (G).

La existencia de la función de potencial plástico (G) es imprescindible, porque aporta el

criterio necesario para establecer la relación entre las tensiones y las deformaciones durante

Page 247: cálculo estructural de tuberías enterradas por el método

Capítulo 4

Comportamiento de la tubería, el terreno y la interfase tubería/terreno

- 219 -

la plastificación. Sin embargo, el principal problema estriba en determinar la función

matemática que lo representa. En este punto es donde aparecen los conceptos de ángulo

de dilatancia y las reglas de flujo, que pueden ser dos: asociada y no asociada.

En el primer caso (regla de flujo asociada) la función de potencial plástico (G) se supone

idéntica a la función de fluencia (F). Esta afirmación puede parecer arbitraria a primera vista,

pero la condición de estabilidad para materiales plásticos de Drucker permite su

demostración, tal y como establece GALLEGO E., et al, (2007). En el segundo caso (regla

de flujo no asociada) las funciones G y F son distintas.

De esta forma se puede considerar que, cuando ψ = β la regla de flujo es asociada y, por el

contrario, cuando ψ ≠ β, la regla de flujo es no asociada, lo que conlleva una menor

dilatación plástica, llegando en el límite (ψ = 0) a no producirse dilatación plástica. Dada la

imposibilidad de disponer de los valores reales de dilatancia del terreno, se ha optado,

siguiendo el criterio establecido por GALLEGO E., et al, (2007) por adoptar una regla de flujo

asociada, de tal forma que el ángulo de dilatancia sea igual al ángulo de rozamiento interno,

estableciendo una hipótesis del lado de la seguridad.

Parámetros del modelo, (se corresponden a los especificados por ABAQUS y pueden

consultarse en ABAQUS Theory Manual (2007))

Comportamiento elástico:

E, módulo de reacción del suelo

ν, coeficiente de Poisson del suelo

Comportamiento plástico:

criterio de rotura: Lineal

v, excentricidad en el plano meridional (v = 0,1)

β, Angulo de rozamiento interno de Drucker-Prager, cuya expresión, para flujo asociado

es:

φ

φβ

2sin

3

11

sin3tan

+

= (4.20)

donde: φ, ángulo de rozamiento interno

k, relación de flujo de tensión en tensión triaxial (0,778 < k < 1)

ψ, ángulo de dilatancia, que para los modelos con flujo asociado se considera igual que el

ángulo de rozamiento interno de D-P (β)

Endurecimiento:

Tipo de endurecimiento: por cortante (para definir el endurecimiento a partir de la cohesión

Page 248: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 220 -

del material)

d, cohesión de Drucker-Pager

φ

φ

2sin

3

11

cos3

+

=c

d (4.21)

donde: φ, ángulo de rozamiento interno

c, cohesión del suelo

εpl, deformación plástica asociada al valor de cohesión (habitualmente εpl = 0)

4.2.3 CARACTERIZACIÓN DEL SUELO

4.2.3.1. Clasificación del relleno

Los diferentes tipos de relleno que se utilizan para la instalación de una tubería enterrada

pueden ser clasificados en función de su emplazamiento respecto a la misma como: cama

de apoyo y rellenos.

Zona alta

(relleno superior)

Cama de apoyoZona baja

(relleno de protección)

Figura 4.15. Sección tipo de zanja

A) Cama de apoyo

Por lo general los tubos no se apoyan directamente sobre la rasante de la zanja, sino sobre

camas o lechos, los cuales pueden ser de dos tipos: granulares o de hormigón. Para su

elección se tienen en cuenta aspectos tales como el tipo de tubo y sus dimensiones, la clase

de juntas, la naturaleza del terreno, etc.

Las camas de material granular están compuestas por material no plástico y con un tamaño

máximo de 2 cm, pudiendo utilizarse arenas gruesas, gravillas o piedra machacada, con

Page 249: cálculo estructural de tuberías enterradas por el método

Capítulo 4

Comportamiento de la tubería, el terreno y la interfase tubería/terreno

- 221 -

granulometrías tales que, en cualquier caso, el material empleado sea autoestable

(condición de filtro y de dren).

Las camas granulares se realizan en dos etapas. En la primera se ejecuta la parte inferior de

la cama, con superficie plana, tangente a la generatriz inferior de la tubería, sobre la que se

colocan éstos acoplados y acuñados.

En una segunda etapa se ejecuta el resto de la cama rellenando a ambos lados del tubo

hasta alcanzar el ángulo de apoyo indicado.

En ambas etapas los rellenos se efectúan por capas compactadas mecánicamente y de

espesor comprendido entre unos 7 y 10 cm. La densidad a obtener es como mínimo el 95%

de la máxima del ensayo Próctor Normal o bien, el 70% de la Densidad Relativa si se tratara

de material granular libremente drenante.

B) Rellenos

El relleno de la zanja se subdivide, en dos zonas: la zona baja o relleno de protección, que

alcanza una altura de unos 30 cm por encima de la generatriz superior del tubo y la zona

alta o relleno superior, que corresponde al resto del relleno de la zanja hasta sus bordes

superiores.

a) En la zona baja el relleno de protección es de material no plástico, preferentemente

granular y sin materias orgánicas. El tamaño máximo admisible de las partículas es de 2

cm y se colocan en capas de 7 a 10 cm de espesor, compactadas mecánicamente hasta

alcanzar un grado de compactación no menor del 95% del Próctor Normal, o su

Densidad Relativa será mayor del 70% si se tratase de material no coherente o

libremente drenante.

b) En la zona alta de la zanja, el relleno superior se puede realizar con cualquier tipo de

material que no produzca daños en la tubería. El tamaño máximo admisible de las

partículas será de 20 cm y se colocará en tongadas horizontales, compactadas

mecánicamente hasta alcanzar un grado de compactación no menor del 100% del

Próctor Normal o su Densidad Relativa será mayor del 75% si se tratase de material no

coherente o libremente drenante. Excepcionalmente, y cuando se tenga la seguridad de

que no vaya a existir tráfico rodado u otras cargas adicionales a las del relleno sobre la

tubería, podrá obviarse la compactación en esta zona alta, acabando el relleno en forma

abombada y ligeramente por encima de los bordes superiores de la zanja.

El material del relleno, tanto para la zona alta como para la baja, será, en general,

procedente de la excavación de la zanja a menos que sea inadecuado, según lo indicado en

los párrafos anteriores. En estos casos los materiales de relleno se obtendrán de préstamos.

Page 250: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 222 -

4.2.3.2. Tipología del relleno de una tubería enterrada

Las propiedades mecánicas de un suelo natural son una función compleja de sus

componentes químicos y de sus características físicas (densidad, tamaño y dimensión de

las partículas) y de su historia de cargas. Para entender el comportamiento del terreno se

utilizan modelos mecánicos complejos que tengan en cuenta todos los fenómenos locales y

todas las singularidades de un terreno natural (ver apartado “4.2.1 Comportamiento del

terreno”).

Los rellenos situados alrededor de una tubería son suelos naturales que han sido

excavados, modificados y recompactados, y que en general tienen la misma naturaleza

físico-química que los suelos naturales. Sin embargo, no tienen las mismas características

mecánicas y la historia de cargas es mejor conocida, ya que es función de la compactación

realizada, en dónde se controla hasta la cantidad de humedad, y no de un fenómeno natural.

Por esto sus leyes de comportamiento mecánico son más sencillas que las de los terrenos

naturales.

La clasificación de los suelos que se va a adoptar es la establecida por la norma ASTM

D2321 (2009) para normalización de los rellenos de la zanja y AASHTO M145 (1991) para

los suelos naturales.

La norma ASTM D2321(2009) establece cinco grupos de suelo correspondientes a los

rellenos habitualmente utilizados en la instalación de tuberías enterradas (ver tabla 4.5),

mientras que la norma AASHTO M145 (1999) establece dos grupos de suelos naturales. Los

tipos de estos suelos son los siguientes:

Las características mecánicas de los rellenos dependen del tipo de suelo y del grado de

compactación que se define como el coeficiente entre la densidad seca obtenida tras la

construcción y una densidad de referencia que suele ser la del ensayo Proctor Normal o

Modificado. En la práctica se han utilizado los niveles de compactación establecidos en la

norma CEN/TR1295-3 (2007), que son (W, M, N) y se corresponden con 95%, 90% y 80%

del Proctor Normal respectivamente. En los suelos naturales las características mecánicas

dependen también del tipo de suelo y de su estado de densidad, descrita en términos

usuales como “compacidad”.

Page 251: cálculo estructural de tuberías enterradas por el método

Capítulo 4

Comportamiento de la tubería, el terreno y la interfase tubería/terreno

- 223 -

A. Rellenos

Gs Suelos Características

A.I Gravas y suelos granulares con predominio del

tamaño grava.

Las gravas se utilizan habitualmente solo para

la cama y el relleno de protección, son

prácticamente autocompactables

A.II Gravas o mezcla de gravas y arenas bien

graduadas, mezclas de gravas y arenas mal

graduadas, suelos granulares con predominio

de arenas, así como arenas, arenas y mezcla

de arenas y gravas bien graduadas, mezclas

de arenas y gravas mal graduadas.

(GW, GP, SW, SP)

Son los mejores materiales para la cama y el

relleno de protección después de los materiales

de la clase 1 pero son mejores materiales para

el relleno superior.

A.III Suelo granular mixto con una pequeña fracción

de finos y una cohesión moderada (mezclas de

gravas-arenas sedimentarias o arcillosas y

arenas sedimentarias o arcillosas).

(GM, GC, SM, SC)

El uso de estos materiales como cama o

relleno de protección no es sencillo pero es un

buen material como relleno superior.

A.IV Suelo granular mixto con una alta fracción de

finos y una cohesión moderada (mezclas de

gravas-arenas muy sedimentarias o arcillosas y

arenas sedimentarias o arcillosas).

(ML, CL)

Solo se puede utilizar en casos excepcionales

como relleno de protección y es aceptable

como relleno superior cuando se trate de

material procedente de la excavación.

A.V Suelos cohesivos con una granulometría fina

(sedimentos inorgánicos, arenas muy finas,

polvo de roca, arenas finas sedimentarias o

arcillosas, arcillas inorgánicas).

(MH, CH)

Solo se puede utilizar en casos excepcionales

como relleno de protección y es aceptable

como relleno superior cuando se trate de

material procedente de la excavación.

Tabla 4.5. Clasificación de los tipos de relleno (Según ASTM D2321)

B. Terrenos naturales

Grupo B.I. Mas del 50% está compuesto de arena y grava

Grupo B.II. Mas del 50% está compuesto por limo y arcilla

4.2.3.3. Determinación de parámetros

Para poder modelizar el comportamiento del terreno mediante las teorías elásticas y

elastoplásticas de Drucker-Prager es necesario definir sus parámetros geotécnicos que,

básicamente, son el módulo del suelo (E), la cohesión (c), el ángulo de rozamiento interno

(φ) y el peso específico (γ).

Dichos parámetros deben ser determinados mediante ensayos de los rellenos y del terreno

natural presente en la zona de obras a partir de ensayos directos como el de placa de carga,

edómetros, ensayos presiométricos o estimaciones a partir del número de golpes del ensayo

SPT. A falta de estos datos se pueden utilizar los procedimientos descritos a continuación y

los parámetros establecidos por otros investigadores como los propuestos por DIAB, Y.G.

Page 252: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 224 -

(1992), que se pueden considerar de uso general y OTEO C. et al (2003) con parámetros

específicos de la zona de Madrid.

A) Valores de referencia para el módulo del suelo

El módulo del suelo es un parámetro complejo porque dicho término se utiliza

indistintamente para referirse al módulo de reacción establecido en las formulas clásicas, al

módulo presiométrico y al módulo edométrico del suelo.

En las normas que derivan de las formulaciones clásicas para el cálculo de la deflexión y la

carga crítica de pandeo (Iowa modificada y Luscher) se utiliza el módulo de reacción (E’)

que es un parámetro que define la rigidez del relleno de protección. Este módulo es un

parámetro mixto que fue introducido para eliminar la constante de flexión utilizada en la

formula de Iowa original. Este parámetro es el producto del módulo de resistencia pasiva del

suelo utilizado en las primeras modificaciones realizadas por Spangler por el radio del tubo

y, por tanto, no es una propiedad intrínseca del material.

Los primeros valores del módulo de reacción del suelo se dedujeron utilizando la fórmula de

Iowa modificada a partir de deflexiones medidas “in situ”. El problema surgió cuando fue

necesario definir el valor del módulo de reacción para nuevas instalaciones. Fue entonces

cuando HOWARD, A. (1976) propuso una serie de valores del módulo de reacción variables

en función del tipo de suelo y del nivel de compactación. Los valores propuestos por

HOWARD, A. (1976) (ver CAPÍTULO 2), estaban basados en mediciones “in situ” de un gran

número de tuberías enterradas.

En las normas de desarrollo moderno, entre las que destaca la ATV-DWK 127-E (2000) y la

Opción 1 del informe técnico CEN/TR 1295-3 (2007), para evitar los problemas inherentes

de trabajar con un módulo mixto (E’), se ha impuesto el uso del módulo edométrico, como

módulo del suelo. El módulo edométrico es una propiedad constitutiva del material, la cual

está definida como la pendiente de la secante del diagrama tensión/deformación obtenida,

del ensayo de compresión confinada del suelo.

Además se puede calcular a partir del módulo del suelo (Es), el coeficiente de Poisson (ν)

del terreno mediante la siguiente expresión:

( )( )( )νν

ν

211

1

−−

−= s

e

EE (4.22)

El módulo del suelo (Es) puede ser calculado mediante un ensayo de consolidación común

(ensayo triaxial) o por ensayo edométrico en el terreno existente en donde la tubería está

enterrada.

Page 253: cálculo estructural de tuberías enterradas por el método

Capítulo 4

Comportamiento de la tubería, el terreno y la interfase tubería/terreno

- 225 -

El cálculo del módulo edométrico (Ee) está basado en la carga aplicada a la tubería, a menor

valor de carga corresponden menores valores de (Ee). Muchos investigadores han estudiado

la relación entre E’ y Ee, dando un amplio rango de valores (E’ = 0,7 a 1,5 Ee). Esta

dispersión es entendible, ya que Ee es una propiedad “pura” del terreno mientras que E’ es

un valor empírico del mismo.

Calculo del módulo de reacción

El módulo del suelo (relleno y terreno natural inalterado) se ha estudiado mediante los dos

procedimientos descritos en el informe técnico CEN/TR 1295-3 (2007). La opción 1

establece que el módulo de elasticidad se deduce del módulo edométrico y depende de la

presión vertical y, en consecuencia, también de la profundidad del punto considerado de la

zanja, mientras que la opción 2 establece que el módulo de elasticidad se deduce del

módulo presiométrico y es independiente de la profundidad. A continuación se describe de

forma resumida el procedimiento de cálculo seguido por cada una de las dos opciones,

pudiéndose consultar en el CAPÍTULO 3 su desarrollo completo.

Ett

Enb

Ens Ens

EtsEts

E3

E2

E1

Opción 1

Opción 2

Ett módulo del relleno superior E2 módulo del relleno de protección

Ets módulo del relleno de protección E3 módulo del terreno natural

Ens módulo del terreno natural en los laterales de la zanja

Enb módulo del terreno natural por debajo de la zanja

Figura 4.16. Definición de los módulos del suelo según su ubicación y opción de cálculo

A.1) CEN/TR 1295-3 Opción 1

Esta opción define el módulo inicial correspondiente a un grado de compactación del 100%

(Ejj,100%) en función del grupo de suelo (Gs) y dos parámetros de cálculo (z y u).

Page 254: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 226 -

Rellenos Terreno inalterado Grupo de suelo

Gs Módulo inicial Ejj,100% (MPa)

Z u Módulo (MPa)

I 40,0 - - 40,0

II 16,0 5 0,5 10,0

III 9,0 5 0,6 5,0

IV 6,0 6 0,7 3,0

V 4,0 6 0,8 1,0

Tabla 4.6. Módulos del suelo (Op1)

(Extracto de la tabla 3.4 y 3.5 ver CAPÍTULO 3)

Módulo del relleno (Ett,h, Ets,h)

Para determinar el módulo del relleno de protección (Ets,h) y/o superior (Ett,h), ver figura 4.16,

se calcula primero el módulo del suelo a un metro de profundidad, mediante la siguiente

expresión:

310%100,1,

Z

jjjj EE = (4.23)

( )101,0 Pr3 −= DzZ (4.24)

donde: Ejj,1, módulo del relleno para una profundidad de 1 m (N/mm2)

Ejj,100%,módulo básico del relleno para una densidad del 100% PN (N/mm2)

(ver tabla 4.6)

z, parámetro que describe la dependencia del módulo de reacción del suelo con

respecto a la densidad Proctor normal (ver tabla 4.6)

DPr, grado de compactación de relleno (%)

Posteriormente se calcula el módulo del relleno para profundidades distintas de 1 m y/o

cargas de terreno distintas de 20 kN/m2 aplicando la siguiente fórmula:

1,

,

,20

jj

u

vS

hjj Ep

E

= (4.25)

donde: pS,v, presión vertical del relleno en una zanja sin la tubería (kN/m2)

(ver CAPÍTULO 3)

Ejj,h, módulo del relleno en la profundidad real del recubrimiento (N/mm2)

h, altura de cobertura (m)

u, parámetro que describe la dependencia de los módulos del suelo con respecto a la

profundidad del recubrimiento (ver tabla 4.6)

Ejj,1, se determina de acuerdo con la fórmula (4.23) (N/mm2)

Page 255: cálculo estructural de tuberías enterradas por el método

Capítulo 4

Comportamiento de la tubería, el terreno y la interfase tubería/terreno

- 227 -

Y por último se aplican una serie de coeficientes de reducción por la presencia del nivel

freático (fR,GW), anchura de zanja (fR,TW) y efecto del tiempo (fR,T) que determinan los módulos

de elasticidad del relleno de protección (Ets) y del relleno superior (Ett) a corto y largo plazo.

Corto plazo: htsTWRGWRSTts EffE ,,,, = (4.26)

htsTRTWRGWRLTts EfffE ,,,,, = (4.27)

Largo plazo: httSTtt EE ,, = (4.28)

httTRLTtt EfE ,,, = (4.29)

donde: fR,GW, coeficiente de reducción por nivel freático (0,45 – 1,00)

fR,TW, coeficiente de reducción debido a la anchura de la zanja (0,77 – 1,00)

fR,T, coeficiente de reducción por efecto del tiempo (0,25 – 1,00)

Módulo del terreno inalterado (Ens, Enb)

El módulo del terreno en las paredes laterales de la zanja (Ens) se debe tomar de los

definidos en la tabla 4.6. Los módulos del terreno inalterado para profundidades del

recubrimiento distintas de 1 m y/o cargas de terreno distintas de 20 kN/m2, se deben calcular

aplicando la fórmula (4.25).

A falta de datos reales obtenidos mediante ensayos “in situ” para el módulo del terreno

inalterado por debajo la cama de apoyo de la tubería (Enb), éste se debe determinar

aplicando la fórmula (4.30).

httnb EE ,10= (4.30)

A.2) CEN/TR 1295-3 Opción 2

En la opción 2, del mismo modo que en la metodología anterior, definido el grupo de suelo

(Gs) y el nivel de compactación (Dpr) se define el módulo del relleno de protección (E2) y del

terreno inalterado (E3).

Page 256: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 228 -

Gs Clase de

compactación Dpr (%)

E

(MPa)

Gs Clase Dpr (%)

E

(MPa)

No 85/90 2,50 IV Inalterado - 1,50

Moderado 90/92 5,00 No <85 0,50 I

Bien 95 7,50 Moderado 85/90 1,00

Inalterado - 4,00 Bien 90/92 2,50

No <85 0,70 V Inalterado - 0,60

Moderado 85/90 2,00 No <85 <0,30 II

Bien 90/92 5,00 Moderado 85/90 0,60

Inalterado - 2,00

No <85 0,60

Moderado 85/90 1,20 III

Bien 90/92 3,00

Tabla 4.7. Módulos del suelos (Op2)

(Extracto tabla 3.32 (ver CAPÍTULO 3))

Una vez definido el módulo del relleno su valor se corrige mediante una serie de coeficientes

de reducción para considerar el efecto de la anchura de zanja (E*s), la presencia del nivel

freático (Cw) y la influencia de la retirada de la entibación de la zanja (Cs).

*

.. ssws ECCE = (4.31)

Como los casos estudiados (ver CAPÍTULO 5) se corresponden con grupos de suelo

existentes tipo (Gs IV) y rellenos todo uno del tipo (Gs II) o rellenos con cama de arena y

relleno de protección con tipos de suelo (Gs II y Gs III), respectivamente, con dos niveles de

compactación (W y N) y cinco profundidades de instalación, los módulos de elasticidad (en

MPa) establecidos en el modelo a largo plazo son (ver tablas 4.8 y 4.9 y figuras 4.17 y 4.18):

Rellenos no compactados (N)

(MPa)

Rellenos bien compactado (W)

(MPa)

Terreno inalterado

(MPa) h

(m)

Ett Ets Ett Ets Ens Enb

1,00 1,00 2,74 3,00 11,30 3,00 30,00

2,00 1,62 3,88 4,87 15,98 4,87 48,73

3,00 2,16 4,75 6,47 19,57 6,47 64,73

4,00 2,64 5,49 7,92 22,60 7,92 79,17

5,00 3,08 6,13 9,26 25,27 9,26 92,55

Tabla 4.8. Módulos del relleno y del terreno natural adoptados (Op1)

Rellenos de protección (E2)

(MPa) h

(m)

N W

Terreno inalterado

(E3) (MPa)

1 a 5 1,23 2,67 1,50

Tabla 4.9. Módulos del relleno y del terreno natural adoptados (Op2)

Page 257: cálculo estructural de tuberías enterradas por el método

Capítulo 4

Comportamiento de la tubería, el terreno y la interfase tubería/terreno

- 229 -

0,0

0

5,0

0

10,0

0

15,0

0

20,0

0

25,0

0

30,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Módulo de reacción del relleno (Mpa)

Ett-N

(O

p1

)E

ts-N

(O

p1

)E

2-N

(O

p2

)

Ett-W

(O

p1

)E

ts-W

(O

p1

)E

2-W

(O

p2

)

Figura 4.17. Módulos de reacción del relleno adoptados

Page 258: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 230 -

0,0

0

10,0

0

20,0

0

30,0

0

40,0

0

50,0

0

60,0

0

70,0

0

80,0

0

90,0

0

100,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Módulo de reacción del terreno natural (MPa)

Ens (

Op

1)

En

b (

Op1

)E

3 (

Op

2)

Figura 4.18. Módulos de reacción del terreno adoptados

Page 259: cálculo estructural de tuberías enterradas por el método

Capítulo 4

Comportamiento de la tubería, el terreno y la interfase tubería/terreno

- 231 -

B) Parámetros geotécnicos adoptados

Como primera aproximación a la definición de los parámetros del relleno se ha extractado de

DIAB, Y.G. (1992) los datos obtenidos para 18 grupos de suelos, en función de su grupo y

nivel de compactación para la definición del relleno de protección que rodea la tubería y del

mismo modo otros 6 grupos de suelos naturales para la definición del terreno inalterado.

Por otro lado, para validar los valores definidos por DIAB, Y.G. (1992) se han comparado

con los definidos por OTEO, C et al (2003) para los suelos de Madrid, seleccionando de

entre estas dos fuentes los parámetros finalmente utilizados en los modelos de elementos

finitos.

Parámetros del relleno

Los parámetros establecidos por DIAB, Y.G. (1992), se han obtenido para los tres tipos de

suelo mas habitualmente utilizados como relleno de protección de la tubería enterrada

(Arena bien graduada (SW), Arena limosa (SM) y Arcilla limosa (CL)), a base de la

realización de 36 ensayos de compresión triaxial, con un valor óptimo de humedad y una

densidad de compactación entre 85% y 95 % del Proctor Normal (PN), 18 ensayos de

compresión isotrópica para cinco valores de densidad (no compactado, 80%, 85%, 90%,

95% PN) y 9 ensayos de compresión simple, con un contenido óptimo de humedad para tres

valores de densidad (no compactado, 85% y 95% PN). Las características obtenidas para

estos suelos están indicadas en tabla 4.10.

Nº de suelo Tipo Proctor Normal

(%)

Proctor Mod (%)

γγγγ (kN/m3)

c (kN/m2)

φφφφ (º)

20

21

22

23

24

25

SW

100

95

90

85

80

60

95

90

85

80

75

60

23,6

22,5

21,4

20,1

19,0

14,5

0,0

0,0

0,0

0,0

0,0

0,0

54,0

48,0

42,0

38,0

36,0

29,0

30

31

32

33

34

35

SM

100

95

90

85

80

50

95

90

85

80

75

45

21,4

20,3

19,2

18,2

17,1

10,6

37,5

27,0

24,0

20,5

17,0

0,0

36,0

34,0

32,0

30,0

28,0

23,0

40

41

42

43

44

45

CL

100

95

90

85

80

50

90

85

80

75

70

40

20,0

19,4

17,9

16,9

16,0

9,0

75,0

61,0

47,0

40,0

33,0

0,0

12,0

15,0

17,0

18,0

19,0

23,0

Tabla 4.10. Parámetros geotécnicos del relleno (Extracto de la tabla II.6 de DIAB. Y.G. (1992))

Page 260: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 232 -

Definidos los parámetros de densidad, cohesión y ángulo de rozamiento interno de acuerdo

con DIAB, Y.G. (1992), se ha establecido una correlación entre los grupos de suelos

utilizados (SW, SM y CL) y los especificados en el informe técnico CEN/TR 1295-3 (2007)

para los diferentes grupos de suelos que se pueden utilizar en el relleno de una zanja (Gs

A.I, A.II; A.III, A.IV y A.V). De dicha correlación se deduce que el suelo SW está dentro del

grupo (Gs A.II), el SM en el grupo (Gs A.III) y el CL en el grupo (Gs A.IV).

Adicionalmente es necesario establecer una correlación entre los niveles de compactación

establecidos en los cuadros de DIAB, Y.G. (1992) (100%, 95%, 90%, 85%, 80% y 60%) y los

utilizados en el informe técnico CEN/TR1295-3 (W, M y N), para lo cual, se consideran las

siguientes correspondencias: el nivel W (bien compactado) con el 95% de compactación, el

nivel M (moderadamente compactado) con el 90% de compactación y el nivel N (no

compactado) con el 80% de compactación, de lo que se obtiene como resultado la tabla

4.11.

Nivel de compactación Grupo suelo

Tipo Parámetros 80% 90% 95%

A.II SW

c (kN/m2)

φ (º)

γ (kN/m3)

0,0

35,0

19,0

0,0

42,0

21,4

0,0

48,0

22,5

A.III SM

c (kN/m2)

φ (º)

γ (kN/m3)

17,0

28,0

17,1

24,0

32,0

19,2

27,0

34,0

20,3

A.IV CL

c (kN/m2)

φ (º)

γ (kN/m3)

33,0

19,0

16,0

47,0

17,0

17,9

61,0

15,0

19,4

Tabla 4.11. Parámetros geotécnicos del relleno (DIAB. Y.G.)

Por otro lado, de los trabajos realizados por OTEO C. et al (2003) para la definición de los

parámetros geotécnicos de diseño en la ampliación del metro de Madrid, se han obtenido

otro conjunto de parámetros asociados a diferentes tipos de rellenos (ver tabla 4.12)

Tipo Parámetros Valor

Rellenos antrópicos

vertidos

c (kN/m2)

φ (º)

γ (kN/m3)

0,0

28,0

17,60

Rellenos

compactados

c (kN/m2)

φ (º)

γ (kN/m3)

10,0

33,0

19,60

Rellenos

seleccionados bien

compactados

c (kN/m2)

φ (º)

γ (kN/m3)

20,0

34,0

20,60

Tabla 4.12. Parámetros geotécnicos del relleno (OTEO, C.)

(Extracto de la tabla 2 de OTEO C. et al (2003)

Page 261: cálculo estructural de tuberías enterradas por el método

Capítulo 4

Comportamiento de la tubería, el terreno y la interfase tubería/terreno

- 233 -

Los rellenos compactados corresponden aproximadamente al grupo (Gs A.III)2 con un grado

de compactación del 90% y los rellenos seleccionados bien compactados a los grupos (Gs

A.II y Gs A.III) con un grado de compactación del 95%. Por tanto, vista la similitud entre

unos y otros valores, los parámetros asociados al relleno para los grupos de suelo (Gs A.II,

A.III y A.IV) se pueden considerar como los definidos por DIAB, Y.G. (1992), estableciendo

como valor promedio del peso específico del relleno un valor de 20 kN/m3:

DIAB, Y.G. (1992) OTEO, C. et al (2003) Tesis Grupo suelo

Parámetros 80% 90% 95% 80% 90% 95% 80% 90% 95%

A.II

c (kN/m2)

φ (º)

γ (kN/m3)

0,0

35,0

19,0

0,0

42,0

21,4

0,0

48,0

22,5

0,0

35,0

20,0

0,0

42,0

20,0

0,0

48,0

20,0

A.III

c (kN/m2)

φ (º)

γ (kN/m3)

17,0

28,0

17,1

24,0

32,0

19,2

27,0

34,0

20,3

10,0

33,0

19,60

20,0

34,0

20,60

17,0

28,0

20,0

24,0

32,0

20,0

27,0

34,0

20,0

A.IV

c (kN/m2)

φ (º)

γ (kN/m3)

33,0

19,0

16,0

47,0

17,0

17,9

61,0

15,0

19,4

33,0

19,0

20,0

47,0

17,0

20,0

61,0

15,0

20,0

Tabla 4.13. Parámetros geotécnicos seleccionados del relleno

Parámetros del terreno natural

Los parámetros seleccionados por DIAB, Y.G. (1992) para la modelización del terreno

natural son la cohesión, ángulo de rozamiento interno y densidad, que han sido obtenidos a

partir de los ensayos realizados a 6 grupos de suelos inalterados (ver tabla 4.14)

Nº de suelo Grupo3 Estado γ

(kN/m3)

c

(kN/m2)

φ

(º)

10

11

12

B.I

denso

medio

suelto

23,2

20,8

18,4

680,0

680,0

680,0

0,0

0,0

0,0

13

14

15

B.II

rígido

cerrado

blando

20,0

18,7

17,6

680,0

680,0

680,0

0,0

0,0

0,0

Tabla 4.14. Parámetros geotécnicos del terreno inalterado (DIAB Y.G.)

(Extracto de la tabla II.7 de DIAB. Y.G. (1992))

Por otro lado los parámetros definidos por OTEO, C. et al (2003), para terrenos naturales

agrupados siguiendo el mismo criterio que los definidos por DIAB, Y.G. (1992) son:

2 Los grupos del relleno se corresponden con los definidos en la tabla 4.5

3 Los grupos del terreno natural se corresponden con los definidos en la tabla 4.6

Page 262: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 234 -

Grupos de terreno inalterado

Material Parámetros Valor

Arena de

Miga

c (kN/m2)

φ (º)

γ (kN/m3)

10-33

33-38

19,60 B.I

Arena

Tosquiza

c (kN/m2)

φ (º)

γ (kN/m3)

10-50

33-37

20,11

Tosco

arenoso

c (kN/m2)

φ (º)

γ (kN/m3)

40-100

31-35

20,40

Tosco

c (kN/m2)

φ (º)

γ (kN/m3)

80-150

28-34

20,60

Peñuela

alterada

c (kN/m2)

φ (º)

γ (kN/m3)

60-150

26-30

19,60

B.II

Peñuela

c (kN/m2)

φ (º)

γ (kN/m3)

> 150

28-32

19.60

Tabla 4.15. Parámetros geotécnicos del terreno inalterado (OTEO, C.)

(Extracto de la tabla 1 de OTEO, C. et al (2003))

Considerando las dos referencias bibliográficas, para este caso se van a establecer en el

modelo los valores medios definidos por OTEO C. et al (2003), por considerar que son más

representativos del terreno que se quiere modelizar que los establecidos por DIAB, Y.G.

(1992), con un peso específico medio para todos los casos igual a 20 kN/m3.

Grupos de suelo

inalterado Parámetros

DIAB, Y.G. (1992)

OTEO C. et al (2003)

Tesis

B.I

c (kN/m2)

φ (º)

γ (kN/m3)

680

0,00

20,80

10-33

33-37

19,85

20

34

20,0

B.II

c (kN/m2)

φ (º)

γ (kN/m3)

680

0,00

18,76

40-100

26-30

20,05

70

28

20,0

Tabla 4.16. Parámetros geotécnicos seleccionados del terreno natural

4.3. MODELIZACIÓN DE LA INTERFASE TUBERÍA/TERRENO

En este capítulo se va a tratar el problema de la interacción entre la tubería y el terreno que

le rodea que se trata de un problema no lineal complejo, y de buscar un procedimiento

compatible con la modelización realizada del resto de elementos constitutivos del modelo

Page 263: cálculo estructural de tuberías enterradas por el método

Capítulo 4

Comportamiento de la tubería, el terreno y la interfase tubería/terreno

- 235 -

completo desarrollado en los apartados anteriores (materiales de tubería y terreno

natural/relleno, independientemente).

De los trabajos de investigación realizados sobre el comportamiento de las tuberías

enterradas donde se ha considerado específicamente la interacción tubería/terreno se han

adoptado los siguientes modelos de interfase y contacto, cuyas características son las

siguientes4.

La interfase entre la tubería y el terreno se ha modelizado históricamente, entre otras

maneras, utilizando elementos de interfase (KATONA, M. (1983)), mediante muelles con

comportamiento elastoplástico (ZHOU, Z. y MURRAY, D. (1993)) o mediante modelos de

superficies en contacto (FELICIANO, A.M. et al (2006)).

El contacto entre el suelo y la tubería se ha definido de diversas maneras: con rozamiento

simulado mediante los elementos interfase (KATONA, M. (1983)), sin rozamiento con

adherencia perfecta (SELVADURAI, AP. et al (1988)) o con rozamiento a través de las

superficies en contacto (FELICIANO, A.M. et al (2006)).

Con la comercialización de paquetes de cálculo completo por el método de elementos finitos

en las últimas décadas del siglo veinte, la implementación de nuevos modelos de contacto

se ha realizado directamente a través de los programas de cálculo más habituales, como es

el caso del ABAQUS (2007), por lo que ha existido una tendencia al uso generalizado de los

modelos de superficies en contacto, con o sin rozamiento, para el análisis del

comportamiento de tuberías enterradas.

4.3.1 MODELO DE COMPORTAMIENTO DEL CONTACTO

El modelo de contacto seleccionado, que mejor se adapta a la interfase tubería/terreno es

un modelo de contacto no lineal entre superficies con rozamiento que permite la transmisión

de esfuerzos normales y tangenciales en el contacto sin trasmisión de calor, los detalles de

este procedimiento pueden consultarse en las siguientes referencias (LAURSEN, T.A.

(2010), ABAQUS Theory Manual (2007), WRIGGERS, P. y ZAVARISE, G. (2004)), a

continuación se presenta una descripción resumida del modelo de contacto.

4.3.1.1. Esfuerzos normales

La transmisión de esfuerzos normales se ha realizado utilizando un modelo de contacto

rígido, en el cual, cuando las superficies están en contacto, se puede trasmitir cualquier

presión entre ambas, mientras que cuando se separan la presión se reduce a cero.

4 Solo se ha incluido una referencia a modo de ejemplo, aunque existen numerosas referencias para cada uno de

los procedimientos aquí descritos.

Page 264: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 236 -

4.3.1.2. Esfuerzos tangenciales

El modelo de rozamiento empleado se corresponde con el modelo isotrópico clásico de

Coulomb, el cual relaciona la tensión máxima admisible a lo largo de la superficie de

contacto entre dos cuerpos. En la formulación del modelo, dos superficies en contacto

pueden transmitir tensiones tangenciales, en el contacto, hasta una cierta magnitud,

después de la cual comienza el deslizamiento relativo de una superficie con respecto a la

otra.

El modelo de Coulomb define la tensión crítica (τcrit) para la cual comienza el deslizamiento

como una fracción de la presión de contacto (p) entre ambas superficies (τcrit = µp). Los

cálculos determinan cuando un punto se encuentra en transición entre una situación estática

y de deslizamiento, o viceversa. La fracción (µ) es conocida como coeficiente de rozamiento.

El modelo de fricción propuesto, considera que el coeficiente de rozamiento es igual en

todas direcciones (fricción isotrópica) y que se define una superficie (figura 4.19), en el

espacio presión de contacto/tensión tangencial equivalente, a lo largo de la cual un punto

transita desde la situación estática al deslizamiento.

Presión de contacto (p)

Te

nsió

n t

an

ge

ncia

l

equ

iva

len

te

Región sin

desplazamiento

µ (coef. rozamiento)

Tensión crítica

1

Figura 4.19. Regiones de deslizamiento para el modelo de fricción de Coulomb.

4.3.2 PARÁMETROS DE CONTACTO

De acuerdo con el procedimiento descrito, el único parámetro que define el comportamiento

del contacto es el coeficiente de rozamiento entre las superficies de contacto (relleno/terreno

natural, µ1 y tubo/relleno, µ2). Por ello, siguiendo lo descrito en el informe técnico

CEN/TR1295-3 (2007), se establece que el coeficiente de rozamiento entre el relleno y el

terreno natural es el mínimo de los coeficientes calculados a partir del ángulo de rozamiento

interno afectado por un coeficiente de reducción que depende de las condiciones de

instalación (que se establece en 0,66), es decir.

µ1r = tg (0,66.φir) (4.32)

Page 265: cálculo estructural de tuberías enterradas por el método

Capítulo 4

Comportamiento de la tubería, el terreno y la interfase tubería/terreno

- 237 -

µ1t = tg (0,66.φit) (4.33)

µ1= Min (µ1r, µ1t) (4.34)

donde: µ1r , coeficiente de rozamiento del relleno corregido

µ1t , coeficiente de rozamiento del terreno corregido

φir, ángulo de rozamiento interno del relleno

φit, ángulo de rozamiento interno del terreno

µ1, coeficiente de rozamiento entre el terreno y el relleno

El coeficiente de rozamiento entre la tubería y el relleno, después de revisar los coeficientes

de rozamiento entre diferentes materiales definidos en BEER, F.P. y JOHNSTON E.R.

(1983) se establece del mismo modo que en el caso anterior, como el mínimo entre el

coeficiente de rozamiento del tubo (estimado en 0,2) y el coeficiente de rozamiento del

relleno calculado con la ecuación 4.32.

µ2= Min (0,2; tg(0,66.φir)) (4.35)

donde: µ2 , coeficiente de rozamiento entre la tubería y el relleno

De acuerdo con los grupos de suelos establecidos en los casos estudiados (ver CAPÍTULO

5), los coeficientes de rozamiento entre relleno/terreno y tubo/relleno son:

Ángulo de rozamiento Coeficientes de rozamiento

relleno (W)

terreno natural

µµµµ1r

(W) µµµµ1t µµµµ1

(W) µµµµ2

(W)

II 48 - 0,62 -

IV - 28 - 0,34 0,34 0,20

Tabla 4.17. Parámetros del contacto (µ)

4.4. CONSIDERACIONES FINALES

En líneas generales se puede establecer que el comportamiento del material constitutivo de

la tubería corresponde, por un lado, a comportamiento elástico lineal5 para estudiar el estado

tensional y de pandeo elástico para estudiar el efecto de inestabilidad por pandeo de la

tubería.

5 En realidad los materiales constitutivos tienen siempre un comportamiento elastoplástico, si bien es posible

establecer que dentro del rango de tensiones de trabajo dicho comportamiento esté dentro de la rama elástica;

caso aparte son los plásticos, cuyo comportamiento es siempre plástico, y se establece como convenio

considerar dos módulos “elásticos” ficticios, uno a corto plazo, que representar la pequeña rama elástica que

tienen los plásticos a corto plazo y otro a largo plazo, correspondiente a un módulo de “elasticidad equivalente”

que representa las características mínimas aseguradas por envejecimiento y fluencia a 50 años.

Page 266: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 238 -

Del mismo modo, el comportamiento del terreno es elastoplástico y depende en gran medida

de las características granulométricas, de humedad, grado de compactación, etc, por lo que

es necesario establecer un comportamiento tipo que permita modelizar de la manera más

fiel posible el comportamiento, real del mismo. En los trabajos de esta tesis se han

propuesto realizar dos modelos, uno elástico y otro elastoplástico con endurecimiento de

Drucker-Prager con flujo asociado.

Y por último, el modelo de contacto seleccionado, que mejor se adapta a la realidad de la

interfase existente entre la tubería y el terreno, es un modelo de contacto no lineal entre

superficies con rozamiento que permite la transmisión de esfuerzos normales y tangenciales

sin trasmisión de calor de acuerdo con el modelo clásico de Coulomb.

Page 267: cálculo estructural de tuberías enterradas por el método

Capítulo 5

Modelo de comportamiento mecánico de tubería enterrada en elementos finitos

- 239 -

CAPÍTULO 5. MODELO DE COMPORTAMIENTO MECÁNICO DE TUBERÍA ENTERRADA EN ELEMENTOS FINITOS

5.1. CONCEPTOS GENERALES

La introducción del método de elementos finitos (MEF) en problemas de ingeniería se debe

a TURNER et al (1956), que inicialmente aplicaron el método para analizar las tensiones en

las estructuras de las aeronaves. Desde entonces, el método de los elementos finitos ha

sido mejorado en cuanto a los aspectos particulares de la ingeniería, especialmente en lo

referente a los modelos constitutivos de los materiales, la representación del proceso

constructivo y de las cargas externas. Actualmente es uno de los métodos numéricos más

consolidados y con mayor aplicación en la Ingeniería Civil.

En el campo de la geotécnica la introducción del método de elementos finitos se debe a

CLOUGH y WOODWARD (1967), que analizaron las tensiones y los desplazamientos del

cuerpo de presa de un embalse. Este trabajo, además de pionero, fue relevante por

esclarecer la importancia de reproducir las secuencias constructivas de los rellenos para

poder conseguir buenas previsiones de los desplazamientos del cuerpo de presa. A pesar

de las dificultades en definir adecuadamente un modelo constitutivo de suelo y,

principalmente, las variaciones de sus propiedades con el confinamiento, el método de

elementos finitos se aplica en geotécnica, en análisis con condiciones geométricas, de

contorno o de carga complejas, como en túneles, cimentaciones, estudios de filtración y

estabilidad de taludes.

La utilización del método de elementos finitos en tuberías enterradas se ha restringido hasta

hace relativamente poco tiempo a la elaboración de análisis paramétricos para averiguar los

efectos del proceso constructivo, las cargas y la interferencia de obras próximas, entre otras.

El potencial del método de los elementos finitos para la realización de análisis de estructuras

enterradas por el método “cut and cover”, especialmente válido para simular el proceso

constructivo de las tuberías, suscitó el desarrollo de diversos programas específicos como el

CANDE (Culverts Analysis and Design), presentado por KATONA, M.G. et al (1976), que ha

sido desarrollado para facilitar el uso y la divulgación del método. Este programa fue

mejorando a lo largo de los años y actualmente es compatible con todos los sistemas

operativos vigentes en la actualidad. En sus primeras versiones consideraba solamente el

análisis elástico, para tuberías de diversas formas y tipos de material. En 1981 fue

incorporado el modelo hiperbólico de Duncan para la consideración de las no linealidades

físicas del terreno. Además de este programa se desarrollaron otros con el mismo fin, SSTIP

(Soil Structure Interaction Program), DUNCAN, J.M. et al (1979); NLSSIP (Non linear

analysis of Soil-Structure Interaction Problems), DUNCAN, J.M, BYRNE, P. et al (1980); y el

SSCOMP (Soil Structure Compactation), SEED, R.B y DUNCAN, J.M (1984).

Adicionalmente a estos programas, se fueron desarrollando programas comerciales con

carácter generalista, de entre los cuales destacan el ANSYS, DIANA y ABAQUS; este último

Page 268: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 240 -

fue desarrollado por David Hibbitt, Dr. Bengt Karlsson y Paul Sorensen en 1978 como un

paquete integrado del método de elementos finitos y se está actualizando de forma continua

desde su creación hasta la actualidad (ABAQUS v6.10 2010).

5.2. MODELO DE ELEMENTOS FINITOS

Desde finales del siglo XIX hasta la llegada del método de los elementos finitos, el

dimensionamiento de tuberías enterradas estaba basado en modelos analíticos simples y en

experiencias anteriores. Cuando la instalación se realiza en suelos granulares y

homogéneos, con geometrías y cargas simples, los métodos analíticos resuelven

relativamente bien estos casos. Sin embargo, para casos más complejos de recubrimiento

de estructuras flexibles de mayor tamaño, secuencia constructiva más detallada, sus

resultados dejan bastante que desear. (ZORN, N.F. y VAN DEN BERG, P. (1990)).

El método de los elementos finitos se considera viable para su uso en el dimensionamiento

de tuberías enterradas, pues hace posible la consideración de suelos de diferentes tipos y

densidades, diferentes y complejas condiciones de carga, variación del tamaño y la rigidez

de las tuberías, y por encima de todo permite tener en cuenta la secuencia de ejecución del

tubo. Se trata de una herramienta muy útil para la verificación y desarrollo de proyectos de

tuberías, principalmente cuando están combinados con ensayos de laboratorio (WATKINS,

R.K. y ANDERSON L.R. (1999)).

A pesar de su potencial y de que los resultados obtenidos a partir de las simulaciones

numéricas se muestran coherentes en la gran mayoría de las veces, la imposibilidad de

definir de forma fidedigna los materiales, las cargas y, principalmente, la secuencia

constructiva impiden el uso de los resultados del método de elementos finitos como

herramienta habitual para el dimensionamiento de tuberías enterradas, consideración que va

a cambiar con la propuesta de esta tesis.

WATKINS, R.K. y ANDERSON L.R. (1999) revelan las principales ventajas de la utilización

del método de elementos finitos en relación con los procedimientos habituales de cálculo.

• Consideración de la no linealidad y heterogeneidad del suelo, especialmente en lo

que se refiere a la cama de apoyo, a las diferentes formas de la ejecución del relleno

de protección y del relleno de cobertura.

• Variación de la rigidez de la estructura incluidos los elementos de cimentación.

• Secuencia de ejecución en el terreno, incluida la posibilidad de considerar la

ejecución mediante tablestacas y todos los efectos que en una secuencia

constructiva repercuten sobre los resultados finales.

• Consideración de la interfase entre la tubería y el terreno, o sea, del deslizamiento o

la adherencia perfecta entre ambos.

Page 269: cálculo estructural de tuberías enterradas por el método

Capítulo 5

Modelo de comportamiento mecánico de tubería enterrada en elementos finitos

- 241 -

• Mayor precisión en el análisis de la tubería, pues se tienen los valores de

desplazamientos y esfuerzos en cada elemento del modelo de la estructura, en cada

instante de la construcción y al final de la ejecución de la obra.

• Consideración de las no linealidades geométricas, imprescindible en los análisis en

donde hay grandes desplazamientos y/o estructuras flexibles.

El método de elementos finitos ha sido utilizado también en otras condiciones no usuales

(grandes diámetros, esbeltez elevada) en donde las teorías convencionales no son de

aplicación DUNCAN, J.M. (1975).

Los pormenores del método de los elementos finitos están bien documentados y pueden

encontrarse en las siguientes referencias (COOK, R.D et al (2002), ZIENKEWICZ, O.C. y

TAYLOR, R.L (1991)). Los procedimientos matemáticos del método de elementos finitos se

describen de forma abreviada a continuación, presentando las formulaciones de la matriz de

rigidez, de los elementos utilizados, tipo viga y tipo sólido, así como la definición de los

contactos y las ecuaciones constitutivas del modelo.

5.2.1 FORMULACIÓN DE LA MATRIZ DE RIGIDEZ

Básicamente la formulación del método de elementos finitos en un análisis de tuberías

enterradas es similar a la adoptada para cualquier otro problema de ingeniería. Esto es, el

modelo real está representado por una malla de elementos finitos conectados por nodos. Se

establece una función aproximada para describir la variación de las incógnitas nodales y se

utilizan métodos de minimización de errores para que la solución aproximada proporcione

valores más próximos a los reales. A través de las formulaciones energéticas o de las

ecuaciones diferenciales que rigen el problema en estudio, es posible establecer una

ecuación de equilibrio que puede ser escrita de la siguiente forma (COOK, R.D et al 2002,

ZIENKEWICZ, O.C. y TAYLOR, R.L 1991):

faK =. (5.1)

donde: K matriz de rigidez

a vector de desplazamientos nodales

f vector de fuerzas nodales equivalentes

Cada elemento de la matriz de rigidez es función de la geometría del elemento finito, de su

material y de la función de forma adoptada. El tamaño de la matriz de rigidez es proporcional

al número total de nodos del modelo y del número de grados de libertad de cada nodo. Las

contribuciones de cada nodo son incorporadas a la matriz de rigidez global de tal forma que

se puede establecer un sistema de ecuaciones general para un problema, cuya solución

proporcione las variables nodales necesarias.

Cuando se consideran los análisis no lineales físicos o geométricos del material o del medio,

es necesario establecer un procedimiento iterativo de convergencia, una vez que las no

Page 270: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 242 -

linealidades son aproximadas por análisis lineales en pequeños intervalos. La convergencia

para un valor dado implica el ajuste del procedimiento lineal aproximado al valor real no

lineal. La ecuación para análisis no lineales es:

( ) extfdf =int (5.2)

siendo ( )df int una función no lineal. Se linealiza para obtener:

fdK =∆.T (5.3)

obteniendose d de manera iterativa

Las ecuaciones de equilibrio global se obtienen por ensamblado de las ecuaciones

elementales. Los detalles de estos procedimientos pueden consultarse en las siguientes

referencias (COOK, R.D et al (2002), CRISFIELD, M.A. (1997, 1991), ZIENKEWICZ, O.C. y

TAYLOR, R.L (1991)). A continuación se presenta una descripción resumida de la

formulación matemática de las ecuaciones elementales. En la presente investigación se han

utilizado elementos tipo viga de 2 nodos (ver figura 5.1) y elementos tipo sólido de 4 nodos

(ver figura 5.3).

5.2.2 FORMULACIÓN DEL ELEMENTO TIPO VIGA DE 2 NODOS

La elección del elemento tipo viga de Euler-Bernoulli de dos nodos (identificada en ABAQUS

como elemento tipo B21), para modelizar tuberías de pared delgada (con comportamiento

flexible o semiflexible, se ha realizado por ser el elemento tipo que mejor idealiza el

comportamiento de un anillo flexible en dos dimensiones (2D) y porque se cumplen las tres

hipótesis asociadas a su uso, según OÑATE, E. (1995):

• Los desplazamientos verticales de todos los puntos de una sección transversal son

pequeños e iguales a los del eje de la viga.

• El desplazamiento lateral es nulo (hipótesis de deformaciones planas)

• Las secciones transversales al eje de la viga antes de la deformación, permanecen

planas y ortogonales a dicho eje después de la deformación.

Se trata de un elemento lineal normalmente con comportamiento elástico lineal y compuesto

por dos nodos. Cada nodo posee tres grados de libertad, dos traslaciones y una rotación

como se puede ver en la figura 5.1. Después del cálculo son obtenidos, además, dos

desplazamientos nodales, una fuerza normal, una fuerza cortante y un momento flector en el

elemento. (BOULANGER, R.W. et al (1991).

Page 271: cálculo estructural de tuberías enterradas por el método

Capítulo 5

Modelo de comportamiento mecánico de tubería enterrada en elementos finitos

- 243 -

Elemento

tipo Viga

u2j u1j

u3j

u3i

u1i

u2i

i

j

x

y

Figura 5.1. Elemento tipo viga

En la discretización en elementos finitos de dos nodos, OÑATE, E. (1995) establece que la

incógnita fundamental del problema es la flecha (w). No obstante, debido a que en la

expresión del trabajo virtual interno aparecen segundas derivadas de (w), se deben utilizar

elementos de continuidad de clase C1 (la variable y su primera derivada han de ser

continuas) para evitar singularidades en el cálculo de las integrales. Esta condición se puede

interpretar físicamente de manera sencilla teniendo en cuenta que (dw/dx) coincide con la

pendiente de la deformada del eje de la viga. Por tanto, dicha derivada debe ser continua

para garantizar que la deformada del eje describa una curva suave.

N1

N1

N2

N2

45º45º

1 1

1 2

ξ = -1 ξ = +1

l (e)

Figura 5.2. Funciones de forma del elemento hermítico

El elemento más sencillo de viga de clase C1 es el unidimensional de dos nodos (ver figura

5.2). La continuidad de las primeras derivadas obliga a tomar el giro (dw/dx) como variable.

Por consiguiente, el número total de variables nodales del elemento es 4 (w1, w2, (dw/dx)1,

(dw/dx)2 por nodo). Dichas variables definen perfectamente una variación cúbica de la flecha

3

3

2

210 xxxw αααα +++= (5.4)

Page 272: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 244 -

Las constantes (αi) se calculan sustituyendo adecuadamente los valores de la flecha y sus

derivadas en los nodos (ver ecuación 5.4), lo que proporciona el sistema de cuatro

ecuaciones con cuatro incógnitas siguiente:

3

13

2

121101 xxxw αααα +++=

2

13121

1

32 xxdx

dwααα ++=

3

23

2

222102 xxxw αααα +++= (5.5)

2

23221

2

32 xxdx

dwααα ++=

Una vez resuelto el sistema anterior se puede reescribir la ecuación (5.4), tras sustituir

convenientemente las expresiones de las (αi,) como:

( ) ( )

2

222

1

11122

++

+=

dx

dwlNwN

dx

dwlNwNw

ee

(5.6)

Donde las funciones de forma del elemento vienen dadas por:

( )3

1 324

1ξξ +−=N ( )3

2 324

1ξξ −+=N

( )321 1

4

1ξξξ +−−=N ( )32

2 14

1ξξξ ++−−=N (5.7)

Con: ( )

( )mexx

l−=

2ξ y

2

21 xxxm

+= (5.8)

La ecuación (5.6) puede reescribirse como:

)(e

w Na= (5.9)

donde

[ ]2211 ,,, NNNN=N y

T

e

dx

dww

dx

dww

=

2

2

1

1

)(,,,a (5.10)

Son la matriz de funciones de forma y el vector de movimientos (desplazamientos y giros)

nodales del elemento, respectivamente.

Page 273: cálculo estructural de tuberías enterradas por el método

Capítulo 5

Modelo de comportamiento mecánico de tubería enterrada en elementos finitos

- 245 -

La aproximación definida por la ecuación (5.6) se denomina hermítica, por coincidir las

funciones de forma con polinomios de Hermite. La representación gráfica de las cuatro

funciones de forma del elemento hermítico de dos nodos se muestra en la figura 5.2

Obsérvese que las funciones N1 y N2 valen la unidad en un nodo y cero en el otro, mientras

que sus primeras derivadas son cero en ambos nodos, sucediendo lo contrario con las

funciones 1N y 2N .

De (5.8) se deduce que 2

)(el

d

dx=

ξ, con que

ξdl

dxe

2

)(

= ; ξd

dw

ldx

dwe)(

2=

2

2

2)(2

2

)(

4

ξd

wd

ldx

wde

= (5.11)

Por consiguiente, la curvatura en un punto del elemento de coordenada (x) se obtiene,

haciendo uso de (5.6) y (5.10), por:

=

++

+==

2

2

22)(

22

2

2

1

2

12)(

12

1

2

2)(2

2

22)(

4

dx

dw

d

Ndlw

d

Nd

dx

dw

d

Ndlw

d

Nd

ldx

wd ee

e ξξξξχ

)(

2

2

1

1

)(2)()(2)(

)31(,

)(

6,

)31(,

)(

6 e

eeee

dx

dw

w

dx

dw

w

llllaB

f=

+−+−=

ξξξξ (5.12)

Siendo (Bf) la matriz de deformación de flexión o de curvatura del elemento.

Finalmente, la expresión de los trabajos virtuales de un elemento queda, utilizando las

expresiones definidas por OÑATE, E. (1995) y las ecuaciones (5.6) y (5.12), en lo siguiente.

[ ] =

=∫ ∫

+

)()(1

1

)(

)( 2)(

e

l

eTe

e

dl

EIdxEI aBBaff

ξδχδχ

[ ] ∑∑∫==

+

++−=

2

1

2

1

)(1

1

)(

2 j

j

ji

ii

eT

T

eM

dx

dwZwd

qlδδξδ Na (5.13)

Que tras operar en la forma usual conduce a la siguiente expresión:

K(e) a(e)-f(e) = q(e) (5.14)

Page 274: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 246 -

Donde la matriz de rigidez del elemento de viga puede calcularse de forma explícita

mediante la siguiente expresión:

∫+

==

1

1

2)(

)(

2)()(2)(

)()(

)(

3

)()(

)(4.

612

)(26)(4

612612

2

e

e

eee

ee

eeTe

lsim

l

lll

ll

l

EId

EIlξBBK (5.15)

5.2.3 FORMULACIÓN DEL ELEMENTO CUADRILÁTERO DE 4 NODOS

La elección del elemento tipo sólido de 4 nodos (identificado en ABAQUS como elemento

tipo CPE4 cuadrilátero de 4 nodos en deformación plana) para modelizar las tuberías de

pared gruesa se ha realizado por ser un elemento que tiene cuatro puntos de integración en

su interior lo que permite, al disponer de varios puntos de integración, ajustar mejor el

comportamiento de las tensiones obtenidas en la pared del tubo frente a los resultados

reales. Por otro lado, el terreno se ha modelizado con el mismo elemento definido

anteriormente pero con integración reducida (identificado en ABAQUS como elemento tipo

CPE4R) debido a que en el terreno se alcanza suficiente precisión con un único punto de

integración.

La formulación del elemento cuadrilatero de 4 nodos (CPE4) está basado en el

procedimiento isoparamétrico si bien se modifica la matriz de deformaciones (B) obtenida

mediante este procedimiento de acuerdo con la fórmula B-barra.

u3

ξ

η

u2

u4

u1

v3

v2

v1

v4

4

3

21

Figura 5.3. Elemento tipo sólido de cuatro nodos

Los grados de libertad del elemento se muestran en la figura 5.3. La geometría del elemento

y el campo de desplazamientos se definen en función de las coordenadas nodales y los

distintos grados de libertad, mediante las siguientes funciones:

Page 275: cálculo estructural de tuberías enterradas por el método

Capítulo 5

Modelo de comportamiento mecánico de tubería enterrada en elementos finitos

- 247 -

∑=

=4

1i

ii xNx ∑=

=4

1i

iiuNu

Nau = (5.16)

∑=

=4

1i

ii yNy ∑=

=4

1i

iivNv

donde: xi, yi, coordenadas globales en el nodo i

ui, vi, desplazamientos del nodo i a lo largo de los ejes X,Y respectivamente

Ni = f(ξ,η), función de forma en el nodo i, siendo (-1 ≤ ξ ≤ +1) y (-1 ≤ η ≤ +1)

ξi,ηi, coordenadas naturales del nodo i

Las funciones de forma para el elemento cuadrilátero son:

( )( )ηηξξ 111 114

1++=N , ( )( )ηηξξ 222 11

4

1++=N

( )( )ηηξξ 333 114

1++=N , ( )( )ηηξξ 444 11

4

1++=N (5.17)

En este momento, las tensiones para cualquier punto dentro del elemento se pueden

expresar en términos de los desplazamientos nodales como:

∂∂

=

∂∂

=

∂+

∂∂

=

4

4

3

3

2

2

1

1

4321

4321

0000

00000

0

0

0

v

u

v

u

v

u

v

u

NNNN

NNNN

xy

y

x

v

u

xy

y

x

x

v

y

u

y

vx

u

xy

y

x

γ

ε

ε

BadNadu ===ε (5.18)

donde: B, matriz de deformación del elemento

a, vector de los desplazamientos nodales

Entonces, la relación tensión deformación se puede expresar como:

DBaD == εσ (5.19)

donde, D es la matriz elástica definida por las propiedades mecánicas del material. Para un

material isótropo, la matriz D se puede expresar como:

Page 276: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 248 -

( )( )( )

−+=

2/100

01

01

211ν

νν

νν

νν

ED (5.20)

donde: E, módulo de elasticidad del material

ν, coeficiente de Poisson

En consecuencia, la matriz de rigidez y las fuerzas nodales para un elemento plano

isoparamétrico en 2D se definen mediante las siguientes integrales:

∫∫ ==A

T

V

TdAtdV .. DBBDBBK (5.21)

∫Ω

Ω= dT

b bfp (5.22)

∫Ω

Ω= dT

00 εDBp (5.23)

donde: K, matriz de rigidez

V, volumen del elemento

A, superficie del elemento

t, espesor del elemento

pb, fuerza nodal debido a las fuerzas distribuidas (b)

p0, fuerza nodal debido a la deformación inicial (ε0)

Ω, campo de integración

La integración numérica de las ecuaciones (5.21 a 5.23) se realiza mediante un

procedimiento de integración numérica basado en el método Gauss-Legendre, cuyo

resultados es:

( ) ( ) ( )kjkjkj

T

k j

kjWWt ηξηξηξ ,,,4

1

4

1

JDBBK ∑∑= =

= (5.24)

( ) ( ) ( )kjkjkj

T

k j

kjb WWt ηξηξηξ ,,,4

1

4

1

Jbfp ∑∑= =

= (5.25)

( ) ( ) ( )kjkjkj

T

k j

kjWWt ηξηξεηξ ,,, 0

4

1

4

1

0 JDBp ∑∑= =

= (5.26)

El orden apropiado de integración y su ubicación para los elementos isoparamétricos de

integración completa y reducida se muestran en la figura 5.4

Page 277: cálculo estructural de tuberías enterradas por el método

Capítulo 5

Modelo de comportamiento mecánico de tubería enterrada en elementos finitos

- 249 -

ξ

η

4 3

21

3

1 2

4

ξ

η

4 3

21

1

Elemento con Elemento con

integración completa integración reducida

Figura 5.4. Ubicación de los puntos de integración

Hasta este momento se ha descrito la formulación asociada a un elemento tipo sólido de 4

nodos isoparamétrico, que se corresponde con la base del elemento CPE4, si bien este

elemento modifica la matriz de deformaciones (B) de acuerdo con la formualción B-barra,

cuyo desarrollo teórico completo se puede consultar en HUGHES, T.J.R. (2000).

5.2.4 FORMULACIÓN DEL CONTACTO

El modelo de contacto seleccionado que mejor se adapta a la realidad de la interfase

existente entre la tubería y el terreno es un modelo de contacto no lineal entre superficies

con rozamiento, que permite la transmisión de esfuerzos normales y tangenciales sin

trasmisión de calor, cuyo desarrollo completo se encuentra en ABAQUS Theory Manual

(2007) y del que aquí se va a describir brevemente:

La transmisión de esfuerzos normales se ha realizado utilizando un modelo de contacto

rígido, en el cual, cuando las superficies están en contacto, se puede trasmitir cualquier

presión entre ambas, mientras que cuando se separan la presión se reduce a cero

El modelo de rozamiento empleado se corresponde con el modelo isotrópico clásico de

Coulomb. Este modelo relaciona la tensión máxima admisible a lo largo de la superficie de

contacto entre dos cuerpos (ver figura 5.5). En la formulación empleada, las dos superficies

en contacto pueden transmitir tensiones tangenciales, en el contacto, hasta una cierta

magnitud después de la cual comienza el deslizamiento relativo de una superficie respecto a

la otra.

Page 278: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 250 -

Presión de contacto (p)

Te

nsió

n t

an

ge

ncia

l

eq

uiv

ale

nte

Región sin

desplazamiento

µ (coef. rozamiento)

Tensión crítica

Figura 5.5. Esquemas de comportamiento mecánico del contacto

En ABAQUS Theory Manual (2007) se establece que, para definir el modelo de

comportamiento mecánico entre dos superficies, es necesario definir inicialmente la

formulación del deslizamiento, posteriormente la discretización de las superficies en el

contacto y, por último, definir las propiedades mecánicas del mismo.

5.2.4.1. Formulaciones del deslizamiento

En ABAQUS (2007) hay dos procedimientos para tener en cuenta el movimiento relativo

entre dos superficies que entran en contacto en simulaciones mecánicas.

• Formulación de deslizamiento finito. Es el procedimiento más general y permite,

para una separación arbitraria, el deslizamiento y la rotación de las superficies en

contacto. Para este modelo la conectividad de las restricciones activas cambia en

función del movimiento tangencial relativo de las superficies en contacto.

• Formulación en “pequeños” deslizamientos. Asume que se produce un pequeño

desplazamiento relativo de una de las superficies con respecto a la otra y está

basado en las aproximaciones lineales de la superficie maestra por cada restricción.

Los grupos de nodos con restricciones individuales son fijados durante todo el

análisis, aunque la situación de activo/inactivo de esta restricción puede cambiar

durante el mismo.

Para los modelos realizados en los estudios de esta tesis, donde, en la mayor parte de los

casos, no se va a producir deslizamiento entre las superficies de contacto, o éste va a ser

pequeño, parece más recomendable considerar el uso de la formulación en pequeños

deslizamientos, adicionalmente es interesante por el ahorro en tiempo y estabilidad del

cálculo.

5.2.4.2. Discretización de las superficies

En ABAQUS (2007), antes de definir el tipo contacto, se deben seleccionar las superficies

que van a entrar en contacto. El programa aplica restricciones condicionales en varios

Page 279: cálculo estructural de tuberías enterradas por el método

Capítulo 5

Modelo de comportamiento mecánico de tubería enterrada en elementos finitos

- 251 -

lugares, en cada superficie, para simular las condiciones de contacto. Las ubicaciones y

condiciones de esas restricciones dependen de la discretización de los contactos usada en

la formulación global del conjunto y éstas pueden ser:

• Discretización nodo a superficie. En este caso las condiciones de contacto se

establecen de forma que cada nodo esclavo interactúa con un punto de proyección

en la superficie maestra (ver figura 5.6). De esta forma, cada condición de contacto

implica a un nodo esclavo y a un grupo de nodos maestros próximos desde los

cuales se interpola el valor del punto de proyección.

Las características de la discretización nodo a superficie son las siguientes:

a) Los nudos esclavos están restringidos a penetrar dentro de la superficie maestra,

sin embargo, los nodos de la superficie maestra pueden, en principio, penetrar

dentro de la superficie esclava.

b) La dirección del contacto está basada en la normal a la superficie maestra.

c) La única información necesaria para la superficie esclava es la localización y área

asociada a cada nodo; la dirección de la normal y la curvatura de la superficie

esclava no son relevantes. De esta forma, la superficie esclava puede ser

definida como un grupo de nodos, es decir, una superficie definida a base de

nodos.

Superficie esclava

A

B

C

Superficie maestra

punto más

próximo a A

punto más

próximo a B

Figura 5.6. Discretización “nodo a superficie”

• Discretización superficie a superficie. Esta discretización considera la forma de

ambos superficies, tanto la esclava como la maestra, en la zona de contacto y las

condiciones de contacto son impuestas sobre la superficie esclava, en sentido medio

más que en puntos discretos (tal como se realiza en la discretización “nodo a

Page 280: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 252 -

superficie”). Por consiguiente, se puede observar alguna penetración en nodos

individuales; sin embargo, en esta discretización no se producen penetraciones de

los nodos de la superficie maestra dentro de la superficie esclava. En general, la discretización “superficie a superficie” proporciona resultados mas ajustados

de presión y tensión, que la discretización “nodo a superficie”. Adicionalmente, como la

discretización “nodo a superficie” resiste simplemente las penetraciones de los nodos

esclavos dentro de la superficie maestra, las fuerzas tienden a concentrarse en los nodos

esclavos. Esta concentración produce un resultado de picos y valles en la distribución de

tensiones a lo largo de la superficie, mientras que la discretización “superficie a superficie”

resiste penetraciones sobre regiones finitas de la superficie esclava en el sentido medio, lo

que tiene un efecto de suavización en la distribución de tensiones. Si la malla se refina, las

diferencias entre las discretizaciones disminuyen, pero para una malla determinada, la

aproximación de la discretización “superficie a superficie”, proporciona mejor aproximación

de las tensiones que la discretización “nodo a superficie”.

Además, el modelo de contacto es menos susceptible a la designación de las superficies

maestra y esclava, cuando se utiliza la discretización “superficie a superficie”, que cuando se

usa la “nodo a superficie”.

El inconveniente de utilizar la discretización “superficie a superficie” es que involucra más

nodos por cada restricción y puede, por consiguiente, incrementar el coste operativo de la

solución, si bien en la mayor parte de los casos dicho coste es muy pequeño y solo puede

llegar a ser significativo, si se producen una serie de factores que en el modelo desarrollado

en esta tesis no existen.

Por todas estas razones se ha seleccionado, para los contactos entre tubería/terreno y

relleno/terreno, un modelo de contacto en pequeños deslizamientos con una discretización

tipo “superficie a superficie”.

5.2.4.3. Modelo de contacto en pequeños desplazamientos

El programa ABAQUS (2007) establece que este modelo puede utilizarse para un contacto

entre dos cuerpos deformables, o entre un cuerpo deformable y uno rígido en dos

dimensiones, como corresponde a los modelos realizados en los estudios de esta tesis. Con

esta aproximación, una de las superficies debe ser la superficie maestra y la otra es la

superficie esclava, y se impone una restricción cinemática de forma que los nodos de la

superficie esclava no pueden penetrar en la superficie maestra. Las superficies de contacto

no necesitan tener mallas iguales, sin embargo, se obtiene la mayor precisión cuando las

mallas inicialmente coinciden, consideración que se ha aplicado en el contacto

tubería/terreno, por ser una de las zonas con mayores concentraciones de tensiones.

Aunque se puedan utilizar cuatro clases de elementos internos para modelizar distintos tipos

de interacciones en el proceso de pequeños deslizamientos en ABAQUS (2007), todas las

Page 281: cálculo estructural de tuberías enterradas por el método

Capítulo 5

Modelo de comportamiento mecánico de tubería enterrada en elementos finitos

- 253 -

formulaciones se basan en el mismo concepto: que un nodo dado esclavo siempre

interactúa con el mismo subconjunto de nodos de la superficie maestra. Este subconjunto de

nodos es determinado inicialmente por el análisis del modelo inicial no deformado, evitando

de esta forma la necesidad de rastrear el nodo esclavo durante el curso del análisis. Este

conjunto de nodos de la superficie maestra, que se encuentran más próximos al nodo

esclavo, se utilizan para parametrizar un plano de contacto con el cual el nodo esclavo

puede interactuar durante el análisis. Este concepto, conjuntamente con la formulación del

contacto, se describe de forma completa en el ABAQUS Theory Manual (2007).

5.2.5 ECUACIONES CONSTITUTIVAS

Las ecuaciones constitutivas para modelo completo se corresponden en una primera

aproximación con materiales elásticos y en una segunda, con materiales elastoplásticos de

Drucker-Prager, isotrópicos en condiciones de deformaciones planas. Los detalles de este

procedimiento pueden consultarse en LOPEZ CELA, J.J.(1999); a continuación se presenta

una descripción resumida de los diferentes modelos estudiados.

Las ecuaciones constitutivas para el modelo elástico, isotrópico en condiciones de

deformaciones planas, están definidas como.

−−

−−

−−

=

xy

yy

xx

xy

yy

xx

σ

σ

νν

νν

νν

γ

ε

ε

1

1

11

(5.27)

Las ecuaciones constitutivas para el modelo elastoplástico de Drucker-Prager con flujo

asociado, isotrópico en condiciones de deformaciones planas, están definidas como:

pe

ddd εεε += (5.28)

Donde: σDε dde 1−=

σ

∂= λdd

p

Y entonces:

σ

FσDε

∂+= − λddd

1 (5.29)

La función F que define el criterio de plastificación depende del estado de tensiones (σσσσ ), de

las deformaciones plásticas (εp), y de un parámetro de endurecimiento (k), que recoge la

variación de la superficie de plastificación, es decir:

Page 282: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 254 -

( ) 0,, =kpεσF (5.30)

Diferenciando la ecuación (5.33)

p

T

p

T

ddkk

d ε

ε

FFσ

σ

FF

∂+

∂+

∂=∂ o 0=− λadd

TσA (5.31 a y b)

Siendo:

∂=

xyyyxx

T

τσσ

FFFA ,,

∂+

∂−= p

T

pddk

kda ε

ε

FF

λ

1

Y las relaciones tensión/deformación, para un material con comportamiento elastoplástico en

2 D, se escriben:

−∂∂∂∂∂∂

∂∂

∂∂

∂∂

=

λ

τ

σ

σ

τσσ

τ

σ

σ

γ

ε

ε

d

d

d

d

aFFF

F

F

F

d

d

d

xy

yy

xx

xyyyxx

xy

yy

xx

xy

yy

xx

1

0

D (5.32)

5.3. PROGRAMA DE ELEMENTOS FINITOS SELECCIONADO

El programa empleado para realizar los trabajos de esta tesis (ABAQUS Standard Stundent

Edition 6.7.2) se adapta al estudio de tuberías enterradas, como se puede apreciar en las

siguientes referencias (YIMSIRI, S. et al. (2004), ZARGHAMEE, M.S. (2004), PEIJUN, G.

(2005) y TUNTUCU, I. y O’ROURKE, T.D. (2006), FELICIANO BAUTISTA, A.M, y LIZCANO

PELAEZ, A. (2006) entre otras). La versión educacional del programa ABAQUS incluye

todos los modelos de comportamiento del terreno tanto lineal, como no lineal, entre los que

destacan el modelo Mohr-Coulomb y el Drucker-Prager con endurecimiento, así como

condiciones de contacto rígido, con fricción y transmisión de esfuerzos, con la única

limitación del número de nodos por modelo (máximo 1.000 nodos). La ventaja de utilizar un

programa comercial es su extensa biblioteca de elementos, así como el gran número de

modelos de comportamiento de materiales existente.

Los pasos que se realizan en un análisis con elementos finitos se muestran en la figura 5.7.

El análisis mediante elementos finitos comprende el preproceso de los datos, resolución de

las ecuaciones y postproceso de los resultados. El preproceso comprende la definición del

modelo, del mallado, de las condiciones de contorno y de las cargas aplicadas. El

postproceso comprende la interpretación de resultados. La mayor parte del preproceso y del

Page 283: cálculo estructural de tuberías enterradas por el método

Capítulo 5

Modelo de comportamiento mecánico de tubería enterrada en elementos finitos

- 255 -

postproceso de los datos de este estudio ha sido realizado utilizando un paquete comercial

(ABAQUSCAE Student Edition, versión 6.7).

Modelización,

Propiedades

Mallado

Condiciones de

contorno y cargas

Solución

Visualización

Resultados y

graficos

Preproceso

ABAQUS CAE

Analisis MEF

ABAQUS v6.7

Postproceso

ABAQUS CAE

Figura 5.7. Esquema de resolución de problemas mediante un modelo de elementos finitos

ABAQUSCAE es un paquete de software para realizar modelos de elementos finitos

mediante preprocesos y postprocesos de datos. ABAQUSCAE se puede utilizar para

generar la geometría, mallado de la geometría, aplicar cargas y condiciones de contorno.

Tiene además la capacidad de exportar archivos de datos compatibles con otros programas

de elementos finitos. Tiene potentes herramientas de visualización que permiten al usuario

interpretar rápidamente los resultados.

5.4. MODELO COMPLETO

Partiendo de la revisión de la normativa vigente (ver CAPÍTULO 2), del conocimiento

profundo de los nuevos métodos propuestos en el informe técnico CEN/TR 1295-3 (2007)

(ver CAPÍTULO 3) y del estado del arte del método de los elementos finitos aplicado al

diseño de tuberías enterradas en donde numerosos autores: ALTAE & FELLENIUS (1996),

CALVETI & NOVA (2004), C-CORE (2002), CHEONG (2003), POPESCU (1999), LING et al.

(2003), SABER et al. (2003), SCHAVER & MCGRATH (2003), entre otros, han demostrado

que las simulaciones realizadas con elementos finitos arrojan buenos resultados

comparados con los modelos físicos, se ha desarrollado un nuevo modelo de cálculo, en dos

Page 284: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 256 -

dimensiones, en deformaciones planas (WATKINS, R.K. y ANDERSON L.R. (1999)) para el

dimensionamiento de tuberías enterradas, empleando el programa (ABAQUS Standard

Student Edition 6.7.2), variando la profundidad, el ancho de zanja, el diámetro y los

materiales de la tubería.

5.4.1 CONDICIONES DE CONTORNO

El modelo es simétrico con respecto al eje vertical (Y) que pasa por el centro de la tubería.

Las condiciones de contorno impuestas en los bordes del modelo, han sido la de coartar los

movimientos en dirección horizontal (X) en los bordes laterales del modelo, de tal forma que

se evita que el terreno se pueda “colgar” y de este modo reducir la dimensión horizontal del

mismo, y también coartar los movimientos horizontales (X) y verticales (Y) en el borde

inferior del mismo (ver figura 5.8).

Esta descripción del modelo, se corresponde a la sección tipo completa, si bien como ésta

presenta una simetría axial respecto al eje vertical (Y), el modelo finalmente desarrollado en

ABAQUS, ha sido sólo el correspondiente a la mitad del original, estableciendo la condición

de simetría en el eje (Y) (coartar los desplazamientos en (X) y los giros en (XY)), ahorrando

de esta forma número de nodos y con ello tiempo de cálculo.

Las interfases tubería/relleno y terreno/relleno, exceptuando los definidos dentro del relleno

tipo (C) (ver apartado 5.5.2), que no se corresponden a una diferencia física, sino formal

para la distribución de las cargas de tráfico, se han modelizado mediante contactos con

fricción (ver CAPÍTULO 4), empleando superficies en contacto entre los nodos de ambos

elementos al igual que PEIJUN, G. (2005) y FELICIANO, A.M et al (2006).

Figura 5.8. Condiciones de contacto y de contorno del modelo

CONDICIONES DE CONTACTO

Contacto con fricción

Contacto fijo

CONDICIONES DE CONTORNO

X = 0

X = 0 e Y= 0

X = 0 e Giro XY = 0

Page 285: cálculo estructural de tuberías enterradas por el método

Capítulo 5

Modelo de comportamiento mecánico de tubería enterrada en elementos finitos

- 257 -

5.4.2 ELEMENTOS SELECCIONADOS

En el modelo propuesto se han empleado dos tipos de elementos para la definición de la

tubería, elementos tipo viga de dos nodos (B21: viga lineal de 2 nodos en un plano) para

tuberías de pared delgada (t/dm < 0,05) y comportamiento flexible y/o semiflexible (siguiendo

el criterio establecido por el informe técnico CEN/TR 1295-3 (2007)); y elementos tipo sólido

de cuatro nodos (CPE4: cuadrilátero bilineal de 4 nodos en deformación plana) para tuberías

de pared gruesa (t/dm > 0,05) y comportamiento rígido.

La elección de la viga de Euler-Bernoulli de dos nodos (B21), para los modelos de tuberías

de pared delgada (materiales metálicos y materiales plásticos), se ha realizado por ser el

elemento tipo que mejor idealiza el comportamiento de un anillo flexible en dos dimensiones;

y la elección del elemento tipo sólido de 4 nodos (CPE4) para modelizar las tuberías de

pared gruesa (materiales pétreos), porque permite estudiar la distribución de las tensiones

circunferenciales en todo el espesor de la misma, mediante varios puntos de integración por

elemento.

Por otro lado todos los materiales que constituyen el suelo (terreno inalterado y relleno) se

han modelizado con elementos tipo sólido de cuatro nodos (CPE4R: cuadrilátero bilineal de

4 nodos en deformación plana y formulación reducida) por tener suficiente precisión con un

punto de integración por elemento y reducir los tiempos de cálculo.

5.4.3 GEOMETRÍA DEL MODELO Y MALLA

La propuesta de esta tesis establece el tamaño del modelo, en función del diámetro de la

tubería, de forma que cualquiera que sea el caso de estudio se generen modelos

homogéneos y comparables entre sí. Para ello, partiendo de una sección tipo genérica, se

han definido los límites del modelo, se ha tomado un ancho de cuatro diámetros (4.DN), y un

alto variable (para estudiar los efectos que diferentes coberturas de terreno y cargas de

tráfico pueden producir sobre la tubería (de 1 a 5 m)).

El ancho de 4.DN se ha considerado oportuno, porque es lo suficientemente amplio para

atenuar los efectos de borde sobre el modelo (al coartar únicamente los desplazamientos en

X) y, a su vez, permite incluir el caso límite de comportamiento entre zanja ancha y

terraplén, de acuerdo con lo que establece el informe técnico CEN/TR 1295-3 (2007). Con

respecto a la altura del modelo, lo más importante ha sido considerar una distancia fija, en

función del diámetro de la tubería entre ésta y el borde inferior (fijada en 1.DN), menor que

la anterior, pues, en este caso, no es necesario disponer de mayor anchura, debido a que

los desplazamientos en esa zona, son prácticamente nulos en todos los casos.

Page 286: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 258 -

Figura 5.9. Ejemplos de mallado automático

Las dimensiones de la malla se han ajustado en función del tamaño del modelo, ya que, al

ser éste función del diámetro, no se puede establecer un criterio fijo; por lo general, se han

definido procedimientos de mallado automático, afinado en aquellas zonas donde el

gradiente de tensiones es mayor y, por tanto, es necesario una densidad de malla más fina

(ver figura 5.9).

5.4.4 MATERIALES

En el modelo se han utilizado dos grupos de materiales: tubería y terreno. En las

modelizaciones realizadas para validar el modelo, se han empleado tres materiales para

definir la tubería (acero, polietileno y hormigón) (ver tabla 5.1), si bien, dado el carácter

general de la propuesta se han definido las características elásticas de los seis materiales

más utilizados en el dimensionamiento de tuberías enterradas (ver CAPÍTULO 4) (Los tres

anteriores más la fundición, PVC y PRFV).

Material D/e

(mm/mm) Ec/El

(MPa) νννν

Acero 1016/9,50

2013/17,50

210.000 (Ec)

210.000 (El) 0,30

Polietileno 1000/38,20

1600/61,20

1.000 (Ec)

150 (El) 0,40

HACCH 1000/80,00

2000/155,00

30.000 (Ec)

30.000 (El) 0,20

Tabla 5.1. Parámetros elásticos de los materiales de la tubería

Con respecto al suelo, se han especificado, por un lado, los módulos del relleno y del

terreno inalterado, a partir de los módulos establecidos en el informe técnico CEN/TR 1295-

Page 287: cálculo estructural de tuberías enterradas por el método

Capítulo 5

Modelo de comportamiento mecánico de tubería enterrada en elementos finitos

- 259 -

3 (que han sido objeto de estudio específico en esta tesis); y, por otro lado, se han definido,

partiendo de los ensayos realizados por otros investigadores (DIAB, Y.G (1992) y OTEO, C.

et al. (2003)), los parámetros geotécnicos de tres grupos de rellenos (Gs A.II, A.III y A.IV)

para tres grados de compactación (80%, 90% y 95%) y dos grupos de terreno inalterado (Gs

B.I y B.II) (ver CAPÍTULO 4).

5.4.5 COMPORTAMIENTO DE LOS MATERIALES

El material de la tubería se ha modelizado mediante un modelo de elasticidad lineal, tal y

como lo han hecho otros investigadores (FELICIANO, A.M (2006)), aunque la elasticidad

pueda variar en función del tiempo para poder considerar los efectos de fluencia en las

tuberías de materiales plásticos (ver CAPÍTULO 4). Para cada tipo de material de la tubería

se ha empleado el módulo de elasticidad (real o equivalente) y el coeficiente de Poisson

correspondiente a corto y largo plazo.

Para la simulación del suelo, se han utilizado dos modelos constitutivos con el fin de

comparar sus resultados. Los modelos elegidos para el análisis han sido los siguientes: el

modelo elástico lineal, por ser la hipótesis de la formula de Spangler, modelo de referencia

para los métodos actuales de dimensionamiento (Ver CAPÍTULO 2) y el modelo

elastoplástico con endurecimiento de Drucker-Prager con flujo asociado (PEIJUN, G. (2005)

y FELICIANO, A.M et al (2006)) por mostrar excelentes resultados en la simulación de

materiales con endurecimiento como pueden ser los rellenos de arenas densas o arcillas

sobreconsolidadas (ver CAPÍTULO 4).

Los parámetros necesarios para modelizar el terreno se han obtenido del informe técnico

CEN/TR 1295-3 y de dos referencias bibliográficas DIAB, Y.G. (1992) y OTEO, C. et al

(2003) y se muestran en la siguiente tabla:

Compactación Tipo Grupo suelo

Parámetros 80% 90% 95%

Terreno Inalterado

A.II

c (kN/m2)

φ (º)

γ (kN/m3)

0,0

35,0

20,0

0,0

42,0

20,0

0,0

48,0

20,0

-

A.III

c (kN/m2)

φ (º)

γ (kN/m3)

17,0

28,0

20,0

24,0

32,0

20,0

27,0

34,0

20,0

-

Relleno

A.IV

c (kN/m2)

φ (º)

γ (kN/m3)

33,0

19,0

20,0

47,0

17,0

20,0

61,0

15,0

20,0

-

B.I

c (kN/m2)

φ (º)

γ (kN/m3)

- - -

20,0

34,0

20,0

Terreno

inalterado

B.II

c (kN/m2)

φ (º)

γ (kN/m3)

- - -

70,0

28,0

20,0

Tabla 5.2. Parámetros geotécnicos seleccionados del relleno y del terreno natural

Page 288: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 260 -

5.4.6 DEFINICIÓN DE LAS CARGAS

Las cargas incluidas en modelo establecido en esta tesis se corresponden con las definidas

habitualmente en las normas vigentes y que, a su vez, establece el informe técnico CEN/TR

1295-3 (2007): carga de tierras, cargas de tráfico, peso propio del tubo, peso del fluido en su

interior, presión exterior por nivel freático y presión interior del fluido.

5.5. MODELOS DE TUBERIA ENTERRADA EN ELEMENTOS FINITOS

Para estudiar el comportamiento del modelo en elementos finitos propuesto en esta tesis y

posteriormente poder comparar los resultados obtenidos con los modelos que se han

realizado en el CAPÍTULO 3 se han realizado una serie de casos y se han resuelto a partir

del modelo completo definido anteriormente y cuya justificación teórica se recoge

íntegramente en los CAPÍTULOS 3, 4 y 5 de esta tesis.

5.5.1 CASOS ESTUDIADOS

De los 576 casos estudiados para valorar el comportamiento de la metodología de cálculo

definida en el informe técnico CEN/TR 1295-3, se han seleccionado 120 para realizarlos

mediante el modelo de elementos finitos propuesto.

Para ello, se ha considerado la misma instalación definida en el CAPÍTULO 3, que se

corresponde con una tubería enterrada en zanja con paredes verticales, de anchura

variable, en función del diámetro exterior del tubo y profundidad variable entre 1 y 5 m,

sometida a cargas de tráfico (equivalentes a un carro de 600 kN) y a una presión interior de

10 bar y sin afección del nivel freático (Ver figura 5.10).

Se han estudiado dos diámetros característicos de las tuberías de acero, polietileno y

hormigón con instalación tipo ET2 y ET4, todas ellas con grupos de suelos intermedios (Gs

II) y (Gs IV) y un nivel de compactación muy bueno (W). El comportamiento de los

materiales se ha modelizado como elástico para la tubería y elástico y elastoplástico con

endurecimiento de Drucker-Prager para el suelo.

Page 289: cálculo estructural de tuberías enterradas por el método

Capítulo 5

Modelo de comportamiento mecánico de tubería enterrada en elementos finitos

- 261 -

h

De

b = 2.De

h

De

b = 2.De

ET2 ET4

Figura 5.10. Esquemas de los casos estudiados en el ANEXO C (MEF)

Adicionalmente hay que recordar que estos modelos se han ejecutado con los parámetros

del suelo establecidos en las opciones 1 y 2 del informe técnico CEN/TR 1295-3.

A continuación se presenta un esquema que representa todos los casos estudiados a forma

de resumen. Comportamiento Comportamiento Parámetros Casos

del tubo del suelo del suelo (p) estudiados

Acero Elástico (2p) Elástico (2p) Op1 y Op2 20

ET2 Gs 2/4 W Elástico (2p) Elastoplástico (5p) Op1 10

Elástico E0 (2p) Elástico (2p) Op1 y Op2 20

Elástico E0 (2p) Elastoplástico (5p) Op1 10

Polietileno

ET2 Gs 2/4 W Elástico E50 (2p) Elástico (2p) Op1 y Op2 20

Elástico E50 (2p) Elastoplástico (5p) Op1 10

Hormigón Elástico (2p) Elástico (2p) Op1 y Op2 20

ET4 Gs 2/4 W Elástico (2p) Elastoplástico (5p) Op1 10

5.5.2 MODELO COMPLETO CON PARÁMETROS MECÁNICOS DE LA OP1

A continuación se va a describir el modelo realizado para una instalación en zanja con talud

vertical tipo ET4 de una tubería de hormigón de DN 1.000.

A) SOLUCIÓN ANALÍTICA

La solución analítica del modelo se corresponde con lo descrito en el “CAPÍTULO 3.

Modelos de comportamiento mecánico de la tubería enterrada según el informe técnico

CEN/TR 1295-3”

Page 290: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 262 -

B) DEFINICIÓN BÁSICA DEL MODELO

B.1) Partes del modelo

Para el modelo de altura de tierras (h = 1 m) se han definido ocho partes, la primera en

forma de semianillo, tipo deformable y características planas y siete partes de formas

poligonales, tipo deformable y de características planas.

A la primera parte del modelo (identificado con el nombre “GeoTubo”) se le asigna una

sección homogénea y se genera una malla de forma automática para el tipo de elemento

seleccionado (Para el caso de tubería de hormigón el elemento es el CPE4. cuadrilátero de

4 nodos en deformación plana)

Al resto de las partes (identificadas con los nombres “GeoRellenoA”, “GeoRellenoB”,

“GeoRellenoC_1”, “GeoRellenoC_2”, GeoRellenoC_3”, “GeoTerrenoA” y “GeoTerrenoB”) se

les asigna una sección a cada una de las geometrías y otra común a las correspondientes al

“RellenoC”, que, como se ha indicado anteriormente, es una discretización ficticia para la

asignación de las cargas de tráfico y posteriormente se genera una malla automática para el

tipo de elemento seleccionado para modelizar el terreno (CPE4R. cuadrilátero de 4 nodos

en deformación plana con integración reducida) con un tamaño variable, en función de la

geometría especificada (ver tabla 5.3).

Descripción DN 1.000 h = 1m

GeoTerrenoA 0,30

GeoTerrenoB 0,15

GeoRellenoA 0,15

GeoRellenoB 0,15

GeoRellenoC_1 0,10

GeoRellenoC_2 0,10

GeoRellenoC_3 0,10

GeoTubo 0,15

Tabla 5.3. Dimensiones de los diferentes tamaños de malla

B.2) Materiales

Se definen seis materiales (“MatRellenoA, MatRellenoB, MatRellenoC, MatTerrenoA,

MatTerrenoB y MatTubo”), a los que se les asignan, en un primer modelo, los parámetros

elásticos establecidos por la opción 1 de cálculo del informe técnico CEN/TR 1295-3 y, en

un segundo modelo, los parámetros elastoplásticos establecidos en el CAPÍTULO 4, para

una instalación ET4 con suelos tipo (II/IV) W (ver tabla 5.4)

Page 291: cálculo estructural de tuberías enterradas por el método

Capítulo 5

Modelo de comportamiento mecánico de tubería enterrada en elementos finitos

- 263 -

Parámetros mecánicos de los materiales (según h (m)) 1 Descripción

1 2 3 4 5

MatTerrenoA

ρ = 2.000

E = 30.000

υ = 0,30

β = 38,12

d = 103,32

ρ = 2.000

E = 48.700

υ = 0,30

β = 38,12

d = 103,32

ρ = 2.000

E = 64.730

υ = 0,30

β = 38,12

d = 103,32

ρ = 2.000

E = 79.170

υ = 0,30

β = 38,12

d = 103,32

ρ = 2.000

E = 92.550

υ = 0,30

β = 38,12

d = 103,32

MatTerrenoB

ρ = 2.000

E = 3.000

υ = 0,30

β = 38,12

d = 103,32

ρ = 2.000

E = 4.870

υ = 0,30

β = 38,12

d = 103,32

ρ = 2.000

E = 6.470

υ = 0,30

β = 38,12

d = 103,32

ρ = 2.000

E = 7.920

υ = 0,30

β = 38,12

d = 103,32

ρ = 2.000

E = 9.260

υ = 0,30

β = 38,12

d = 103,32

MatRellenoA2

ρ = 2.450

E = 3,0 x107

υ = 0,20

ρ = 2.450

E = 3,0 x107

υ = 0,20

ρ = 2.450

E = 3,0 x107

υ = 0,20

ρ = 2.450

E = 3,0 x107

υ = 0,20

ρ = 2.450

E = 3,0 x107

υ = 0,20

MatRellenoB

ρ = 2.000

E = 11.300

υ = 0,30

β = 49,8

d = 0

ρ = 2.000

E = 15.980

υ = 0,30

β = 49,8

d = 0

ρ = 2.000

E = 19.570

υ = 0,30

β = 49,8

d = 0

ρ = 2.000

E = 22.600

υ = 0,30

β = 49,8

d = 0

ρ = 2.000

E = 25.270

υ = 0,30

β = 49,8

d = 0

MatRellenoC

ρ = 2.000

E = 3.000

υ = 0,30

β = 49,8

d = 0

ρ = 2.000

E = 4.870

υ = 0,30

β = 49,8

d = 0

ρ = 2.000

E = 6.470

υ = 0,30

β = 49,8

d = 0

ρ = 2.000

E = 7.920

υ = 0,30

β = 49,8

d = 0

ρ = 2.000

E = 9.260

υ = 0,30

β = 49,8

d = 0

GeoTubo

ρ = 2.450

E = 3,0 x107

υ = 0,20

ρ = 2.450

E = 3,0 x107

υ = 0,20

ρ = 2.450

E = 3,0 x107

υ = 0,20

ρ = 2.450

E = 3,0 x107

υ = 0,20

ρ = 2.450

E = 3,0 x107

υ = 0,20

Tabla 5.4. Parámetros de los materiales utilizados en el modelo asociado a la Op1

B.3) Secciones

Se han definido seis secciones tipo sólido homogéneo asociadas a los materiales definidos

anteriormente.

C) ENSAMBLADO DEL MODELO

Al tratarse de un modelo constituido por ocho partes es necesario realizar el ensamblado de

cada uno de las partes independientes, constituyendo el modelo completo.

1 Las unidades son densidad (ρ (Kg/m

3)), módulo de elasticidad y cohesión de D-P (E y d (KN/m

2)) y ángulo de

rozamiento interno de D-P (β (º)) 2 Los parámetros definidos para el relleno A se corresponden con los del hormigón, ya que la instalación tipo ET4

define una cuna de hormigón; en cualquier otro caso los parámetros del relleno A serían equivalentes a los del relleno B

Page 292: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 264 -

D) CONFIGURACIÓN DEL ANÁLISIS

Una vez definida la geometría completa del modelo, se puede pasar a configurar el análisis.

Para este caso, el análisis consiste en cuatro pasos: el primero, en donde se aplican las

condiciones de contorno, y los siguientes, donde se van estableciendo los diferentes casos

de cargas.

Posteriormente se establecen las salidas de datos, que para este caso son tensiones (S,

S11 y S22) y deformaciones (U, U1 y U2) y las condiciones de borde entre los contactos de

las diferentes partes del modelo.

Todos los contactos de las diferentes partes, exceptuando los contactos de las geometrías

asociadas al Relleno tipo C, se han realizado mediante contactos tipo rígido con rozamiento,

especificando una superficie maestra y otra esclava, admitiendo el deslizamiento de los

nodos de una superficie con respecto a la otra, siempre y cuando se supere la fuerza de

rozamiento mínima establecida. A continuación se presenta una tabla resumen con el

criterio de asignación de las superficies maestra y esclava y el coeficiente de rozamiento

asignado.

Coef. Rozamiento Contacto Superficie Maestra

Superficie Esclava

Tipo de contacto Corto plazo Largo plazo

C-1 GeoTerrenoA GeoRellenoA

GeoTerrenoB

Rígido con

rozamiento

µ1 = 0,34 µ1 = 0

C-2 GeoTerrenoB GeoRellenoA

GeoRellenoB

GeoRellenoC_3

Rígido con

rozamiento

µ1 = 0,34 µ1 = 0

C-3 GeoRellenoA GeoRellenoB Rígido con

rozamiento

µ1 = 0,34 µ1 = 0

C-4 GeoRellenoB GeoRellenoC_1

GeoRellenoC_2

GeoRellenoC_3

Rígido con

rozamiento

µ1 = 0,34 µ1 = 0

C-5 3 GeoTubo GeoRellenoA

GeoRellenoB

Rígido con

rozamiento

µ2 = 0,20 µ2 = 0,20

C-6 GeoRellenoC_2 GeoRellenoC_1 Atado - -

C-7 GeoRellenoC_3 GeoRellenoC_2 Atado - -

Tabla 5.5. Definición de los tipos de contacto y de las superficies maestra y esclava

E) CONDICIONES DE CONTORNO Y CARGAS DEL MODELO

Las condiciones de contorno y las cargas dependen del paso, lo que significa que se debe

indicar en que paso o pasos estarán activas, en este caso:

3 Se ha tenido que establecer como superficie maestra la geometría “Geotubo” porque el programa no admite

que la superficie maestra está definida por dos o mas superficies

Page 293: cálculo estructural de tuberías enterradas por el método

Capítulo 5

Modelo de comportamiento mecánico de tubería enterrada en elementos finitos

- 265 -

1º Establecimiento de las condiciones de contorno. Se definen las condiciones de contorno

indicadas en los modelos simplificados: todos los puntos del eje (X = 0) no tienen

desplazamiento en dirección (X), ni giro en (XY); los puntos del eje (X = 4.DN) no tienen

desplazamiento en dirección (X); y la base del modelo tiene coartados los movimientos en

(X) e (Y) y los giros en (XY).

2º Comportamiento del modelo frente a peso propio. Se mantienen las condiciones de

contorno definidas en el 1er paso y se asigna una carga gravitatoria, aplicada a todo el

modelo, a la que se le asignan las siguientes componentes: gx = 0, gy = -9,81 m/s2

3º Comportamiento del modelo frente a peso propio y cargas de tráfico. Se mantienen las

condiciones de contorno definidas en el 1º paso y las cargas definidas en el 2º paso, y se

asignan las cargas transmitidas por las cargas de tráfico asociadas a un carro de 600 kN

4º Comportamiento del modelo frente a peso propio, cargas de tráfico y presión interior. Se

mantienen las condiciones de contorno definidas en el 1º paso y las cargas definidas en el

2º y 3º paso, y se asignan las cargas transmitidas por la presión interior del agua (10 atm ∼

1.000 kN/m2),

A continuación se presentan, en concreto los resultados referentes a una tubería de

hormigón con una instalación tipo ET4 con relleno bien compactado y un metro de cobertura

de terreno para los modelos elásticos y elastoplásticos (ver figuras del 5.11 al 5.18).

Page 294: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 266 -

Figura 5.11. Deformación vertical U22 del modelo elástico sometido al peso propio y cargas de tráfico con

parámetros Op1.

Figura 5.12. Deformación vertical U22 del modelo elástico sometido al peso propio y cargas de tráfico con

parámetros Op1.

Page 295: cálculo estructural de tuberías enterradas por el método

Capítulo 5

Modelo de comportamiento mecánico de tubería enterrada en elementos finitos

- 267 -

S11 S22

Figura 5.13. Tensiones S11 y S22 del modelo elástico sometido al peso propio y cargas de tráfico con

parámetros Op1.

S11 S22

Figura 5.14. Tensiones S11 y S22 del modelo elástico sometido al peso propio, cargas de tráfico y presión

interior con parámetros Op1.

C

B

S

C

B

S

Page 296: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 268 -

Figura 5.15. Deformación vertical U22 del modelo elastoplástico sometido al peso propio y cargas de tráfico con

parámetros Op1.

Figura 5.16. Deformación vertical U22 del modelo elastoplástico sometido al peso propio y cargas de tráfico con

parámetros Op1.

Page 297: cálculo estructural de tuberías enterradas por el método

Capítulo 5

Modelo de comportamiento mecánico de tubería enterrada en elementos finitos

- 269 -

S11 S22

Figura 5.17. Tensiones S11 y S22 del modelo elastoplástico sometido al peso propio y cargas de tráfico con

parámetros Op1.

S11 S22

Figura 5.18. Tensiones S11 y S22 del modelo elastoplástico sometido al peso propio, cargas de tráfico y presión

interior con parámetros Op1.

C

B

S

C

B

S

Page 298: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 270 -

5.5.3 MODELO COMPLETO CON PARÁMETROS MECÁNICOS DE LA OP2

Del mismo modo que el caso anterior de la opción 1, se han realizado una serie de modelos

de elementos finitos con los parámetros del suelo establecidos en la opción 2 del CEN/TR

1295-3, por lo que solo se va a incluir en este apartado la definición de dichos parámetros,

debido a que la estructura del modelo es la misma que la descrita en el apartado anterior.

En este modelo se definen únicamente tres materiales a los que se les asignan los

parámetros elásticos establecidos por la Opción 2 de cálculo del informe técnico CEN/TR

1295-3 (2007) y los parámetros elastoplásticos establecidos en el CAPÍTULO 4, para una

instalación ET4 con suelos tipo II/IV W (ver tabla 5.6)

Parámetros mecánicos de los materiales (según h (m)) 4 Descripción

1 2 3 4 5

MatTerrenoA y

MatTerreno B

ρ = 2.000

E = 1.500

υ = 0,30

β = 38,12

d = 103,32

ρ = 2.000

E = 1.500

υ = 0,30

β = 38,12

d = 103,32

ρ = 2.000

E = 1.500

υ = 0,30

β = 38,12

d = 103,32

ρ = 2.000

E = 1.500

υ = 0,30

β = 38,12

d = 103,32

ρ = 2.000

E = 1.500

υ = 0,30

β = 38,12

d = 103,32

MatRellenoB y

MatRellenoC

ρ = 2.000

E = 2.670

υ = 0,30

β = 49,8

d = 0

ρ = 2.000

E = 2.670

υ = 0,30

β = 49,8

d = 0

ρ = 2.000

E = 2.670

υ = 0,30

β = 49,8

d = 0

ρ = 2.000

E = 2.670

υ = 0,30

β = 49,8

d = 0

ρ = 2.000

E = 2.670

υ = 0,30

β = 49,8

d = 0

GeoTubo y

MatRellenoA5

ρ = 2.450

E = 3,0 x107

υ = 0,20

ρ = 2.450

E = 3,0 x107

υ = 0,20

ρ = 2.450

E = 3,0 x107

υ = 0,20

ρ = 2.450

E = 3,0 x107

υ = 0,20

ρ = 2.450

E = 3,0 x107

υ = 0,20

Tabla 5.6. Parámetros de los materiales utilizados en el modelo asociado a la Op2

En las figuras 5.19 al 5.22 se han incluido los resultados obtenidos para el caso desarrollado

en el apartado 5.5.2 (tubería de hormigón con una instalación tipo ET4 con relleno bien

compactado y un metro de cobertura de terreno) con los parámetros de la opción 2.

4 Las unidades son densidad (ρ (Kg/m

3)), módulo de elasticidad y cohesión de D-P (E y d (KN/m

2)) y ángulo de

rozamiento interno de D-P (β (º)) 5 Los parámetros definidos para el relleno A se corresponden con los del hormigón, ya que la instalación tipo ET4

define una cuna de hormigón; en cualquier otro caso los parámetros del relleno A serían equivalentes a los del relleno B

Page 299: cálculo estructural de tuberías enterradas por el método

Capítulo 5

Modelo de comportamiento mecánico de tubería enterrada en elementos finitos

- 271 -

Figura 5.19. Deformación vertical U22 del modelo elástico sometido al peso propio y cargas de tráfico con

parámetros Op2.

Figura 5.20. Deformación vertical U22 del modelo elástico sometido al peso propio y cargas de tráfico con

parámetros Op2.

Page 300: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 272 -

S11 S22

Figura 5.21. Tensiones S11 y S22 del modelo elástico sometido al peso propio y cargas de tráfico con

parámetros Op2.

S11 S22

Figura 5.22. Tensiones S11 y S22 del modelo elástico sometido al peso propio, cargas de tráfico y presión

interior con parámetros Op2.

C

B

S

C

B

S

Page 301: cálculo estructural de tuberías enterradas por el método

Capítulo 5

Modelo de comportamiento mecánico de tubería enterrada en elementos finitos

- 273 -

5.5.4 RESULTADOS OBTENIDOS

Los resultados gráficos completos de todos los casos estudiados se han recogido en el

ANEXO C y se han comparado con los resultados obtenidos del informe técnico CEN/TR

1295-3. Aquí, en la memoria de la tesis sólo se han incorporado algunas de las salidas de

resultados gráficos que permiten aclarar las consideraciones realizadas en el análisis de

resultados.

5.5.5 ANÁLISIS DE RESULTADOS

5.5.5.1. Deformación causada por cargas externas

De los resultados obtenidos en el modelo elástico, se deduce, para todos los casos

estudiados, que el modelo propuesto con los parámetros de terreno de la opción 1 (MEF

E(Op1)) define resultados muy ajustados a los establecidos por las dos opciones de cálculo

del informe técnico CEN/TR 1295-3. Por el contrario, los resultados obtenidos mediante los

parámetros de la opción 2 (MEF E(Op2)) definen previsiones de ovalización vertical

superiores a las definidas por el citado informe.

En lo que respecta a los resultados del modelo elastoplástico sobre los parámetros de la

Opción 1, su influencia es importante para instalaciones flexibles con poca cobertura de

terreno (un incremento medio del 30% con respecto a los valores obtenidos en el modelo

elástico), atenuándose este efecto a medida que se va aumentando la profundidad de

instalación; en las instalaciones rígidas este efecto es mucho menos acusado, no siguiendo

un patrón claro de incremento de ovalizaciones por esta causa.

Los resultados obtenidos para la ovalización vertical son aceptables y válidos para su uso

generalizado con modelos elastoplásticos de cinco parámetros (asociados a la Opción 1),

pues el modelo elástico subestima los valores reales para instalaciones con poca

profundidad (h ≤ 1 m).

Se incluyen a continuación las figuras 5.23 y 5.24, que avalan las consideraciones

expuestas en este apartado.

Page 302: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 274 -

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)D

N 1

016 (

Op

1)

DN

2032

(O

p1)

DN

1016 (

Op

2)

DN

2032

(O

p2)

DN

1000 M

EF

E(O

p1)

DN

2000 M

EF

E(O

p1)

DN

1000 M

EF

E(O

p2)

DN

2000 M

EF

E(O

p2)

Figura 5.23. Ovalización por cargas externas a largo plazo en tuberías de acero para modelos de

comportamiento elástico

Page 303: cálculo estructural de tuberías enterradas por el método

Capítulo 5

Modelo de comportamiento mecánico de tubería enterrada en elementos finitos

- 275 -

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)

DN

1016 (

Op1)

DN

2032 (

Op1)

DN

1016 (

Op2)

DN

2032 (

Op2)

DN

1000 M

EF

E(O

p1)

DN

200

0 M

EF

E(O

p1)

DN

1000 M

EF

E(O

p1)+

D-P

DN

200

0 M

EF

E(O

p1)+

D-P

Figura 5.24. Ovalización por cargas externas a largo plazo en tuberías de acero para modelos de

comportamiento elástico y elastoplástico

Page 304: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 276 -

5.5.5.2. Estado tensional

Si bien el nuevo modelo MEF propuesto es capaz de determinar el estado tensional en

cualquier sección de la tubería, los resultados aquí descritos se circunscriben a los

correspondientes a las tres secciones de estudio, que las dos opciones de cálculo del

informe técnico CEN/TR 1295-3 (2007) establecen como secciones de estudio: base (B),

punto medio (S) y coronación (C).

Para los casos estudiados sobre las tuberías de acero, el modelo elástico que mejor se

adapta a los resultados establecidos por el informe técnico CEN/TR 1295-3 es el MEF

E(Op1), definiendo valores muy ajustados de las tensiones en base (B) y coronación (C) a

los establecidos en la opción 1 y presentando resultados algo mayores (en compresión) para

el punto medio (S), pero siempre en el entorno de los establecidos por la opción 2. Por el

contrario, los resultados establecidos por el modelo MEF E(Op2) definen estados

tensionales mayores en todos los casos, resultados que son coherentes con los módulos de

elasticidad que uno y otro modelo consideran en sus datos de partida.

En los estudios realizados sobre las tuberías de polietileno, como el material constitutivo de

la tubería pierde capacidades resistentes con el tiempo (ver CAPÍTULO 4) se han

establecido dos valores del módulo de “elasticidad” E0 y E50 para realizar los cálculos a corto

y largo plazo.

Del estudio tensional a corto plazo, se deduce que el comportamiento de los resultados

obtenidos con el modelo MEF E(Op1) se corresponde con el descrito para las tuberías de

acero, valores muy ajustados en base (B) y coronación (C), y definición en el punto medio

(S) de mayores compresiones que las establecidas en los resultados del informe técnico

CEN/TR 1295-3.

Cuando se analizan los resultados obtenidos a largo plazo, estas consideraciones no son

validas, pues el comportamiento definido por el informe técnico CEN/TR 1295-3 no es el

mismo, tal y como define dicho informe (Ver CAPÍTULO 3), el cual, considera que algunas

cargas movilizan las propiedades originales del material, es decir, que su respuesta es igual

a corto y a largo plazo, consideración a la que el modelo propuesto no se ajusta. Para ello

se han simulado los resultados que se obtendrían de una tubería que tuviera un módulo de

elasticidad a corto y largo plazo igual a E50, obteniendo resultados semejantes a los

obtenidos mediante el modelo MEF E(Op1).

En los estudios realizados sobre tuberías de hormigón, los resultados obtenidos mediante el

modelo MEF E(Op1) no se ajustan tan bien a los resultados de la opción 1 para base (B) y

coronación (C), si bien para el punto medio (S) establecen valores intermedios a los

establecidos por una y otra opción de cálculo del informe técnico CEN/TR 1295-3.

Los resultados del modelo elastoplástico, sobre la tubería de acero producen para todos los

casos de carga un incremento generalizado de las tensiones obtenidas en el modelo elástico

Page 305: cálculo estructural de tuberías enterradas por el método

Capítulo 5

Modelo de comportamiento mecánico de tubería enterrada en elementos finitos

- 277 -

(con incrementos máximos de hasta un 50%), siendo mas pronunciados estos valores en las

instalaciones con menos cobertura de terreno.

En los estudios realizados sobre la tubería de polietileno, tanto a corto, como a largo plazo,

el comportamiento es diferente; a corto plazo el comportamiento de la tubería sometida a

cargas externas produce una reducción de las tensiones en base (B) y punto medio (S) y un

incremento en la coronación (C), mientras que a largo plazo dicho comportamiento no está

tan claramente definido; sin embargo, bajo la hipótesis de cargas externas más presión

interna, el comportamiento de la tubería tanto a corto, como a largo plazo es común, debido

a que se produce un incremento generalizado de las tensiones en las tres secciones de

estudio (ver ANEXO C).

Por último, sobre las tuberías rígidas el comportamiento elastoplástico del terreno, produce,

para el caso de que actúen únicamente de las cargas externas, un incremento de tensiones

en la base (B), y una reducción de las mismas en punto medio (S) y coronación (C). Sin

embargo, cuando se consideran las cargas externas más la presión interna, el efecto del

comportamiento elastoplástico produce un incremento de tensiones en la base (B) y el punto

medio (S) y una reducción de tensiones en la coronación (C) (ver ANEXO C).

Los resultados obtenidos para las tensiones calculadas en las tres secciones de estudio

mediante el modelo elastoplástico de cinco parámetros (asociados a la Opción 1) son

válidas y es necesario tenerlas en consideración en todos los casos de dimensionamiento,

pues el modelo elástico subestima las tensiones generadas en todos los casos, siendo

determinantes en instalaciones con profundidades de instalación (h ≤ 3 m).

Se incluyen a continuación las figuras 5.25 al 5.29, que avalan las consideraciones

expuestas en este apartado.

Page 306: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 278 -

-300

-250

-200

-150

-100

-500

50

100

150

200

250

300

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

Tensió

n M

ax. (O

p1)

Ten

sió

n M

ax.

(O

p2

)

Tensió

n M

in.

(Op1)

Ten

sió

n M

in.

(Op

2)

C D

N1000

ME

F E

(Op1)

C D

N2000 M

EF

E(O

p1)

S D

N1000 M

EF

E(O

p1)

S D

N2000 M

EF

E(O

p1)

B D

N1000 M

EF

E(O

p1)

B D

N2000 M

EF

E(O

p1)

C D

N1000

ME

F E

(Op2)

C D

N2000 M

EF

E(O

p2)

S D

N1000 M

EF

E(O

p2)

S D

N2000 M

EF

E(O

p2)

B D

N1000 M

EF

E(O

p2)

B D

N2000 M

EF

E(O

p2)

Figura 5.25. Tensiones en C, S y B por cargas externas a largo plazo en tuberías de acero para modelos de

comportamiento elástico

Page 307: cálculo estructural de tuberías enterradas por el método

Capítulo 5

Modelo de comportamiento mecánico de tubería enterrada en elementos finitos

- 279 -

-10,0

-8,0

-6,0

-4,0

-2,0

0,0

2,0

4,0

6,0

8,0

10,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

Ten

sió

n M

ax.

(O

p1)

Tensió

n M

ax.

(O

p2)

Ten

sió

n M

in. (O

p1)

Tensió

n M

in.

(Op2)

C D

N1000 M

EF

E(O

p1)

C D

N1600 M

EF

E(O

p1)

S D

N1000 M

EF

E(O

p1)

S D

N1

600 M

EF

E(O

p1)

B D

N1000 M

EF

E(O

p1)

B D

N1

600 M

EF

E(O

p1)

C D

N1000 M

EF

E(O

p2)

C D

N1600 M

EF

E(O

p2)

S D

N1000 M

EF

E(O

p2)

S D

N1

600 M

EF

E(O

p2)

B D

N1000 M

EF

E(O

p2)

B D

N1

600 M

EF

E(O

p2)

Figura 5.26. Tensiones en C, S y B por cargas externas a largo plazo en tuberías de polietileno (E0) para

modelos de comportamiento elástico y elastoplástico

Page 308: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 280 -

-5-4-3-2-1012345

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)T

ensió

n M

ax.

E0/E

50 (

Op1

)T

ensió

n M

in.

E0/E

50

(O

p1)

Tensió

n M

ax.

E50/E

50 (

Op

1)

Tensió

n M

in.

E50/E

50 (

Op1)

Tensió

n M

ax.

E0/E

50 (

Op2

)T

ensió

n M

in.

E0/E

50

(O

p2)

C D

N1

000 M

EF

E(O

p1)

C D

N1600

ME

F E

(Op1)

S D

N1000

ME

F E

(Op1)

S D

N1600 M

EF

E(O

p1)

B D

N1000

ME

F E

(Op1)

B D

N1600 M

EF

E(O

p1)

C D

N1

000 M

EF

E(O

p2)

C D

N1600

ME

F E

(Op2)

S D

N1000

ME

F E

(Op2)

S D

N1600 M

EF

E(O

p2)

B D

N1000

ME

F E

(Op2)

B D

N1600 M

EF

E(O

p2)

Figura 5.27. Tensiones en C, S y B por cargas externas a largo plazo en tuberías de polietileno (E50) para

modelos de comportamiento elástico y elastoplástico

Page 309: cálculo estructural de tuberías enterradas por el método

Capítulo 5

Modelo de comportamiento mecánico de tubería enterrada en elementos finitos

- 281 -

-10-8-6-4-202468

10

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

Te

nsió

n M

ax. (O

p1)

Tensió

n M

ax.

(O

p2

)

Te

nsió

n M

in. (O

p1)

Tensió

n M

in.

(Op

2)

C D

N1000 M

EF

E(O

p1)

C D

N2000 M

EF

E(O

p1

)

S D

N1000 M

EF

E(O

p1)

S D

N2000 M

EF

E(O

p1)

B D

N1000 M

EF

E(O

p1)

B D

N2000 M

EF

E(O

p1)

C D

N1000 M

EF

E(O

p2)

C D

N2000 M

EF

E(O

p2

)

S D

N1000 M

EF

E(O

p2)

S D

N2000 M

EF

E(O

p2)

B D

N1000 M

EF

E(O

p2)

B D

N2000 M

EF

E(O

p2)

Figura 5.28. Tensiones en C, S y B por cargas externas a largo plazo en tuberías de hormigón para modelos de

comportamiento elástico y elastoplástico

Page 310: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 282 -

-300

-250

-200

-150

-100

-500

50

100

150

200

250

300

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N10

00 M

EF

E(O

p1)

C D

N2000 M

EF

E(O

p1)

S D

N1000 M

EF

E(O

p1)

S D

N2000 M

EF

E(O

p1

)

B D

N1000 M

EF

E(O

p1)

B D

N2000 M

EF

E(O

p1

)

B D

N1000 M

EF

E(O

p1)+

D-P

S D

N1000 M

EF

E(O

p1

)+D

-P

C D

N10

00 M

EF

E(O

p1)+

D-P

B D

N2000 M

EF

E(O

p1

)+D

-P

S D

N2000 M

EF

E(O

p1)+

D-P

C D

N2000 M

EF

E(O

p1)+

D-P

Figura 5.29. Tensiones en C, S y B por cargas externas a largo plazo en tuberías de acero para modelos de

comportamiento elástico y elastoplástico

Page 311: cálculo estructural de tuberías enterradas por el método

Capítulo 5

Modelo de comportamiento mecánico de tubería enterrada en elementos finitos

- 283 -

5.5.5.3. Carga crítica de pandeo

Las cargas críticas de pandeo que mejor se adaptan a los resultados obtenidos a partir de

las formulaciones definidas en el informe técnico CEN/TR 1295-3 son las definidas por el

modelo MEF E(Op2), estableciendo el modelo MEF E(Op1) valores muy superiores a los

definidos por el informe técnico (del orden de 2 a 3 veces mayor). Este comportamiento se

debe a que las formulaciones empleadas en la opción 1 consideran coeficientes de

seguridad adicionales que reducen la carga crítica de pandeo estableciendo valores muy

inferiores a la realidad del modelo.

Independientemente de los resultados obtenidos, el control del pandeo puede realizarse

limitando la ovalización máxima a corto plazo a un 3% en las instalaciones en donde el

pandeo domina el dimensionamiento frente a la ovalización, tal y como se deriva de los

estudios realizados por CARRIER, W.D (2005).

Se incluyen a continuación las figuras 5.30 al 5.32, que avalan las consideraciones

expuestas en este apartado.

Page 312: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 284 -

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Carga de pandeo (MPa)D

N 1

016 (

Op

1)

DN

2032

(O

p1)

DN

1016 (

Op

2)

DN

2032

(O

p2)

DN

1000 M

EF

E(O

p1)

DN

2000 M

EF

E(O

p1)

DN

1000 M

EF

E(O

p2)

DN

2000 M

EF

E(O

p2)

Figura 5.30. Carga crítica de pandeo en tuberías de acero para modelos de comportamiento elástico

Page 313: cálculo estructural de tuberías enterradas por el método

Capítulo 5

Modelo de comportamiento mecánico de tubería enterrada en elementos finitos

- 285 -

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Carga de pandeo (MPa)

DN

1000 E

(Op1)

DN

1600

E(O

p1)

DN

1000 E

(Op2)

DN

1600

E(O

p2)

DN

1000 M

EF

E(O

p1)

DN

1600 M

EF

E(O

p1)

DN

1000 M

EF

E(O

p2)

DN

1600 M

EF

E(O

p2)

Figura 5.31. Carga crítica de pandeo en tuberías de polietileno (E0) para modelos de comportamiento elástico

Page 314: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 286 -

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Carga de pandeo (MPa)D

N 1

000 (

Op

1)

DN

1600

(O

p1)

DN

1000 (

Op

2)

DN

1600

(O

p2)

DN

1000 M

EF

E(O

p1)

DN

1600 M

EF

E(O

p1)

DN

1000 M

EF

E(O

p2)

DN

1600 M

EF

E(O

p2)

Figura 5.32. Carga crítica de pandeo en tuberías de polietileno (E50) para modelos de comportamiento elástico

Page 315: cálculo estructural de tuberías enterradas por el método

Capítulo 5

Modelo de comportamiento mecánico de tubería enterrada en elementos finitos

- 287 -

5.6. CONSIDERACIONES FINALES

El modelo de elementos finitos propuesto en esta tesis con los parámetros establecidos en

la Opción 1 del informe técnico CEN/TR 1295-3 es válido para establecer un nuevo

procedimiento de dimensionamiento estructural de tuberías enterradas, no solo para

aquellos casos que por su especial instalación, dimensiones o problemas derivados de una

determinada puesta en obra no se encuentren recogidos en las instalaciones tipificadas por

dicho informe técnico, sino para todos los casos, por sencillos que parezcan, debido a que

con el nuevo procedimiento de dimensionamiento se puede ajustar el diseño de la tubería a

las circunstancias reales de instalación, y realizar diseños especiales, que el informe técnico

no recoge por su carácter excepcional.

Adicionalmente, los estudios de esta tesis proporcionan una herramienta adicional al informe

técnico CEN/TR 1295-3, para poder evaluar cuál de las dos opciones propuestas en la

misma se puede definir como norma común de dimensionamiento de tuberías enterradas en

Europa.

Page 316: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 288 -

Page 317: cálculo estructural de tuberías enterradas por el método

Capítulo 6

Conclusiones

- 289 -

CAPÍTULO 6. CONCLUSIONES 6.1. ASPECTOS GENERALES

La presente tesis propone una generalización del uso del método de elementos finitos para

el dimensionamiento de tuberías enterradas, independientemente del material y el diámetro

de las mismas, mediante parámetros propios de los materiales constitutivos, significando un

paso adelante respecto a los modelos que proponen procedimientos de cálculo en función

del comportamiento del sistema tubería/terreno y/o del material de la tubería.

Los resultados de los trabajos presentados en esta tesis pueden dividirse en tres grupos:

1) Propuesta de modificaciones del informe técnico CEN/TR 1295-3 (2007) para que se

tengan en consideración aspectos referentes, entre otros, a la acción combinada de

las cargas externas y la presión interna, y se corrijan algunas erratas detectadas.

2) Desarrollo de un procedimiento automático (mediante hoja de cálculo) de la dos

opciones de cálculo del informe técnico CEN/TR 1295-3 e incorporación en dicho

programa de las modificaciones propuestas en esta tesis.

3) Desarrollo de un modelo de elementos finitos que permite el dimensionamiento de

tuberías enterradas, cualquiera que sea su material, tipo de instalación y diámetro,

en función de los parámetros constitutivos del terreno.

6.2. MODIFICACIÓN DE LOS MODELOS PROPUESTOS POR EL CEN/TR 1295-3

La modificación de los modelos propuestos en el informe técnico CEN/TR 1295-3 (2007)

surge de la profunda revisión realizada por el autor desde el trabajo de investigación hasta

los trabajos de calibración y comprobación del modelo de cálculo propuesto.

Los cambios realizados responden fundamentalmente a la reestructuración de las normas,

estableciendo de forma mas clara la definición de las hipótesis pésimas de carga, y en

particular a la ampliación de la opción 2 para calcular los esfuerzos en las tres secciones de

estudio para su posterior comparación con los resultados obtenidos en la opción 1 y en el

nuevo modelo de cálculo.

Las modificaciones fundamentales realizadas en las metodologías descritas en el informe

técnico CEN/TR 1295-3 (2007) pueden resumirse en lo siguiente:

Page 318: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 290 -

CEN/TR 1295-3 Opción 1:

1) Se ha modificado la estructura de presentación del informe técnico para seguir una

estructura más lógica, comenzando con la descripción de los tipos de instalaciones,

la definición de los parámetros del suelo y la descripción de las cargas iniciales, para

posteriormente desarrollar los métodos de cálculo de esfuerzos, tensiones y

deformaciones.

2) Se ha establecido la limitación de los procedimientos de cálculo a situaciones donde

el desfase vertical entre el relleno y el tubo es nulo (∆g = 0), al considerar que

aquellas hipótesis que lo consideran están fuera de los planeamientos necesarios

para ser utilizados en un dimensionamiento de tubería enterrada.

3) Se ha establecido, en la comprobación por presión interna, una nueva comprobación

adicional a la existente, que consiste en un sencillo cálculo tensional para aquellas

tuberías que no estén identificadas por su PN, como pueden ser las tuberías de

acero.

4) Se han definido las formulas de los sumatorios de momentos y fuerzas para cada

uno de los grupos asociados al comportamiento de la tubería frente a las distintas

acciones accidentales y/o permanentes.

5) Se han revisado en profundidad las hipótesis de cálculo establecidas en la redacción

original, reestructurando lo referente al cálculo de tensiones de forma que se

especifica en primer lugar las hipótesis a considerar y posteriormente se definen las

formulaciones a aplicar utilizando la teoría de 1º orden y 2º orden para las hipótesis

descritas.

6) Se han definido las tensiones resultantes organizadas según las hipótesis de cálculo

y su análisis temporal (corto o largo plazo).

7) Se ha desarrollado un programa de cálculo para el dimensionamiento de tuberías

enterradas siguiendo la metodología propuesta en la opción 1.

CEN/TR 1295-3 Opción 2:

1) En la definición de los parámetros de cálculo se ha incluido de forma explicita la

corrección del módulo de reacción del suelo por efecto de la anchura de zanja

obtenida de la norma FASCICULE 70 (2003); consideración que a pesar de estar

incluida en la informe técnico original puede pasar desapercibida por estar referida a

una nota a pie de pagina que define los parámetros de instalación.

Page 319: cálculo estructural de tuberías enterradas por el método

Capítulo 6

Conclusiones

- 291 -

2) En la descripción de las acciones a aplicar, se han estructurado las hipótesis de

carga para los casos de tubería con presión, anteriormente no especificados en la

redacción de la opción 2.

3) En el cálculo de las cargas de tierras se han sustituido las gráficas que definen los

coeficientes de Marston (C0 y C1) por la formulación matemática de los coeficientes

de Marston, obtenida de la norma IET (2007), para los casos de instalación en zanja

y terraplén indefinido.

4) Se han revisado las cargas consideradas y su redacción, con una estructura más

lógica y ordenada que la realizada en la redacción actual de la metodología de

cálculo de la opción 2.

5) Se ha ampliado el procedimiento de cálculo de esfuerzos con la definición y

desarrollo matemático de los momentos en las tres secciones de estudio, de acuerdo

con las expresiones definidas en la norma FASCICULE 70 (2003) y se han

reasignado los signos en las expresiones de los axiles, de forma que los resultados

obtenidos sean comparables con los obtenidos por la opción 1.

6) Se ha incluido un nuevo procedimiento para el cálculo de esfuerzos, tensiones y

deformaciones para la hipótesis de cargas externas con presión interna, cuya

formulación en la redacción original es prácticamente inexistente.

7) Se ha incluido una nueva propuesta para el cálculo de los momentos, tensiones y

deformaciones últimas a partir de los resultados de la sección pésima calculada

mayorado con el coeficiente γA, evitando de esta forma calcular el momento último a

partir de una carga mayorada como lo establece el procedimiento actual.

8) Se ha desarrollado un programa de cálculo para el dimensionamiento de tuberías

enterradas siguiendo la metodología propuesta en la opción 2.

6.3. MODELO DE CÁLCULO PROPUESTO

El modelo de cálculo propuesto se basa en la incorporación del método de elementos finitos

para el dimensionamiento de las tuberías enterradas en dos dimensiones, en deformación

plana, debido a que cualquier estructura cuya geometría no varíe significativamente en la

dirección longitudinal, y sobre ella actúen cargas uniformemente distribuidas a lo largo de su

longitud puede ser idealizadas como un problema de deformación plana (OÑATE, E. (1995)

y WATKINS R.K. et al (1999)).

Los materiales tienen un comportamiento mixto, los elementos tipo viga y sólido, que

modelizan las tuberías de pared delgada y las tuberías de pared gruesa, respectivamente,

tienen siempre, dentro del rango de estudio, un comportamiento elástico. Por el contrario,

Page 320: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 292 -

los elementos tipo sólido, que modelizan el suelo tiene un comportamiento elastoplástico

modelizado mediante el modelo de Drucker-Prager con flujo asociado.

Las consideraciones fundamentales realizadas en la formulación del modelo de cálculo

propuesto pueden resumirse en lo siguiente:

• Geometría y condiciones de contorno. La geometría del modelo propuesto se ha

considerado variable en función del diámetro de la tubería, se ha tomado un ancho

de cuatro diámetros (4.DN), y un alto variable (para estudiar los efectos de diferentes

coberturas de terreno y cargas de tráfico), de 2.DN+1 hasta 2.DN+5.

El ancho de 4.DN se ha considerado oportuno, porque es lo suficientemente amplio

para atenuar los efectos de borde sobre el modelo y, a su vez, permite incluir el caso

límite de comportamiento entre zanja ancha y terraplén, estimado en la bibliografía

en 4.DN. Con respecto a la altura del modelo, lo mas importante ha sido considerar

una distancia fija, en función del diámetro de la tubería entre ésta y el borde inferior

(fijada en 1.DN), menor que la anterior, pues en este caso no es necesario disponer

de mayor anchura pues los desplazamientos en esa zona, son prácticamente nulos

en todos los casos.

Las condiciones de contorno impuestas en los bordes del modelo, han sido: coartar

los movimientos en dirección horizontal en el borde lateral del modelo, de tal forma

que se evita que el terreno se pueda “colgar” en esta zona; coartar los movimientos

horizontales y verticales en el borde inferior del modelo y coartar los movimientos en

horizontal y los giros en el eje de simetría de la sección.

• Modelo de la Tubería. La tubería, de acuerdo con los trabajos realizados por MADA,

H. (2005) y DIAB, Y.B (1992), se ha modelizado mediante dos elementos tipo:

Elementos tipo viga de dos nodos (B21) para las tuberías de pared delgada y

elementos tipo sólido de cuatro nodos (CPE4) para las tuberías de pared gruesa.

El comportamiento mecánico de la tubería se ha modelizado mediante un

comportamiento mixto, elástico lineal de dos parámetros (Ei, ν) para evaluar el

comportamiento tenso-deformacional de la tubería y pandeo elástico, para evaluar el

comportamiento frente a la inestabilidad por pandeo.

Para tener en cuenta el efecto de la fluencia en los materiales constitutivos del tubo,

es necesario realizar dos modelos uno a corto plazo (E0, ν) y otro a largo plazo (E50,

ν)

• Modelo de terreno. En el modelo propuesto, siguiendo lo descrito en la Opción 1 del

informe técnico CEN/TR 1295-3 (2007), se han identificado cinco tipos de terreno en

total, dos tipos de terreno natural, (terreno que se encuentra por debajo de la zanja y

terreno que se encuentra próximo a los laterales de la zanja) y tres tipos de relleno,

Page 321: cálculo estructural de tuberías enterradas por el método

Capítulo 6

Conclusiones

- 293 -

el primero asociado a la cama de arena o cuna de hormigón, el segundo al relleno de

protección y el tercero al relleno superior. Todos los tipos de terreno natural y relleno

se han modelizado mediante elementos tipo sólido de cuatro nodos con integración

reducida (CPE4R), consideración habitual en todas las referencias bibliográficas

consultadas.

El comportamiento del suelo se ha modelizado mediante dos leyes: en primer lugar,

mediante una ley de comportamiento elástico lineal de dos parámetros (E, ν) y, en

segundo lugar, mediante una ley elastoplástica con endurecimiento, tipo Drucker-

Prager de cinco parámetros (E, ν, φ, ψ, c).

• Modelo de la Interfase tubería/terreno. Los contactos entre superficies de distinto

material, bien sea terreno/terreno o tubería/terreno se han modelizado mediante

contactos que permiten el desplazamiento con rozamiento y/o la transmisión de

presiones (RUBIO, N. 2003), desestimando los modelos clásicos fijos y/o muelles. La

transmisión de esfuerzos normales se ha realizado utilizando un modelo de contacto

rígido no lineal, en el cual, cuando las superficies están en contacto, se puede

trasmitir cualquier presión entre ambas, mientras que cuando se separan la presión

se reduce a cero. Por otro lado la transmisión de esfuerzos tangenciales se

corresponde con el modelo isotrópico clásico de Coulomb, que define la tensión

crítica para la cual comienza el deslizamiento como una fracción de la presión de

contacto entre ambas superficies y que se define mediante un parámetro.

El parámetro del contacto se ha establecido en función de los materiales en contacto.

Para el contacto terreno/terreno o terreno/relleno se ha seguido el criterio establecido

en el informe técnico CEN/TR 1295-3, en donde se establece que el coeficiente de

rozamiento es el mínimo de los coeficientes calculados a partir del ángulo de

rozamiento interno corregido por un coeficiente de reducción que es función de las

condiciones de instalación, mientras que para el contacto tubería/relleno, el

coeficiente de rozamiento se establece como el mínimo entre 0,2 (correspondiente al

coeficiente de rozamiento entre el tubo y el terreno simplemente apoyado) y el

obtenido mediante el criterio del informe técnico CEN/TR1295-3.

• Definición de cargas. En el modelo de cálculo propuesto se han incluido todas las

acciones que deben incluirse en el cálculo estructural de tuberías: las acciones

gravitatorias, acciones del terreno, acciones del tráfico, acciones hidráulicas y

acciones debidas al nivel freático.

El modelo ha sido comparado con los resultados obtenidos mediante la propuesta de

modificación de los procedimientos de cálculo descritos en el informe técnico

CEN/TR 1295-3, demostrando la capacidad de simular el comportamiento tenso-

deformacional bajo diferentes tipos de instalación, materiales constitutivos y

condiciones de carga con un total de 5 parámetros intrínsecos del terreno, 2 de la

tubería y 1 de la interfase tubería/terreno.

Page 322: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 294 -

Se han presentado 120 simulaciones para los dos tipos de instalación más

característicos ET2 (Todo uno), para tuberías flexibles y ET4 (Cuna de hormigón)

para tuberías rígidas, con distintas profundidades de cobertura, con dos grupos de

suelo (Gs II y Gs IV) y dos niveles de compactación bien compactado (W) y no

compactado (N).

6.4. FUTURAS INVESTIGACIONES

La propuesta de esta tesis de un modelo de cálculo estructural de tuberías enterradas

mediante el método de elementos finitos que corrige las deficiencias detectadas en el

informe técnico CEN/TR 1295-3 y permite dimensionar cualquier tipo de instalación,

independientemente del material del tubo o de su puesta en obra, representa un avance

significativo en el cálculo estructural de tuberías enterradas.

Además, y con objeto de apuntar una cierta continuidad al trabajo presentado, se pueden

enunciar algunas de las futuras líneas de investigación que se podrían derivar de los

estudios realizados en esta tesis. Éstas son muy numerosas, debido a que, por un lado, la

herramienta utilizada (modelo de elementos finitos) tiene un gran potencial para los análisis

paramétricos del comportamiento mecánico de la tubería, así como, por otro lado, la

modificación del informe técnico CEN/TR 1295-3 realizada, para una normativa aún no

vigente y, por tanto, no transpuesta a la normativa española.

• La realización de ensayos, en banco de pruebas, de tuberías enterradas a escala

real, donde controlados todos los parámetros que intervienen en el proceso físico, se

pueda llevar a cabo un proceso de calibración de los parámetros empleados en el

nuevo modelo propuesto, que en este momento se corresponden con los

especificados por la Opción 1.

• Partiendo del nuevo modelo de calculo estructural de tuberías enterradas, estudiar la

posibilidad de establecer, tal y como se corresponde al módulo edométrico real, un

modelo de terreno con un módulo edométrico variable con la profundidad de forma

continua, y no como la propuesta actual, que es discreta.

• Con la futura aprobación del informe técnico CEN/TR 1295-3 (2007), se producirá un

cambio en los procedimientos de dimensionamiento realizados habitualmente en

España. Sería muy interesante profundizar en la diferencia existente entre éstos y las

nuevas propuestas y en el coste económico que esta normativa puede tener

implícita.

Page 323: cálculo estructural de tuberías enterradas por el método

Capítulo 6

Conclusiones

- 295 -

• Seguir profundizando en el conocimiento de las dos opciones de cálculo definidas en

el informe técnico CEN/TR 1295-3 y plantear la realización de ensayos a escala real,

que permitan establecer cuál de las dos opciones de cálculo puede ser declarada

como el futuro “método común”, o confirmar el planteamiento aquí expuesto, que

aboga por el nuevo modelo de calculo estructural de tuberías enterradas mediante el

método de elementos finitos (MEF).

Madrid, 29 de marzo de 2011

Page 324: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 296 -

Page 325: cálculo estructural de tuberías enterradas por el método

Capítulo 7

Bibliografía

- 297 -

CAPÍTULO 7. BIBLIOGRAFÍA

7.1. NORMAS

[N.1] AASHTO M 145 (1991) “Standard Specification for Classification of Soils and Soil-

Aggregate Mixtures for Highway Construction Purposes”.

[N.2] ASCE, G. A. ANTAKI ET. AL, (2001) “Guidelines for Design of Buried Steel Pipe".

[N.3] ASTM D 2487. (2000). “Standard Classification of soils for engineering purposes

(unified soil classification system”. American Standard for Testing Materials.

[N.4] ASTM D2321 (2009). “Standard Practice for Underground Installation of

Thermoplastic Pipe for Sewers and Other Gravity-Flow Applications”.

[N.5] ATV-DVWK 127-E (2000). “Static Calculation of Drains and Sewers”, 3º Ed, German

Association for Water, Wastewater, and Waste Management, Berlin.

[N.6] AWWA C-150/A21.51 (1991), “Thickness Design of Ductile Iron Pipe, American

Water Works Association,” Denver, Colorado.

[N.7] AWWA M-11, (1999) “Steel Pipe – A Guide for Design and Installation,” American

Water Works Association, Denver, Colorado.

[N.8] AWWA M-41 (1996), “Ductile-Iron Pipe and Fittings”, American Water Works

Association, Denver, Colorado.

[N.9] AWWA M-45 (1999),“Fiberglass Pipe Design,” American Water Works Association,

Denver, Colorado.

[N.10] AWWA M-9 (1979), “Concrete Pressure Pipe", American Water Works Association,

Denver, Colorado.

[N.11] CEN/TR 1295-3 (2007). “Structural design of buried pipelines under various

conditions of loading - Part 3: Common method”.

[N.12] DIN 18127:1987 ("Soil – Testing procedures and testing equipment - Proctor test").

[N.13] EHE-08 (2009), "Instrucción de Hormigón Estructural (EHE-08)". S.G.T. Centro de

Publicaciones, Ministerio de Fomento. Madrid.

[N.14] UNE EN 1295-1 (1997). “Structural design of buried pipelines under various

conditions of loading - Part 1: General requirements”.

[N.15] UNE CEN/TR 1295-2 (2005). “Structural design of buried pipelines under various

conditions of loading - Part 2: Summary of national established methods of design”.

[N.16] FASCICULE 70 (2003). Ouvrages d’assainissement, Ministère de l'Equipement,

France.

[N.17] IET07 (2007), "Instrucción del Instituto Eduardo Torroja para tubos de hormigón

armado o pretensado", Madrid.

[N.18] ÖNORM B 5012 -1 y 2 (2005), “Structural design of buried water and sewerage

pipelines for housing and industry -Load assumptions, method of calculation”.

[N.19] UNE 53331 (1997). “Plásticos. Tuberías de poli(cloruro de vinilo) (PVC) no

plastificado y polietileno (PE) de alta y media densidad. Criterio para la

comprobación de los tubos a utilizar en conducciones con y sin presión sometidos a

cargas externas”. AENOR.

Page 326: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 298 -

[N.20] UNE ENV 1998-1 (2000).EUROCÓDIGO 8: Condiciones de diseño para estructuras

sismorresistentes. Parte 1-3: Reglas generales. Reglas específicas para distintos

materiales y elementos. AENOR

[N.21] UNE-EN 1610:1998. "Instalación y pruebas de acometidas y redes de

saneamiento." AENOR

[N.22] UNE-EN 1991-2:2004. "Eurocódigo 1: Acciones en estructuras. Parte 2: Cargas de

tráfico en puentes."

[N.23] UNE-ENV 1998-4:2004 Eurocódigo 8: Disposiciones para el proyecto de

estructuras sismorresistentes. Parte 4: Silos, depósitos y tuberías.

[N.24] UNE-ENV 1998-5:1998 EUROCÓDIGO 8: Disposiciones para el proyecto de

estructuras sismorresistentes. Parte 5: Cimentaciones, estructuras de contención

de tierras y aspectos geotécnicos.

7.2. LIBROS

[L.1] ABAQUS Version 6.7. (2007) “Abaqus Analysis User's Manual”. Hibbitt, Karlsson &

Sorensen, Inc., Pawtucket, RI

[L.2] ABAQUS Version 6.7. (2007) “Abaqus Theory Manual”. Hibbitt, Karlsson &

Sorensen, Inc., Pawtucket, RI

[L.3] ALAMAN SIMON, A. (1990). "Materiales metálicos de construcción".Servicio de

publicaciones. Revista de obras públicas. ETSICCP Madrid

[L.4] ASETUB (2007), "Tuberías de PVC. Manual Técnico, Ed. AENOR. Madrid.

[L.5] ASETUB (2008), "Tuberías de Polietileno. Manual Técnico. Ed. AENOR. Madrid.

[L.6] ATHA (2000), "Manual de cálculo, diseño e instalación de tubos de hormigón

armado", Madrid.

[L.7] BATHE, K.J (1996) “Finite Element Procedures”. Prentice Hall

[L.8] BEER, F.P. y JOHNSTON, R.E (1983). “Mecánica vectorial para ingenieros:

estática”. Mc-Graw-Hill, México.

[L.9] BOUSSINESQ, J.V. (1885). “Application des potenciels a l'etude de l'equilibre et du

mouvement des solids elastiques”, Paris, Gantheir-Villars

[L.10] BULSON, P.S. (1985) “Buried and Rigid Pipes – Structural design of Pipelines”,

London, Chapman and Hall Ltd, 227p.

[L.11] CEDEX (1995) Pliego de prescripciones técnicas generales para tuberías de

abastecimiento del MOPTMA, Madrid, (Inédito)

[L.12] CEDEX (2003), "Guía Técnica sobre tuberías para el transporte de agua a presión",

Madrid

[L.13] CEGARRA PLANÉ, M. (1996). "Proyecto de tuberías de transporte". Colegio de

Ingenieros de Caminos, Canales y Puertos

[L.14] CEGARRA PLANÉ, M. (1999). "Las tuberías (Acueductos, oleoductos y

gaseoductos)". Colegio de Ingenieros de Caminos, Canales y Puertos.

[L.15] CEGARRA PLANÉ, M. (2010). "Lecciones sobre tecnología de las tuberías

("Pipeline Technology")". UPM. ETSICCP

Page 327: cálculo estructural de tuberías enterradas por el método

Capítulo 7

Bibliografía

- 299 -

[L.16] CHEN, W-F. y HAN, D-J (1988). "Plasticy for Structural Engineers". Ed. Springer-

Ver Lag. New York

[L.17] COOK, R.D., MALKUS, D.S. PLESHA, M.E. AND WITT, R.J. (2003) “Concepts and

applications of finite element analysis”. John Wiley & Sons, Inc., Indianapolis, IN.

[L.18] CRISFIELD, M.A. (1991). “Non-Linear Finite Element Analysis of Solids and

Structures. Volume 1: Essentials”. John Wiley & Sons, Inc. New York, NY, USA.

[L.19] CRISFIELD, M.A. (1997). “Non-Linear Finite Element Analysis of Solids and

Structures. Volume 2: Advanced Topics”. John Wiley & Sons, Inc. New York, NY,

USA.

[L.20] DESAI, C.S. and SIRIWARDANE, H.J. (1984). “Constitutive laws for Engineering

Materials, with Special Refrence to Geologic Media”. Prentice-Hall, Inc., Englewood,

New Jersey.

[L.21] HUGHES, T.J.R. (2000) The Finite Element Method. Linear static and dynamic finite

element analysis. Dover

[L.22] JANSON, L-E. (2003). "Plastics Pipes for Water Supply and Sewage Disposal". Ed.

Borealis, Stockholm

[L.23] LOPEZ CELA, J.J (1999). "Mecánica de los medios continuos". Ed universidad de

Castilla- La Mancha. Cuenca

[L.24] LAURSEN, T.A. (2010). Computational Contact and Impact Mechanics:

Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element

Analysis. Springer

[L.25] LUBLINER, J. (2008). “Plasticity Theory”. Dover Publications

[L.26] MOSER, A.P. (1990). “Buried pipe design”. McGraw-Hill, Inc., NY

[L.27] OÑATE, E. (1995). “Cálculo de Estructuras por el Método de Elementos Finitos.

Análisis estático lineal”. Centro Internacional de Métodos Numéricos en Ingeniería.

Barcelona

[L.28] SEYMOUR, R. y CARRAHER, C.E. (2002) "Introduction to Polymer Chemistry".

McGraw-Hill, New York

[L.29] SIMO, J.C. y HUGHES, T.J.R. (1998). Computational Inelasticity (Interdisciplinary

Applied Mathematics) (v. 7) . Springer

[L.30] SMOLTCZYK, U. (2003) "GEOTECHNICAL ENGINEERING HANDBOOK", Verlag

Wilhelm Ernst & Sohn, Bühringstraße 10, 13086, Berlin

[L.31] SPANGLER, M. G. (1960). “Soil engineering”, International Textbook Co., Scranton,

Pa.

[L.32] SPANGLER, M.G. and HANDY, R.L. (1982). Soil Engineering, 4th edition. Addison-

Wesley Educational Publishers, Inc., Boston, MA.

[L.33] SUAREZ, J. ET AL. (2004), "Manual de conducciones uralita", URALITA, Madrid.

[L.34] TERZAGHI, K. (1943) “Theoretical soil mechanics” J. Wiley and Sons,Inc., New

York, NY.

[L.35] VICENT, M.A, ÁLVEREZ, S y ZARAGOZÁ, J.L. (2006). “Ciencia y tecnología de

polímeros” Ed. Universidad Politécnica de Valencia.

[L.36] WATKINS, R.K. and ANDERSON, L.R. (1999) “Structural mechanics of buried

pipes”, CRC press, 444p.

Page 328: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 300 -

[L.37] WRIGGERS, P. y ZAVARISE, G. (2004). Computational Contact Mechanics.

Encyclopedia of Computational Mechanics. Chapter 6, Vol 2. E. Stein, R. De Borst

and T.J.R. Hughes (Editors). Wiley

[L.38] YOUNG, O.C.; TROTT, J.J. (1984) “Buried and Rigid Pipes – Structural design of

Pipelines”, London and New york, Elsevier Applied science publishers, 234p.

[L.39] YOUNG, W.C y BUDYNAS, R.G (2002). " Roark's formulas for stress and strain".

Mac Graw Hill. New York

[L.40] ZIENKEWICZ, O.C. AND TAYLOR, R.L. (1991). “The finite element method, Vols 1

& 2”. McGraw-Hill Book Company, London.

7.3. TESIS DOCTORALES

[T.1] CHO, S. (2003). “Behavior of Flexible Plastic Pipes with Flowable Backfill in Trench

Conditions”. Ph.D. Dissertation, Cullen College of Engineering, University of

Houston, Houston, Texas.

[T.2] DAMASCENO SILVEIRA, K. (2001) “Análise paramétrica do comportamento de

condutos enterrados flexíveis e de grande diâmetro”. Escola de Engenharia de São

Carlos da Universidade de São Paulo.

[T.3] DIAB, Y.G. (1992). “Comportement mécanique des conduites rigides enterrées”.

Phd thesis, partial fulfillmente, University Claude Bernad, Lyon, France

[T.4] KAWABATA, T. (1993). “Mechanical behavior of buried flexible pipe.” Ph.D. thesis,

Kobe Univ., Kobe, Japan.

[T.5] MADA, H. (2005) “Numerical Modeling of Buried Pipes with Flowable Fill as a

Backfill Material”. Ph.D thesis, partial fulfillment, Univ. Of West Virginia

[T.6] MCVAY, M.C. (1982) “Evaluation of numerical modeling of buried conducts”. PhD

thesis, partial fulfillment, Univ. Of Massachusetts, Amherst, Mass.

7.4. ARTÍCULOS

[A.1] ALLGOOD, J.R.; TAKAHASHI, S.K. (1972) “Balanced Design and finite element

analysis of culverts”, Highway Research Board, HRR 413, p.45-55.

[A.2] ALTAEE, A. & FELLENIUS, B. H. (1996). “Finite element modeling of lateral

pipeline-soil interaction”. 14th International conference on offshore mechanics and

artic engineering. Florence, Italy.

[A.3] ANIL K. GARG, Y ALI ABOLMAALI (2009). “Finite-Element Modeling and Analysis

of Reinforced Concrete Box Culverts” Vol. 135, No. 3, March 2009, pp. 121-128.

[A.4] ASHUTOSH, S.D., MOORE, I.D. and MCGRATH, T.J (2002). “Evaluation of

simplifield design methods for buried thermoplastic pipe”. Procceedings of the

pipeline division specialty conference, August 2-7, Cleveland, Ohio

[A.5] BAIKIE, L. D., AND MEYERHOF, G. G. (1982). “Buckling behavior of buried flexible

structures.” Proc., 4th International Conf. on Numerical Methods in Geomechanics,

Edmonton, Vol. 2, A. A. Balkema, Rotterdam,The Netherlands, 875–882.

Page 329: cálculo estructural de tuberías enterradas por el método

Capítulo 7

Bibliografía

- 301 -

[A.6] BOULANGER, R. W., BRAY, J. D., CHEW, S. W., SEED, R. B. ,MITCHELL, J. K. e

DUNCAN, J. M. (1991) “SSCOMPPC: A Finite Element Analysis Program for

Evaluation of Soil Structure Interaction and Compactation Effects”, Report n.

UCB/GT/91-02, Berkeley, 176p.

[A.7] CALVETI, F., PRISCO, C. & NOVA, R. (2004). “Experimental and numerical

analysis of soil-pipe interaction”. Journal of geo-technical and geoenvironmental

engineering ASCE.

[A.8] CARRIER, W. D. (2000). “Compressibility of a compacted sand.” J. Geotech.

Geoenviron. Eng., 126(3), 273–275.

[A.9] CARRIER, W.D. (2005). “Buckling versus Deflection of Buried Flexible Pipe”.

Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 6"

[A.10] CHEN, W.F. Y E. MIZUNO. (1990). ‘’Nonlinear Analysis in Soil Mechanics’’.

Amsterdam: Elsevier Science

[A.11] CHIOU Y.J. and CHI, S. Y. (1993). “Limit loads of buried pipelines in inelastic soil

medium”. Journal of engineering mechanics, vol. 119, nº 5

[A.12] CHO, S. AND VIPULANANDAN, C. (2004). “Behavior of Flexible Pipe with Sand

Backfill in Trench Condition and Verification with Finite Element Method”. Pipeline

Engineering and Construction: What's on the Horizon?. Proceedings of Pipelines

2004 International Conference

[A.13] CLOUGH, R.W., WOODWARD, R.J. (1967) “Analyses of embankment stresses and

deformations”, JSMFD, ASCE, v.93, sm-4, p.529-549.

[A.14] CRABB,G.I. and CARDER, D.R. (1985). “Loading tests on buried flexible pipes to

validate a new design model”. Trasnportation and road research laboratory.

Supplementary report 204. Crowthorne, U.K.

[A.15] DANIELS, L.H. (1990). “Structural stability of deflected flexible pipe in a backfilled

trench. Structural performance of flexible pipes”. Proceedings of the First National

Conference on Flexible Pipes. 119-122

[A.16] DIAB, Y.G. (1987). “Approche de calcul des tunnels en maçonnerie renforcée par

une coque en béton projeté”. MS thesis, Institute National des Science Appliquees

de Lyon (I.N.S.A.), Lyon, France

[A.17] DIAB, Y.G. (1995). “Mechanical Method to Evaluate Safety Factors in Buried Pipes”.

Journal of Transportation Enginneering, Vol. 121, Nº 1

[A.18] DRUCKER, D.C. and W.PRAGER (1952). “Soil Mechanics and plastic anaysis or

limit design”. Quarterly journal of applied mathematics, vol. 10, pp. 157-165

[A.19] DUNCAN, J. M.; BRYNE, P.; WONG, K. S.; MABRY, P. (1980) “Strength, Stress-

Strain and Bulk Modulus Parameters for Finite Element Analysis of Stress and

Movements in Soil Masses”, Geotechnical Engineering Research Report no.

UCB/GT/80-01, University of Califórnia , Berkeley.

[A.20] DUNCAN, J.M. (1975) “Finite Element analysis of buried flexible metal culvert

structures”, Laurits-Bjerrum Memorial Volume, NGI, Oslo, p.213-222.

[A.21] DUNCAN, J.M. and CHANG, C.Y. (1970). “Nonlinear analysis of stress and strain in

soils”. Journal of Soil Mech. and Foundation Division, ASCE, 96 (SM5), pp. 1629-

1653.

Page 330: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 302 -

[A.22] FELICIANO BAUTISTA, A.M, y LIZCANO PELAEZ, A. (2006). “Simulación

numérica de la interacción suelo-tubería”. Universidad de los Andes. ICYA

[A.23] FRANCISCA F. M., (2007). “Evaluating the constrained modulus and collapsibility of

loess from standard penetration test”, ASCE International Journal of Geomechanics,

7, 4.

[A.24] FRANCISCA, F. M.; REDOLFI, E. R. Y PRATO C. A., (2002) “Análisis de Tuberías

Enterradas en Suelos Loéssicos: Efecto de la Saturación del Suelo”, Rev. Int. de

Desastres Naturales, Accidentes e Infraestructura Civil, 2, 1, 3-19.

[A.25] GALLEGO E., et al. (2007) “Cálculo de encofrados de gran altura mediante un

Modelo de Elementos Finitos: estudio paramétrico”. Informes de la Construcción

Vol. 59, 505, 73-81

[A.26] GUMBEL, J.E. and WILSON, J. (1981). “Interactive design of buried flexible pipes -

A fresh approach from basic principles”. Groung Engineering, Vol. 14, Nº. 4, pp. 36-

40

[A.27] GUMBEL, J.E.; O’REILLY, M.P.; LAKE, L.M.; CARDER, D.R. (1982) “The

development of a new design method for buried flexible pipes”. Proceedings

Europipe Conference, Bastle, paper 8, p.87-98.

[A.28] HANDY, R.L. (1985) “The Arch in soil arching”, Journal of geotechnical engineering,

v.111, n.3, p.302-318.

[A.29] HARTLEY, J. D., AND DUNCAN, J. M. (1987). ‘‘E' and its variation with depth.’’ J.

Transp. Eng., 113(5), 538–553.

[A.30] HOWARD, A.K. (1997). ‘‘Modulus of soil reaction (E') values for buried flexible

pipe.’’ Engineering and Research Center, U.S. Bureau of Reclamation, Denver.

[A.31] HOWARD, A.K. (1972). “Laboratory load tests on buried flexible pipe”. Journal of

the American Water Works Association. Vol 64. Nº 10, pp. 655-662

[A.32] JANBU, N. (1963) “Soil compressibility as determined by Oedometer and triaxial

tests”, Proc. 1st. ECSMFE, Wiesbaden, v.1, p.10-25.

[A.33] JENSEN, H.V. (1988). "Collapse of hydrostatically loaded cylindrical shells" Int. J.

Solids Struct., 24(1), 51-64

[A.34] JEYAPALAN, J.K. AND WATKINS, R. (2004). “Modulus of Soil Reaction E' Values

for Pipeline Design”, Journal of Transportation Engineering, Vol. 130, No. 1

[A.35] KARARAM, A. (2006). “Nonlinear finite element-based investigation of the effect of

bedding thickness on underground pipe” Master of Science in civil Engineering,

University of Texas. Arlington.

[A.36] KATONA, M (1983). “A simple contact-friction interface element with applications to

buried culverts”, International Journal for Numerical and Analitical Methods in

Geomechanics, (7) 371-384

[A.37] KATONA, M.G.; SMITH, J.M., ODELLO, R.S.; ALLGOOD, J.R. (1976) “CANDE – A

modern approach for the structural desing and analysis of buried culverts”, Report

FHWA-RD-77-5, Federal Highway Admin., U.S. dept. of Transp., Washington, D.C.

[A.38] KAWABATA T., MOHRI Y. ODA, T. SHODA, D., ARIYOSHI,M. and NAKASHIMA,

H. (2008). “Field Measurement and Numerical Analysis for Buried Large Diameter

Steel Pipes”. Pipelines Congress 2008, Part of Pipeline Asset Management:

Page 331: cálculo estructural de tuberías enterradas por el método

Capítulo 7

Bibliografía

- 303 -

Maximizing Performance of Our Pipeline, Infrastructure, Proceedings of Pipelines

Congress 2008 Atlanta, GA,

[A.39] KAWABATA, T. AND MOHRI, Y. (1995): “Behavior of buried large thin wall flexible

pipe, Field Test and Numerical Analysis considered with Stage of Construction of

Buried Flexible pipe”, Proceeding of 2nd International Conference. In Advances in

Underground Pipeline Engineering, ASCE, Seattle, USA, pp.13-24

[A.40] KAWABATA, T. et al (2004). “D.E.M. Analysis on Behavior of Shallowly Buried Pipe

subject to traffic loads. ASCE. Pipelines 2003.

[A.41] KAWABATA, T. LING, H.I.,MOHRI Y. AND SHODA, D. (2006) “Behavior of Buried

Flexible Pipe under High Fills and Design Implications”. Journal of Geotechnical and

Geoenvironmental Engineering, Vol. 132, No. 10

[A.42] LIU, A. et al (2004). ”An equivalente-boundary method for the shell analysis of

buride pipelines under fault movement”. Acta seismologica sinica. Vol. 17 Supp.

(150 – 156)

[A.43] LUSCHER, U. (1963). “Study of the collapse of small soil-surrounded tubes.”

Technical Documentary Rep. No. AFSWC-TDR-63-6, Air Force Special Weapons

Center, Kirtland AFB, Albuquerque, NM.

[A.44] LUSCHER, U. (1965). “Behavior of flexible underground cylinders.” Technical Rep.

No. AFWL-TR-65-99, Air Force Weapons Laboratory, Kirtland AFB, Albuquerque,

NM.

[A.45] LUSCHER, U. (1966). “Buckling of soil-surrounded tubes.” J. Soil Mech. Found.

Div., 92(6), 211–228.

[A.46] LUSCHER, U., AND HÖEG, K. (1964). “The beneficial action of the surrounding soil

on the load-carrying capacity of buried tubes.” Proc., Symp. Soil-Structure

Interaction, Univ. of Arizona, Tucson, Ariz.

[A.47] LUSCHER, U., AND HÖEG, K. (1964). “The interaction between a structural tube

and the surrounding soil.” Technical Documentary Rep. No. AFWL-TDR-63-3109,

Air Force Weapons Laboratory, Kirtland AFB, Albuquerque, NM.

[A.48] LUSCHER, U., AND HÖEG, K. (1965). “The action of soil around buried tubes.”

Proc., 6th International Conf. on Soil Mechanics and Foundation Engineering,

Montreal, Vol. II.

[A.49] MARSTON, A. (1930). “The theory of external loads on closed conduits in the loght

of the latest experiments”. Bulletin 96, Iowa Engineering experiment station, Ames,

Iowa, Bulletin 96, 36 p.

[A.50] MARSTON, A. and ANDERSON, A.O. (1913). “The theory of loads on pipes in

ditches and tests of cement and clay drain tile and sewer pipe”. Bulletin 31, Iowa

Engineering experiment station, Ames, Iowa.

[A.51] MCGRATH, T.J. and HOOPES, R.J. (1998). “Bedding factors and E' values for

buried pipe instalations backfilled with air-modified CLSM. The design and

Application of controlled low strength materials (Flowable Fill)”, ASTM STP 1331, A.

K. HOWARD and J.L. HITCH, Eds., American Society for Testing And Materials.

[A.52] MENETREY, P. y WILLAM, K.J. (1995). "Triaxial failure criterion for concrete and its

generalization". ACI Struct. J. 92: 311-318

Page 332: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 304 -

[A.53] MEYERHOF, G.G.; FISHER, C.L. (1963) “Composite design of underground steel

structures”, Engineering Journal of the engineering institute of Canada, EIC-63,

Geotech5, p.36-41.

[A.54] MOHRI, Y., TSURUMARU, Y., ASANO, I. (1990) “Measured performance and

numerical analysis of buried pipe”, In: Pipeline Design and Installation: Proceedings

of International Conference, Las Vegas, p.535-545.

[A.55] MOORE, I.D. and SELIG, E.T (1990). “Use of continuum buckling theory for

evaluation of buried plastic pipe stability”. Technical publication 1093-Buried plastic

pipe technology, ASTM, Philadelphia, pp. 334-359,

[A.56] MOORE, I.D.; SELIG, E.T.; HAGGAG, A. (1988) “Elastic Buckling Strength of Buried

Flexible Culverts”, Transportation Research Record 1191, Washington, p.57-64.

[A.57] MOSER, A.P. (1998). “Structural performance of buried profile-wall hidh-density

polyethylene pipe and influence of pipe wall geometry”. Transportaion Research

Record 1624, Nº 98-0811, pp. 206-213

[A.58] NETZER W., OSTERMANN A. (1999) “Compatibility condition for horizontal pipe

bedding with variable bedding angles for the structural design of flexible and semi-

flexible pipelines)”, Österreichische Wasser- und Abfallwirtschaft, 51, Vol. 11/12,

Springer Verlag, Wien

[A.59] NOGUEIRA, A.C. and TASSOULAS, J.L. (1994). “Buckle propagation: steady-state

finit-element analysis”. Journal of Engineering Mechanics, Vol.120, Nº9.

[A.60] NOOR, M.A., DHAR, A.S. (2003). “Three-Dimensional Response of Buried Pipe

Under Vehicle Loads”. New Pipeline Technologies, Security and Safety.

Proceedings of the ASCE International Conference on Pipeline Engineering and

Construction

[A.61] OKEAGU, B.; ABDEL-SAYED, G. (1984) “Coefficients of soil reaction for buried

flexible conduits”, Journal of geotechnical engineering, v.110, n.7, p.908-922.

[A.62] OTEO, C. et al (2003). “Sobre los sistemas y parámetros geotécnicos de diseño en

la ampliación del metro de Madrid”. Revista de Obras Públicas nº 3.429, pp 49-67.

[A.63] OZKAN, I.F., MOHAREB, M. (2009) “Testing and Analysis of Steel Pipes under

Bending, Tension, and Internal Pressure”. J. Struct. Engrg. Volume 135, Issue 2, pp.

187-197

[A.64] PEIJUN, G. (2005). "Numerical Modeling of Pipe-Soil Interaction under Oblique

Loading". Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No.

2, ASCE

[A.65] PETROFF, L.J. (1993). “Ring bending stiffness and the design of flexible pipe”.

Proceedings of the second conference on structural performance of pipes, Sargand,

G.F., Mitchell, G.F., Hurd, J.O (eds), March 14-17, Columbus, Ohio, pp. 125-135

[A.66] POPESCU, R., PHILIPS, R., DEACN, D. & KONUK, I. (1999). “Physical and

numerical analysis of pipe/soil interaction phase 1 – two dimensional plain strain

analyses”. Contract report for the geological survey of Canada. C-CORE publication

99-C23.

[A.67] POPESCU, R., PHILIPS, R., DEACN, D. & KONUK, I. (1999). “Physical and

numerical analysis of pipe/soil interaction”. Proc. 52nd Canadian Geotechnical

conference, Regina, Sask. p. 437-444.

Page 333: cálculo estructural de tuberías enterradas por el método

Capítulo 7

Bibliografía

- 305 -

[A.68] RAJKUMAR, R. ILAMPARUTHI, K. (2008) “Experimental Study on the Behaviour of

Buried Flexible Plastic Pipe” The Electronic Journal of Geotechnical Engineering

[A.69] ROGERS, C.D.F. (1987) “The influence of surrounding soil on flexible pipe

performance”, Transportation Research Record 1129, Washington, p.1-11.

[A.70] RUBIO, N. ROEHL, D. AND ROMANEL, C. (2003). “Design of Buried Pipes

Considering the Reciprocal soil-structure interaction”. New Pipeline Technologies,

Security, and Safety Proceedings of International Conference on Pipeline

Engineering and Construction 2003

[A.71] SALENÇON, J. (1974). “Théorie de la plasticité pour les applications a la

mecanique des sols. Eyrolles, Paris.

[A.72] SEED, R. B. y DUNCAN, J.M. "SSCOMP" A Finite Element Analysis Program for

Evaluation of Soil-Structure Interaction and COMPaction Effects," Geotechnical

Engineering Research Report No. UCB/GT/84-02, University of California, Berkeley,

February 1984, 127 pp.

[A.73] SELVADURAI, AP. Y PANG S. (1988). “Non-linear effects in soil-pipeline interaction

in the ground subsidence zone”. Numerical Methods in Geomechanics 1085-1094

[A.74] SKEMPTON, A.W. y BISHOP, A.W. (1954). Soils. In: Chapter X of Building

Materials. Reiner, M. (Ed.). North Holland Publ. Co., Amsterdam, pp: 417-482.

[A.75] SPANGLER, M.G. (1941). “The structural design of flexible pipe culverts”. Bulletin

153, Iowa Engineering experiment station, Ames, Iowa.

[A.76] SPANGLER, M.G. (1948) “Discussion of Underground Conduits an appraisal of

Modern Research”, Transactions ASCE, n. 2337, p. 316-374.

[A.77] SPANGLER, M.G. (1951) “Soil Engineering – Underground Conduits”, International

TextBooks in civil engineering, p. 409-449.

[A.78] SPANGLER, M.G. (1962). “Culverts and conduits.” Foundation engineering, G. A.

Leonards, ed., Chap. 11, McGraw–Hill, New York, 965–999.

[A.79] TALBOT A. N. (1908). “Tests of Cast Iron and Reinforced. Concrete Culvert Pipe,”

Univ. Illinois Eng. Expt. Sta. Bull., No. 22

[A.80] TUNTUCU, I. y O'ROURKE, T.D. (2006). "Compression Behavior of Nonslender

Cylindrical Steel Members with Small and Large-Scale Geometric Imperfections".

Journal of Structural Engineering, Vol. 132, No. 8, ASCE.

[A.81] WANG, L. et al (2002). “Parametric study of buried pipelines due to large fault

movement”. In: Hu Y X, Takada Shiro eds. Proceedings of Third China-Japan-Us

Trilateral Symposium on lifeline Earthquake Engineering. IG, CSB, Kobe Uni, 165-

172.

[A.82] WATKINS, R. K. (1975). “Buried structures. Foundation engineering handbook”, H.

F. Winterkorn and H.-Y. Fang, eds., Chap. 23, Van Nostrand Reinhold, New York,

649–672.

[A.83] WATKINS, R. K., AND SPANGLER, M. G. (1958). ‘‘Some characteristics of the

modulus of passive resistance of soil: A study in similitude.’’ Proc., Highway

Research Record, Cincinnati, 576–583.

[A.84] YIMSIRI, S. et al. (2004) "Lateral and Upward Soil-pipeline interactions in sand for

deep embedmente conditions".Journal of Geotechnical and Geoenviroment

Engineering, Vol. 130, No. 8, ASCE.

Page 334: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 306 -

[A.85] ZARGHAMEE, M.S. (2004) “Behavior of concrete pressure pipes installed in

concrete cradles”. Pipeline Engineering and Construction: What's on the Horizon?.

Proceedings of Pipelines 2004 International Conference.

[A.86] ZHAN, C. y RAJAN, B. (1997)."Load transfer analyses of buried pipe in different

backfills". Journal of Transportation Engineering, Vol. 123, No. 6, ASCE. Paper

13109

[A.87] ZHOU, Z. and MURRAY, D. (1993). “Behavior of Buried Pipelines Subjected to

Imposed Deformations”, Pipeline Technology, ASME OMAE - Volumen V

[A.88] ZHOU, Z. and MURRAY, D. (1993). “Numerical Structural analysis of Buried

Pipelines”. Structural Engineering Report Nº. 181. Department of Civil Engineering.

University of Alberta. Canada.

[A.89] ZIENKIEWICZ, O.C. et al (1968). “Three dimensional analysis of arch dams and

their foundations”. Symposium on Arch Dams. Inst. Civ. Eng., London, 1968.

[A.90] ZORN, N.F.; VAN DEN BERG, P. (1990) “Numerical analysis of flexible culverts in

layered soils”, In: Pipeline Design and Installation, Proceedings of the International

Conference, Las Vegas, p.383-397.

Page 335: cálculo estructural de tuberías enterradas por el método

Anexo A

Programa de cálculo del informe técnico CEN/TR 1295-3

- 307 -

ANEXO A PROGRAMA DE CÁLCULO DEL INFORME TÉCNICO

CEN/TR 1295-3

Page 336: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 308 -

Page 337: cálculo estructural de tuberías enterradas por el método

Anexo A

Programa de cálculo del informe técnico CEN/TR 1295-3

- 309 -

ANEXO A. PROGRAMA DE CÁLCULO DEL INFORME TÉCNICO CEN/TR 1295-3

A partir de la metodología expuesta en el CAPÍTULO 3 se han desarrollado dos hojas de

cálculo, que permiten realizar el dimensionamiento de cualquier tipo de instalación de

tubería enterrada, mediante la opción 1 o la opción 2 del informe técnico CEN/TR 1295-3.

En el presente Anexo se incluye la comparación de las dos opciones de cálculo, los

diagramas de flujo y la validación de los programas de cálculo empleados.

A.1. COMPARACIÓN DE LAS OPCIONES DE CÁLCULO

Del estudio en detalle realizado de las dos opciones de cálculo recogidas en el informe

técnico CEN/TR 1295-3 (2007), se deduce que los principios de cálculo en ambas opciones

son muy similares, manteniendo las bases de cálculo de las teorías clásicas de MARSTON,

A. (1930) y SPANGLER, M.G. (1941), existiendo diferencias exclusivamente en cuestiones,

que en muchos casos pueden resultar despreciables en un dimensionamiento normal.

En cada una de las dos opciones se deduce, con mucha facilidad, qué normativa vigente ha

sido la base de desarrollo de la misma, ATV-DVWK 127-E (2000) para la opción 1 y

FASCICULE 70 (2003) para la opción 2, dos normativas vigentes en la actualidad, para el

cálculo de tuberías enterradas, en Alemania y Francia, respectivamente, que en sus inicios

estaban desarrolladas para el dimensionamiento de tuberías sin presión, por lo que carecen

de un método específico de diseño para tuberías en presión (ver tabla A.1).

CEN/TR 1295-3 Tema

Opción 1 Opción 2

Propiedades de los materiales No define explícitamente las propiedades de los materiales, hace referencia a los Eurocódigos vigentes.

Define los parámetros que se deben utilizar en el dimensionamiento pero no su valor.

Rigidez del tubo

Aplicación del coeficiente de Poisson

no si

Criterio para:

Tubo rígido χ ≤ 0,05 Sc* ≥ 0

Tubo semiflexible 0,05 ≤ χ < 1 9 ≤ Sc* < 24

Pa

rám

etr

os d

e la

tub

erí

a

Tubo flexible χ ≥ 1 Sc* < 0

Grupos de suelo Define 7 grupos de suelo (1 a 7).

Define 7 grupos de suelo (1 a 7).

Pa

rám

etr

os d

el su

elo

Definición del módulo del suelo Ensayo edométrico Ensayo presiométrico

3

3

.12

.

m

p

pd

tES = ( ) 32

1 mD

EIS

ν−=

Page 338: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 310 -

CEN/TR 1295-3 Tema

Opción 1 Opción 2

número de valores del módulo de suelo

Define 4 valores de E (suelo inalterado, por debajo del tubo, a los lados del tubo y por encima del tubo).

Define 1 valor de E' de cálculo en función del grupo de suelo y de las características de instalación en zanja.

El modulo de pende de la profundidad de cobertura

si no

Valores para el grupo Gs =2 si está moderadamente compactado

DPr = 93% E' = 7,1 MPa K1 = 0,3 y K2 = 0,3

DPr = 85% a 90% E' = 2,0 MPa K1 = 0,15 y K2 = 0,35

Clases de compactación Define 3 niveles de compactación (Bien, moderado y no compactado) y los relaciona con el % de compactación.

Define 3 niveles de compactación (Bien, moderado y no compactado).

Tipos de instalación Define 4 tipos de instalación con distintos subgrupos (ET1 a ET4)

Define 5 tipos de instalación (T1A a T4)

Angulo de apoyo para tubos rígidos

Define valores de 2αv desde 30 a 120º

Define valores de 2α desde 60 a 120º

Angulo de la reacción horizontal en tubos flexibles

Define valores de αh desde 60 a 120º

Es función del número de "ondas" de pandeo (n0)

Angulo de apoyo para tubos flexibles

Define valores de 2αv desde 30 a 120º

Define valores de 2α desde 60 a 120º

Las reducciones aplican a: Es E*s, K

*2 y 2α

*

Por nivel freático fR,GW CW

Por anchura de zanja fR,TW -

Por efecto del tiempo fR,T -

Insta

lació

n

Por retirada de entibación - C's

Tubo rígido:

- Encima del tubo 1 ≤ λPT ≤ 3 1 ≤ C ≤ 1,7

- Al lado del tubo (suelo) λS ≤ 1 C = 1

Tubo flexible:

- Encima del tubo 0,8 ≤ λPT ≤ 1 C = 1

- Al lado del tubo (suelo) λS ≥ 1 C = 1

Fa

cto

r d

e

co

nce

ntr

ació

n,

ca

rga d

e tie

rras

Teoría aplicada Leonhart Marston

Peso específico del suelo

(gs/gsw) γs = 18 o 20 kN/m

3

γsw = 11 o 12 kN/m

3

No define valores del peso específico del suelo

Efecto reducción por Marston Si lo tiene en cuenta a través del ángulo de rozamiento interno

No lo tiene en cuenta, considera C = 1

Cargas de tráfico, norma EN 1991-2 EN 1991-2

Coef. de impacto, cargas de tráfico

Define un coef. de impacto variable en función del tren de cargas (1,2 a 1,5)

No define de forma explícita coef. de impacto

Ca

rga

s

Tubo en presión, diseño no lineal (efecto de re-redondeo)

si no

Efecto del tiempo en tubos de material plástico

si si

Estu

dio

de

d

eflexio

nes

Amplificación de deflexiones Solo cuando δv > 5% Siempre que tengan comportamiento flexible

Page 339: cálculo estructural de tuberías enterradas por el método

Anexo A

Programa de cálculo del informe técnico CEN/TR 1295-3

- 311 -

CEN/TR 1295-3 Tema

Opción 1 Opción 2

Deflexión admisible 2% (trenes), máximo 9% Tubos con revestimiento interior de mortero de cemento 4%

Valoración de las fuerzas en las diferentes secciones

Define los esfuerzos mediante dos coeficientes (m y n)

Define los esfuerzos mediante fórmulas (M y N)

Función de: De los ángulos αh y αv Del ángulo 2α

Amplificación de tensiones Solo cuando δv > 5% Siempre en tubos flexibles

Estu

dio

de

te

nsio

nes

Tratamiento de efectos longitudinales

Considera que hay una interacción con la tensión circunferencial

Solo los considera en forma de comentario

Restricciones Solo cuando δv > 5% Para todos los tubos flexibles

Amplificación del momento em A0

De los desplazamientos ev A0

An

ális

is n

o

linea

l

Valoración del coef. de amplificación.

por aproximaciones A0 = (1-p)/pcr-1

Presión crítica de suelo

Presión crítica de agua no

Se aplica en: En el suelo y en el agua de forma separada.

donde la presión de agua se añade en pv y ph

Posibles imperfecciones Locales y globales (ovalización) Ovalización

Reducciones κv -

Interacción Fórmula de Dunkerley -

Estu

dio

de

esta

bili

da

d

Coeficiente de seguridad necesario

2,0 o 1,6 en función de la gravedad del fallo (caso A o B)

2,5 para cualquier tipo de material

Comprobaciones de seguridad Mediante la comprobación de la tensión/deformación, capacidad de carga, deflexión y estabilidad

Mediante la comprobación de los Estados Límites Ultimo y de Servicio.

Co

nce

pto

de

se

gu

rid

ad

Coeficientes de seguridad Definidos a partir de 2 niveles de seguridad (A y B)

Definidos en 2 grupos (conducciones visitables y no visitables)

Tabla A.1. Comparación de las metodologías de cálculo (Op1 y Op2)

En líneas generales, las dos opciones se estructuran en siete capítulos principales que son:

• Definición de la tubería a instalar y sus características mecánicas

• Definición del tipo de instalación y sus parámetros básicos

• Cálculo de los parámetros del suelo (relleno y terreno inalterado) por efecto del

ancho de zanja, nivel freático

• Cálculo de los parámetros que definen la distribución de cargas

5.0

,...16

−= PSPvcritv VSq κ

( )( )( )22

0

2

01.1

.18s

scr

n

ESnp

υ−−+−=

08. Scritp De α=

2

hv ppp

+=

( )[ ]PSPvcritv VSq .3/13...8,

+= κ

Page 340: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 312 -

• Cálculo de las cargas aplicadas al tubo por efecto de todas las acciones

consideradas

• Cálculo de la ovalización, esfuerzos (Momentos y axiles), tensiones y deformaciones

en las tres secciones de estudio (C, S y B)

• Cálculo de los coeficientes de seguridad obtenidos y comparación con los

coeficientes de seguridad de referencia.

A.1.1 CARACTERÍSTICAS MECÁNICAS DE LA TUBERÍA

A.1.1.1. Propiedades elásticas

Las dos opciones consideran que dentro del campo de aplicación del informe técnico

(dimensionamiento de tuberías enterradas) el comportamiento del material es elástico para

cualquier material constitutivo del tubo y que sus características mecánicas se deben

obtener de las especificaciones técnicas definidas en las normas de producto (Normas

nacionales o Europeas).

A.1.1.2. Rigidez del tubo

La definición de la rigidez del tubo en las dos opciones es exactamente igual. Partiendo de

la expresión de S (ver fórmulas 3.171 y 3.172) definida en la opción 2 se puede deducir la

expresión de la opción 1 (ver fórmula 3.11):

( ) ( ) 32

3

32.1.12

.

1

.

m

P

m d

tE

D

IES

νν −=

−= considerando (1-ν2) ≅ 1 se obtiene P

m

P Sd

tE=

3

3

.12

. (A.1)

A.1.2 PARÁMETROS BÁSICOS DE INSTALACIÓN

A.1.2.1. Tipos de instalación

Las dos opciones establecen cuatro grupos de instalaciones principales con una serie de

subgrupos secundarios, que tienen una correlación casi perfecta entre sí; la instalación sin

cama (a, b o c) ET1 ≈ T3; la instalación con relleno homogéneo ET2 ≈ T1A y T1B, la

instalación con cama de arena ET3 ≈ T2 y la instalación con cuna de hormigón ET4 ≈ T4

Page 341: cálculo estructural de tuberías enterradas por el método

Anexo A

Programa de cálculo del informe técnico CEN/TR 1295-3

- 313 -

ET1 T3

a b c

ET2 T1A

ET3 T1B T2

a b

ET4 T4

a b

OPCIÓN 1 OPCIÓN 2

Figura A.1. Comparación de los tipos de instalación (Op1 y Op2)

A.1.2.2. Niveles de compactación

El informe técnico define tres niveles de compactación para las dos opciones, nivel W

(material bien compactado), nivel M (material moderadamente compactado) y nivel N (material no compactado.

A.1.2.3. Parámetros de cálculo

A pesar de que ambas opciones establecen cuatro tipos de instalación y tres niveles de

compactación, los parámetros asociados a esos tipos de instalación son muy diferentes,

Page 342: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 314 -

como se puede ver en la tabla A.2; los ángulos de apoyo vertical difieren para cada tipo de

instalación, siendo siempre más restrictivos en la opción 2; del mismo modo los valores de

los módulos del suelo son siempre menores, para el mismo tipo de terreno en la opción 2, si

bien esto se debe a que la opción 1 considera el módulo edométrico como módulo de

referencia y la opción 2 considera el módulo presiométrico, consideraciones que se

estudiarán con detalle más adelante.

aaaav (flx/rig) Ejj,1 & Es* K1,K2 Tipo Instalación

Gs NC Op1 Op 2 Op1 Op 2 Op1 Op 2

ET1-T3 1-5 N 60/30 30 Ver valores

ET2

Ver valores

T1A

Ver valores

ET2

Ver valores

T1A

M 90/60 30 “ “ “ “

W 120/60 30 “ “ “ “

ET2 –T1A 2 N 120/90 60 5,10 0,70 0,20 0,15

M 180/120 90 7,10 2,00 0,30 0,35

W 180/120 120 11,30 5,00 0,40 0,50

ET3-T2 1-5 120 60 Ver valores

ET2

Ver valores

T1A

Ver valores

ET2

Ver valores

T1A

ET4-T4 1-5 -/90a180 - 20 20,00

Tabla A.2. Propiedades del suelo y parámetros de instalación (Op1 y Op2)

A.1.3 PARÁMETROS DEL SUELO

La opción 1 define cuatro tipos de módulo del suelo (relleno y terreno inalterado), en función

de su situación, dos módulos del terreno por debajo y en los laterales de la zanja, y dos

módulos del relleno en los laterales y por encima del tubo; mientras que la opción 2 define

dos módulos del suelo (relleno y terreno inalterado) (ver figura A.2).

Los parámetros del suelo varían en función del tipo de suelo, de su grado de compactación y

de la presencia del nivel freático. Las opciones 1 y 2 definen los parámetros del suelo de

forma similar, exceptuando el módulo del suelo que es diferente (Opción 1: Modulo

edométrico; Opción 2: Modulo presiométrico).

Ett

Enb

Ens Ens

EtsEts

E3

E2

E1

Opción 1

Opción 2

Figura A.2. Comparación de los módulos del suelo (Op1 y Op2)

Ett módulo del relleno superior

Ets módulo del relleno de protección

Ens módulo del terreno natural en los laterales de la zanja

Enb módulo del terreno natural por debajo de la zanja

E2 módulo del relleno de protección

E3 módulo del terreno natural

Page 343: cálculo estructural de tuberías enterradas por el método

Anexo A

Programa de cálculo del informe técnico CEN/TR 1295-3

- 315 -

El módulo edométrico se puede medir en laboratorio o mediante cualquier medición a pie de

obra cuando se conozca la relación módulo-edómetro (por ejemplo, con el ensayo de placa

de carga); sin embargo el módulo presiométrico solamente se puede medir a pie de obra.

Por tanto, la principal diferencia de los módulos edométrico/presiométrico es que:

La opción 1 establece que el módulo del suelo depende de la presión vertical y, en

consecuencia, también de la profundidad del punto considerado de la zanja. Al punto más

profundo considerado en la zanja, le corresponde el módulo edométrico más alto. Se debe

hacer notar que el módulo edométrico no es equivalente al módulo de elasticidad lineal, ya

que este último se determina sobre una probeta en compresión simple, libre lateralmente

para dilatarse, que no es el caso del edómetro. En un sólido lineal elástico, se puede

calcular la relación que hay entre el módulo edométrico y el de deformación lineal, en un

determinado intervalo, si se conoce el coeficiente de Poisson mediante la siguiente

expresión:

−−=

ν

ν

1

21

2

mEE (A.2)

Los módulos edométricos del suelo se calculan para la profundidad correspondiente,

partiendo del módulo básico establecido en función del grupo de suelo y del porcentaje de

compactación. Con respecto a los valores del terreno, el informe técnico recomienda, en

caso de no disponer de ensayos in situ, tomar los valores recomendados para los laterales

de la zanja y multiplicar por diez dicho valor para estimar el módulo de terreno inalterado.

Una vez definidos los valores iniciales determinados para la profundidad correspondiente, se

aplican unos coeficientes de reducción por presencia de agua (fR,GW), por la anchura de

zanja (fR,TW) y por efecto del tiempo (fR,T), para determinar finalmente el módulo de reacción

de cálculo.

La opción 2 establece que el módulo presiométrico es independiente de la profundidad, ya

que este módulo se mide “in situ”· a la profundidad necesaria. Los ensayos presiométricos

fueron introducidos por Menard en los años 60 y fueron aplicados a suelos de relativamente

alta deformabilidad (E < 200 MPa) y que no requerían gran precisión en las medidas de

deformación, que se realizaban volumétricamente, ni en las de presión; estando ésta última

limitada a unos 2,5 MPa. Con posterioridad, se han desarrollado equipos presiométricos que

permiten alcanzar presiones de 20 MPa, con medida directa de la deformación del terreno

durante el ensayo. Estos equipos han permitido extender el rango de aplicación de estos

ensayos hasta terrenos con módulos de deformación del orden de 6.000 MPa.

En esta opción se definen dos módulos del suelo (relleno de protección y del terreno natural

(ver figura A.2)). Dichos valores se toman de los valores definidos en el citado informe, en

Page 344: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 316 -

función del grupo de suelo y nivel de compactación especificado en la instalación; para el

módulo de reacción del terreno natural se toma el valor de compactación máxima.

Del mismo modo que la opción 1, la opción 2 establece coeficientes de reducción del

módulo de reacción del suelo por la presencia de agua (Cw), por la retirada de blindajes (Cs)

y por la anchura de zanja, para determinar finalmente módulo de reacción del suelo de

cálculo.

A.1.4 PARÁMETROS DE LA DISTRIBUCIÓN DE CARGAS

A.1.4.1. Criterio de rigidez del sistema

En la opción 1, el criterio de rigidez se define como la relación entre la rigidez del tubo y la

rigidez producida en la zona de relleno, por la reacción horizontal del apoyo y la propia

rigidez del mismo en la dirección vertical. Mientras que, en la opción 2, el comportamiento

del sistema tubería/terreno se evalúa mediante la relación entre el módulo del relleno y la

rigidez del tubo.

Aunque tengan expresiones diferentes se puede demostrar que ambos métodos establecen

los mismos límites de comportamiento rígido/flexible:

Dadas las expresiones del criterio de rigidez para la opción 1 y opción 2 (ver ec. 3.9 y 3.176)

( )P

Bvvv

S

ScK

.8..1 2−=χ y

( )2

*

189

S

S

cS

ES

ν−−= (A.3)

Y como (SBv) es a

ES ts

Bv = sustituyendo en (3.9) se obtiene: ( )P

tsvv

S

E

a

cK

.8..1 2−=χ

Y despejando de esta expresión el módulo del relleno, se obtiene:

( )21.

..8

Kc

aSE

vv

P

ts−

y como se ha demostrado anteriormente SP=S (A.4)

sustituyendo esta ecuación en la expresión del criterio de rigidez de la opción 2, se obtiene:

( ) ( )2

2

*

1..1

.9

Svv

ccK

aS

ν

χ

−−−= (A.5)

Y como en la opción 2 se considera que el comportamiento rígido se alcanza para valores

de Sc* ≥ 0, se tiene que:

Page 345: cálculo estructural de tuberías enterradas por el método

Anexo A

Programa de cálculo del informe técnico CEN/TR 1295-3

- 317 -

( ) ( )a

cK Svv

2

2 1..1.9 νχ

−−≤ (A.6)

Para unos valores medios de los parámetros de cálculo (ν = 0,30 , K2 = 0,40, cvv =-0,096 y a

= 0,80) la expresión sería χ ≤ 0,058, equivalente al criterio que se establece en la opción 1,

donde se considera el comportamiento rígido para valores de χ ≤ 0,05.

A.1.4.2. Distribución de cargas

Una de las diferencias más importantes, entre las dos opciones de cálculo es la distribución

de acciones sobre la tubería (ver figura A.3). La opción 1 establece unos coeficientes de

concentración de cargas, adicionales al coeficiente de Marston, para tener en cuenta la

distribución real de las presiones que dependen básicamente del comportamiento del tubo y

del suelo que le rodea. Por otro lado, la opción 2 sólo considera el coeficiente de Marston,

como coeficiente de concentración de cargas en función del comportamiento rígido o flexible

del sistema tubería/suelo.

h

4De

Superficie de terreno

λPT(pS,v+pA,v)λS(pS,v+pA,v)

pS,v+pA,v

Presión vertical de

relleno inicial

h

4De

Superficie de terreno

λPT(pS,v+pA,v)λS(pS,v+pA,v)

pS,v+pA,v

Presión vertical de

relleno inicial

OPCIÓN 1

h

Superficie de terreno

Ci.γs.h + p

γs.h + ph

Superficie de terreno

γs.h + p

OPCIÓN 2

Figura A.3. Comparación de la distribución vertical de presiones (Op1 y Op2)

Page 346: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 318 -

A.1.4.3. Distribución de presiones

Otra diferencia importante entre las dos opciones es la correspondiente a la distribución de

las presiones a lo largo de la sección de la tubería (ver figura A.4). La opción 1, establece

una distribución uniforme de las cargas vertical y horizontal derivadas de las cargas de

tierras y tráfico, al igual que define la opción 2, si bien establece presiones adicionales para

la reacción horizontal del relleno (qh*) (producido por el empuje pasivo) con una distribución

parabólica y la presión lateral de las tierras (qhd) (producido por el empuje activo (solo válido

en instalaciones en terraplén)) con una distribución triangular.

Con respecto a la distribución de la reacción en la cama de apoyo, existe otra diferencia

importante: si bien en apoyo de cama granular ambas opciones establecen una reacción

vertical distribuida uniformemente sobre la proyección horizontal del ángulo de apoyo, para

el apoyo sobre cunas de hormigón la opción 1 establece que la reacción del apoyo presenta

un distribución radial sobre la cuerda del ángulo de apoyo, mientras que la opción 2

mantiene el mismo criterio de distribución uniforme de presiones.

Reacción vertical en el

apoyo

qv

qh

q*h

qh,d

αh

αv

Reacción vertical en el apoyo

en cuna de hormigón

qv

qh qh,d

αv

OPCIÓN 1

Reacción vertical en el

apoyo

Pv

Ph

Reacción vertical en el apoyo

en cuna de hormigón

Pv

Ph

OPCIÓN 2

Figura A.4. Comparación de la distribución de esfuerzos (Op1 y Op2)

Page 347: cálculo estructural de tuberías enterradas por el método

Anexo A

Programa de cálculo del informe técnico CEN/TR 1295-3

- 319 -

A.1.5 CARGAS APLICADAS A LA TUBERÍA

A.1.5.1. Principios generales

Ambas opciones establecen los mismos tipos de cargas principales (tierras, tráfico,

sobrecargas, agua exterior), si bien la opción 2 desprecia el efecto del peso propio y del

peso del fluido interior por considerar sus efectos despreciables frente a las otras acciones.

A.1.5.2. Carga del relleno

Ambas opciones calculan la carga de relleno considerando el efecto del peso sumergido del

relleno, (cuando existe el nivel freático) y aplicando el coeficiente de carga de acuerdo con la

teoría de Marston, con algunos matices:

La opción 1 establece una formulación única para el coeficiente de reducción de carga

independientemente del comportamiento de la tubería, considerando el ángulo de inclinación

del talud de la zanja, como parámetro adicional a los empleados en la teoría de Marston

tradicional.

La opción 2 establece dos formulaciones para el cálculo del coeficiente de carga, una para

comportamiento flexible y otra para comportamiento rígido, siguiendo la formulación

tradicional de la teoría de Marston. La formulación para comportamiento flexible es

semejante a la empleada en la opción 1, para un talud de zanja vertical con un rozamiento µ

= 1 (ver justificación teórica).

Partiendo de la expresión definida en la opción 1 (ver ec. 3.21)

t

Kb

h

Kb

h

et

Φ

+−=

Φ−

tan.2

1

90901

1

tan2 1

ββκ β (A.7)

considerando tanφ = 1 y β =90º, y operando se obtiene:

−=

−=

−−

1

1

2

11

2

12

.2

1 Kb

hKb

h

ehK

b

Kb

h

eβκ (A.8)

Por otra parte, partiendo de la expresión definida en la opción 2 (ver ecuación 3.178a) y

considerando que De ~ b:

Page 348: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 320 -

−=

−=

−− 11 2

1

2

1

2

1 12

1.2

Kb

hK

b

h

e

ehK

be

DKh

bC (A.9)

De lo que se puede deducir que C1 ~ κ90

Si bien en ambas opciones hay que calcular el coeficiente de Marston, el coeficiente de

cálculo finalmente utilizado, varía para ciertas condiciones: En la opción 1 se utiliza el

calculado para el análisis a corto plazo y un coeficiente igual a uno (1) para el análisis a

largo plazo; por el contrario, la opción 2, siempre que el valor obtenido por la teoría de

Marston sea menor que uno, tomará el valor unitario para su uso tanto a corto como a largo

plazo; cuando el valor es mayor que uno, se aplica directamente a las cargas de relleno

como coeficiente de concentración de cargas.

A.1.5.3. Cargas de explotación

Las cargas de explotación consideradas en ambas opciones son las habituales en el diseño

de tuberías enterradas (cargas de tráfico, sobrecargas superficiales y cargas de

construcción).

Las cargas de tráfico rodado, que dentro de las cargas de tráfico son las que se han

estudiado en profundidad, siguen en las dos opciones la norma europea UNE-EN 1991-2

(2004), si bien en la opción 1, se incluye un parámetro adicional (DT,mod) en función del tipo

de pavimento existente y en la opción 2 se aplica el coeficiente de seguridad (γA) para

obtener el Estado Límite de Servicio equivalente al definido en el FASCICULE 70 (2003).

Con respecto a las otras cargas de explotación, superficiales y construcción, en ambos

casos se calculan siguiendo las teorías de BOUSSINESQ, J.V. (1885), de distribución de

carga en un semiespacio infinito.

A.1.6 OVALIZACIÓN, ESFUERZOS, TENSIONES Y DEFORMACIONES

A.1.6.1. Ovalización

Los procedimientos de cálculo de ovalizaciones para cada una de las dos opciones de

cálculo son muy diferentes: en la opción 1 las ovalizaciones se calculan a partir de una

formulación relativamente sencilla que es directamente proporcional a la suma ponderada

de las cargas a las que se encuentra sometida la tubería mediante unos coeficientes

adimensionales establecidos en función de las condiciones de instalación e inversamente

proporcional a la rigidez del tubo, de tal forma que la influencia de la rigidez del sistema

tubería/terreno no se define explícitamente en la formula de la deflexión, sino que se

considera aplicando el coeficiente de concentración de cargas a las cargas existentes;

mientras que, en la opción 2, el primer término es una aplicación directa de la fórmula de

Page 349: cálculo estructural de tuberías enterradas por el método

Anexo A

Programa de cálculo del informe técnico CEN/TR 1295-3

- 321 -

SPANGLER, M.G. (1941) y el segundo término es producto del efecto de deflexión inicial en

la ovalización.

Partiendo de la expresión de ovalización de la opción 2 para tuberías semiflexibles (ver

ecuación 3.190a)

( ) 319.8

12

2

2

pES

Kk

pOV

s

S

v

−−

+

=

ν

α

(A.10)

como la fórmula de SPANGLER, M.G. (1941), no tiene en cuenta la presión inicial del

terreno (antes de cualquier deformación) se considera que ph=0 con lo que K2=0 y

considerando (ν = 0,30) se obtiene:

3

3

122,0 mST

mv

rEIE

rpkOV

+= α equivalente a la fórmula de Spangler

+=∆

3'

3

061,0 rEEI

KWrDx l

A.1.6.2. Esfuerzos, tensiones y deformaciones

El principio de cálculo de esfuerzos es el mismo en ambas opciones, si bien persisten las

mismas diferencias detectadas en la determinación de acciones. La opción 1 es más

exhaustiva con respecto a la consideración de todas las acciones y, por tanto, solicitaciones

asociadas que se pueden producir sobre una tubería enterrada (relleno, peso propio, peso

del fluido, ovalización inicial y presión interior), así como un procedimiento más reglado,

basado en coeficientes adimensionales en función del ángulo de apoyo vertical y horizontal;

mientras que la opción 2 sólo considera los esfuerzos derivados de las cargas externas y la

ovalización inicial, y su formulación es función de los parámetros físicos del modelo.

El cálculo de tensiones y deformaciones en ambas opciones se determinan siguiendo las

teorías clásicas de Resistencia de Materiales para secciones en flexión compuesta, si bien

la opción 1 permite el cálculo de las tensiones y deformaciones mediante dos teorías que se

identifican como de 1º y de 2º orden.

En la teoría de 1º orden se considera que se mantiene la forma circular del tubo. La

distribución de las cargas, y los coeficientes de los momentos y axiles son válidos para este

supuesto y cambian cuando el tubo cambia su forma por efecto de la deformación. La

discrepancia entre los resultados obtenidos de los tubos circulares y los tubos deformados

dependen del grado de deflexión, de la distribución de carga y del comportamiento del

sistema tubería/terreno. Estas influencias son las que se consideran en la teoría de 2º orden.

Page 350: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 322 -

A.1.7 COEFICIENTES DE SEGURIDAD

A.1.7.1. Procedimiento de diseño

En las dos opciones se comprueba que, en el caso más desfavorable (máxima tensión,

deformación y/o deflexión) de las siguientes situaciones de carga, se cumpla que el valor

obtenido sea menor que el valor característico (último) a corto y largo plazo:

• Carga externa (tubería que funciona por gravedad, instalada en zanja o terraplén, y

sometida a todas las cargas excepto la de presión interna)

• Presión interna (presión interna total que actúa sobre la tubería sin ninguna cama

de apoyo), que se calcula como una forma de tubería no deformada

• Carga externa y presión interna simultáneas, que se calcula teniendo en cuenta el

efecto de restablecimiento del redondeo para las tuberías flexibles y semiflexibles

Adicionalmente la opción 2 establece el estudio del Estado Límite de Servicio, aspecto que

la opción1 no considera.

A.1.7.2. Análisis de estabilidad (Pandeo)

La opción 1 establece dos expresiones para el cálculo de la presión crítica de pandeo, en

función de la rigidez del sistema, mientras que la opción 2 establece únicamente una, cuya

principal característica es que es función del número de ondas de pandeo (n0).

Aunque las expresiones utilizadas en ambas opciones no parecen ser equivalentes, se

puede demostrar de forma sencilla, que la expresión de la opción 1 para tuberías de

comportamiento flexible (VPS < 0,1) es equivalente a la expresión de la opción 2 para un

número de ondas de pandeo suficientemente grande (n0 >4)

Partiendo de la expresión de carga crítica para tuberías de comportamiento flexible de la

opción 1 (ver fórmula 3.127a) y desarrollando la expresión mediante la fórmula (3.18), se

obtiene con aproximaciones sencillas la expresión de la opción 2 (ver fórmula 3.205)

816

816

81616

5.05.0

5.0

,

Bhp

v

p

Bh

Pv

Bh

p

PvPSPvcritv

SS

S

SS

S

SSVSq κκκκ =

=

==

− (A.11)

Bh

m

P

vBhpv

Bhp

v Sd

IESS

SS

3

.32.32.

816 κκκ ===

(A.12)

Page 351: cálculo estructural de tuberías enterradas por el método

Anexo A

Programa de cálculo del informe técnico CEN/TR 1295-3

- 323 -

Y sustituyendo (SBv) de acuerdo con su expresión (ver ec. 3.10) en la ecuación anterior se

obtiene:

( ) 3231

'3232

msm

sP

vaD

IEE

ad

IEE

νκ

−≈= equivalente a la expresión 3.205

A.1.7.3. Coeficientes de seguridad

En la opción 1 la determinación de los coeficientes de seguridad se basa en la teoría de la

probabilidad, en la que se tienen en consideración la dispersión de las variables relativas a

la capacidad resistente de la tubería y las cargas aplicadas, mientras que en la opción 2 el

principio de seguridad general consiste en garantizar que el estado límite último y el estado

límite de servicio no se excedan, a pesar de las variaciones aleatorias que puedan afectar a

las características de los materiales o a los valores de las cargas.

Page 352: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 324 -

A.2. PROGRAMA DE CÁLCULO

A.2.1 DIAGRAMA DE FLUJO DE LA OPCIÓN 1

Inicio

Características de la tubería

- Geométricas

- Mecanicas

¿Se conode la rigidez

de la tubería?

Calcular S, apartir de E, d, t

Parámetros de instalación

Elección del tipo de cama y el nivel de

compactación

Características del suelo

(influencia de la instalación, anchura de zanja,

nivel freático, tiempo, etc)

Page 353: cálculo estructural de tuberías enterradas por el método

Anexo A

Programa de cálculo del informe técnico CEN/TR 1295-3

- 325 -

Tubería Rígida Tubería Semi-flexible Tubería Flexible

Angulo de soporte vertical

Angulo de reacción horizontal

Cargas actuantes en la tubería

(Condiciones a corto - largo plazo)

Corto plazo y cargas soportadas

Direcciones Horizontal y vertical

Factor de concentración máxima de

carga

Factores de concentración de cargas

Rigidez horizontal

Ratio de rigidez

Rigidez del sistema

Presión interna

Deflexiones de la tubería horizontales y

verticales

(Ovalización inicial, peso propio, agua, cargas

externas)

Momentos

Fuerzas axiales

Tensiones y desplazamientos

(teoría de 1º y 2º orden)

Tuberías en gravedad y presión

Page 354: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 326 -

Analisis de estabilidad

(Pandeo,..)

Calculo de los coeficientes de seguridad

Coeficientes de seguridad

mínimos requeridos, F

Fin

Figura A.5. Diagrama de flujo (Op1)

Page 355: cálculo estructural de tuberías enterradas por el método

Anexo A

Programa de cálculo del informe técnico CEN/TR 1295-3

- 327 -

A.2.2 DIAGRAMA DE FLUJO DE LA OPCIÓN 2

Inicio

¿Se conode la rigidez

de la tubería (Si, St)?

Tipo de tubería, Dm, t, do, Et/Ei

Ei, n

Calculo de I

Calculo de Si y St

Selección del grupo de suelo, g, ns, K1

Efecto de la compactacion en Es, K2, a

Efecto del nivel de agua

H ?

¿Se instala en

zanja?

B

Efecto de las condiciones de eliminación del

relleno

Page 356: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 328 -

Calculo del criterio de rigidez Sc y Sc*

Calculo de C2

¿Se instala

en zanja?

B

Calculo de C1

C1≤1

C1≤C2

C = C2C = C1C = 1

Calculo de Ps

Calculo de Pt

Calculo de Pp

Calculo de Pc

¿Sc*>0?

Page 357: cálculo estructural de tuberías enterradas por el método

Anexo A

Programa de cálculo del informe técnico CEN/TR 1295-3

- 329 -

Calculo de Pv

Calculo de Ph

Calculo de Pwe

Calculo de p

Calculo de:

- Momentos

- Fuerzas axiales

- Tensiones

- Deformaciones

- Deflexiones

Calculo de Pvu

Calculo de Pu

¿Tipo de

verificacion

elegida?

Verificación de capacidad de

soporteVerificación de tensión

Verificación de momento resistente

¿Sc*>0?

Verificación a pandeo

Verificación por rotura Verificación por deflexión

Page 358: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 330 -

Fin

Verificación por fatiga

Figura A.6. Diagrama de flujo (Op2)

A.2.3 VALIDACIÓN DE LOS PROGRAMAS DE CÁLCULO

El proceso seguido para validar los programas de cálculo realizados ha sido, además de una

revisión exhaustiva de la formulación utilizada, la realización de los ejemplos recogidos en

los anexos AG y BG del informe técnico CEN/TR 1295-3 (2007), mediante el nuevo

programa de cálculo. Para facilitar el contraste de resultados se han presentado los mismos

(ver tablas A.4 y A.6) comparados con los definidos en los ejemplos del informe técnico y se

ha calculado su error. Aquellos errores que están por encima de un ± 5% han sido revisados

y justificada su aplicación, si no han podido ser corregidos por ser derivados de errores en

los propios ejemplos del citado informe técnico.

A.2.3.1. Errores detectados en la Opción 1

A continuación se describen los errores detectados en la comparación de resultados del

modelo de la opción 1 (ver los resultados sombreados en la tabla A.4).

Error (1). Se detecta una diferencia del -9% de la carga horizontal debido a cargas de tráfico

en la tubería flexible y se va a demostrar que es un error numérico del ejemplo. De las tres

ecuaciones posibles para la definición de la carga horizontal de tráfico el ejemplo se

encuentra en la (3.47a), al cumplirse la primera condición

( ) ( ) 214,653,04,034,0 ≥=+=+ eDh :

De acuerdo con la ec. (3.47a) para (h + 0,4)/de ≥ 2 vTshTh pKqq ,2, ..2

λ==

sustituyendo los parámetros definidos en el ejemplo se obtiene:

0073,000672,00210,0.0667,1.30,0.. ,22≠=== vTsh pKq λ MPa

Lo que supone una diferencia del -8,7% con sus propios datos.

Error (2). Se detecta una diferencia del -6,2% y -5,4% de la resistencia horizontal (Rs) y se

va a demostrar que es un error numérico del ejemplo. La expresión de la resistencia

Page 359: cálculo estructural de tuberías enterradas por el método

Anexo A

Programa de cálculo del informe técnico CEN/TR 1295-3

- 331 -

horizontal (RS) cuya ecuación es la (3.62) es función de la rigidez horizontal del relleno, el

radio medio y el ángulo de apoyo horizontal. Sustituyendo los valores calculados en el

ejemplo del informe técnico en dicha ecuación se obtiene:

( )2. hm

Bh

Ssenr

SR

α=

( )01339,001269,0

2140.260

1026,3, ≠=

senR cs MPa

( )

0142,001346,02140.260

2900,3, ≠=

senR ls MPa

Lo que supone una diferencia del -5,4% y -5,5% con sus propios datos.

Error (3). Se detecta una diferencia del 6,5% de la deflexión vertical debida a las cargas

externas (δv1) a corto plazo y se va a demostrar que es un error numérico del ejemplo. La

expresión de la deflexión vertical debida a las cargas externas (δv1) (ver ecuación (3.81)) es

función de las cargas trasmitidas por el terreno, corregidas por una serie de coeficientes

adimensionales, y de la rigidez de la tubería. Sustituyendo los valores calculados en el

ejemplo del informe técnico en dicha ecuación se obtiene:

( )hdvdhvhhvhvvv

P

v qcqcqcqcS

.....8

1 *

1

*

111 +++=δ

( ) 0013,00011,00264,0.0684,00231,0.08358,00454,0.0833,00050,0.8

1,1 −≠−=++−=cvδ

Lo que supone un error a corto plazo de -14,3 % con sus propios datos.

Error (4). Se detecta una diferencia del 6,2% de la deflexión horizontal y se va a demostrar

que la expresión aplicada es correcta y que dicha diferencia se deriva de una acumulación

de pequeñas diferencias en los resultados intermedios, que a la postre definen un mayor

valor. La expresión de la deflexión horizontal (δh) (ver ecuación (3.83)) es función del

desplazamiento horizontal y de la ovalización inicial. Sustituyendo los valores calculados en

el ejemplo del informe técnico en dicha ecuación se obtiene:

ioh

m

h

hd

,.2 δδ +∆

= ; 0091,00091,00041,0520

4370,3.2 ==−=hδ

Por otro lado los errores (5) y (6), se derivan del error (4), con lo que, revisado éste, quedan

también chequeados.

Errores (7, 8 y 9). Se detectan unas variaciones muy importantes (-254,6% hasta 10,2%)

del sumatorio de momentos en la clave y en el punto medio del tubo, y se va a demostrar

que la expresión aplicada es correcta y que dichas diferencias se derivan de una

Page 360: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 332 -

acumulación de pequeñas diferencias en los resultados intermedios, que a la postre definen

un mayor error.

La expresión del sumatorio de momentos (ver ecuación (3.99a)) es función de los momentos

producidos por las distintas cargas. Sustituyendo los valores calculados en el ejemplo del

informe técnico en dicha ecuación se obtiene:

iowowqhdqhqhqvs MMMMMMMM ++++++=∑ *111,1

Para el error (7):

0388,04595,00154,000041,00303,04502,09295,01 =−−+++−=∑ cM del programa

0367,04622,00154,000041,00302,04495,09295,01 =−−+++−=∑ cM del ejemplo

Error 0.0% 0,2% 0,4% -0,5% 0,1% -0,6% 5,3%

Para el error (8):

0012,03710,00361,000046,00345,03842,07510,01 =+++−−+−=∑ sM del programa

0039,03837,00361,000046,00344,03904,07673,01 =+++−−+−=∑ sM del ejemplo

Error -2,2% -1,6% 0,4% 1,1% -0,1% -3,4% -254,6%

Y de igual forma ocurre para el error (9). Otra comprobación que se ha realizado ha sido

revisar los resultados obtenidos en la expresión del sumatorio de momentos con los valores

establecidos en el ejemplo del informe técnico, hasta el cálculo individualizado de cada uno

de ellos, resultando esta comprobación correcta.

Adicionalmente es necesario resaltar que, utilizando las mismas expresiones que las aquí

expuestas, el error cometido en la estimación del sumatorio de momentos en la tubería de

hormigón no supera el 3% en ninguna de la tres secciones de cálculo.

Por todas estas circunstancias, y considerando como premisa fundamental que los

coeficientes establecidos en las tablas que se definen en el informe técnico CEN/TR 1295-3

son los que han utilizado para el desarrollo del ejemplo del citado informe (aspecto que no

se puede contrastar), la formulación establecida en el programa para las tuberías flexibles

es válida al ser igual a la establecida para las tuberías rígidas.

Errores (10 al 21). Se detectan pequeños errores (11,6% al 5,7%) en el cálculo de las

tensiones en la coronación (C) y en la base del tubo (B), y diferencias importantes (-45,6%

hasta 35,7%) en el cálculo de las tensiones en el punto medio del tubo (S), y se va a

demostrar que las expresiones aplicadas son correctas y los errores detectados se derivan,

como en el caso anterior, de una acumulación de pequeñas diferencias en los resultados

intermedios.

Page 361: cálculo estructural de tuberías enterradas por el método

Anexo A

Programa de cálculo del informe técnico CEN/TR 1295-3

- 333 -

Las expresiones de las tensiones en cualquiera de las secciones de estudio son función de

los momentos y esfuerzos axiles determinados anteriormente. Al presentar éstas diferencias

respecto a los resultados definidos en el ejemplo del informe técnico estas diferencias se

derivan a las nuevas expresiones.

Para chequear estas formulaciones, basta con utilizar los resultados definidos en los

ejemplos del informe técnico hasta la definición completa de esfuerzos, resultando esta

comprobación correcta para todos los casos.

A) DATOS DE ENTRADA

Tabla 1.Condiciones de instalación Tabla 2. Condiciones de carga

Id. Variable Unidad I.1 Id. Variable Unidades Valor

Tipo de instalación Z/T Z Cargas del suelo ps,0/pS,vN/mm

2de la tabla 4

Altura de cobertura h m 3,0 Cargas de tráfico pT/pT,vN/mm

2norma 1991-2

Anchura de zanja b m 1,6 Presión interior pi N/mm2

0,00

Talud β º 90,0 Sobrepresión por G.A pi,S N/mm2

0,00

Altura de agua hw m 1,0 Presión exterior pw N/mm2

0,0

Coef. proyección a 1,0 Peso del agua γWkN/m

310,00

Peso propio γPkN/m

3de la tabla 3

Tabla 3. Características de las tuberías Tabla 4. Propiedades del suelo

Id. Variables Unidades T.1 T.3 Id. Variables UnidadesZona de relleno

Zona de protección

a lado de la zanja

por debajo de la zanja

Presión nominal PN Grupo de suelo - - 4 2 4 4

Diámetro externo de mm 670,00 530,00 Tipo de relleno - - ET2

Diámetro medio dm mm 585,00 520,00 Nivel de compactación - - M M

Espesor t mm 85,00 10,00 Compactación DPr % 90,00 93,00

Rigidez del tubo Condición de instalacion - - I1 I2

Corto plazo SP,STN/m

25.000,00 Peso específico γS

kN/m3

20,00 18,00 20,00 20,00

Largo plazo SP,LT N/m2

2.406,00 Peso específico sumergido γS,w kN/m3

12,00 11,00 12,00 12,00

Carga de rotura Fult kN/m Angulo de rozamiento int. Φi ° 25,00 35,00 25,00 25,00

Peso específico γP kN/m3

24,00 17,50 Angulo de rozamiento zanja Φt ° 16,67 11,67

Módulo de elasticidad Compactación 90,00 93,00

Corto plazo EP,STN/mm

230.000 8.436 Modulo del suelo Ejj,1

N/mm2

1,50 7,10 3,00 15,00

Largo plazo EP,LTN/mm

230.000 4.060 Exponente z z 6,00 5,00 6,00 6,00

Deflexión máxima Exponente u u - 0,70 0,50 0,70 0,70

Corto plazo δv%,ult,ST % 5,00 5,00 Coeficientes K1, K2 K1,K2 - 0,50 0,30

Largo plazo δv%,ult,LT % 5,00 9,00 Coef. de corrección fc - 0,70

Coef de seguridad Coef. de reducción fR,t - 0,75 1,00

Frente a rotura FS,R 2,20 2,00

Frente a pandeo FS,I 2,20 2,00

Tabla A.3. Datos de partida (Opción 1)

Page 362: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 334 -

Resultados de la hoja de cálculo Resultados de la norma prEN 1295-3 Error (%)Tubería Rígida Tubería Flexible Tubería Rígida Tubería Flexible Tubería Rígida Tubería Flexible

Ec. Variables Corto Largo Corto Largo Corto Largo Corto Largo Corto Largo Corto LargoA. CARGAS INICIALESA.1 Carga de tierras3.19 pS,0 0,052 0,052 0,052 0,052 0,0520 0,0520 0,0520 0,0520 0,0% 0,0% 0,0% 0,0%

3.21 y 3.22 κβ = κ90 0,765 1,000 0,765 1,000 0,7856 1,0000 0,7856 1,0000 -2,7% 0,0% -2,7% 0,0%

3.20 pS,v 0,040 0,052 0,040 0,052 0,0409 0,0520 0,0409 0,0520 -2,8% 0,0% -2,8% 0,0%

A.2 Cargas superficialespA,vi 0,000 0,000 0,000 0,000

A.3 Cargas de tráfico. Carretera3.27 pT 0,021 0,021 0,021 0,021 0,0210 0,0210 0,0210 0,0210 -0,4% -0,4% -0,4% -0,4%

3.25 atraffic 1,000 1,000 1,000 1,000 0,9991 0,9991 0,9992 0,9992 0,1% 0,1% 0,1% 0,1%

D.P. DT,mod 1,000 1,000 1,000 1,000 1,0000 1,0000 1,0000 1,0000 0,0% 0,0% 0,0% 0,0%

3.24 pT,v 0,021 0,021 0,021 0,021 0,0210 0,0210 0,0210 0,0210 -0,4% -0,4% -0,4% -0,4%

B. PARAMETROS DEL SUELO

B.1 Propiedades del sueloD.P. Ett,1 1,500 1,500 1,500 1,500 1,5 1,5 1,5 1,5 0,0% 0,0% 0,0% 0,0%

D.P. Ets,1 7,100 7,100 7,100 7,100 7,1 7,1 7,1 7,1 0,0% 0,0% 0,0% 0,0%

D.P. Ens,1 3,000 3,000 3,000 3,000 3,0 3,0 3,0 3,0 0,0% 0,0% 0,0% 0,0%

D.P. Enb,1 15,000 15,000 15,000 15,000 15,0 15,0 15,0 15,0 0,0% 0,0% 0,0% 0,0%

3.3 Ett,h 2,428 2,928 2,428 2,928 2,4750 2,9280 2,4750 2,9280 -1,9% 0,0% -1,9% 0,0%

3.3 Ets,h 10,015 11,448 10,015 11,448 10,1530 11,4484 10,1530 11,4484 -1,4% 0,0% -1,4% 0,0%

3.3 Ens,h (=Ett) 2,928 2,928 2,928 2,928 2,9280 2,9280 2,9280 2,9280 0,0% 0,0% 0,0% 0,0%

3.3 Enb,h 24,279 29,280 24,279 29,280 24,7500 29,2800 24,7500 29,2800 -1,9% 0,0% -1,9% 0,0%

3.6 fR,GW 0,900 0,900 0,900 0,900 0,9000 0,9000 0,9000 0,9000 0,0% 0,0% 0,0% 0,0%

3.7 fR,TW 0,840 0,840 0,903 0,903 0,8404 0,8404 0,9029 0,9029 0,0% 0,0% 0,0% 0,0%

T 3.9 fR,T 1,000 1,000 1,000 1,000 1,0000 1,0000 1,0000 1,0000 0,0% 0,0% 0,0% 0,0%

3.5a, 3.5b Ets 7,575 8,659 8,138 9,303 7,6795 8,6591 8,2506 9,3031 -1,4% 0,0% -1,4% 0,0%

3.5c, 3.5d Ett 2,428 2,928 2,428 2,928

C. DISTRIBUCIÓN DE CARGAS

C.1 Criterio de rigidez3.11 SP 7,669 7,669 0,005 0,002 7,6688 7,6688 0,0050 0,0024 0,0% 0,0% 0,0% 0,0%

3.10 SBv 7,575 8,659 8,138 9,303 7,6795 8,6591 8,2506 9,3031 -1,4% 0,0% -1,4% 0,0%

T 3.13 cvv -0,089 -0,089 -0,083 -0,083 -0,0893 -0,0893 -0,0833 -0,0833 0,0% 0,0% 0,0% 0,0%

3.9 χ 0,008 0,009 11,863 28,182 0,0078 0,0088 12,0273 28,1800 -1,1% 0,2% -1,4% 0,0%

T 3.11 Comport. rigido rigido flexible flexible rigido rigido flexible flexibleT 3.5 αv 120 120 180 180 120,0 120,0 180,0 180,0 0,0% 0,0% 0,0% 0,0%

T 3.4 αh 140 140 140 140 140,0 140,0 140,0 140,0 0,0% 0,0% 0,0% 0,0%

C.2 Factores de concentración de carga3.29 aeff 0,321 0,338 0,298 0,315 0,3223 0,3381 0,3000 0,3147 -0,6% 0,0% -0,6% 0,0%

3.30 Z5 0,705 0,881 0,483 0,647 0,7230 0,8810 0,5000 0,6470 -2,5% 0,0% -3,4% 0,1%3.28 λmax 1,136 1,153 1,121 1,143 1,1381 1,1534 1,1234 1,1427 -0,2% 0,0% -0,2% 0,0%

T 3.12 F1 1,808 1,808 1,808 1,808 1,8080 1,8080 0,0% 0,0%

T 3.12 F2 0,260 0,260 0,260 0,260 0,2600 0,2600 0,0% 0,0%

3.14 ∆f 1,034 1,034 1,340 1,340 1,3397 1,3397 0,0% 0,0%

3.13 ζ 0,595 0,544 0,685 0,639 0,6799 0,6394 0,7% 0,0%3.12 SBh 2,494 2,605 3,081 3,290 3,1026 3,2900 -0,7% 0,0%

3.18 VPS 24,597 23,549 0,013 0,006 0,0129 0,0059 0,7% 0,0%

T 3.14 chv 0,089 0,089 0,084 0,084 0,0836 0,0838 0,0% -0,2%

T 3.15 c*hh -0,067 -0,067 -0,067 -0,067 -0,0668 -0,0668 0,0% 0,0%

3.17 K* 0,004 0,004 1,048 1,151 1,0491 1,1507 -0,1% 0,0%T 3.13 cvv -0,089 -0,089 -0,083 -0,083 -0,0833 -0,0833 0,0% 0,0%

T 3.15 c*vh 0,068 0,068 0,068 0,068 0,0684 0,0684 0,0% 0,0%

3.16 c*v -0,089 -0,089 -0,012 -0,005 -0,0115 -0,0046 1,1% -0,2%

3.15 VS 90,958 79,577 0,423 0,451 0,4216 0,4498 0,3% 0,2%

3.31 λP 1,131 1,147 0,800 0,800 1,1381 1,1534 0,8000 0,8000 -0,7% -0,6% 0,0% 0,0%

3.34 λS 0,956 0,951 1,067 1,067 0,9540 0,9489 1,0667 1,0667 0,3% 0,2% 0,0% 0,0%

3.32 λPT 1,060 1,068 0,865 0,865 1,0639 1,0710 0,8654 0,8654 -0,3% -0,3% 0,0% 0,0%

3.33 λup 3,550 3,550 3,550 3,550

D. CARGAS QUE ACTUAN SOBRE LA TUBERÍA

D.1 Cargas verticales actuantes sobre la tubería3.37 qS,v 0,042 0,056 0,034 0,045 0,0435 0,0557 0,0354 0,0450 -3,1% -0,3% -2,8% 0,0%

3.38 qA,v 0,000 0,000 0,000 0,000

3.39 qW,v 0,010 0,010 0,010 0,010 0,0100 0,0100 0,0100 0,0100 0,0% 0,0% 0,0% 0,0%

3.40 qT,v 0,022 0,022 0,018 0,018 0,0223 0,0225 0,0182 0,0182 -0,5% -0,7% -0,5% -0,5%

3.35 qv1 0,052 0,066 0,044 0,055 0,0535 0,0657 0,0454 0,0550 -2,5% -0,2% -2,2% 0,0%

3.36 qv2 0,022 0,022 0,018 0,018 0,0223 0,0225 0,0182 0,0182 -0,5% -0,7% -0,5% -0,5%

D.2 Cargas horizontales actuantes sobre la tubería

3.43 qS,h 0,011 0,015 0,013 0,017 0,0117 0,0148 0,0131 0,0166 -2,5% 0,2% -2,9% 0,2%

3.44 qA,v 0,000 0,000 0,000 0,000

3.45 qW,h 0,010 0,010 0,010 0,010 0,0100 0,0100 0,0100 0,0100 0,0% 0,0% 0,0% 0,0%

3.41 qh1 0,021 0,025 0,023 0,027 0,0217 0,0248 0,0231 0,0266 -1,3% 0,1% -1,6% 0,2%

3.42 qh2 0,006 0,006 0,007 0,007 0,0060 0,0060 0,0073 0,0073 0,1% -0,5% -9,0% -9,0% (1)

3.48 qh,d 0,000 0,000 0,000 0,000

D.3 Desplazamientos horizontales

3.50 Z6 4,768 4,768 6500,000 13507,897 6500,0 13507,9 0,0% 0,0%3.54 ∆h0,v1 0,022 0,028 24,147 62,111 24,6704 62,1093 -2,2% 0,0%

3.55 ∆h0,v2 0,009 0,009 9,838 9,838 9,8900 9,8900 -0,5% -0,5%

3.56 ∆h0,h1 -0,009 -0,010 -12,358 -30,094 -12,5530 -30,0380 -1,6% 0,2%

3.57 ∆h0,h2 -0,002 -0,002 -3,639 -3,639 -3,6410 -3,6410 -0,1% -0,1%

3.58 ∆h0,hd 0,000 0,000 0,000 0,000

3.59 ∆h0,ow 0,000 0,000 0,018 0,037 0,0180 0,0370 -2,2% -1,1%

3.60 ∆h0,W 0,001 0,001 1,301 2,704 1,3010 2,7040 0,0% 0,0%

3.52 ∆h0,1 0,015 0,019 13,108 34,757 13,4450 34,8120 -2,6% -0,2%

Page 363: cálculo estructural de tuberías enterradas por el método

Anexo A

Programa de cálculo del informe técnico CEN/TR 1295-3

- 335 -

Resultados de la hoja de cálculo Resultados de la norma prEN 1295-3 Error (%)Tubería Rígida Tubería Flexible Tubería Rígida Tubería Flexible Tubería Rígida Tubería Flexible

Ec. Variables Corto Largo Corto Largo Corto Largo Corto Largo Corto Largo Corto Largo3.53 ∆h0,2 0,007 0,007 6,199 6,199 6,2490 6,2490 -0,8% -0,8%

3.51 ∆h0 0,022 0,026 19,307 40,956 19,6940 41,0610 -2,0% -0,3%

3.61 CP* -0,318 -0,318 -434,200 -902,328 -434,20 -902,33 0,0% 0,0%

3.62 RS 0,009 0,009 0,013 0,013 0,0134 0,0142 -6,2% -5,4% (2)

3.65 ∆h,1 0,015 0,019 2,024 2,643 1,9730 2,5200 2,5% 4,7%

3.66 ∆h,2 0,007 0,007 0,957 0,957 0,9170 0,9170 4,2% 4,2%

3.64 ∆h 0,022 0,026 2,981 3,600 2,8900 3,4370 3,1% 4,5%

D.4 Reacción horizontal en el apoyo3.69 q*h,1 0,000 0,000 0,026 0,036 0,0264 0,0358 -3,4% -0,6%

3.70 q*h,2 0,000 0,000 0,012 0,012 0,0123 0,0123 -1,9% -1,9%

3.68 q*h 0,000 0,000 0,038 0,048 0,0387 0,0481 -2,9% -0,9%

3.71 qio 0,097 0,097 0,002 0,001 0,0025 0,0012 0,0% 0,0%

E. PRESION INTERNA

E.1 Presión interna de servicio(3.60) pi 0,00 0,00 0,00 0,00

PN>pi No cumple No cumple No cumple No cumple

E.2 Presión interna de golpe de ariete3.72 pi,S 0,00 0,00 0,00 0,00

3.73 PN>0,8(pi+pi,S Cumple Cumple Cumple Cumple

F. DEFLEXION DE LA TUBERÍA

F.1 Deflexión vertical3.77 δv,io 0,000 0,000 0,004 0,004 0,0042 0,0042 0,0% 0,0%

3.78 δv,ow 0,000 0,000 -0,001 -0,001 -0,0007 -0,0014 -0,5% -0,2%

3.79 δv,W 0,000 0,000 -0,005 -0,011 -0,0051 -0,0106 -0,1% -0,1%

3.81 δv1 0,000 0,000 -0,001 0,004 -0,0013 0,0043 6,5% -4,5% (3)

3.82 δv2 0,000 0,000 -0,003 -0,003 -0,0029 -0,0029 4,9% 4,9%

3.74 δv 0,000 0,000 -0,006 -0,007 -0,0057 -0,0064 4,0% 4,8%

3.75 δv% 0,003 0,001 0,599 0,670 0,5700 0,6400 4,8% 4,5%

3.2.12 δadm% Cumple Cumple Cumple Cumple

3.76 ∆dv 0,016 0,008 -3,114 -3,485 -2,9900 -3,3200 4,0% 4,7%

F.2 Deflexión horizontal3.84 δh,io 0,000 0,000 -0,004 -0,004 -0,0041 -0,0041 0,0% 0,0%

3.83 δh 0,000 0,000 0,007 0,010 0,0070 0,0091 4,4% 6,2% (4)

3.85 δh% -0,003 -0,002 0,732 0,970 0,7000 0,9100 4,4% 6,2% (5)

3.86 ∆dh -0,016 -0,008 3,808 5,046 3,6400 4,7200 4,4% 6,5% (6)

G. MOMENTOS, FUERZAS NORMALES, TENSIONES Y DEFORMACIONES

G.1 Momentos y axiles en la clave (C)3.87a Mqv1 1,166 1,463 0,751 0,930 1,1947 1,4671 0,7673 0,9295 -2,5% -0,2% -2,2% 0,0%

3.88a Mqv2 0,495 0,495 0,306 0,306 0,4980 0,5024 0,3076 0,3076 -0,5% -1,4% -0,5% -0,5%

3.89a Mqh1 -0,458 -0,531 -0,384 -0,450 -0,4641 -0,5304 -0,3904 -0,4495 -1,3% 0,2% -1,6% 0,2%

3.90a Mqh2 -0,128 -0,128 -0,113 -0,113 -0,1283 -0,1283 -0,1132 -0,1132 0,1% 0,1% -0,1% -0,1%

3.91a Mq*h1 0,000 0,000 -0,330 -0,460 -0,3409 -0,4622 -3,4% -0,6%

3.92a Mq*h2 0,000 0,000 -0,156 -0,156 -0,1588 -0,1588 -1,9% -1,9%

3.93a Mqhd 0,000 0,000 0,000 0,000

3.94a Mow 0,066 0,066 0,004 0,004 0,0665 0,0665 0,0041 0,0041 0,0% 0,0% -0,5% -0,5%

3.95a Mw 0,048 0,048 0,030 0,030 0,0475 0,0475 0,0302 0,0302 0,4% 0,4% 0,4% 0,4%

3.96a Mio 0,000 0,000 -0,032 -0,015 -0,0320 -0,0154 0,1% 0,1%

3.87b Nqv1 0,412 0,518 0,000 0,000 0,4225 0,5189 0,0000 0,0000 -2,5% -0,3%

3.88b Nqv2 0,175 0,175 0,000 0,000 0,1761 0,1777 0,0000 0,0000 -0,5% -1,4%

3.89b Nqh1 -6,265 -7,264 -5,911 -6,926 -6,3473 -7,2540 -6,0060 -6,9160 -1,3% 0,1% -1,6% 0,2%

3.90b Nqh2 -1,756 -1,756 -1,741 -1,741 -1,7550 -1,7550 -1,7420 -1,7420 0,1% 0,1% -0,1% -0,1%

3.91b Nq*h1 0,000 0,000 -4,161 -5,802 -4,3037 -5,8361 -3,4% -0,6%

3.92b Nq*h2 0,000 0,000 -1,968 -1,968 -2,0051 -2,0051 -1,9% -1,9%

3.94b Now 0,149 0,149 0,008 0,008 0,1492 0,1492 0,0076 0,0076 0,0% 0,0% 0,0% 0,0%

3.95b Nw 0,535 0,535 0,394 0,394 0,5347 0,5347 0,3941 0,3941 0,0% 0,0% 0,0% 0,0%

3.96b Nio 0,000 0,000 -0,404 -0,195 -0,4045 -0,1946 0,0% 0,0%

3.97 Npi 0,000 0,000 0,000 0,000

3.98 Npe 0,000 0,000 0,000 0,000

3.99a ΣM1C 0,822 1,046 0,040 0,039 0,8446 1,0507 0,0390 0,0367 -2,8% -0,4% 1,4% 5,3% (7)

3.100a ΣM2C 0,367 0,367 0,037 0,037 0,3697 0,3741 0,0356 0,0356 -0,7% -1,9% 3,7% 3,7%

3.99b ΣN1C -5,169 -6,063 -10,075 -12,521 -5,2409 -6,0512 -10,3125 -12,5450 -1,4% 0,2% -2,4% -0,2%

3.100b ΣN2C -1,581 -1,581 -3,709 -3,709 -1,5789 -1,5773 -3,7471 -3,7471 0,1% 0,2% -1,0% -1,0%

G.2 Momentos y axiles en punto medio (S)3.87a Mqv1 -1,183 -1,486 -0,751 -0,930 -1,2130 -1,4896 -0,7673 -0,9295 -2,5% -0,2% -2,2% 0,0%

3.88a Mqv2 -0,503 -0,503 -0,306 -0,306 -0,5056 -0,5101 -0,3076 -0,3076 -0,5% -1,4% -0,5% -0,5%

3.89a Mqh1 0,458 0,531 0,384 0,450 0,4641 0,5304 0,3904 0,4495 -1,3% 0,2% -1,6% 0,2%

3.90a Mqh2 0,128 0,128 0,113 0,113 0,1283 0,1283 0,1132 0,1132 0,1% 0,1% -0,1% -0,1%

3.91a Mqh1* 0,000 0,000 0,371 0,517 0,3837 0,5203 -3,4% -0,6%

3.92a Mqh2* 0,000 0,000 0,175 0,175 0,1788 0,1788 -1,9% -1,9%

3.93a Mqhd 0,000 0,000 0,000 0,000

3.94a Mow -0,077 -0,077 -0,005 -0,005 -0,0768 -0,0768 -0,0046 -0,0046 0,0% 0,0% 1,1% 1,1%

3.95a Mw -0,055 -0,055 -0,035 -0,035 -0,0551 -0,0551 -0,0344 -0,0344 -0,1% -0,1% 0,4% 0,4%

3.96a Mio 0,000 0,000 0,036 0,017 0,0361 0,0174 -0,1% -0,3%

3.87b Nqv1 -15,267 -19,170 -11,553 -14,300 -15,6488 -19,2173 -11,8040 -14,3000 -2,5% -0,2% -2,2% 0,0%

3.88b Nqv2 -6,489 -6,489 -4,707 -4,707 -6,5228 -6,5813 -4,7320 -4,7320 -0,5% -1,4% -0,5% -0,5%

3.89b Nqh1 0,000 0,000 0,000 0,000 0,0000 0,0000 0,0000 0,0000 0,0% 0,0% 0,0% 0,0%

3.90b Nqh2 0,000 0,000 0,000 0,000 0,0000 0,0000 0,0000 0,0000 0,0% 0,0% 0,0% 0,0%

3.91b Nqh1* 0,000 0,000 0,000 0,000 0,0000 0,0000 0,0% 0,0%

3.92b Nqh2* 0,000 0,000 0,000 0,000 0,0000 0,0000 0,0% 0,0%

3.94b Now -0,937 -0,937 -0,071 -0,071 -0,9374 -0,9374 -0,0715 -0,0715 0,0% 0,0% 0,0% 0,0%

3.95b Nw 0,184 0,184 0,145 0,145 0,1839 0,1839 0,1453 0,1453 0,0% 0,0% 0,0% 0,0%

3.96b Nio 0,000 0,000 0,000 0,000 0,0000 0,0000 0,0% 0,0%

Page 364: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 336 -

Resultados de la hoja de cálculo Resultados de la norma prEN 1295-3 Error (%)Tubería Rígida Tubería Flexible Tubería Rígida Tubería Flexible Tubería Rígida Tubería Flexible

Ec. Variables Corto Largo Corto Largo Corto Largo Corto Largo Corto Largo Corto Largo3.97 Npi 0,000 0,000 0,000 0,000

3.98 Npe 0,000 0,000 0,000 0,000

3.99a ΣM1S -0,857 -1,087 0,0011 0,016 -0,8808 -1,0911 0,0039 0,0187 -2,8% -0,4% -254,6% -15,9% (8)

3.100a ΣM2S -0,375 -0,375 -0,017 -0,017 -0,3773 -0,3818 -0,0156 -0,0156 -0,7% -1,9% 10,2% 10,2% (9)

3.99b ΣN1S -16,021 -19,923 -11,480 -14,226 -16,4023 -19,9708 -11,7302 -14,2262 -2,4% -0,2% -2,2% 0,0%

3.100b ΣN2S -6,489 -6,489 -4,707 -4,707 -6,5228 -6,5813 -4,7320 -4,7320 -0,5% -1,4% -0,5% -0,5%

G.3 Momentos y axiles en la base (B)3.87a Mqv1 1,228 1,542 0,751 0,930 1,2587 1,5458 0,7673 0,9295 -2,5% -0,2% -2,2% 0,0%

3.88a Mqv2 0,522 0,522 0,306 0,306 0,5247 0,5294 0,3076 0,3076 -0,5% -1,4% -0,5% -0,5%

3.89a Mqh1 -0,458 -0,531 -0,384 -0,450 -0,4641 -0,5304 -0,3904 -0,4495 -1,3% 0,2% -1,6% 0,2%

3.90a Mqh2 -0,128 -0,128 -0,113 -0,113 -0,1283 -0,1283 -0,1132 -0,1132 0,1% 0,1% -0,1% -0,1%

3.91a Mqh1* 0,000 0,000 -0,330 -0,460 -0,3409 -0,4622 -3,4% -0,6%

3.92a Mqh2* 0,000 0,000 -0,156 -0,156 -0,1588 -0,1588 -1,9% -1,9%

3.93a Mqhd 0,000 0,000 0,000 0,000

3.94a Mow 0,091 0,091 0,005 0,005 0,0908 0,0908 0,0052 0,0052 0,0% 0,0% 0,3% 0,3%

3.95a Mw 0,065 0,065 0,039 0,039 0,0651 0,0651 0,0387 0,0387 -0,1% -0,1% 0,1% 0,1%

3.96a Mio 0,000 0,000 -0,032 -0,015 -0,0320 -0,0154 0,1% 0,1%

3.87b Nqv1 -0,412 -0,518 0,000 0,000 -0,4225 -0,5189 0,0000 0,0000 -2,5% -0,3% 0,0% 0,0%

3.88b Nqv2 -0,175 -0,175 0,000 0,000 -0,1761 -0,1777 0,0000 0,0000 -0,5% -1,4% 0,0% 0,0%

3.89b Nqh1 -6,265 -7,264 -5,911 -6,926 -6,3473 -7,2540 -6,0060 -6,9160 -1,3% 0,1% -1,6% 0,2%

3.90b Nqh2 -1,756 -1,756 -1,741 -1,741 -1,7550 -1,7550 -1,7420 -1,7420 0,1% 0,1% -0,1% -0,1%

3.91b Nqh1* 0,000 0,000 -4,161 -5,802 -4,3037 -5,8361 -3,4% -0,6%

3.92b Nqh2* 0,000 0,000 -1,968 -1,968 -2,0051 -2,0051 -1,9% -1,9%

3.94b Now -0,149 -0,149 -0,008 -0,008 -0,1492 -0,1492 -0,0076 -0,0076 0,0% 0,0% 0,0% 0,0%

3.95b Nw 1,176 1,176 0,958 0,958 1,1764 1,1764 0,9579 0,9579 0,0% 0,0% 0,0% 0,0%

3.96b Nio 0,000 0,000 -0,404 -0,195 -0,4045 -0,1946 0,0% 0,0%

3.97 Npi 0,000 0,000 0,000 0,000

3.98 Npe 0,000 0,000 0,000 0,000

3.99a ΣM1B 0,926 1,167 0,049 0,048 0,9505 1,1713 0,0479 0,0463 -2,7% -0,4% 2,5% 4,2%

3.100a ΣM2B 0,394 0,394 0,037 0,037 0,3964 0,4011 0,0356 0,0356 -0,7% -1,9% 3,7% 3,7%

3.99b ΣN1B -5,650 -6,755 -9,526 -11,973 -5,7426 -6,7457 -9,7639 -11,9964 -1,6% 0,1% -2,5% -0,2%

3.100b ΣN2B -1,931 -1,931 -3,709 -3,709 -1,9311 -1,9327 -3,7471 -3,7471 0,0% -0,1% -1,0% -1,0%

G.4 Tensiones y deformaciones (Tª de 1º orden)

G.4.1 Tensiones y deformaciones por cargas externas en la clave (C) (Tº 1º orden)3.102 cci 1,097 1,097 1,013 1,013 1,0969 1,0969 1,0128 1,0128 0,0% 0,0% 0,0% 0,0%

3.103 cco 0,903 0,903 0,987 0,987 0,9031 0,9031 0,9872 0,9872 0,0% 0,0% 0,0% 0,0%

3.101a σiC 1,003 1,198 3,271 2,978 1,0259 1,2082 -2,3% -0,9%

3.101a σ1iC 1,003 0,882 3,271 1,103 3,0847 0,9757 5,7% 11,6% (10)

3.101a σ2iC 0,316 0,316 1,875 1,875 1,7886 4,6%

3.101b σoC -0,971 -1,150 -5,910 -6,108 -0,9909 -1,1583 -2,1% -0,7%

3.101b σ1oC -0,971 -0,856 -5,910 -3,548 -5,7833 -3,4283 2,2% 3,4%

3.101b σ2oC -0,294 -0,294 -2,560 -2,560 -2,4834 3,0%

3.104a ε1iC 0,003 0,003 0,039 0,027 0,0366 0,0240 5,6% 11,7% (11)

3.104a ε2iC 0,001 0,001 0,022 0,022 0,0212 4,6%

3.104b ε1oC -0,003 -0,003 -0,070 -0,087 -0,0686 -0,0844 2,1% 3,4%

3.104b ε2oC -0,001 -0,001 -0,030 -0,030 -0,0294 3,1%

Tensiones y deformaciones por cargas externas en punto medio (S)3.101a σiS -1,387 -1,642 -2,608 -1,969 -1,4157 -1,6541 -2,1% -0,8%

3.101a σ1iS -1,387 -1,224 -2,608 -0,442 -2,3572 -0,2862 9,6% 35,3% (12)

3.101a σ2iS -0,418 -0,418 -1,527 -1,527 -1,4212 6,9% (13)

3.101b σoS 0,659 0,785 -0,655 -1,820 0,6738 0,7922 -2,3% -0,9%

3.101b σ1oS 0,659 0,581 -0,655 -2,378 -0,9532 -2,5302 -45,6% -6,4% (14)

3.101b σ2oS 0,205 0,205 0,558 0,558 0,4508 19,3% (15)

3.104a ε1iS -0,005 -0,004 -0,031 -0,011 -0,0279 -0,0070 9,7% 35,7% (16)

3.104a ε2iS -0,001 -0,001 -0,018 -0,018 -0,0168 7,2% (17)

3.104b ε1oS 0,002 0,002 -0,008 -0,059 -0,0113 -0,0623 -45,6% -6,3% (18)

3.104b ε2oS 0,001 0,001 0,007 0,007 0,0053 19,9% (19)

Tensiones y deformaciones por cargas externas en la base (B)3.101a σiB 1,113 1,319 3,908 3,615 1,1372 1,3302 -2,2% -0,9%

3.101a σ1iB 1,113 0,983 3,908 1,740 3,7230 1,6140 4,7% 7,2% (20)

3.101a σ2iB 0,336 0,336 1,875 1,875 1,7886 4,6%

3.101b σoB -1,079 -1,272 -6,423 -6,620 -1,1004 -1,2814 -2,0% -0,7%

3.101b σ1oB -1,079 -0,954 -6,423 -4,060 -6,2970 -3,9420 2,0% 2,9%

3.101b σ2oB -0,318 -0,318 -2,560 -2,560 -2,4834 3,0%

3.104a ε1iB 0,004 0,003 0,046 0,043 0,0441 0,0398 4,8% 7,1% (21)

3.104a ε2iB 0,001 0,001 0,022 0,022 0,0212 4,6%

3.104b ε1oB -0,004 -0,003 -0,076 -0,100 -0,0746 -0,0971 2,0% 2,9%

3.104b ε2oB -0,001 -0,001 -0,030 -0,030 -0,0294 3,1%

G.4.2 Tensiones y deformaciones por presion interna en clave, punto medio y base (C, S y B)

3.107 c 1,340 1,340 1,039 1,039

3.105, 3.106a σt,pi,i 0,000 0,000 0,000 0,000

3.106b σt,pi,o

3.108, 3.109a εt,pi,i 0,000 0,000 0,000 0,000

3.109b εt,pi,o

G.4.3 Tensiones y deformaciones por cargas externas y presion interna en la clave (C) 3.110 σt1iC = σt1oC -0,079 -0,071 -1,378 -1,252

3.110 σt2iC = σt2oC -0,019 -0,019 -0,371 -0,371

3.111 εt1iC 0,000 0,000 -0,016 -0,004

3.111 εt2iC 0,000 0,000 -0,004 -0,004

3.112a σf1iC 1,083 0,953 4,650 2,355

3.112a σf2iC 0,334 0,334 2,246 2,246

3.112b σf1oC -0,891 -0,785 -4,532 -2,296

Page 365: cálculo estructural de tuberías enterradas por el método

Anexo A

Programa de cálculo del informe técnico CEN/TR 1295-3

- 337 -

Resultados de la hoja de cálculo Resultados de la norma prEN 1295-3 Error (%)Tubería Rígida Tubería Flexible Tubería Rígida Tubería Flexible Tubería Rígida Tubería Flexible

Ec. Variables Corto Largo Corto Largo Corto Largo Corto Largo Corto Largo Corto Largo3.112b σf2oC -0,275 -0,275 -2,189 -2,189

3.113a εf1iC 0,004 0,003 0,055 0,058

3.113a εf2iC 0,001 0,001 0,027 0,027

3.113b εf1oC -0,003 -0,003 -0,054 -0,057

3.113b εf2oC -0,001 -0,001 -0,026 -0,026

Tensiones y deformaciones por cargas externas y presion interna en los punto medio (S) 3.110 σt1iC = σt1oC -0,265 -0,234 -1,619 -1,423

3.110 σt2iC = σt2oC -0,076 -0,076 -0,471 -0,471

3.111 εt1iC -0,001 -0,001 -0,019 -0,035

3.111 εt2iC 0,000 0,000 -0,006 -0,006

3.112a σf1iC -1,122 -0,990 -0,989 0,981

3.112a σf2iC -0,341 -0,341 -1,056 -1,056

3.112b σf1oC 0,924 0,815 0,964 -0,956

3.112b σf2oC 0,281 0,281 1,029 1,029

3.113a εf1iC -0,004 -0,003 -0,012 0,024

3.113a εf2iC -0,001 -0,001 -0,013 -0,013

3.113b εf1oC 0,003 0,003 0,011 -0,024

3.113b εf2oC 0,001 0,001 0,012 0,012

Tensiones y deformaciones por cargas externas y presion interna en la base (B) 3.110 σt1iC = σt1oC -0,089 -0,079 -1,323 -1,197

3.110 σt2iC = σt2oC -0,023 -0,023 -0,371 -0,371

3.111 εt1iC 0,000 0,000 -0,016 -0,029

3.111 εt2iC 0,000 0,000 -0,004 -0,004

3.112a σf1iC 1,202 1,063 5,231 2,937

3.112a σf2iC 0,358 0,358 2,246 2,246

3.112b σf1oC -0,989 -0,875 -5,099 -2,863

3.112b σf2oC -0,295 -0,295 -2,189 -2,189

3.113a εf1iC 0,004 0,004 0,062 0,072

3.113a εf2iC 0,001 0,001 0,027 0,027

3.113b εf1oC -0,003 -0,003 -0,060 -0,071

3.113b εf2oC -0,001 -0,001 -0,026 -0,026

G.5 Tensiones y deformaciones resultantes (Tª 1º orden)

Por Carga externaC σiC 1,003 1,198 3,271 2,978

S σiS -1,387 -1,642 -2,608 -1,969

B σiB 1,113 1,319 3,908 3,615

Por presion internaC,S,B σt,res,1 0,000 0,000 0,000 0,000

Por Carga externa y presion internaC σiC 1,003 1,216 3,271 3,349

S σiS -1,387 -1,565 -2,608 -1,498

B σiB 1,113 1,342 3,908 3,986

G.6 Tensiones y deformaciones aplicando la Tª de 2º orden

Criterio de uso (Tª de 2º orden)

3.114 K’ 0,369 0,351 0,471 0,456

Tª 1º orden Tª 1º orden Tª 1º orden Tª 1º orden

G.6.1 Tensiones y deformaciones por cargas externas (Tª de 2º orden)

Parámetros (Tª de 2º orden)T 3.22 am1 2,920 2,762 3,988 3,814

T 3.22 am2 43,242 41,882 51,733 50,424

T 3.22 bm1 3,296 3,030 5,283 4,938

T 3.22 bm2 4,598 4,136 8,336 7,656

T 3.22 av1 1,058 0,961 1,816 1,681

T 3.22 av2 50,116 48,849 57,857 56,681

T 3.22 bv1 2,557 2,332 4,290 3,984

T 3.22 bv2 6,796 6,357 9,887 9,371

3.119 am 43,265 41,906 99,042 157,913

3.120 bm 4,624 4,162 71,004 146,824

3.121 av 50,124 48,858 79,402 104,062

3.122 bv 6,816 6,377 60,784 121,661

3.117 em 1,000 1,000 1,085 1,172

3.118 ev 1,000 1,000 1,069 1,124

Momentos y axiles en la clave (C) (Tª de 2º orden)3.115 ΣM1C 0,822 1,046 0,043 0,045

3.115 ΣM2C 0,367 0,367 0,040 0,043

ΣN1C -5,169 -6,063 -10,075 -12,521

ΣN2C -1,581 -1,581 -3,709 -3,709

Momentos y axiles en la p. medio (S) (Tª de 2º orden)3.115 ΣM1S -0,857 -1,087 0,001 0,019

3.115 ΣM2S -0,375 -0,375 -0,019 -0,020

ΣN1S -16,021 -19,923 -11,480 -14,226

ΣN2S -6,489 -6,489 -4,707 -4,707

Momentos y axiles en la base (B) (Tª de 2º orden)3.115 ΣM1B 0,926 1,167 0,053 0,057

3.115 ΣM2B 0,394 0,394 0,040 0,043

ΣN1B -5,650 -6,755 -9,526 -11,973

ΣN2B -1,931 -1,931 -3,709 -3,709

Tensiones y deformaciones por cargas externas en la clave (C) (Tª de 2º orden)3.102 cci 1,097 1,097 1,013 1,013

3.103 cco 0,903 0,903 0,987 0,987

3.101a σiC 1,003 1,198 3,666 3,769

3.101a σ1iC 1,003 0,882 3,666 1,508

Page 366: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 338 -

Resultados de la hoja de cálculo Resultados de la norma prEN 1295-3 Error (%)Tubería Rígida Tubería Flexible Tubería Rígida Tubería Flexible Tubería Rígida Tubería Flexible

Ec. Variables Corto Largo Corto Largo Corto Largo Corto Largo Corto Largo Corto Largo3.101a σ2iC 0,316 0,316 2,066 2,066

3.101b σoC -0,971 -1,150 -6,295 -6,878

3.101b σ1oC -0,971 -0,856 -0,230 -0,185

3.101b σ2oC -0,294 -0,294 -0,076 -0,076

3.104a ε1iC 0,003 0,003 0,043 0,037

3.104a ε2iC 0,001 0,001 0,024 0,024

3.104b ε1oC -0,003 -0,003 -0,003 -0,005

3.104b ε2oC -0,001 -0,001 -0,001 -0,001

Tensiones y deformaciones por cargas externas en punto medio (S) (Tª de 2º orden)3.101a σiS -1,387 -1,642 -2,692 -1,982

3.101a σ1iS -1,387 -1,224 -2,692 -0,274

3.101a σ2iS -0,418 -0,418 -1,616 -1,616

3.101b σoS 0,659 0,785 -0,573 -1,807

3.101b σ1oS 0,659 0,581 -0,573 -2,543

3.101b σ2oS 0,205 0,205 0,646 0,646

3.104a ε1iS -0,005 -0,004 -0,032 -0,007

3.104a ε2iS -0,001 -0,001 -0,019 -0,019

3.104b ε1oS 0,002 0,002 -0,007 -0,063

3.104b ε2oS 0,001 0,001 0,008 0,008

Tensiones y deformaciones por cargas externas en la base (B) (Tª de 2º orden)3.101a σiB 1,113 1,319 4,351 4,505

3.101a σ1iB 1,113 0,983 4,351 2,244

3.101a σ2iB 0,336 0,336 2,066 2,066

3.101b σoB -1,079 -1,272 -6,855 -7,488

3.101b σ1oB -1,079 -0,954 -6,855 -4,552

3.101b σ2oB -0,318 -0,318 -2,746 -2,746

3.104a ε1iB 0,004 0,003 0,052 0,055

3.104a ε2iB 0,001 0,001 0,024 0,024

3.104b ε1oB -0,004 -0,003 -0,081 -0,112

3.104b ε2oB -0,001 -0,001 -0,033 -0,033

G.6.2 Tensiones y deformaciones por cargas externas mas presion interior (Tª de 2º orden)

Parámetros de la teoría de 2º orden (cargas externas mas presión interna)

f(σ) 0,000 0,000 0,000 0,000

T 3.24 a1 -5,580 -5,580 -5,580 -5,580

T 3.24 a2 4,000 4,000 4,000 4,000

T 3.24 a3 5,270 5,270 5,270 5,270

T 3.24 b1 23,700 23,700 23,700 23,700

T 3.24 b2 14,000 14,000 14,000 14,000

T 3.24 b3 9,930 9,930 9,930 9,930

T 3.23 aD -16,261 -15,704 5,366 5,844

T 3.23 bD 34,515 33,950 9,623 8,092

3.126 Z7 0,005 0,003 0,005 0,003

3.125 fR,R 0,997 0,999 1,000 1,000

G.7 Tensiones y deformaciones resultantes (Tª 2º orden)

Por Carga externaC σiC 1,003 1,198 3,666 3,769

S σiS -1,387 -1,642 -2,692 -1,982

B σiB 1,113 1,319 4,351 4,505

Por Carga externa y presion internaC σiC 1,000 1,215 3,271 3,349

S σiS -1,383 -1,563 -2,607 -1,498

B σiB 1,110 1,340 3,907 3,986

G.8 Tensiones y deformaciones resultantes Tª 1º y 2º orden según proceda)

Por Carga externaTª 1º orden Tª 1º orden Tª 1º orden Tª 1º orden

C σiC 1,003 1,198 3,271 2,978

S σiS -1,387 -1,642 -2,608 -1,969

B σiB 1,113 1,319 3,908 3,615

Por Carga externa y presion internaTª 1º orden Tª 1º orden Tª 1º orden Tª 1º ordenC σiC 1,003 1,216 3,271 3,349

S σiS -1,387 -1,565 -2,608 -1,498

B σiB 1,113 1,342 3,908 3,986

G.9 Coeficientes de seguridad calculados

Por Carga externa(3.123a) σult 30,00 14,40 30,00 14,40

H.1 ANALISIS DE ESTABILIDAD

Estudio de estabilidad (por cargas de relleno y tráfico)T 3.26 Xκv 0,52 0,52 0,52 0,52 - - 0,52 0,52 0,0% 0,0%

3.128 κv 0,90 0,90 0,90 0,90 - - 0,90 0,90 0,0% 0,0%

3.127a, b qv,crit 166,395 166,428 0,632 0,453 - - 0,63 0,45 -0,3% 0,0%

3.129 ηI,qv 2.237,13 1.893,78 10,10 6,20 - - 10,00 6,20 1,0% -0,1%

Tabla A.4. Comparación de resultados programa de cálculo/ejemplos del CEN/TR 1295-3 (Op1) 1

1 Los resultados de las zonas sombreadas en verde se calculan para considerar el efecto de la presión interna y

la actuación conjunta entre carga de tierras y presión interna, y no se definen en el informe técnico CEN/TR 1295-3 Op1

Page 367: cálculo estructural de tuberías enterradas por el método

Anexo A

Programa de cálculo del informe técnico CEN/TR 1295-3

- 339 -

A.2.3.2. Errores detectados en la Opción 2

A continuación se describen los errores detectados en la comparación de resultados del

modelo de la opción 2 (ver tabla A.4)

Error (1). Se detectan unas diferencias del -9,5%, -4,2% y 5,8%, respectivamente, en el

cálculo del primer término de la ovalización vertical para los tres tipos de tuberías (ver

ecuación 3.190a). Respecto a los dos primeros valores, dicha diferencia se corresponde con

un error de redondeo, pues los resultados del programa de cálculo establecen los siguientes

valores de la ovalización vertical (0,018 y 0,029) y los valores establecidos por el ejemplo del

informe técnico son (0,02 y 0,03). Respecto al otro caso, la formulación es correcta, si bien

la estimación de los parámetros previos produce un error adicional, que se puede considerar

aceptable.

Error (2). Se detecta una diferencia del -6,4% en el cálculo del segundo término de la

ovalización vertical para la tubería flexible (ver ecuación 3.190b). Se ha comprobado que la

fórmula es correcta y las diferencias se deben al cálculo de los parámetros previos.

A) DATOS DE ENTRADA

Tabla 1. Condiciones de instalación Tabla 2. Condiciones de carga

Variable Unidad I.1 Variable Unidad ValorTipo de instalación - zanja Cargas de tráfico Según EN 1991-2 Si

Sección tipo T1A Cargas permanentes p0 kN/m2

0,00

Altura de cobertura h m 3,00 Cargas de construcción pc kN/m2

0,00

Anchura de zanja B m 1,60 Presión interna pw kN/m2

0,00

Entibación - Si

Espesor efectivo de la entibación b m 0,10

Tipo de retirada de la entibación - 2

Presencia de geotextil - No

Presencia de agua - Si

Altura de agua hw m 1,00

Peso específico del agua χW kN/m3

10,00

Tabla 3. Características de las tuberías (FLEXIBLES) Tabla 4. Propiedades del suelo

Id. Variable Unidad T.1 T.2 T.3 Id. Variable Unidad Relleno Natural

Diámetro medio Dm mm 565,00 555,00 520,00 Grupo del suelo (GS) - 2 4

Diámetro externo De mm 630,00 610,00 530,00 Definición del suelo - SP3 SN2

Espesor t mm 65,00 55,00 10,00 Nivel de Compactación (N, M o W) - M -

Deflexión inicial δ0 (e0) mm 0,00 0,00 3,00 Angulo de apoyo 2α* º 90 -

Módulo de elasticidad inicial E N/mm2

40.000 40.000 8.436 Modulo de elasticidad Es*

MPa 2,00 1,50

Coeficiente de envejecimiento 1,00 1,00 2,50 Coeficente K2 K*2 - 0,35 -

Rigidez nominal SN Coeficente K1 K*1 - 0,15 -

Corto plazo kN/m2

- - 5.000,00 Peso específico gskN/m

318,00 -

Largo plazo kN/m2

- - 2.000,00 Coeficiente de Poisson - 0,30 -

Carga de rotura Fult kN/m - - -

Momento de rotura Mc kNm/m - - -

Deflexión máxima

Corto plazo δvult,c % 5,00 5,00 5,00

Largo plazo δvult,l % 5,00 5,00 5,00

Carga de apertura de fisura Fcc kN/m

Coeficiente de Poisson 0,20 0,20 0,20

Coeficiente de seguridad gA - 1,25 1,25 1,25

Coeficiente de seguridad gM - 1,70 1,70 1,70

Tabla A.5. Datos de partida (Op2)

Page 368: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 340 -

Resultados de programa Resultados de la norma prEN 1295-3 Error (%)Concrete Reiforced C. GRP Concrete Reiforced C. GRP Concrete Reiforced C. GRP

Ec. Variables Corto Largo Corto Largo Corto Largo Corto Largo Corto Largo Corto Largo Corto Largo Corto Largo Corto LargoA. PARAMATROS DEL SUELOA.1 Parámetros iniciales

T 3.30 Es*

2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 0,0% 0,0% 0,0%

T 3.30 K*2 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,0% 0,0% 0,0%

T 3.30 2α* 90,00 90,00 90,00 90,00 90,00 90,00 90,00 90,00 90,00 0,0% 0,0% 0,0%

T 3.30 K*1 0,15 0,15 0,15 0,15 0,15 0,15 0,15 0,15 0,15 0,0% 0,0% 0,0%

A.2 Reducción aplicable a los parámetros de cálculo3.166 Es 1,76 1,76 1,77 1,77 1,84 1,84 1,71 1,72 1,80 2,7% 2,9% 2,0%

T 3.31 Cw 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,0% 0,0% 0,0%

T 3.32 Cs 0,67 0,67 0,68 0,68 0,69 0,69 0,67 0,67 0,69 0,6% 1,2% 0,0%

T 3.33 CK1 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,0% 0,0% 0,0%

A.3 Parametros despúes de la corrección

3.167 Es 1,18 1,18 1,20 1,20 1,27 1,27 1,15 1,17 1,25 2,9% 2,5% 1,9%

3.169 K2 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 -1,7% -1,1% 1,2%

3.168 2α 60,66 60,66 61,02 61,02 62,46 62,46 60,70 61,00 62,50 -0,1% 0,0% -0,1%

3.170 K1 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,0% 0,0% 0,0%

B. CRITERIO DE RIGIDEZ(3.138) S 5,29 5,29 3,38 3,38 0,01 0,00 5,29 5,29 3,38 3,38 0,01 0,00 0,0% 0,0% 4,0%(3.145) Sc 0,03 0,03 0,05 0,05 33,61 84,03 0,03 0,03 0,05 0,05 34,39 85,98 2,8% 2,7% -2,3%

(3.146) S*c 8,97 8,97 8,95 8,95 -24,61 -75,03 8,97 8,97 8,95 8,95 -25,39 -76,98 0,0% 0,0% -3,2%

Comp. rigido rigido rigido rigido flexible flexible rigido rigido rigido rigido flexible flexibleC. CARGASC.1 Presión por efecto del relleno

Zanja estrecha3.178a C1 2,16 2,16 2,23 2,23 2,56 2,56 2,16 2,23 -0,2% -0,2%

Terraplen

3.178b C2 1,58 1,58 1,61 1,61 1,74 1,74 1,55 1,55 2,1% 3,6%

C 1,58 1,58 1,61 1,61 1,00 1,00 1,55 1,54 1,00 2,1% 4,2% 0,0%

3.177 ps 69,63 69,63 70,76 70,76 44,00 44,00 71,09 70,97 46,00 -2,1% -0,3% -4,5%

C.2 Presión por efecto de las cargas de servicio

3.179 p 21,00 21,00 21,00 21,00 21,00 21,00

C.3 Presión por efecto de las cargas de tráfico3.182 Z2 1.019,52 1.019,52 1.031,79 1.031,79 1.077,82 1.077,82 1.019,5 1.031,8 1.077,8 0,0% 0,0% 0,0%

3.181 atraffic 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 -0,1% 0,0% 0,0%

3.183 pt 21,02 21,02 21,02 21,02 21,02 21,02 21,02 21,02 21,00 0,0% 0,0% 0,1%

3.180 pt,v 21,00 21,00 21,00 21,00 21,00 21,00 21,02 21,00 21,00 -0,1% 0,0% 0,0%

C.4 Presión por efecto de las cargas superficiales

D.P. p0 0,00 0,00 0,00 0,00 0,00 0,00

3.184 pp 0,00 0,00 0,00 0,00 0,00 0,00

C.5 Presión por efecto de las cargas de construcciónpc 0,00 0,00 0,00 0,00 0,00 0,00

C.6 Presión vertical3.185 pv 90,63 90,63 91,76 91,76 65,00 65,00 92,09 91,97 67,00 -1,6% -0,2% -3,1%

C.7 Presión horizontal

3.186 ph 21,38 21,38 21,77 21,77 15,79 15,79 21,72 21,82 16,28 -1,6% -0,2% -3,1%

C.8 Presión hidrostática

3.187 pwe 13,15 13,15 13,05 13,05 12,65 12,65 13,15 13,05 12,65 0,0% 0,0% 0,0%

C.9 Presión interior

D.P. pw 0,00 0,00 0,00 0,00 0,00 0,00

C.10 Presión mediaPara cargas externas

3.188 p 69,16 69,16 69,82 69,82 53,05 53,05 70,06 69,95 54,29 -1,3% -0,2% -2,3%Para cargas externas mas presión interna

3.189 p 69,16 69,16 69,82 69,82 53,05 53,05

D. OVALIZACIÓND.1 Por cargas externas

3.191 kα 0,11 0,11 0,10 0,10 0,10 0,10

3.192 A0 1,00 1,00 1,00 1,00 1,12 1,21

3.190a Ov1 0,02 0,02 0,03 0,03 3,05 3,55 0,02 0,02 0,03 0,03 3,23 3,75 -9,5% -9,5% -4,2% -4,2% -5,8% -5,8% (1)3.190b Ov2 0,00 0,00 0,00 0,00 0,13 0,24 0,00 0,00 0,00 0,00 0,14 0,25 -6,4% -4,3% (2)

total 0,02 0,02 0,03 0,03 3,19 3,79 0,02 0,02 0,03 0,03 3,38 4,00 -9,5% -9,5% -4,2% -4,2% -6,1% -5,7% (3)D.2 Por cargas externas mas presión interna3.190a Ov1 0,02 0,02 0,03 0,03 3,05 3,55

3.190b Ov2 0,00 0,00 0,00 0,00 0,13 0,24

total 0,02 0,02 0,03 0,03 3,19 3,79E. MOMENTOS, FUERZAS NORMALES, TENSIONES Y DEFORMACIONESE.1 Momentos y axiles por cargas externas3.194 η 0,00 0,00 0,00 0,00 1,27 3,18

Momentos y axiles en la clave (C)

3.195a Kαt 0,29 0,29 0,29 0,29 0,29 0,29

3.193a Mc 1,64 1,64 1,59 1,59 0,26 0,13

3.196a Nc -10,90 -10,90 -10,79 -10,79 -7,68 -7,56

Momentos y axiles en el punto medio (S)

3.195b Kαs 0,29 0,29 0,29 0,29 0,29 0,29

J(no) -1,00 -1,00 -1,00 -1,00 0,00 0,00

3.193a Ms -1,69 -1,69 -1,64 -1,64 -0,21 -0,09

3.196b Ns -29,32 -29,32 -29,09 -29,09 -20,19 -20,19

Momentos y axiles en la base (B)

3.195c Kαb 0,38 0,38 0,37 0,37 0,37 0,37 0,38 0,38 0,37 0,37 0,37 0,37 -1,2% -1,2% 1,2% 1,2% 0,3% 0,3%

3.193a Mb 2,28 2,28 2,22 2,22 0,35 0,17

3.196c Nb -8,61 -8,61 -8,54 -8,54 -7,11 -7,23

E.2 Momentos y axiles por cargas externas y presión interna3.194 η 0,00 0,00 0,00 0,00 1,27 3,18

3.192 A0 1,00 1,00 1,00 1,00 1,12 1,21

3.199 ψ 1,00 1,00 1,00 1,00 1,00 1,00

Momentos y axiles en la clave (C)3.193a Mc(pv) 1,64 1,64 1,59 1,59 0,23 0,11

3.193a Mc(do) 0,00 0,00 0,00 0,00 0,03 0,02

3.196a Nc(pv,p) -10,90 -10,90 -10,79 -10,79 -7,68 -7,56

3.196a Nc(do) 0,00 0,00 0,00 0,00 0,12 0,08

Mc 1,64 1,64 1,59 1,59 0,26 0,13

Nc -10,90 -10,90 -10,79 -10,79 -7,56 -7,47

Momentos y axiles en el punto medio (S)

Page 369: cálculo estructural de tuberías enterradas por el método

Anexo A

Programa de cálculo del informe técnico CEN/TR 1295-3

- 341 -

Resultados de programa Resultados de la norma prEN 1295-3 Error (%)Concrete Reiforced C. GRP Concrete Reiforced C. GRP Concrete Reiforced C. GRP

Ec. Variables Corto Largo Corto Largo Corto Largo Corto Largo Corto Largo Corto Largo Corto Largo Corto Largo Corto LargoMomentos y axiles en el punto medio (S)

3.193a Ms(pv) -1,69 -1,69 -1,64 -1,64 -0,24 -0,11

3.193a Ms(do) 0,00 0,00 0,00 0,00 0,03 0,02

3.196b Ns(pv,p) -29,32 -29,32 -29,09 -29,09 -20,19 -20,19

3.196b Ns(do) 0,00 0,00 0,00 0,00 0,00 0,00

Ms -1,69 -1,69 -1,64 -1,64 -0,21 -0,09

Ns -29,32 -29,32 -29,09 -29,09 -20,19 -20,19

Momentos y axiles en la base (B)

3.193a Mb(pv) 2,28 2,28 2,22 2,22 0,32 0,15

3.193a Mb(do) 0,00 0,00 0,00 0,00 0,03 0,02

3.196c Nb(pv,p) -8,61 -8,61 -8,54 -8,54 -7,11 -7,23

3.196c Nb(do) 0,00 0,00 0,00 0,00 -0,12 -0,08

Mb 2,28 2,28 2,22 2,22 0,35 0,17

Nb -8,61 -8,61 -8,54 -8,54 -7,23 -7,32

E.3 Tensiones y deformaciones por cargas externasTensiones y deformaciones en la clave (C)

3.197 σ 2,07 2,07 2,84 2,84 14,17 6,62

3.202 εf 0,01 0,01 0,01 0,01 0,18 0,22

3.203 εt 0,00 0,00 0,00 0,00 -0,01 -0,02

3.201 ε 0,01 0,01 0,01 0,01 0,17 0,20

Tensiones y deformaciones en el punto medio (S)

3.197 σ -2,75 -2,75 -3,66 -3,66 -13,87 -7,09

3.202 εf -0,01 -0,01 -0,01 -0,01 -0,14 -0,15

3.203 εt 0,00 0,00 0,00 0,00 -0,02 -0,06

3.201 ε -0,01 -0,01 -0,01 -0,01 -0,16 -0,21

Tensiones y deformaciones en la base (B)

3.197 σ 2,98 2,98 4,07 4,07 19,25 8,99

3.202 εf 0,01 0,01 0,01 0,01 0,24 0,29

3.203 εt 0,00 0,00 0,00 0,00 -0,01 -0,02

3.201 ε 0,01 0,01 0,01 0,01 0,23 0,27

E.4 Tensiones y deformaciones por cargas externas y presion internaTensiones y deformaciones en la clave (C)

3.198 σ 2,07 2,07 2,84 2,84 14,17 6,62

3.202, 3.203 ε 0,01 0,01 0,01 0,01 0,17 0,20

Tensiones y deformaciones en el punto medio (S)

3.198 σ -2,75 -2,75 -3,66 -3,66 -13,87 -7,09

3.202, 3.203 ε -0,01 -0,01 -0,01 -0,01 -0,16 -0,21

Tensiones y deformaciones en la base (B)

3.198 σ 2,98 2,98 4,07 4,07 19,25 8,99

3.202, 3.203 ε 0,01 0,01 0,01 0,01 0,23 0,27

F. ESTABILIDAD AL PANDEOn0 2,00 2,00 2,00 2,00 3,00 3,00 2,00 2,00 2,00 2,00 3,00 3,00 0,0% 0,0% 0,0% 0,0% 0,0% 0,0%

3.204 pcr 127.320 127.320 81.541 81.541 508 308 127.308 127.308 81.529 81.529 492 300 0,0% 0,0% 0,0% 0,0% 3,2% 2,7%

D.P. Dato de partida

Tabla A.6. Comparación de resultados programa de cálculo/ejemplos del CEN/TR 1295-3 (Op2) 2

2 Los resultados de las zonas sombreadas en verde se calculan para considerar el efecto de la presión interna y

acciones externas más presión interna, y no se definen en el informe técnico CEN/TR 1295-3 Op2

Page 370: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Calculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 342 -

Page 371: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 343 -

ANEXO B RESULTADOS GRÁFICOS DE LOS MODELOS DEL

INFORME TÉCNICO CEN/TR 1295-3

Page 372: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 344 -

Page 373: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 345 -

ANEXO B. RESULTADOS GRÁFICOS DE LOS MODELOS DEL INFORME TÉCNICO CEN/TR 1295-3

B.1 INTRODUCCIÓN

De todo el conjunto de resultados obtenidos se han representado gráficamente aquellos que

definen las solicitaciones pésimas (deformación, estado tensional o carga crítica de pandeo)

de acuerdo con las hipótesis pésimas de carga definidas en el CAPÍTULO 2, para cada tipo

de tubería, tanto a corto como a largo plazo, y que son las siguientes:

- Deformación causada por la acción exclusiva de cargas externas

- Estado tensional por la acción exclusiva de cargas externas

- Estado tensional por la acción conjunta de cargas externas y presión interna

- Pandeo o colapso producido por la acción de las acciones externas y la presión

interna negativa

No se han representado gráficamente los esfuerzos (Momentos flectores y esfuerzos axiles),

como tampoco la deformación causada por la acción conjunta de las cargas externas y la

presión interna, que para los materiales plásticos puede ser en algunos casos limitante.

B.2 RESULTADOS GRÁFICOS

A continuación se presentan los resultados gráficos en cuatro apartados:

Page 374: cálculo estructural de tuberías enterradas por el método
Page 375: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 347 -

ANEXO B.2.1

Resultados gráficos para tubería de hormigón DN 500, 1.000, 1.500 y 2.000 para una instalación tipo ET1 Gs 2/4 W y N con los métodos de cálculo de las opciones 1

y 2 y altura de instalación variable

Page 376: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 348 -

Fig

ura

B.1

HA

-ET

1 O

vali

zac

ión

po

r c

arg

as

ext

ern

as a

co

rto

pla

zo (

GS 2

/4 W

)

0,0

0

0,1

0

0,2

0

0,3

0

0,4

0

0,5

0

0,6

0

0,7

0

0,8

0

0,9

0

1,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)

DN

50

0 (

Op1

)D

N 1

00

0 (

Op1

)D

N 1

50

0 (

Op1

)D

N 2

000

(O

p1)

DN

50

0 (

Op2

)D

N 1

00

0 (

Op2

)D

N 1

50

0 (

Op2

)D

N 2

000

(O

p2)

Page 377: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 349 -

Fig

ura

B.2

HA

-ET

1 O

valiz

aci

ón

po

r ca

rga

s ex

tern

as a

larg

o p

lazo

(G

S 2

/4 W

)

0,0

0

0,1

0

0,2

0

0,3

0

0,4

0

0,5

0

0,6

0

0,7

0

0,8

0

0,9

0

1,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)

DN

50

0 (

Op1

)D

N 1

000

(O

p1

)D

N 1

50

0 (

Op1

)D

N 2

00

0 (

Op1

)D

N 5

00 (

Op2

)D

N 1

000

(O

p2

)D

N 1

50

0 (

Op2

)D

N 2

00

0 (

Op2

)

Page 378: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 350 -

Fig

ura

B.3

HA

-ET

1 O

valiz

ació

n p

or

car

ga

s e

xte

rnas

a c

ort

o p

lazo

(G

S 2

/4 N

)

0,0

0

0,1

0

0,2

0

0,3

0

0,4

0

0,5

0

0,6

0

0,7

0

0,8

0

0,9

0

1,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)

DN

50

0 (

Op1

)D

N 1

00

0 (

Op1

)D

N 1

50

0 (

Op1

)D

N 2

000

(O

p1)

DN

50

0 (

Op2

)D

N 1

00

0 (

Op2

)D

N 1

50

0 (

Op2

)D

N 2

000

(O

p2)

Page 379: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 351 -

Fig

ura

B.4

HA

-ET

1 O

vali

zaci

ón

po

r ca

rgas

ex

tern

as

a la

rgo

pla

zo (

GS 2

/4 N

)

0,0

0

0,1

0

0,2

0

0,3

0

0,4

0

0,5

0

0,6

0

0,7

0

0,8

0

0,9

0

1,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)

DN

50

0 (

Op1

)D

N 1

000

(O

p1

)D

N 1

50

0 (

Op1

)D

N 2

00

0 (

Op1

)D

N 5

00 (

Op2

)D

N 1

000

(O

p2

)D

N 1

50

0 (

Op2

)D

N 2

00

0 (

Op2

)

B.1, B.2, B.3 y B.4 Como se trata de tuberías de comportamiento rígido, la ovalización prevista es prácticamente nula y no está influenciada por las condiciones del relleno porque es la tubería exclusivamente la que soporta las cargas.

Page 380: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 352 -

Fig

ura

B.5

HA

-ET

1 T

én

sió

n e

n C

, S

y B

po

r ca

rga

s ex

tern

as

a c

ort

o p

lazo

(G

S 2

/4 W

)

(en

la

su

pe

rfic

ie in

teri

or

de

l tu

bo

)

-20,0

0

-15,0

0

-10,0

0

-5,0

0

0,0

0

5,0

0

10,0

0

15,0

0

20,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 5

00 (

Op1)

C D

N 1

000 (

Op

1)

C D

N 1

500 (

Op1)

C D

N 2

000

(O

p1)

S D

N 5

00 (

Op1)

S D

N 1

00

0 (

Op1)

S D

N 1

500 (

Op1)

S D

N 2

000 (

Op1)

B D

N 5

00 (

Op1)

B D

N 1

00

0 (

Op1)

B D

N 1

500 (

Op1)

B D

N 2

000 (

Op1)

C D

N 5

00 (

Op2)

C D

N 1

000 (

Op

2)

C D

N 1

500 (

Op2)

C D

N 2

000

(O

p2)

S D

N 5

00 (

Op2)

S D

N 1

00

0 (

Op2)

S D

N 1

500 (

Op2)

S D

N 2

000 (

Op2)

B D

N 5

00 (

Op2)

B D

N 1

00

0 (

Op2)

B D

N 1

500 (

Op2)

B D

N 2

000 (

Op2)

Page 381: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 353 -

Fig

ura

B.6

HA

-ET

1

Tén

sió

n e

n C

, S

y B

po

r ca

rgas

ex

tern

as

a la

rgo

pla

zo (

GS 2

/4 W

)

(en

la s

up

erfi

cie

inte

rio

r d

el t

ub

o)

-20,0

0

-15,0

0

-10,0

0

-5,0

0

0,0

0

5,0

0

10,0

0

15,0

0

20,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 5

00 (

Op1)

C D

N 1

000 (

Op

1)

C D

N 1

500 (

Op1)

C D

N 2

000

(O

p1)

S D

N 5

00 (

Op1)

S D

N 1

00

0 (

Op1)

S D

N 1

500 (

Op1)

S D

N 2

000 (

Op1)

B D

N 5

00 (

Op1)

B D

N 1

00

0 (

Op1)

B D

N 1

500 (

Op1)

B D

N 2

000 (

Op1)

C D

N 5

00 (

Op2)

C D

N 1

000 (

Op

2)

C D

N 1

500 (

Op2)

C D

N 2

000

(O

p2)

S D

N 5

00 (

Op2)

S D

N 1

00

0 (

Op2)

S D

N 1

500 (

Op2)

S D

N 2

000 (

Op2)

B D

N 5

00 (

Op2)

B D

N 1

00

0 (

Op2)

B D

N 1

500 (

Op2)

B D

N 2

000 (

Op2)

B.5 y B6. La opción 2 subestima las tensiones máximas establecidas por la opción 1 para alturas de cobertura menores o iguales a 3 m, por encima de 3 m es la opción 1 la que subestima las tensiones máximas establecidas por la opción 2

Page 382: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 354 -

Fig

ura

B.7

HA

-ET

1 T

énsi

ón

en

C, S

y B

po

r c

arg

as e

xte

rna

s a

co

rto

pla

zo (

GS 2

/4 N

)

(en

la

su

pe

rfic

ie in

teri

or

de

l tu

bo

)

-20,0

0

-15,0

0

-10,0

0

-5,0

0

0,0

0

5,0

0

10,0

0

15,0

0

20,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 5

00 (

Op1)

C D

N 1

000 (

Op

1)

C D

N 1

500 (

Op1)

C D

N 2

000

(O

p1)

S D

N 5

00 (

Op1)

S D

N 1

00

0 (

Op1)

S D

N 1

500 (

Op1)

S D

N 2

000 (

Op1)

B D

N 5

00 (

Op1)

B D

N 1

00

0 (

Op1)

B D

N 1

500 (

Op1)

B D

N 2

000 (

Op1)

C D

N 5

00 (

Op2)

C D

N 1

000 (

Op

2)

C D

N 1

500 (

Op2)

C D

N 2

000

(O

p2)

S D

N 5

00 (

Op2)

S D

N 1

00

0 (

Op2)

S D

N 1

500 (

Op2)

S D

N 2

000 (

Op2)

B D

N 5

00 (

Op2)

B D

N 1

00

0 (

Op2)

B D

N 1

500 (

Op2)

B D

N 2

000 (

Op2)

Page 383: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 355 -

Fig

ura

B.8

HA

-ET

1

Tén

sió

n e

n C

, S y

B p

or

carg

as e

xte

rna

s a

larg

o p

lazo

(G

S 2

/4 N

)

(en

la s

up

erfi

cie

inte

rio

r d

el t

ub

o)

-20,0

0

-15,0

0

-10,0

0

-5,0

0

0,0

0

5,0

0

10,0

0

15,0

0

20,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 5

00 (

Op1)

C D

N 1

000 (

Op

1)

C D

N 1

500 (

Op1)

C D

N 2

000

(O

p1)

S D

N 5

00 (

Op1)

S D

N 1

00

0 (

Op1)

S D

N 1

500 (

Op1)

S D

N 2

000 (

Op1)

B D

N 5

00 (

Op1)

B D

N 1

00

0 (

Op1)

B D

N 1

500 (

Op1)

B D

N 2

000 (

Op1)

C D

N 5

00 (

Op2)

C D

N 1

000 (

Op

2)

C D

N 1

500 (

Op2)

C D

N 2

000

(O

p2)

S D

N 5

00 (

Op2)

S D

N 1

00

0 (

Op2)

S D

N 1

500 (

Op2)

S D

N 2

000 (

Op2)

B D

N 5

00 (

Op2)

B D

N 1

00

0 (

Op2)

B D

N 1

500 (

Op2)

B D

N 2

000 (

Op2)

B.7 y B.8 En instalaciones no compactadas el efecto descrito anteriormente, se reproduce para todas las instalaciones estudiadas, es decir que la opción 2 subestima, para todos los casos las tensiones establecidas por la opción 1

Page 384: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 356 -

Fig

ura

B.9

HA

-ET

1

Tén

sió

n e

n C

, S

y B

po

r ca

rgas

ex

tern

as

mas

pre

sió

n in

tern

a a

co

rto

pla

zo (

GS 2

/4 W

)

(en

la s

up

erfi

cie

inte

rio

r d

el t

ub

o)

-10,0

0

-5,0

0

0,0

0

5,0

0

10,0

0

15,0

0

20,0

0

25,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 5

00 (

Op1)

C D

N 1

000 (

Op1)

C D

N 1

500 (

Op1)

C D

N 2

000 (

Op

1)

S D

N 5

00 (

Op1)

S D

N 1

000 (

Op1)

S D

N 1

500 (

Op1)

S D

N 2

00

0 (

Op1)

B D

N 5

00 (

Op1)

B D

N 1

000 (

Op1)

B D

N 1

500 (

Op1)

B D

N 2

00

0 (

Op1)

C D

N 5

00 (

Op2)

C D

N 1

000 (

Op2)

C D

N 1

500 (

Op2)

C D

N 2

000 (

Op

2)

S D

N 5

00 (

Op2)

S D

N 1

000 (

Op2)

S D

N 1

500 (

Op2)

S D

N 2

00

0 (

Op2)

B D

N 5

00 (

Op2)

B D

N 1

000 (

Op2)

B D

N 1

500 (

Op2)

B D

N 2

00

0 (

Op2)

Page 385: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 357 -

Fig

ura

B.1

0 H

A-E

T1

T

énsi

ón

en

C, S

y B

po

r ca

rgas

ex

tern

as

ma

s p

resi

ón

inte

rna

a l

arg

o p

lazo

(G

S 2

/4 W

)

(en

la s

up

erfi

cie

inte

rio

r d

el t

ub

o)

-10,0

0

-5,0

0

0,0

0

5,0

0

10,0

0

15,0

0

20,0

0

25,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 5

00 (

Op1)

C D

N 1

000 (

Op1)

C D

N 1

500 (

Op1

)C

DN

2000 (

Op1)

S D

N 5

00 (

Op1)

S D

N 1

000 (

Op1)

S D

N 1

500

(O

p1)

S D

N 2

000 (

Op

1)

B D

N 5

00 (

Op1)

B D

N 1

000 (

Op1)

B D

N 1

500

(O

p1)

B D

N 2

000 (

Op

1)

C D

N 5

00 (

Op2)

C D

N 1

000 (

Op2)

C D

N 1

500 (

Op2

)C

DN

2000 (

Op2)

S D

N 5

00 (

Op2)

S D

N 1

000 (

Op2)

S D

N 1

500

(O

p2)

S D

N 2

000 (

Op

2)

B D

N 5

00 (

Op2)

B D

N 1

000 (

Op2)

B D

N 1

500

(O

p2)

B D

N 2

000 (

Op

2)

B.9 y B.10 Se repite el efecto descrito en la figura B.6

Page 386: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 358 -

Fig

ura

B.1

1 H

A-E

T1

T

éns

ión

en

C, S

y B

po

r ca

rgas

ex

tern

as

mas

pre

sió

n in

tern

a a

co

rto

pla

zo (

GS 2

/4 N

)

(en

la s

up

erfi

cie

inte

rio

r d

el t

ub

o)

-10,0

0

-5,0

0

0,0

0

5,0

0

10,0

0

15,0

0

20,0

0

25,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 5

00 (

Op1)

C D

N 1

000 (

Op1)

C D

N 1

500 (

Op1)

C D

N 2

000 (

Op

1)

S D

N 5

00 (

Op1)

S D

N 1

000 (

Op1)

S D

N 1

500 (

Op1)

S D

N 2

00

0 (

Op1)

B D

N 5

00 (

Op1)

B D

N 1

000 (

Op1)

B D

N 1

500 (

Op1)

B D

N 2

00

0 (

Op1)

C D

N 5

00 (

Op2)

C D

N 1

000 (

Op2)

C D

N 1

500 (

Op2)

C D

N 2

000 (

Op

2)

S D

N 5

00 (

Op2)

S D

N 1

000 (

Op2)

S D

N 1

500 (

Op2)

S D

N 2

00

0 (

Op2)

B D

N 5

00 (

Op2)

B D

N 1

000 (

Op2)

B D

N 1

500 (

Op2)

B D

N 2

00

0 (

Op2)

Page 387: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 359 -

Fig

ura

B.1

2 H

A-E

T1

nsi

ón

en

C,

S y

B p

or

car

ga

s e

xte

rnas

ma

s p

resi

ón

in

tern

a a

larg

o p

lazo

(G

S 2

/4 N

)

(en

la s

up

erfi

cie

inte

rio

r d

el t

ub

o)

-10,0

0

-5,0

0

0,0

0

5,0

0

10,0

0

15,0

0

20,0

0

25,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 5

00 (

Op1)

C D

N 1

000 (

Op1)

C D

N 1

500 (

Op1

)C

DN

2000 (

Op1)

S D

N 5

00 (

Op1)

S D

N 1

000 (

Op1)

S D

N 1

500

(O

p1)

S D

N 2

000 (

Op

1)

B D

N 5

00 (

Op1)

B D

N 1

000 (

Op1)

B D

N 1

500

(O

p1)

B D

N 2

000 (

Op

1)

C D

N 5

00 (

Op2)

C D

N 1

000 (

Op2)

C D

N 1

500 (

Op2

)C

DN

2000 (

Op2)

S D

N 5

00 (

Op2)

S D

N 1

000 (

Op2)

S D

N 1

500

(O

p2)

S D

N 2

000 (

Op

2)

B D

N 5

00 (

Op2)

B D

N 1

000 (

Op2)

B D

N 1

500

(O

p2)

B D

N 2

000 (

Op

2)

B.11 y B.12 Se repite el efecto descrito en la figura B.8

Page 388: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 360 -

Fig

ura

B.1

3 H

A-E

T1

Car

ga

crí

tica

de

pa

nd

eo

a c

ort

o p

lazo

(G

S 2

/4 W

)

0,0

0

10,0

0

20,0

0

30,0

0

40,0

0

50,0

0

60,0

0

70,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Carga crítica de pandeo (MPa)

DN

500

(O

p1)

DN

10

00

(O

p1)

DN

15

00 (

Op

1)

DN

200

0 (

Op1

)

DN

500

(O

p2)

DN

10

00

(O

p2)

DN

15

00 (

Op

2)

DN

200

0 (

Op2

)

Page 389: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 361 -

Fig

ura

B.1

4 H

A-E

T1

C

arg

a cr

ític

a d

e p

and

eo a

lar

go

pla

zo (

GS 2

/4 W

)

0,0

0

10,0

0

20,0

0

30,0

0

40,0

0

50,0

0

60,0

0

70,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Carga crítica de pandeo (MPa)

DN

500

(O

p1)

DN

10

00

(O

p1)

DN

15

00 (

Op

1)

DN

200

0 (

Op1

)

DN

500

(O

p2)

DN

10

00

(O

p2)

DN

15

00 (

Op

2)

DN

200

0 (

Op2

)

B.13 y B.14 Los resultados obtenidos por una y otra opción son comparables y representan correctamente el comportamiento de las tuberías rígidas frente a las cargas de pandeo.

Page 390: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 362 -

Fig

ura

B.1

5 H

A-E

T1

C

arg

a c

ríti

ca d

e p

an

de

o a

co

rto

pla

zo (

GS 2

/4 N

)

0,0

0

10,0

0

20,0

0

30,0

0

40,0

0

50,0

0

60,0

0

70,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Carga crítica de pandeo (MPa)

DN

500

(O

p1)

DN

10

00

(O

p1)

DN

15

00 (

Op

1)

DN

200

0 (

Op1

)

DN

500

(O

p2)

DN

10

00

(O

p2)

DN

15

00 (

Op

2)

DN

200

0 (

Op2

)

Page 391: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 363 -

Fig

ura

B.1

6 H

A-E

T1

Car

ga

crít

ica

de

pan

deo

a l

arg

o p

lazo

(G

S 2

/4 N

)

0,0

0

10,0

0

20,0

0

30,0

0

40,0

0

50,0

0

60,0

0

70,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Carga crítica de pandeo (MPa)

DN

500

(O

p1)

DN

10

00

(O

p1)

DN

15

00 (

Op

1)

DN

200

0 (

Op1

)

DN

500

(O

p2)

DN

10

00

(O

p2)

DN

15

00 (

Op

2)

DN

200

0 (

Op2

)

B.15 y B.16 Como se trata de una tubería de comportamiento rígido, los valores de la carga crítica de pandeo prácticamente son constantes y no se ven influidos por la profundidad de instalación ni por el nivel de compactación del relleno

Page 392: cálculo estructural de tuberías enterradas por el método
Page 393: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 365 -

ANEXO B.2.2

Resultados gráficos para tubería de acero DN 813, 1.016, 1.626 y 2.032 para una instalación tipo ET2 Gs 2/4 W y N con los métodos de cálculo de las opciones 1 y 2 y

altura de instalación variable

Page 394: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 366 -

Fig

ura

B.1

7 A

C-E

T2

O

vali

zac

ión

po

r c

arg

as

ext

ern

as a

co

rto

pla

zo (

GS 2

/4 W

)

0,0

0

0,5

0

1,0

0

1,5

0

2,0

0

2,5

0

3,0

0

3,5

0

4,0

0

4,5

0

5,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)

DN

81

3 (

Op1

)D

N 1

01

6 (

Op1

)D

N 1

62

6 (

Op1

)D

N 2

032

(O

p1)

DN

81

3 (

Op2

)D

N 1

01

6 (

Op2

)D

N 1

62

6 (

Op2

)D

N 2

032

(O

p2)

Page 395: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 367 -

Fig

ura

B.1

8 A

C-E

T2

Ova

liza

ció

n p

or

carg

as

exte

rnas

a la

rgo

pla

zo (

GS 2

/4 W

)

0,0

0

0,5

0

1,0

0

1,5

0

2,0

0

2,5

0

3,0

0

3,5

0

4,0

0

4,5

0

5,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)

DN

81

3 (

Op1

)D

N 1

016

(O

p1

)D

N 1

62

6 (

Op1

)D

N 2

03

2 (

Op1

)

DN

81

3 (

Op2

)D

N 1

016

(O

p2

)D

N 1

62

6 (

Op2

)D

N 2

03

2 (

Op2

)

B.17 y B.18 Los resultados definidos por la opción 1 para altura de cobertura igual a 1 son superiores a los definidos por la opción 2, en el resto de casos los resultados obtenidos por la opción 2 son mayores que los obtenidos por la opción 1. A corto y largo plazo los resultados son prácticamente iguales.

Page 396: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 368 -

Fig

ura

B.1

9 A

C-E

T2

Ova

lizac

ión

po

r c

arg

as

ext

ern

as a

co

rto

pla

zo (

GS 2

/4 N

)

0,0

0

1,0

0

2,0

0

3,0

0

4,0

0

5,0

0

6,0

0

7,0

0

8,0

0

9,0

0

10,0

0

11,0

0

12,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)D

N 8

13 (

Op

1)

DN

81

3 (

Op2

)

DN

10

16

(O

p1)

DN

10

16 (

Op

2)

DN

16

26

(O

p1)

DN

16

26 (

Op

2)

DN

20

32

(O

p1)

DN

20

32 (

Op

2)

DN

81

3 (

Op

1)

ord

en

DN

16

26 (

Op

1)

1ºo

rde

n

DN

20

32

(O

p1)

1ºo

rden

Page 397: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 369 -

Fig

ura

B.2

0 A

C-E

T2

O

vali

zaci

ón

po

r ca

rgas

ex

tern

as

a la

rgo

pla

zo (

GS 2

/4 N

)

0,0

0

1,0

0

2,0

0

3,0

0

4,0

0

5,0

0

6,0

0

7,0

0

8,0

0

9,0

0

10,0

0

11,0

0

12,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)D

N 8

13

(O

p1)

DN

10

16

(O

p1)

DN

162

6 (

Op1

)D

N 2

032

(O

p1)

DN

813

(O

p2)

DN

10

16

(O

p2)

DN

162

6 (

Op2

)D

N 2

032

(O

p2)

DN

813

(O

p1)

1ºo

rden

DN

16

26

(O

p1)

1ºo

rde

n

DN

203

2 (

Op1

) 1ºo

rde

n

B.19 y B.20 En las instalaciones con rellenos no compactados los resultados definidos por la opción 1 se incrementan porque en el cálculo de los mismos se utiliza la teoría de 2º orden que amplifica los resultados obtenidos mediante la teoría de 1º orden con un coeficiente de amplificación llamado (ev). Cuando se utiliza la teoría de 2º orden la ovalización admisible sube hasta el 9%, mientras que en la opción 2 y en la opción 1 (1º orden) el valor admisible es el 5%.

Page 398: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 370 -

Fig

ura

B.2

1 A

C-E

T2

ns

ión

en

C,

S y

B p

or

carg

as

exte

rna

s a

co

rto

pla

zo (

GS 2

/4 W

)

(en

la

su

pe

rfic

ie in

teri

or

de

l tu

bo

)

-150,0

0

-100,0

0

-50,0

0

0,0

0

50,0

0

100,0

0

150,0

0

200,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 8

13 (

Op1)

C D

N 1

016 (

Op1)

C D

N 1

626 (

Op1)

C D

N 2

032 (

Op1)

S D

N 8

13 (

Op1)

S D

N 1

016 (

Op1)

S D

N 1

626 (

Op

1)

S D

N 2

032 (

Op1)

B D

N 8

13 (

Op1)

B D

N 1

016 (

Op1)

B D

N 1

626 (

Op

1)

B D

N 2

032 (

Op1)

C D

N 8

13 (

Op2)

C D

N 1

016 (

Op2)

C D

N 1

626 (

Op2)

C D

N 2

032 (

Op2)

S D

N 8

13 (

Op2)

S D

N 1

016 (

Op2)

S D

N 1

626 (

Op

2)

S D

N 2

032 (

Op2)

B D

N 8

13 (

Op2)

B D

N 1

016 (

Op2)

B D

N 1

626 (

Op

2)

B D

N 2

032 (

Op2)

Page 399: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 371 -

Fig

ura

B.2

2 A

C-E

T2

Tén

sió

n e

n C

, S

y B

po

r ca

rgas

ex

tern

as

a la

rgo

pla

zo (

GS 2

/4 W

)

(en

la s

up

erfi

cie

inte

rio

r d

el t

ub

o)

-150,0

0

-100,0

0

-50,0

0

0,0

0

50,0

0

100,0

0

150,0

0

200,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 8

13 (

Op1)

C D

N 1

016 (

Op1)

C D

N 1

626 (

Op1)

C D

N 2

032 (

Op1)

S D

N 8

13 (

Op1)

S D

N 1

016 (

Op1)

S D

N 1

626 (

Op

1)

S D

N 2

032 (

Op1)

B D

N 8

13 (

Op1)

B D

N 1

016 (

Op1)

B D

N 1

626 (

Op

1)

B D

N 2

032 (

Op1)

C D

N 8

13 (

Op2)

C D

N 1

016 (

Op2)

C D

N 1

626 (

Op2)

C D

N 2

032 (

Op2)

S D

N 8

13 (

Op2)

S D

N 1

016 (

Op2)

S D

N 1

626 (

Op

2)

S D

N 2

032 (

Op2)

B D

N 8

13 (

Op2)

B D

N 1

016 (

Op2)

B D

N 1

626 (

Op

2)

B D

N 2

032 (

Op2)

B.21 y B.22 Del mismo modo que ocurre en las ovalizaciones las tensiones definidas por la opción 1 son mayores que las de la opción 2 para instalaciones someras (150/50 MPa para h = 1 m y DN 2000) y el criterio se revierte cuando se va incrementando la profundidad de instalación (40/70 MPa para h = 5 m y DN 2.000).

Page 400: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 372 -

Fig

ura

B.2

3 A

C-E

T2

T

énsi

ón

en

C, S

y B

po

r c

arg

as e

xte

rna

s a

co

rto

pla

zo (

GS 2

/4 N

)

(en

la

su

pe

rfic

ie in

teri

or

de

l tu

bo

)

-600,0

0

-400,0

0

-200,0

0

0,0

0

200,0

0

400,0

0

600,0

0

800,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 8

13 (

Op1)

C D

N 1

016 (

Op1)

C D

N 1

626 (

Op1)

C D

N 2

032 (

Op1)

S D

N 8

13 (

Op1)

S D

N 1

016 (

Op1)

S D

N 1

626 (

Op

1)

S D

N 2

032 (

Op1)

B D

N 8

13 (

Op1)

B D

N 1

016 (

Op1)

B D

N 1

626 (

Op

1)

B D

N 2

032 (

Op1)

C D

N 8

13 (

Op2)

C D

N 1

016 (

Op2)

C D

N 1

626 (

Op2)

C D

N 2

032 (

Op2)

S D

N 8

13 (

Op2)

S D

N 1

016 (

Op2)

S D

N 1

626 (

Op

2)

S D

N 2

032 (

Op2)

B D

N 8

13 (

Op2)

B D

N 1

016 (

Op2)

B D

N 1

626 (

Op

2)

B D

N 2

032 (

Op2)

Page 401: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 373 -

Fig

ura

B.2

4 A

C-E

T2

T

éns

ión

en

C, S

y B

po

r ca

rgas

ex

tern

as

a la

rgo

pla

zo (

GS 2

/4 N

)

(en

la s

up

erfi

cie

inte

rio

r d

el t

ub

o)

-600,0

0

-400,0

0

-200,0

0

0,0

0

200,0

0

400,0

0

600,0

0

800,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 8

13 (

Op1)

C D

N 1

016 (

Op1)

C D

N 1

626 (

Op1)

C D

N 2

032 (

Op1)

S D

N 8

13 (

Op1)

S D

N 1

016 (

Op1)

S D

N 1

626 (

Op

1)

S D

N 2

032 (

Op1)

B D

N 8

13 (

Op1)

B D

N 1

016 (

Op1)

B D

N 1

626 (

Op

1)

B D

N 2

032 (

Op1)

C D

N 8

13 (

Op2)

C D

N 1

016 (

Op2)

C D

N 1

626 (

Op2)

C D

N 2

032 (

Op2)

S D

N 8

13 (

Op2)

S D

N 1

016 (

Op2)

S D

N 1

626 (

Op

2)

S D

N 2

032 (

Op2)

B D

N 8

13 (

Op2)

B D

N 1

016 (

Op2)

B D

N 1

626 (

Op

2)

B D

N 2

032 (

Op2)

B.23 y B.24 En las instalaciones con rellenos no compactados el efecto descrito anteriormente (ver figura B.22) se acentúa en su primera etapa debido a que las tensiones definidas por la opción 1 se corresponden a las obtenidas mediante la teoría de 2º orden, en donde se emplea el coeficiente de amplificación (em) sobre los momentos y se recalculan las tensiones a partir de estos (600/220 MPa para h = 1 m y DN 2000) manteniéndose invariante el método de cálculo de la opción 2.

Page 402: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 374 -

Fig

ura

B.2

5 A

C-E

T2

Tén

sió

n e

n C

, S

y B

po

r ca

rgas

ex

tern

as

mas

pre

sió

n in

tern

a a

co

rto

pla

zo (

GS 2

/4 W

)

(en

la s

up

erfi

cie

inte

rio

r d

el t

ub

o)

-100,0

0

-50,0

0

0,0

0

50,0

0

100,0

0

150,0

0

200,0

0

250,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 8

13 (

Op1)

C D

N 1

016 (

Op1)

C D

N 1

626 (

Op1)

C D

N 2

032 (

Op1)

S D

N 8

13 (

Op1)

S D

N 1

016 (

Op1

)S

DN

1626 (

Op1)

S D

N 2

032 (

Op1)

B D

N 8

13 (

Op1)

B D

N 1

016 (

Op1

)B

DN

1626 (

Op1)

B D

N 2

032 (

Op1)

C D

N 8

13 (

Op2)

C D

N 1

016 (

Op2)

C D

N 1

626 (

Op2)

C D

N 2

032 (

Op2)

S D

N 8

13 (

Op2)

S D

N 1

016 (

Op2

)S

DN

1626 (

Op2)

S D

N 2

032 (

Op2)

B D

N 8

13 (

Op2)

B D

N 1

016 (

Op2

)B

DN

1626 (

Op2)

B D

N 2

032 (

Op2)

Page 403: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 375 -

Fig

ura

B.2

6 A

C-E

T2

T

énsi

ón

en

C, S

y B

po

r ca

rgas

ex

tern

as

ma

s p

resi

ón

inte

rna

a l

arg

o p

lazo

(G

S 2

/4 W

)

(en

la s

up

erfi

cie

inte

rio

r d

el t

ub

o)

-100,0

0

-50,0

0

0,0

0

50,0

0

100,0

0

150,0

0

200,0

0

250,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 8

13 (

Op1)

C D

N 1

016 (

Op1)

C D

N 1

626 (

Op1

)C

DN

2032 (

Op1)

S D

N 8

13 (

Op1)

S D

N 1

016 (

Op1)

S D

N 1

626

(O

p1)

S D

N 2

032 (

Op

1)

B D

N 8

13 (

Op1)

B D

N 1

016 (

Op1)

B D

N 1

626

(O

p1)

B D

N 2

032 (

Op

1)

C D

N 8

13 (

Op2)

C D

N 1

016 (

Op2)

C D

N 1

626 (

Op2

)C

DN

2032 (

Op2)

S D

N 8

13 (

Op2)

S D

N 1

016 (

Op2)

S D

N 1

626

(O

p2)

S D

N 2

032 (

Op

2)

B D

N 8

13 (

Op2)

B D

N 1

016 (

Op2)

B D

N 1

626

(O

p2)

B D

N 2

032 (

Op

2)

B.25 y B.26 Del mismo modo que ocurre para cargas externas, las tensiones definidas por la opción 1 son mayores que los de la opción 2 para instalaciones someras (230/100 MPa para h = 1 m y DN 2000) y el criterio se revierte cuando se va incrementando la profundidad de instalación (70/100 MPa para h = 5 m y DN 2.000).

Page 404: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 376 -

Fig

ura

B.2

7 A

C-E

T2

T

éns

ión

en

C, S

y B

po

r ca

rgas

ex

tern

as

mas

pre

sió

n in

tern

a a

co

rto

pla

zo (

GS 2

/4 N

)

(en

la s

up

erfi

cie

inte

rio

r d

el t

ub

o)

-300,0

0

-200,0

0

-100,0

0

0,0

0

100,0

0

200,0

0

300,0

0

400,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 8

13 (

Op1)

C D

N 1

016 (

Op1)

C D

N 1

626 (

Op1)

C D

N 2

032 (

Op1)

S D

N 8

13 (

Op1)

S D

N 1

016 (

Op1

)S

DN

1626 (

Op1)

S D

N 2

032 (

Op1)

B D

N 8

13 (

Op1)

B D

N 1

016 (

Op1

)B

DN

1626 (

Op1)

B D

N 2

032 (

Op1)

C D

N 8

13 (

Op2)

C D

N 1

016 (

Op2)

C D

N 1

626 (

Op2)

C D

N 2

032 (

Op2)

S D

N 8

13 (

Op2)

S D

N 1

016 (

Op2

)S

DN

1626 (

Op2)

S D

N 2

032 (

Op2)

B D

N 8

13 (

Op2)

B D

N 1

016 (

Op2

)B

DN

1626 (

Op2)

B D

N 2

032 (

Op2)

Page 405: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 377 -

Fig

ura

B.2

8 A

C-E

T2

nsi

ón

en

C,

S y

B p

or

car

ga

s e

xte

rnas

ma

s p

resi

ón

in

tern

a a

larg

o p

lazo

(G

S 2

/4 N

)

(en

la s

up

erfi

cie

inte

rio

r d

el t

ub

o)

-300,0

0

-200,0

0

-100,0

0

0,0

0

100,0

0

200,0

0

300,0

0

400,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 8

13 (

Op1)

C D

N 1

016 (

Op1)

C D

N 1

626 (

Op1

)C

DN

2032 (

Op1)

S D

N 8

13 (

Op1)

S D

N 1

016 (

Op1)

S D

N 1

626

(O

p1)

S D

N 2

032 (

Op

1)

B D

N 8

13 (

Op1)

B D

N 1

016 (

Op1)

B D

N 1

626

(O

p1)

B D

N 2

032 (

Op

1)

C D

N 8

13 (

Op2)

C D

N 1

016 (

Op2)

C D

N 1

626 (

Op2

)C

DN

2032 (

Op2)

S D

N 8

13 (

Op2)

S D

N 1

016 (

Op2)

S D

N 1

626

(O

p2)

S D

N 2

032 (

Op

2)

B D

N 8

13 (

Op2)

B D

N 1

016 (

Op2)

B D

N 1

626

(O

p2)

B D

N 2

032 (

Op

2)

B.27 y B.28 En las instalaciones con rellenos no compactados el efecto descrito anteriormente (ver figura B.22) se reduce en su primera etapa debido a que las tensiones definidas por la opción 1 se corresponden a las obtenidas mediante la teoría de 2º orden al considerarse en este caso el coeficiente de reducción de tensiones (fRR) debido al restablecimiento del redondeo (300/150 MPa para h = 1 m y DN 2000), manteniéndose invariante el método de cálculo de la opción 2.

Page 406: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 378 -

Fig

ura

B.2

9 A

C-E

T2

Car

ga

crí

tica

de

pa

nd

eo

a c

ort

o p

lazo

(G

S 2

/4 W

)

0,0

0

0,2

0

0,4

0

0,6

0

0,8

0

1,0

0

1,2

0

1,4

0

1,6

0

1,8

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Carga crítica de pandeo (MPa)

DN

81

3 (

Op1

)D

N 1

01

6 (

Op

1)

DN

162

6 (

Op1

)D

N 2

03

2 (

Op

1)

DN

81

3 (

Op2

)D

N 1

01

6 (

Op

2)

DN

162

6 (

Op2

)D

N 2

03

2 (

Op

2)

Page 407: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 379 -

Fig

ura

B.3

0 A

C-E

T2

C

arg

a cr

ític

a d

e p

and

eo a

lar

go

pla

zo (

GS 2

/4 W

)

0,0

0

0,2

0

0,4

0

0,6

0

0,8

0

1,0

0

1,2

0

1,4

0

1,6

0

1,8

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Carga crítica de pandeo (MPa)

DN

81

3 (

Op1

)D

N 1

01

6 (

Op

1)

DN

162

6 (

Op1

)D

N 2

03

2 (

Op

1)

DN

81

3 (

Op2

)D

N 1

01

6 (

Op

2)

DN

162

6 (

Op2

)D

N 2

03

2 (

Op

2)

B.29 y B.30 Los resultados obtenidos para las cargas criticas de pandeo son comparables entre sí a pesar de que la opción 1 establezca las cargas variables en función de la profundidad de instalación y la opción 2 las definas constantes porque aproximadamente la opción 2 estable el promedio de los resultados obtenidos por la opción 1 para las profundidades de instalación.

Page 408: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 380 -

Fig

ura

B.3

1 A

C-E

T2

C

arg

a c

ríti

ca d

e p

an

de

o a

co

rto

pla

zo (

GS 2

/4 N

)

0,0

0

0,2

0

0,4

0

0,6

0

0,8

0

1,0

0

1,2

0

1,4

0

1,6

0

1,8

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Carga crítica de pandeo (MPa)

DN

81

3 (

Op1

)D

N 1

01

6 (

Op

1)

DN

162

6 (

Op1

)D

N 2

03

2 (

Op

1)

DN

81

3 (

Op2

)D

N 1

01

6 (

Op

2)

DN

162

6 (

Op2

)D

N 2

03

2 (

Op

2)

Page 409: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 381 -

Fig

ura

B.3

2 A

C-E

T2

Car

ga

crít

ica

de

pan

deo

a l

arg

o p

lazo

(G

S 2

/4 N

)

0,0

0

0,2

0

0,4

0

0,6

0

0,8

0

1,0

0

1,2

0

1,4

0

1,6

0

1,8

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Carga crítica de pandeo (MPa)

DN

81

3 (

Op1

)D

N 1

01

6 (

Op

1)

DN

162

6 (

Op1

)D

N 2

03

2 (

Op

1)

DN

81

3 (

Op2

)D

N 1

01

6 (

Op

2)

DN

162

6 (

Op2

)D

N 2

03

2 (

Op

2)

B.31 y B.32 En las instalaciones con rellenos no compactados el ajuste no es tan bueno como en el caso anterior (ver figura B.30) porque los resultados obtenidos por la opción 1 son en la práctica totalidad de los casos menores a los establecidos por la opción 2.

Page 410: cálculo estructural de tuberías enterradas por el método
Page 411: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 383 -

ANEXO B.2.3

Resultados gráficos para tubería de polietileno DN 250, 500, 1.000 y 1.600 para una instalación tipo ET2 Gs 2/4 W y N con los métodos de cálculo de las Opciones 1 y 2

y altura de instalación variable

Page 412: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 384 -

Fig

ura

B.3

3 P

E-E

T2

Ova

liza

ció

n p

or

car

ga

s e

xte

rnas

a c

ort

o p

lazo

(G

S 2

/4 W

)

0,0

0

0,5

0

1,0

0

1,5

0

2,0

0

2,5

0

3,0

0

3,5

0

4,0

0

4,5

0

5,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)

DN

25

0 (

Op1

)D

N 5

00

(O

p1)

DN

100

0 (

Op1

)D

N 1

600

(O

p1)

DN

25

0 (

Op2

)D

N 5

00

(O

p2)

DN

100

0 (

Op2

)D

N 1

600

(O

p2)

Page 413: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 385 -

Fig

ura

B.3

4 P

E-E

T2

Ova

liza

ció

n p

or

carg

as

exte

rnas

a la

rgo

pla

zo (

GS 2

/4 W

)

0,0

0

0,5

0

1,0

0

1,5

0

2,0

0

2,5

0

3,0

0

3,5

0

4,0

0

4,5

0

5,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)

DN

25

0 (

Op1

)D

N 5

00

(O

p1)

DN

100

0 (

Op1

)D

N 1

600

(O

p1)

DN

25

0 (

Op2

)D

N 5

00

(O

p2)

DN

100

0 (

Op2

)D

N 1

600

(O

p2)

B.33 y B.34 La opción 2 establece valores de ovalización pequeños (entre 1 y 1,5%) con muy poca dispersión. La opción 1 establece valores algo mayores con mayor dispersión (entre 0,1 y 3,3%) y presenta un máximo muy marcado para h = 1 m y un mínimo para h = 1,5 - 3 m (según el caso) característico de este tipo de tuberías, correspondiente al punto optimo de instalación.

Page 414: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 386 -

Fig

ura

B.3

5 P

E-E

T2

Ova

lizac

ión

po

r c

arg

as

ext

ern

as a

co

rto

pla

zo (

GS 2

/4 N

)

0,0

0

5,0

0

10,0

0

15,0

0

20,0

0

25,0

0

30,0

0

35,0

0

40,0

0

45,0

0

50,0

0

55,0

0

60,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)

DN

25

0 (

Op1

)D

N 2

50

(O

p2)

DN

50

0 (

Op1

)D

N 5

00

(O

p2)

DN

10

00

(O

p1

)D

N 1

00

0 (

Op2

)

DN

16

00

(O

p1

)D

N 1

60

0 (

Op2

)

DN

25

0 (

ord

en O

p1

)D

N 5

00

(1

º o

rde

n O

p1)

DN

10

00

(1º

ord

en

Op

1)

DN

160

0 (

ord

en

Op1

)

Page 415: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 387 -

Fig

ura

B.3

6 P

E-E

T2

Ova

liza

ció

n p

or

carg

as e

xte

rna

s a

larg

o p

lazo

(G

S 2

/4 N

)

0,0

0

5,0

0

10,0

0

15,0

0

20,0

0

25,0

0

30,0

0

35,0

0

40,0

0

45,0

0

50,0

0

55,0

0

60,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)D

N 2

50

(O

p1)

DN

50

0 (

Op1

)

DN

100

0 (

Op1

)D

N 1

600

(O

p1

)

DN

250

(O

p2)

DN

50

0 (

Op2

)

DN

100

0 (

Op2

)D

N 1

600

(O

p2

)

DN

250

(1º

ord

en

Op

1)

DN

50

0 (

ord

en O

p1

)

DN

100

0 (

ord

en O

p1

)D

N 1

600

(1º

ord

en

Op

1)

B.35 y B.36 En la opción 1 es de aplicación para alturas de cobertura menores o iguales a 2 o a 3 m (según el caso) el cálculo mediante la teoría de 2º orden, por eso se produce el incremento brusco de las ovalizaciones. Todas aquellas ovalizaciones que calculadas por la teoría de 2º orden sean mayores de 9% quedan fuera del límite admisible. En la opción 2 se sigue aplicando el criterio general en el que no son admisibles ovalizaciones mayores del 5%.

Page 416: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 388 -

Fig

ura

B.3

7 P

E-E

T2

ns

ión

en

C,

S y

B p

or

carg

as

exte

rna

s a

co

rto

pla

zo (

GS 2

/4 W

)

(en

la

su

pe

rfic

ie in

teri

or

de

l tu

bo

)

-5,0

0

-4,0

0

-3,0

0

-2,0

0

-1,0

0

0,0

0

1,0

0

2,0

0

3,0

0

4,0

0

5,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 2

50 (

Op1)

C D

N 5

00 (

Op1)

C D

N 1

000 (

Op

1)

C D

N 1

600 (

Op1)

S D

N 2

50 (

Op1

)S

DN

500 (

Op1)

S D

N 1

00

0 (

Op1)

S D

N 1

600 (

Op1)

B D

N 2

50 (

Op1

)B

DN

500 (

Op1)

B D

N 1

00

0 (

Op1)

B D

N 1

600 (

Op1)

C D

N 2

50 (

Op2)

C D

N 5

00 (

Op2)

C D

N 1

000 (

Op

2)

C D

N 1

600 (

Op2)

S D

N 2

50 (

Op2

)S

DN

500 (

Op2)

S D

N 1

00

0 (

Op2)

S D

N 1

600 (

Op2)

S D

N 2

50 (

Op2

)S

DN

500 (

Op2)

S D

N 1

00

0 (

Op2)

S D

N 1

600 (

Op2)

Page 417: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 389 -

Fig

ura

B.3

8 P

E-E

T2

T

éns

ión

en

C,

S y

B p

or

carg

as e

xte

rna

s a

larg

o p

lazo

(G

S 2

/4 W

)

(en

la s

up

erfi

cie

inte

rio

r d

el t

ub

o)

-5,0

0

-4,0

0

-3,0

0

-2,0

0

-1,0

0

0,0

0

1,0

0

2,0

0

3,0

0

4,0

0

5,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 2

50 (

Op1)

C D

N 5

00 (

Op1)

C D

N 1

000 (

Op

1)

C D

N 1

600 (

Op

1)

S D

N 2

50 (

Op1

)S

DN

500 (

Op1

)S

DN

100

0 (

Op1)

S D

N 1

60

0 (

Op1)

B D

N 2

50 (

Op1

)B

DN

500 (

Op1

)B

DN

100

0 (

Op1)

B D

N 1

60

0 (

Op1)

C D

N 2

50 (

Op2)

C D

N 5

00 (

Op2)

C D

N 1

000 (

Op

2)

C D

N 1

600 (

Op

2)

S D

N 2

50 (

Op2

)S

DN

500 (

Op2

)S

DN

100

0 (

Op2)

S D

N 1

60

0 (

Op2)

S D

N 2

50 (

Op2

)S

DN

500 (

Op2

)S

DN

100

0 (

Op2)

S D

N 1

60

0 (

Op2)

B.37 y B.38 Los comportamientos a corto y largo plazo de las dos opciones de cálculo cambian de forma importante, a corto plazo, en la opción 1 la tensión máxima llega a estar definida por el punto medio (S) para profundidades superiores a 3 m, mientras que a largo plazo vuelve a ser la habitual para todos los casos, (la base (B)) en cambio en la opción 2 es a la inversa.

Page 418: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 390 -

Fig

ura

B.3

9 P

E-E

T2

Tén

sió

n e

n C

, S y

B p

or

car

gas

ext

ern

as

a c

ort

o p

lazo

(G

S 2

/4 N

)

(en

la

su

pe

rfic

ie in

teri

or

de

l tu

bo

)

-50,0

0

-40,0

0

-30,0

0

-20,0

0

-10,0

0

0,0

0

10,0

0

20,0

0

30,0

0

40,0

0

50,0

0

60,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 2

50 (

Op1)

C D

N 5

00 (

Op1)

C D

N 1

000 (

Op1)

C D

N 1

600 (

Op1)

S D

N 2

50 (

Op1)

S D

N 5

00 (

Op1)

S D

N 1

000 (

Op1)

S D

N 1

600 (

Op1)

B D

N 2

50 (

Op1)

B D

N 5

00 (

Op1)

B D

N 1

000 (

Op1)

B D

N 1

600 (

Op1)

C D

N 2

50 (

Op2)

C D

N 5

00 (

Op2)

C D

N 1

000 (

Op2)

C D

N 1

600 (

Op2)

S D

N 2

50 (

Op2)

S D

N 5

00 (

Op2)

S D

N 1

000 (

Op2)

S D

N 1

600 (

Op2)

S D

N 2

50 (

Op2)

S D

N 5

00 (

Op2)

S D

N 1

000 (

Op2)

S D

N 1

600 (

Op2)

Page 419: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 391 -

Fig

ura

B.4

0 P

E-E

T2

T

éns

ión

en

C, S

y B

po

r ca

rgas

ex

tern

as

a la

rgo

pla

zo (

GS 2

/4 N

)

(en

la s

up

erfi

cie

inte

rio

r d

el t

ub

o)

-50,0

0

-40,0

0

-30,0

0

-20,0

0

-10,0

0

0,0

0

10,0

0

20,0

0

30,0

0

40,0

0

50,0

0

60,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 2

50 (

Op1)

C D

N 5

00 (

Op1)

C D

N 1

000 (

Op1)

C D

N 1

600 (

Op1)

S D

N 2

50 (

Op1)

S D

N 5

00 (

Op1)

S D

N 1

000 (

Op1)

S D

N 1

600 (

Op

1)

B D

N 2

50 (

Op1)

B D

N 5

00 (

Op1)

B D

N 1

000 (

Op1)

B D

N 1

600 (

Op

1)

C D

N 2

50 (

Op2)

C D

N 5

00 (

Op2)

C D

N 1

000 (

Op2)

C D

N 1

600 (

Op2)

S D

N 2

50 (

Op2)

S D

N 5

00 (

Op2)

S D

N 1

000 (

Op2)

S D

N 1

600 (

Op

2)

S D

N 2

50 (

Op2)

S D

N 5

00 (

Op2)

S D

N 1

000 (

Op2)

S D

N 1

600 (

Op

2)

B.39 y B.40 En las dos figuras se puede observar, el efecto que produce la consideración de la teoría de 2º orden sobre la estimación de tensiones, en este caso se incrementan los momentos calculados inicialmente mediante el coeficiente (em) y se vuelven a calcular las tensiones producidas con estos nuevos esfuerzos.

Page 420: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 392 -

Fig

ura

B.4

1 P

E-E

T2

T

éns

ión

en

C,

S y

B p

or

carg

as e

xte

rna

s m

as p

res

ión

inte

rna

a c

ort

o p

lazo

(G

S 2

/4 W

)

(en

la s

up

erfi

cie

inte

rio

r d

el t

ub

o)

0,0

0

2,0

0

4,0

0

6,0

0

8,0

0

10,0

0

12,0

0

14,0

0

16,0

0

18,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 2

50 (

Op1)

C D

N 5

00 (

Op1)

C D

N 1

000 (

Op

1)

C D

N 1

600 (

Op

1)

S D

N 2

50 (

Op1)

S D

N 5

00 (

Op1)

S D

N 1

00

0 (

Op1)

S D

N 1

600 (

Op1)

B D

N 2

50 (

Op1)

B D

N 5

00 (

Op1)

B D

N 1

00

0 (

Op1)

B D

N 1

600 (

Op1)

C D

N 2

50 (

Op2)

C D

N 5

00 (

Op2)

C D

N 1

000 (

Op

2)

C D

N 1

600 (

Op

2)

S D

N 2

50 (

Op2)

S D

N 5

00 (

Op2)

S D

N 1

00

0 (

Op2)

S D

N 1

600 (

Op2)

S D

N 2

50 (

Op2)

S D

N 5

00 (

Op2)

S D

N 1

00

0 (

Op2)

S D

N 1

600 (

Op2)

Page 421: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 393 -

Fig

ura

B.4

2 P

E-E

T2

Tén

sió

n e

n C

, S y

B p

or

carg

as e

xte

rna

s m

as

pre

sió

n in

tern

a a

lar

go

pla

zo (

GS 2

/4 W

)

(en

la s

up

erfi

cie

inte

rio

r d

el t

ub

o)

0,0

0

2,0

0

4,0

0

6,0

0

8,0

0

10,0

0

12,0

0

14,0

0

16,0

0

18,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 2

50 (

Op1)

C D

N 5

00 (

Op1)

C D

N 1

000 (

Op

1)

C D

N 1

600 (

Op1)

S D

N 2

50 (

Op1)

S D

N 5

00 (

Op1)

S D

N 1

000 (

Op1)

S D

N 1

600 (

Op1)

B D

N 2

50 (

Op1)

B D

N 5

00 (

Op1)

B D

N 1

000 (

Op1)

B D

N 1

600 (

Op1)

C D

N 2

50 (

Op2)

C D

N 5

00 (

Op2)

C D

N 1

000 (

Op

2)

C D

N 1

600 (

Op2)

S D

N 2

50 (

Op2)

S D

N 5

00 (

Op2)

S D

N 1

000 (

Op2)

S D

N 1

600 (

Op2)

S D

N 2

50 (

Op2)

S D

N 5

00 (

Op2)

S D

N 1

000 (

Op2)

S D

N 1

600 (

Op2)

B.41 y B.42 En las dos figuras se puede observar, como se mantienen los comportamientos especificados para el caso de tensiones producidas por cargas externas (ver figuras B.37 y B.38) debido a que la inclusión de las tensiones de tracción producidas por la presión interior son aditivas al estado tensional previo por estar analizando una fibra en concreto, que se corresponde con la superficie interior del tubo.

Page 422: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 394 -

Fig

ura

B.4

3 P

E-E

T2

T

éns

ión

en

C, S

y B

po

r ca

rgas

ex

tern

as

mas

pre

sió

n in

tern

a a

co

rto

pla

zo (

GS 2

/4 N

)

(en

la s

up

erfi

cie

inte

rio

r d

el t

ub

o)

-4,0

0

-2,0

0

0,0

0

2,0

0

4,0

0

6,0

0

8,0

0

10,0

0

12,0

0

14,0

0

16,0

0

18,0

0

20,0

0

22,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 2

50 (

Op1)

C D

N 5

00 (

Op1)

C D

N 1

000 (

Op

1)

C D

N 1

600 (

Op

1)

S D

N 2

50 (

Op1)

S D

N 5

00 (

Op1)

S D

N 1

00

0 (

Op1)

S D

N 1

600 (

Op1)

B D

N 2

50 (

Op1)

B D

N 5

00 (

Op1)

B D

N 1

00

0 (

Op1)

B D

N 1

600 (

Op1)

C D

N 2

50 (

Op2)

C D

N 5

00 (

Op2)

C D

N 1

000 (

Op

2)

C D

N 1

600 (

Op

2)

S D

N 2

50 (

Op2)

S D

N 5

00 (

Op2)

S D

N 1

00

0 (

Op2)

S D

N 1

600 (

Op2)

S D

N 2

50 (

Op2)

S D

N 5

00 (

Op2)

S D

N 1

00

0 (

Op2)

S D

N 1

600 (

Op2)

Page 423: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 395 -

Fig

ura

B.4

4 P

E-E

T2

nsi

ón

en

C,

S y

B p

or

car

ga

s e

xte

rnas

ma

s p

resi

ón

in

tern

a a

larg

o p

lazo

(G

S 2

/4 N

)

(en

la s

up

erfi

cie

inte

rio

r d

el t

ub

o)

-4,0

0

-2,0

0

0,0

0

2,0

0

4,0

0

6,0

0

8,0

0

10,0

0

12,0

0

14,0

0

16,0

0

18,0

0

20,0

0

22,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 2

50 (

Op1)

C D

N 5

00 (

Op1)

C D

N 1

000 (

Op

1)

C D

N 1

600 (

Op1)

S D

N 2

50 (

Op1)

S D

N 5

00 (

Op1)

S D

N 1

000 (

Op1)

S D

N 1

600 (

Op1)

B D

N 2

50 (

Op1)

B D

N 5

00 (

Op1)

B D

N 1

000 (

Op1)

B D

N 1

600 (

Op1)

C D

N 2

50 (

Op2)

C D

N 5

00 (

Op2)

C D

N 1

000 (

Op

2)

C D

N 1

600 (

Op2)

S D

N 2

50 (

Op2)

S D

N 5

00 (

Op2)

S D

N 1

000 (

Op2)

S D

N 1

600 (

Op2)

S D

N 2

50 (

Op2)

S D

N 5

00 (

Op2)

S D

N 1

000 (

Op2)

S D

N 1

600 (

Op2)

B.43 y B.44 En estas figuras es interesante destacar, la influencia de la aplicación del coeficiente de reducción (fRR) por la consideración, en la teoría de 2º orden en la opción 1, del restablecimiento del redondeo por efecto de la presión interna que se puede observar la figura B.43 para DN 1.000 y 2.000 y profundidades de instalación entre 1 y 1,5 m y en la figura B.44 para todos los DN y profundidades de instalación menores o iguales a 2 m.

Page 424: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 396 -

Fig

ura

B.4

5 P

E-E

T2

Car

ga

crí

tica

de

pa

nd

eo

a c

ort

o p

lazo

(G

S 2

/4 W

)

0,0

0

0,1

0

0,2

0

0,3

0

0,4

0

0,5

0

0,6

0

0,7

0

0,8

0

0,9

0

1,0

0

1,1

0

1,2

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Carga crítica de pandeo (MPa)

DN

25

0 (

Op1

)D

N 5

00

(O

p1

)D

N 1

00

0 (

Op1

)D

N 1

60

0 (

Op

1)

DN

25

0 (

Op2

)D

N 5

00

(O

p2

)D

N 1

00

0 (

Op2

)D

N 1

60

0 (

Op

2)

Page 425: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 397 -

Fig

ura

B.4

6 P

E-E

T2

C

arg

a cr

ític

a d

e p

and

eo a

lar

go

pla

zo (

GS 2

/4 W

)

0,0

0

0,1

0

0,2

0

0,3

0

0,4

0

0,5

0

0,6

0

0,7

0

0,8

0

0,9

0

1,0

0

1,1

0

1,2

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Carga crítica de pandeo (MPa)

DN

25

0 (

Op1

)D

N 5

00

(O

p1

)D

N 1

00

0 (

Op1

)D

N 1

60

0 (

Op

1)

DN

25

0 (

Op2

)D

N 5

00

(O

p2

)D

N 1

00

0 (

Op2

)D

N 1

60

0 (

Op

2)

B.45 y B.46 Los resultados por una u otra opción son semejantes y se puede observar la importancia que supone establecer las comprobaciones a corto y largo plazo en materiales que por sus características intrínsecas sufren fenómenos de fluencia y pierden características mecánicas con el tiempo

Page 426: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 398 -

Fig

ura

B.4

7 P

E-E

T2

Ca

rga

crí

tica

de

pa

nd

eo

a c

ort

o p

lazo

(G

S 2

/4 N

)

0,0

0

0,0

5

0,1

0

0,1

5

0,2

0

0,2

5

0,3

0

0,3

5

0,4

0

0,4

5

0,5

0

0,5

5

0,6

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Carga crítica de pandeo (MPa)

DN

25

0 (

Op1

)D

N 5

00

(O

p1

)D

N 1

00

0 (

Op1

)D

N 1

60

0 (

Op

1)

DN

25

0 (

Op2

)D

N 5

00

(O

p2

)D

N 1

00

0 (

Op2

)D

N 1

60

0 (

Op

2)

Page 427: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 399 -

Fig

ura

B.4

8 P

E-E

T2

Car

ga

crít

ica

de

pan

deo

a l

arg

o p

lazo

(G

S 2

/4 N

)

0,0

0

0,0

5

0,1

0

0,1

5

0,2

0

0,2

5

0,3

0

0,3

5

0,4

0

0,4

5

0,5

0

0,5

5

0,6

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Carga crítica de pandeo (MPa)

DN

25

0 (

Op1

)D

N 5

00

(O

p1

)D

N 1

00

0 (

Op1

)D

N 1

60

0 (

Op

1)

DN

25

0 (

Op2

)D

N 5

00

(O

p2

)D

N 1

00

0 (

Op2

)D

N 1

60

0 (

Op

2)

B.47 y B.48 En las instalaciones con rellenos no compactados los resultados obtenidos por la opción 1 son mas conservadores que la opción 2 al definir menores valores de carga crítica.

Page 428: cálculo estructural de tuberías enterradas por el método
Page 429: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 401 -

ANEXO B.2.4

Resultados gráficos para tubería de hormigón DN 500, 1.000, 1.500 y 2.000 para una instalación tipo ET4 Gs 2/4 W y N con los métodos de cálculo de las Opciones 1

y 2 y altura de instalación variable

Page 430: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 402 -

Fig

ura

B.4

9 H

A-E

T4

O

vali

zac

ión

po

r c

arg

as

ext

ern

as a

co

rto

pla

zo (

GS 2

/4 W

)

0,0

0

0,1

0

0,2

0

0,3

0

0,4

0

0,5

0

0,6

0

0,7

0

0,8

0

0,9

0

1,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)

DN

50

0 (

Op1

)D

N 1

00

0 (

Op1

)D

N 1

50

0 (

Op1

)D

N 2

000

(O

p1)

DN

50

0 (

Op2

)D

N 1

00

0 (

Op2

)D

N 1

50

0 (

Op2

)D

N 2

000

(O

p2)

Page 431: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 403 -

Fig

ura

B.5

0 H

A-E

T4

Ova

liza

ció

n p

or

carg

as

exte

rnas

a la

rgo

pla

zo (

GS 2

/4 W

)

0,0

0

0,1

0

0,2

0

0,3

0

0,4

0

0,5

0

0,6

0

0,7

0

0,8

0

0,9

0

1,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)

DN

50

0 (

Op1

)D

N 1

000

(O

p1

)D

N 1

50

0 (

Op1

)D

N 2

00

0 (

Op1

)D

N 5

00 (

Op2

)D

N 1

000

(O

p2

)D

N 1

50

0 (

Op2

)D

N 2

00

0 (

Op2

)

B.49 y B.50 Los resultados de ovalización son despreciables en las dos opciones de cálculo (< 0,1%)

Page 432: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 404 -

Fig

ura

B.5

1 H

A-E

T4

Ova

lizac

ión

po

r c

arg

as

ext

ern

as a

co

rto

pla

zo (

GS 2

/4 N

)

0,0

0

0,1

0

0,2

0

0,3

0

0,4

0

0,5

0

0,6

0

0,7

0

0,8

0

0,9

0

1,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)

DN

50

0 (

Op1

)D

N 1

00

0 (

Op1

)D

N 1

50

0 (

Op1

)D

N 2

000

(O

p1)

DN

50

0 (

Op2

)D

N 1

00

0 (

Op2

)D

N 1

50

0 (

Op2

)D

N 2

000

(O

p2)

Page 433: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 405 -

Fig

ura

B.5

2 H

A-E

T4

O

vali

zaci

ón

po

r ca

rgas

ex

tern

as

a la

rgo

pla

zo (

GS 2

/4 N

)

0,0

0

0,1

0

0,2

0

0,3

0

0,4

0

0,5

0

0,6

0

0,7

0

0,8

0

0,9

0

1,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)

DN

50

0 (

Op1

)D

N 1

000

(O

p1

)D

N 1

50

0 (

Op1

)D

N 2

00

0 (

Op1

)D

N 5

00 (

Op2

)D

N 1

000

(O

p2

)D

N 1

50

0 (

Op2

)D

N 2

00

0 (

Op2

)

B.51 y B.52 En las instalaciones con rellenos no compactados los resultados de ovalización aunque se incrementan ligeramente con respecto a los definidos anteriormente son, del mismo modo, despreciables en las dos opciones de cálculo (< 0,15%)

Page 434: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 406 -

Fig

ura

B.5

3 H

A-E

T4

ns

ión

en

C,

S y

B p

or

carg

as

exte

rna

s a

co

rto

pla

zo (

GS 2

/4 W

)

(en

la

su

pe

rfic

ie in

teri

or

de

l tu

bo

)

-20,0

0

-15,0

0

-10,0

0

-5,0

0

0,0

0

5,0

0

10,0

0

15,0

0

20,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 5

00 (

Op1)

C D

N 1

000 (

Op

1)

C D

N 1

500 (

Op1)

C D

N 2

000

(O

p1)

S D

N 5

00 (

Op1)

S D

N 1

00

0 (

Op1)

S D

N 1

500 (

Op1)

S D

N 2

000 (

Op1)

B D

N 5

00 (

Op1)

B D

N 1

00

0 (

Op1)

B D

N 1

500 (

Op1)

B D

N 2

000 (

Op1)

C D

N 5

00 (

Op2)

C D

N 1

000 (

Op

2)

C D

N 1

500 (

Op2)

C D

N 2

000

(O

p2)

S D

N 5

00 (

Op2)

S D

N 1

00

0 (

Op2)

S D

N 1

500 (

Op2)

S D

N 2

000 (

Op2)

B D

N 5

00 (

Op2)

B D

N 1

00

0 (

Op2)

B D

N 1

500 (

Op2)

B D

N 2

000 (

Op2)

Page 435: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 407 -

Fig

ura

B.5

4 H

A-E

T4

Tén

sió

n e

n C

, S

y B

po

r ca

rgas

ex

tern

as

a la

rgo

pla

zo (

GS 2

/4 W

)

(en

la s

up

erfi

cie

inte

rio

r d

el t

ub

o)

-20,0

0

-15,0

0

-10,0

0

-5,0

0

0,0

0

5,0

0

10,0

0

15,0

0

20,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 5

00 (

Op1)

C D

N 1

000 (

Op

1)

C D

N 1

500 (

Op1)

C D

N 2

000

(O

p1)

S D

N 5

00 (

Op1)

S D

N 1

00

0 (

Op1)

S D

N 1

500 (

Op1)

S D

N 2

000 (

Op1)

B D

N 5

00 (

Op1)

B D

N 1

00

0 (

Op1)

B D

N 1

500 (

Op1)

B D

N 2

000 (

Op1)

C D

N 5

00 (

Op2)

C D

N 1

000 (

Op

2)

C D

N 1

500 (

Op2)

C D

N 2

000

(O

p2)

S D

N 5

00 (

Op2)

S D

N 1

00

0 (

Op2)

S D

N 1

500 (

Op2)

S D

N 2

000 (

Op2)

B D

N 5

00 (

Op2)

B D

N 1

00

0 (

Op2)

B D

N 1

500 (

Op2)

B D

N 2

000 (

Op2)

B.53 y B.54 Los variaciones de tensión en función de la profundidad de instalación, son en las tuberías de comportamiento rígido suaves, y en particular en la instalación tipo ET4 bien compactada presenta la mejor distribución de tensiones posible casi estable con la profundidad (la tensión varia de 10 MPa a 1m a 7M Pa a 5 m)

Page 436: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 408 -

Fig

ura

B.5

5 H

A-E

T4

T

énsi

ón

en

C, S

y B

po

r c

arg

as e

xte

rna

s a

co

rto

pla

zo (

GS 2

/4 N

)

(en

la

su

pe

rfic

ie in

teri

or

de

l tu

bo

)

-20,0

0

-15,0

0

-10,0

0

-5,0

0

0,0

0

5,0

0

10,0

0

15,0

0

20,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 5

00 (

Op1)

C D

N 1

000 (

Op

1)

C D

N 1

500 (

Op1)

C D

N 2

000

(O

p1)

S D

N 5

00 (

Op1)

S D

N 1

00

0 (

Op1)

S D

N 1

500 (

Op1)

S D

N 2

000 (

Op1)

B D

N 5

00 (

Op1)

B D

N 1

00

0 (

Op1)

B D

N 1

500 (

Op1)

B D

N 2

000 (

Op1)

C D

N 5

00 (

Op2)

C D

N 1

000 (

Op

2)

C D

N 1

500 (

Op2)

C D

N 2

000

(O

p2)

S D

N 5

00 (

Op2)

S D

N 1

00

0 (

Op2)

S D

N 1

500 (

Op2)

S D

N 2

000 (

Op2)

B D

N 5

00 (

Op2)

B D

N 1

00

0 (

Op2)

B D

N 1

500 (

Op2)

B D

N 2

000 (

Op2)

Page 437: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 409 -

Fig

ura

B.5

6 H

A-E

T4

T

éns

ión

en

C, S

y B

po

r ca

rgas

ex

tern

as

a la

rgo

pla

zo (

GS 2

/4 N

)

(en

la s

up

erfi

cie

inte

rio

r d

el t

ub

o)

-20,0

0

-15,0

0

-10,0

0

-5,0

0

0,0

0

5,0

0

10,0

0

15,0

0

20,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 5

00 (

Op1)

C D

N 1

000 (

Op

1)

C D

N 1

500 (

Op1)

C D

N 2

000

(O

p1)

S D

N 5

00 (

Op1)

S D

N 1

00

0 (

Op1)

S D

N 1

500 (

Op1)

S D

N 2

000 (

Op1)

B D

N 5

00 (

Op1)

B D

N 1

00

0 (

Op1)

B D

N 1

500 (

Op1)

B D

N 2

000 (

Op1)

C D

N 5

00 (

Op2)

C D

N 1

000 (

Op

2)

C D

N 1

500 (

Op2)

C D

N 2

000

(O

p2)

S D

N 5

00 (

Op2)

S D

N 1

00

0 (

Op2)

S D

N 1

500 (

Op2)

S D

N 2

000 (

Op2)

B D

N 5

00 (

Op2)

B D

N 1

00

0 (

Op2)

B D

N 1

500 (

Op2)

B D

N 2

000 (

Op2)

B.55 y B.56 En las instalaciones con rellenos no compactados, aún con la falta de rigidez del relleno se mantiene el comportamiento descrito anteriormente, y esto es debido principalmente a que la rigidez de la tubería conjuntamente con la cuna de hormigón es suficiente para asegurar este comportamiento.

Page 438: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 410 -

Fig

ura

B.5

7 H

A-E

T4

Tén

sió

n e

n C

, S

y B

po

r ca

rgas

ex

tern

as

mas

pre

sió

n in

tern

a a

co

rto

pla

zo (

GS 2

/4 W

)

(en

la s

up

erfi

cie

inte

rio

r d

el t

ub

o)

-10,0

0

-5,0

0

0,0

0

5,0

0

10,0

0

15,0

0

20,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 5

00 (

Op1)

C D

N 1

000 (

Op1)

C D

N 1

500 (

Op1)

C D

N 2

000 (

Op

1)

S D

N 5

00 (

Op1)

S D

N 1

000 (

Op1)

S D

N 1

500 (

Op1)

S D

N 2

00

0 (

Op1)

B D

N 5

00 (

Op1)

B D

N 1

000 (

Op1)

B D

N 1

500 (

Op1)

B D

N 2

00

0 (

Op1)

C D

N 5

00 (

Op2)

C D

N 1

000 (

Op2)

C D

N 1

500 (

Op2)

C D

N 2

000 (

Op

2)

S D

N 5

00 (

Op2)

S D

N 1

000 (

Op2)

S D

N 1

500 (

Op2)

S D

N 2

00

0 (

Op2)

B D

N 5

00 (

Op2)

B D

N 1

000 (

Op2)

B D

N 1

500 (

Op2)

B D

N 2

00

0 (

Op2)

Page 439: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 411 -

Fig

ura

B.5

8 H

A-E

T4

T

énsi

ón

en

C, S

y B

po

r ca

rgas

ex

tern

as

ma

s p

resi

ón

inte

rna

a l

arg

o p

lazo

(G

S 2

/4 W

)

(en

la s

up

erfi

cie

inte

rio

r d

el t

ub

o)

-10,0

0

-5,0

0

0,0

0

5,0

0

10,0

0

15,0

0

20,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 5

00 (

Op1)

C D

N 1

000 (

Op1)

C D

N 1

500 (

Op1

)C

DN

2000 (

Op1)

S D

N 5

00 (

Op1)

S D

N 1

000 (

Op1)

S D

N 1

500

(O

p1)

S D

N 2

000 (

Op

1)

B D

N 5

00 (

Op1)

B D

N 1

000 (

Op1)

B D

N 1

500

(O

p1)

B D

N 2

000 (

Op

1)

C D

N 5

00 (

Op2)

C D

N 1

000 (

Op2)

C D

N 1

500 (

Op2

)C

DN

2000 (

Op2)

S D

N 5

00 (

Op2)

S D

N 1

000 (

Op2)

S D

N 1

500

(O

p2)

S D

N 2

000 (

Op

2)

B D

N 5

00 (

Op2)

B D

N 1

000 (

Op2)

B D

N 1

500

(O

p2)

B D

N 2

000 (

Op

2)

B.57 y B.58 El comportamiento de este tipo de instalación, frente a tensiones es tan bueno que, a pesar de incluir la presión interior el comportamiento sigue siendo equivalente al descrito en la figura B.54

Page 440: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 412 -

Fig

ura

B.5

9 H

A-E

T4

T

éns

ión

en

C, S

y B

po

r ca

rgas

ex

tern

as

mas

pre

sió

n in

tern

a a

co

rto

pla

zo (

GS 2

/4 N

)

(en

la s

up

erfi

cie

inte

rio

r d

el t

ub

o)

-10,0

0

-5,0

0

0,0

0

5,0

0

10,0

0

15,0

0

20,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 5

00 (

Op1)

C D

N 1

000 (

Op1)

C D

N 1

500 (

Op1)

C D

N 2

000 (

Op

1)

S D

N 5

00 (

Op1)

S D

N 1

000 (

Op1)

S D

N 1

500 (

Op1)

S D

N 2

00

0 (

Op1)

B D

N 5

00 (

Op1)

B D

N 1

000 (

Op1)

B D

N 1

500 (

Op1)

B D

N 2

00

0 (

Op1)

C D

N 5

00 (

Op2)

C D

N 1

000 (

Op2)

C D

N 1

500 (

Op2)

C D

N 2

000 (

Op

2)

S D

N 5

00 (

Op2)

S D

N 1

000 (

Op2)

S D

N 1

500 (

Op2)

S D

N 2

00

0 (

Op2)

B D

N 5

00 (

Op2)

B D

N 1

000 (

Op2)

B D

N 1

500 (

Op2)

B D

N 2

00

0 (

Op2)

Page 441: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 413 -

Fig

ura

B.6

0 H

A-E

T4

nsi

ón

en

C,

S y

B p

or

car

ga

s e

xte

rnas

ma

s p

resi

ón

in

tern

a a

larg

o p

lazo

(G

S 2

/4 N

)

(en

la s

up

erfi

cie

inte

rio

r d

el t

ub

o)

-10,0

0

-5,0

0

0,0

0

5,0

0

10,0

0

15,0

0

20,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N 5

00 (

Op1)

C D

N 1

000 (

Op1)

C D

N 1

500 (

Op1

)C

DN

2000 (

Op1)

S D

N 5

00 (

Op1)

S D

N 1

000 (

Op1)

S D

N 1

500

(O

p1)

S D

N 2

000 (

Op

1)

B D

N 5

00 (

Op1)

B D

N 1

000 (

Op1)

B D

N 1

500

(O

p1)

B D

N 2

000 (

Op

1)

C D

N 5

00 (

Op2)

C D

N 1

000 (

Op2)

C D

N 1

500 (

Op2

)C

DN

2000 (

Op2)

S D

N 5

00 (

Op2)

S D

N 1

000 (

Op2)

S D

N 1

500

(O

p2)

S D

N 2

000 (

Op

2)

B D

N 5

00 (

Op2)

B D

N 1

000 (

Op2)

B D

N 1

500

(O

p2)

B D

N 2

000 (

Op

2)

Page 442: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 414 -

Fig

ura

B.6

1 H

A-E

T4

Car

ga

crí

tica

de

pa

nd

eo

a c

ort

o p

lazo

(G

S 2

/4 W

)

0,0

0

10,0

0

20,0

0

30,0

0

40,0

0

50,0

0

60,0

0

70,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Carga crítica de pandeo (MPa)

DN

500

(O

p1)

DN

10

00

(O

p1)

DN

15

00 (

Op

1)

DN

200

0 (

Op1

)

DN

500

(O

p2)

DN

10

00

(O

p2)

DN

15

00 (

Op

2)

DN

200

0 (

Op2

)

Page 443: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 415 -

Fig

ura

B.6

2 H

A-E

T4

C

arg

a cr

ític

a d

e p

and

eo a

lar

go

pla

zo (

GS 2

/4 W

)

0,0

0

10,0

0

20,0

0

30,0

0

40,0

0

50,0

0

60,0

0

70,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Carga crítica de pandeo (MPa)

DN

500

(O

p1)

DN

10

00

(O

p1)

DN

15

00 (

Op

1)

DN

200

0 (

Op1

)

DN

500

(O

p2)

DN

10

00

(O

p2)

DN

15

00 (

Op

2)

DN

200

0 (

Op2

)

B.61 y B.62 Los resultados obtenidos por las dos opciones de cálculo son del mismo orden de magnitud y representan correctamente la resistencia que las tuberías rígidas tienen frente a las cargas de pandeo.

Page 444: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 416 -

Fig

ura

B.6

3 H

A-E

T4

C

arg

a c

ríti

ca d

e p

an

de

o a

co

rto

pla

zo (

GS 2

/4 N

)

0,0

0

10,0

0

20,0

0

30,0

0

40,0

0

50,0

0

60,0

0

70,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Carga crítica de pandeo (MPa)

DN

500

(O

p1)

DN

10

00

(O

p1)

DN

15

00 (

Op

1)

DN

200

0 (

Op1

)

DN

500

(O

p2)

DN

10

00

(O

p2)

DN

15

00 (

Op

2)

DN

200

0 (

Op2

)

Page 445: cálculo estructural de tuberías enterradas por el método

Anexo B

Resultados gráficos de los modelos del informe técnico CEN/TR 1295-3

- 417 -

Fig

ura

B.6

4 H

A-E

T4

Car

ga

crít

ica

de

pan

deo

a l

arg

o p

lazo

(G

S 2

/4 N

)

0,0

0

10,0

0

20,0

0

30,0

0

40,0

0

50,0

0

60,0

0

70,0

0 0,5

01,0

01,5

02,0

02,5

03,0

03,5

04,0

04,5

05,0

05,5

0

Alt

ura

de

cob

ertu

ra (

m)

Carga crítica de pandeo (MPa)

DN

500

(O

p1)

DN

10

00

(O

p1)

DN

15

00 (

Op

1)

DN

200

0 (

Op1

)

DN

500

(O

p2)

DN

10

00

(O

p2)

DN

15

00 (

Op

2)

DN

200

0 (

Op2

)

B.63 y B.64 En las instalaciones con rellenos no compactados los resultados obtenidos por las dos opciones de cálculo son iguales a los obtenidos en el primer caso debido a que la rigidez de la tubería establece la carga crítica de pandeo independientemente de la rigidez del suelo.

Page 446: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 418 -

Page 447: cálculo estructural de tuberías enterradas por el método

Anexo C

Comparación de resultados entre el CEN/TR 1295-3 y el MEF propuesto

- 419 -

ANEXO C COMPARACIÓN DE RESULTADOS ENTRE EL CEN/TR 1295-

3 Y EL MEF PROPUESTO

Page 448: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 420 -

Page 449: cálculo estructural de tuberías enterradas por el método

Anexo C

Comparación de resultados entre el CEN/TR 1295-3 y el MEF propuesto

- 421 -

ANEXO C. COMPARACIÓN DE RESULTADOS ENTRE EL CEN/TR 1295-3 Y EL MEF PROPUESTO C.1 INTRODUCCIÓN

Una vez realizados los modelos de elementos finitos se extrae de ellos la información que se

va a utilizar para comparar los resultados obtenidos en los citados modelos con los

obtenidos del informe técnico CEN/TR 1295-3 (ver ANEXO B). Como los resultados

obtenidos en las dos opciones de cálculo del informe técnico solo se refieren a tres

secciones de cálculo C, S y B (coronación, punto medio y base respectivamente), la primera

labor a realizar es obtener las deformaciones verticales en C y B para poder determinar la

ovalización vertical de la tubería, posteriormente las tensiones circunferenciales en C, S y B

para calcular el estado tensional en las dos hipótesis pésimas de carga (carga externa y

carga externa mas presión interna) y por último calcular los autovalores que definen la carga

crítica de pandeo.

Una vez obtenidos estos resultados, se han comparado caso a caso con los resultados

gráficos presentados en el ANEXO B, de lo que resultan los siguientes gráficos, incluidos en

este Anexo y analizados en el CAPÍTULO 5.

C.2 RESULTADOS GRÁFICOS

A continuación se presentan los gráficos comparativos en cuatro apartados:

Page 450: cálculo estructural de tuberías enterradas por el método
Page 451: cálculo estructural de tuberías enterradas por el método

Anexo C

Comparación de resultados entre el CEN/TR 1295-3 y el MEF propuesto

- 423 -

ANEXO C.2.1

Modelos para tubería de acero DN 1000 y DN 2000 para una instalación tipo ET2 Gs 2/4 W con parámetros de la Op1, Op2 y comportamiento elástico y elastoplástico

Page 452: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 424 -

Fig

ura

C.1

Ova

liza

ció

n v

ert

ical p

or

carg

as e

xte

rnas

a larg

o p

lazo

en

tu

be

rías

de a

cero

M

od

elo

pa

ra d

isti

nto

s s

up

uesto

s d

e d

istr

ibu

ció

n d

el m

ód

ulo

del su

elo

co

n c

om

po

rtam

ien

to e

lásti

co

(I

nsta

lació

n t

ipo

ET

2, G

s 2

/4 W

)

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)D

N 1

016 (

Op

1)

DN

203

2 (

Op1

)

DN

10

16 (

Op

2)

DN

203

2 (

Op2

)

DN

1000 M

EF

E(O

p1

)D

N200

0 M

EF

E(O

p1)

DN

1000 M

EF

E(O

p2

)D

N200

0 M

EF

E(O

p2)

Page 453: cálculo estructural de tuberías enterradas por el método

Anexo C

Comparación de resultados entre el CEN/TR 1295-3 y el MEF propuesto

- 425 -

Fig

ura

C.2

Ova

liza

ció

n v

ert

ica

l po

r ca

rgas

ext

ern

as

a la

rgo

pla

zo e

n t

ub

ería

s d

e ac

ero

M

od

elo

elá

sti

co y

ela

sto

plá

stic

o c

on

dis

trib

uc

ión

de

du

los

de

l su

elo

seg

ún

op

ció

n 1

(In

sta

laci

ón

tip

o E

T2

, Gs

2/4

W)

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)

DN

1016 (

Op1)

DN

2032 (

Op1)

DN

1016 (

Op2)

DN

2032 (

Op2)

DN

1000 M

EF

E(O

p1)

DN

200

0 M

EF

E(O

p1)

DN

1000 M

EF

E(O

p1)+

D-P

DN

200

0 M

EF

E(O

p1)+

D-P

NOTA. El grado de ajuste del modelo elástico MEF E(Op1) a los resultados obtenidos mediante las dos opciones de cálculo es muy bueno, por el contrario los definidos por MEF E(Op2) difieren mucho debido a que la opción 2 define los modulo presiométricos del terreno, independientes de la profundidad, mientras que la opción 1 establece los módulos edométricos, variables con la profundidad (Ver CAPITULO 3)

Page 454: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 426 -

Fig

ura

C.3

Ten

sió

n e

n C

, S y

B p

or

car

ga

s e

xte

rnas

a la

rgo

pla

zo e

n t

ub

erí

as d

e a

cer

o

Mo

de

lo p

ara

dis

tin

tos

sup

ue

sto

s d

e d

istr

ibu

ció

n d

el m

ód

ulo

de

l su

elo

co

n c

om

po

rta

mie

nto

elá

sti

co

(In

sta

laci

ón

tip

o E

T2,

Gs

2/4

W)

-300

-250

-200

-150

-100

-500

50

100

150

200

250

300

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

Tensió

n M

ax. (O

p1)

Ten

sió

n M

ax.

(O

p2

)

Tensió

n M

in.

(Op1)

Ten

sió

n M

in.

(Op

2)

C D

N1000

ME

F E

(Op1)

C D

N2000 M

EF

E(O

p1)

S D

N1000 M

EF

E(O

p1)

S D

N2000 M

EF

E(O

p1)

B D

N1000 M

EF

E(O

p1)

B D

N2000 M

EF

E(O

p1)

C D

N1000

ME

F E

(Op2)

C D

N2000 M

EF

E(O

p2)

S D

N1000 M

EF

E(O

p2)

S D

N2000 M

EF

E(O

p2)

B D

N1000 M

EF

E(O

p2)

B D

N2000 M

EF

E(O

p2)

Page 455: cálculo estructural de tuberías enterradas por el método

Anexo C

Comparación de resultados entre el CEN/TR 1295-3 y el MEF propuesto

- 427 -

Fig

ura

C.4

Ten

sió

n e

n C

, S y

B p

or

car

ga

s e

xte

rnas

a la

rgo

pla

zo e

n t

ub

erí

as d

e a

cer

o

Mo

del

o e

lás

tic

o y

ela

sto

plá

stic

o c

on

dis

trib

uci

ón

de

du

los

de

l su

elo

se

n o

pc

ión

1 (

Ins

tala

ció

n t

ipo

ET

2, G

s 2/

4 W

)

-300

-250

-200

-150

-100

-500

50

100

150

200

250

300

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N10

00 M

EF

E(O

p1)

C D

N2000 M

EF

E(O

p1)

S D

N1000 M

EF

E(O

p1)

S D

N2000 M

EF

E(O

p1

)

B D

N1000 M

EF

E(O

p1)

B D

N2000 M

EF

E(O

p1

)

B D

N1000 M

EF

E(O

p1)+

D-P

S D

N1000 M

EF

E(O

p1

)+D

-P

C D

N10

00 M

EF

E(O

p1)+

D-P

B D

N2000 M

EF

E(O

p1

)+D

-P

S D

N2000 M

EF

E(O

p1)+

D-P

C D

N2000 M

EF

E(O

p1)+

D-P

NOTAS Es necesario considerar el comportamiento elastoplástico del terreno para que los resultados del modelo MEF E(Op1) + D-P puedan alcanzar los valores definidos por el CEN/TR 1295-3 para instalaciones con poca profundidad de instalación.

Page 456: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 428 -

Fig

ura

C.5

Te

ns

ión

en

C,

S y

B p

or

carg

as e

xte

rnas

ma

s p

res

ión

in

teri

or

a la

rgo

pla

zo e

n t

ub

ería

s d

e ac

ero

M

od

elo

pa

ra d

isti

nto

s su

pu

est

os

de

dis

trib

uci

ón

del

du

lo d

el s

ue

lo c

on

co

mp

ort

am

ien

to e

lás

tic

o (

Ins

tala

ció

n t

ipo

ET

2, G

s 2

/4 W

)

-350

-300

-250

-200

-150

-100

-500

50

100

150

200

250

300

350

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

Tensió

n M

ax. (O

p1)

Ten

sió

n M

ax.

(O

p2

)

Tensió

n M

in.

(Op1)

Ten

sió

n M

in.

(Op

2)

C D

N1000

ME

F E

(Op1)

C D

N2000 M

EF

E(O

p1)

S D

N1000 M

EF

E(O

p1)

S D

N2000 M

EF

E(O

p1)

B D

N1000 M

EF

E(O

p1)

B D

N2000 M

EF

E(O

p1)

C D

N1000

ME

F E

(Op2)

C D

N2000 M

EF

E(O

p2)

S D

N1000 M

EF

E(O

p2)

S D

N2000 M

EF

E(O

p2)

B D

N1000 M

EF

E(O

p2)

B D

N2000 M

EF

E(O

p2)

Page 457: cálculo estructural de tuberías enterradas por el método

Anexo C

Comparación de resultados entre el CEN/TR 1295-3 y el MEF propuesto

- 429 -

Fig

ura

C.6

Te

ns

ión

en

C,

S y

B p

or

carg

as e

xte

rnas

ma

s p

res

ión

in

teri

or

a la

rgo

pla

zo e

n t

ub

ería

s d

e ac

ero

M

od

elo

elá

sti

co

y e

las

top

lást

ico

co

n d

istr

ibu

ció

n d

e m

ód

ulo

s d

el s

ue

lo s

eg

ún

op

ció

n 1

(In

sta

lac

ión

tip

o E

T2,

Gs

2/4

W)

-350

-300

-250

-200

-150

-100

-500

50

100

150

200

250

300

350

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N1

000 M

EF

E(O

p1)

C D

N2000

ME

F E

(Op1)

S D

N1000

ME

F E

(Op1)

S D

N2000 M

EF

E(O

p1)

B D

N1000

ME

F E

(Op1)

B D

N2000 M

EF

E(O

p1)

B D

N1000

ME

F E

(Op1)+

D-P

S D

N1000 M

EF

E(O

p1)+

D-P

C D

N1

000 M

EF

E(O

p1)+

D-P

B D

N2000 M

EF

E(O

p1)+

D-P

S D

N2000

ME

F E

(Op1)+

D-P

C D

N2000

ME

F E

(Op1)+

D-P

Page 458: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 430 -

Fig

ura

C.7

Car

ga

crí

tica

de

pa

nd

eo

a la

rgo

pla

zo e

n t

ub

ería

s d

e a

cero

M

od

elo

par

a d

isti

nto

s s

up

ues

tos

de

dis

trib

uc

ión

de

l mó

du

lo d

el s

uel

o c

on

co

mp

ort

amie

nto

elá

stic

o

(In

sta

laci

ón

tip

o E

T2,

Gs

2/4

W)

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Carga de pandeo (MPa)D

N 1

016 (

Op

1)

DN

2032

(O

p1)

DN

1016 (

Op

2)

DN

2032

(O

p2)

DN

1000 M

EF

E(O

p1)

DN

2000 M

EF

E(O

p1)

DN

1000 M

EF

E(O

p2)

DN

2000 M

EF

E(O

p2)

Page 459: cálculo estructural de tuberías enterradas por el método

Anexo C

Comparación de resultados entre el CEN/TR 1295-3 y el MEF propuesto

- 431 -

ANEXO C.2.2

Modelos para tubería de polietileno DN 1.000 y DN 1.600 para una instalación tipo ET2 Gs 2/4 W con parámetros de la Op1, Op2 y comportamiento elástico (E0) y

elastoplástico

Page 460: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 432 -

Fig

ura

C.8

Ova

liza

ció

n v

erti

cal

po

r c

arg

as

exte

rnas

a c

ort

o p

lazo

en

tu

be

rías

de

po

lieti

len

o (

E0)

Mo

de

lo p

ara

dis

tin

tos

su

pu

esto

s d

e d

istr

ibu

ció

n d

el m

ód

ulo

del

su

elo

co

n c

om

po

rtam

ien

to e

lást

ico

(I

ns

tala

ció

n t

ipo

ET

2, G

s 2/

4 W

)

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)D

N 1

000 E

(Op1)

DN

160

0 E

(Op1)

DN

1000 E

(Op2)

DN

160

0 E

(Op2)

DN

1000 M

EF

E(O

p1)

DN

1600 M

EF

E(O

p1

)

DN

1000 M

EF

E(O

p2)

DN

1600 M

EF

E(O

p2

)

Page 461: cálculo estructural de tuberías enterradas por el método

Anexo C

Comparación de resultados entre el CEN/TR 1295-3 y el MEF propuesto

- 433 -

Fig

ura

C.9

Ova

liza

ció

n v

erti

cal

po

r c

arg

as

exte

rnas

a c

ort

o p

lazo

en

tu

be

rías

de

po

lieti

len

o (

E0)

Mo

del

o e

lás

tico

y e

last

op

lást

ico

co

n d

istr

ibu

ció

n d

e m

ód

ulo

s d

el s

uel

o s

egú

n o

pci

ón

1 (

Inst

ala

ció

n t

ipo

ET

2, G

s 2

/4 W

)

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)

DN

1000 E

(Op1)

DN

1600 E

(Op1)

DN

1000 E

(Op2)

DN

1600 E

(Op2)

DN

1000 M

EF

E(O

p1)

DN

16

00 M

EF

E(O

p1)

DN

1000 M

EF

E(O

p1)+

D-P

DN

20

00 M

EF

E(O

p1)+

D-P

Page 462: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 434 -

Fig

ura

C.1

0 T

en

sió

n e

n C

, S

y B

po

r ca

rgas

ext

ern

as a

co

rto

pla

zo e

n t

ub

ería

s d

e p

oli

etil

eno

(E

0)

Mo

de

lo p

ara

dis

tin

tos

sup

ue

sto

s d

e d

istr

ibu

ció

n d

el m

ód

ulo

de

l su

elo

co

n c

om

po

rta

mie

nto

elá

sti

co

(In

sta

laci

ón

tip

o E

T2,

Gs

2/4

W)

-10,0

-8,0

-6,0

-4,0

-2,0

0,0

2,0

4,0

6,0

8,0

10,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)T

en

sió

n M

ax.

(O

p1)

Tensió

n M

ax.

(O

p2)

Ten

sió

n M

in. (O

p1)

Tensió

n M

in.

(Op2)

C D

N1000 M

EF

E(O

p1)

C D

N1600 M

EF

E(O

p1)

S D

N1000 M

EF

E(O

p1)

S D

N1

600 M

EF

E(O

p1)

B D

N1000 M

EF

E(O

p1)

B D

N1

600 M

EF

E(O

p1)

C D

N1000 M

EF

E(O

p2)

C D

N1600 M

EF

E(O

p2)

S D

N1000 M

EF

E(O

p2)

S D

N1

600 M

EF

E(O

p2)

B D

N1000 M

EF

E(O

p2)

B D

N1

600 M

EF

E(O

p2)

Page 463: cálculo estructural de tuberías enterradas por el método

Anexo C

Comparación de resultados entre el CEN/TR 1295-3 y el MEF propuesto

- 435 -

Fig

ura

C.1

1 T

ens

ión

en

C, S

y B

po

r c

arg

as

ext

ern

as a

co

rto

pla

zo e

n t

ub

erí

as

de

po

liet

ilen

o (

E0)

Mo

del

o e

lás

tic

o y

ela

sto

plá

stic

o c

on

dis

trib

uci

ón

de

du

los

de

l su

elo

se

n o

pc

ión

1 (

Ins

tala

ció

n t

ipo

ET

2, G

s 2

/4 W

)

-10,0

-8,0

-6,0

-4,0

-2,0

0,0

2,0

4,0

6,0

8,0

10,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N10

00 M

EF

E(O

p1)

C D

N1600 M

EF

E(O

p1)

S D

N1000 M

EF

E(O

p1)

S D

N1600 M

EF

E(O

p1)

B D

N1000 M

EF

E(O

p1)

B D

N1600 M

EF

E(O

p1)

B D

N1000 M

EF

E(O

p1)+

D-P

S D

N1000 M

EF

E(O

p1)+

D-P

C D

N10

00 M

EF

E(O

p1)+

D-P

B D

N1600 M

EF

E(O

p1)+

D-P

S D

N1600 M

EF

E(O

p1)+

D-P

C D

N1600 M

EF

E(O

p1)+

D-P

Page 464: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 436 -

Fig

ura

C.1

2 T

en

sió

n e

n C

, S y

B p

or

carg

as e

xte

rnas

ma

s p

res

ión

in

teri

or

a co

rto

pla

zo e

n t

ub

ería

s d

e p

oli

etil

eno

(E

0).

Mo

de

lo p

ara

dis

tin

tos

su

pu

esto

s d

e d

istr

ibu

ció

n d

el m

ód

ulo

del

su

elo

co

n c

om

po

rtam

ien

to

elá

stic

o (

Ins

tala

ció

n t

ipo

ET

2, G

s 2

/4 W

)

02468

10

12

14

16

18

20

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

Tensió

n M

ax.

(Op1)

Te

nsió

n M

ax. (O

p2)

Tensió

n M

in.

(Op1)

Te

nsió

n M

in. (O

p2)

C D

N100

0 M

EF

E(O

p1)

C D

N1600 M

EF

E(O

p1)

S D

N1000 M

EF

E(O

p1)

S D

N1600 M

EF

E(O

p1)

B D

N1000 M

EF

E(O

p1)

B D

N1600 M

EF

E(O

p1)

C D

N100

0 M

EF

E(O

p2)

C D

N1600 M

EF

E(O

p2)

S D

N1000 M

EF

E(O

p2)

S D

N1600 M

EF

E(O

p2)

B D

N1000 M

EF

E(O

p2)

B D

N1600 M

EF

E(O

p2)

Page 465: cálculo estructural de tuberías enterradas por el método

Anexo C

Comparación de resultados entre el CEN/TR 1295-3 y el MEF propuesto

- 437 -

Fig

ura

C.1

3 T

en

sió

n e

n C

, S y

B p

or

carg

as e

xte

rnas

ma

s p

res

ión

in

teri

or

a co

rto

pla

zo e

n t

ub

ería

s d

e p

oli

etil

eno

(E

0). M

od

elo

elá

stic

o y

ela

sto

plá

sti

co c

on

dis

trib

uci

ón

de

du

los

del

su

elo

se

n o

pc

ión

1

(In

sta

lac

ión

tip

o E

T2,

Gs

2/4

W)

02468

10

12

14

16

18

20

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N1000 M

EF

E(O

p1)

C D

N1600 M

EF

E(O

p1)

S D

N1000 M

EF

E(O

p1

)S

DN

1600 M

EF

E(O

p1)

B D

N1000 M

EF

E(O

p1

)B

DN

1600 M

EF

E(O

p1)

B D

N1000 M

EF

E(O

p1

)+D

-PS

DN

1000 M

EF

E(O

p1)+

D-P

C D

N1000 M

EF

E(O

p1)+

D-P

B D

N1600 M

EF

E(O

p1)+

D-P

S D

N1600 M

EF

E(O

p1

)+D

-PC

DN

1600 M

EF

E(O

p1)+

D-P

Page 466: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 438 -

Fig

ura

C.1

4 C

arg

a c

ríti

ca

de

pa

nd

eo

a c

ort

o p

lazo

en

tu

be

rías

de

po

lieti

len

o (

E0)

Mo

de

lo p

ara

dis

tin

tos

su

pu

esto

s d

e d

istr

ibu

ció

n d

el m

ód

ulo

del

su

elo

co

n c

om

po

rtam

ien

to e

lást

ico

(I

ns

tala

ció

n t

ipo

ET

2, G

s 2/

4 W

)

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Carga de pandeo (MPa)D

N 1

000 E

(Op1)

DN

1600

E(O

p1)

DN

1000 E

(Op2)

DN

1600

E(O

p2)

DN

1000 M

EF

E(O

p1)

DN

1600 M

EF

E(O

p1)

DN

1000 M

EF

E(O

p2)

DN

1600 M

EF

E(O

p2)

Page 467: cálculo estructural de tuberías enterradas por el método

Anexo C

Comparación de resultados entre el CEN/TR 1295-3 y el MEF propuesto

- 439 -

ANEXO C.2.3

Modelos para tubería de polietileno DN 1.000 y DN 1.600 para una instalación tipo ET2 Gs 2/4 W con parámetros de la Op1, Op2 y comportamiento elástico (E50) y

elastoplástico

Page 468: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 440 -

Fig

ura

C.1

5 O

valiz

aci

ón

ve

rtic

al p

or

car

ga

s ex

tern

as

a la

rgo

pla

zo e

n t

ub

ería

s d

e p

olie

tile

no

(E

50)

Mo

de

lo p

ara

dis

tin

tos

su

pu

esto

s d

e d

istr

ibu

ció

n d

el m

ód

ulo

del

su

elo

co

n c

om

po

rtam

ien

to e

lást

ico

(I

ns

tala

ció

n t

ipo

ET

2, G

s 2/

4 W

)

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)D

N 1

000 (

Op

1)

DN

160

0 (

Op1)

DN

1000 (

Op

2)

DN

160

0 (

Op2)

DN

1000 M

EF

E(O

p1)

DN

1600 M

EF

E(O

p1

)

DN

1000 M

EF

E(O

p2)

DN

1600 M

EF

E(O

p2

)

Page 469: cálculo estructural de tuberías enterradas por el método

Anexo C

Comparación de resultados entre el CEN/TR 1295-3 y el MEF propuesto

- 441 -

Fig

ura

C.1

6 O

valiz

aci

ón

ve

rtic

al p

or

car

ga

s ex

tern

as

a la

rgo

pla

zo e

n t

ub

ería

s d

e p

olie

tile

no

(E

50)

Mo

del

o e

lás

tico

y e

last

op

lást

ico

co

n d

istr

ibu

ció

n d

e m

ód

ulo

s d

el s

uel

o s

egú

n o

pci

ón

1 (

Inst

ala

ció

n t

ipo

ET

2, G

s 2

/4 W

)

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)

DN

1000 (

Op1)

DN

1600 (

Op1)

DN

1000 (

Op2)

DN

1600 (

Op2)

DN

1000 M

EF

E(O

p1)

DN

16

00 M

EF

E(O

p1)

DN

1000 M

EF

E(O

p1)+

D-P

DN

16

00 M

EF

E(O

p1)+

D-P

Page 470: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 442 -

Fig

ura

C.1

7 T

en

sió

n e

n C

, S

y B

po

r ca

rgas

ex

tern

as

a la

rgo

pla

zo e

n t

ub

ería

s d

e p

oli

etil

eno

(E

50)

Mo

de

lo p

ara

dis

tin

tos

sup

ue

sto

s d

e d

istr

ibu

ció

n d

el m

ód

ulo

de

l su

elo

co

n c

om

po

rta

mie

nto

elá

sti

co

(In

sta

laci

ón

tip

o E

T2,

Gs

2/4

W)

-5-4-3-2-1012345

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)T

ensió

n M

ax.

E0/E

50 (

Op1

)T

ensió

n M

in.

E0/E

50

(O

p1)

Tensió

n M

ax.

E50/E

50 (

Op

1)

Tensió

n M

in.

E50/E

50 (

Op1)

Tensió

n M

ax.

E0/E

50 (

Op2

)T

ensió

n M

in.

E0/E

50

(O

p2)

C D

N1

000 M

EF

E(O

p1)

C D

N1600

ME

F E

(Op1)

S D

N1000

ME

F E

(Op1)

S D

N1600 M

EF

E(O

p1)

B D

N1000

ME

F E

(Op1)

B D

N1600 M

EF

E(O

p1)

C D

N1

000 M

EF

E(O

p2)

C D

N1600

ME

F E

(Op2)

S D

N1000

ME

F E

(Op2)

S D

N1600 M

EF

E(O

p2)

B D

N1000

ME

F E

(Op2)

B D

N1600 M

EF

E(O

p2)

Page 471: cálculo estructural de tuberías enterradas por el método

Anexo C

Comparación de resultados entre el CEN/TR 1295-3 y el MEF propuesto

- 443 -

Fig

ura

C.1

8 T

en

sió

n e

n C

, S y

B p

or

car

gas

ext

ern

as a

lar

go

pla

zo e

n t

ub

erí

as

de

po

liet

ilen

o (

E50

)

Mo

del

o e

lás

tic

o y

ela

sto

plá

stic

o c

on

dis

trib

uci

ón

de

du

los

de

l su

elo

se

n o

pc

ión

1 (

Ins

tala

ció

n t

ipo

ET

2, G

s 2

/4 W

)

-5,0

-4,0

-3,0

-2,0

-1,0

0,0

1,0

2,0

3,0

4,0

5,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N1000 M

EF

E(O

p1)

C D

N1

600 M

EF

E(O

p1)

S D

N1

000 M

EF

E(O

p1)

S D

N1600

ME

F E

(Op1)

B D

N1

000 M

EF

E(O

p1)

B D

N1600

ME

F E

(Op1)

B D

N1

000 M

EF

E(O

p1)+

D-P

S D

N1000

ME

F E

(Op1)+

D-P

C D

N1000 M

EF

E(O

p1)+

D-P

B D

N1600

ME

F E

(Op1)+

D-P

S D

N1

600 M

EF

E(O

p1)+

D-P

C D

N1

600 M

EF

E(O

p1)+

D-P

Page 472: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 444 -

Fig

ura

C.1

9 T

ensi

ón

en

C,

S y

B p

or

carg

as

exte

rna

s m

as p

resi

ón

inte

rio

r a

larg

o p

lazo

en

tu

ber

ías

de

p

olie

tile

no

(E

50).

Mo

del

o p

ara

dis

tin

tos

su

pu

est

os

de

dis

trib

uc

ión

del

du

lo d

el s

ue

lo c

on

com

po

rta

mie

nto

elá

sti

co

(In

sta

laci

ón

ET

2, G

s 2

/4 W

)

02468

10

12

14

16

18

20

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)T

en

sió

n M

ax.

(O

p1

)T

ensió

n M

ax.

(O

p2)

Ten

sió

n M

in.

(Op

1)

Tensió

n M

in.

(Op2)

C D

N1000 M

EF

E(O

p1)

C D

N1600 M

EF

E(O

p1)

S D

N1000 M

EF

E(O

p1)

S D

N16

00 M

EF

E(O

p1)

B D

N1000 M

EF

E(O

p1)

B D

N16

00 M

EF

E(O

p1)

C D

N1000 M

EF

E(O

p2)

C D

N1600 M

EF

E(O

p2)

S D

N1000 M

EF

E(O

p2)

S D

N16

00 M

EF

E(O

p2)

B D

N1000 M

EF

E(O

p2)

B D

N16

00 M

EF

E(O

p2)

Ten

sió

n M

ax.

E50

/E50 (

Op1)

Tensió

n M

in.

E50/E

50 (

Op1)

Page 473: cálculo estructural de tuberías enterradas por el método

Anexo C

Comparación de resultados entre el CEN/TR 1295-3 y el MEF propuesto

- 445 -

Fig

ura

C.2

0 T

ensi

ón

en

C, S

y B

po

r c

arg

as

ext

ern

as m

as p

res

ión

inte

rio

r a

larg

o p

lazo

en

tu

be

rías

de

p

oli

etil

eno

(E

50).

Mo

de

lo e

lás

tico

y e

last

op

lást

ico

co

n d

istr

ibu

ció

n d

e m

ód

ulo

s d

el s

uel

o s

egú

n o

pci

ón

1

(In

sta

lac

ión

tip

o E

T2

, Gs

2/4

W)

02468

10

12

14

16

18

20

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N1000 M

EF

E(O

p1)

C D

N1600 M

EF

E(O

p1)

S D

N1000 M

EF

E(O

p1

)S

DN

1600 M

EF

E(O

p1)

B D

N1000 M

EF

E(O

p1

)B

DN

1600 M

EF

E(O

p1)

B D

N1000 M

EF

E(O

p1

)+D

-PS

DN

1000 M

EF

E(O

p1)+

D-P

C D

N1000 M

EF

E(O

p1)+

D-P

B D

N1600 M

EF

E(O

p1)+

D-P

S D

N1600 M

EF

E(O

p1

)+D

-PC

DN

1600 M

EF

E(O

p1)+

D-P

Page 474: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 446 -

F

igu

ra C

.21

Car

ga

crít

ica

de

pan

de

o a

larg

o p

lazo

en

tu

be

rías

de

po

lieti

len

o (

E50

)

Mo

de

lo p

ara

dis

tin

tos

su

pu

esto

s d

e d

istr

ibu

ció

n d

el m

ód

ulo

del

su

elo

co

n c

om

po

rtam

ien

to e

lást

ico

(I

ns

tala

ció

n t

ipo

ET

2, G

s 2/

4 W

)

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Carga de pandeo (MPa)

DN

1000 (

Op

1)

DN

1600

(O

p1)

DN

1000 (

Op

2)

DN

1600

(O

p2)

DN

1000 M

EF

E(O

p1)

DN

1600 M

EF

E(O

p1)

DN

1000 M

EF

E(O

p2)

DN

1600 M

EF

E(O

p2)

Page 475: cálculo estructural de tuberías enterradas por el método

Anexo C

Comparación de resultados entre el CEN/TR 1295-3 y el MEF propuesto

- 447 -

ANEXO C.2.4

Modelos para tubería de hormigón DN 1.000 y DN 2.000 para una instalación tipo ET4 Gs 2/4 W con parámetros de la Op1, Op2 y comportamiento elástico y

elastoplástico

Page 476: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 448 -

Fig

ura

C.2

2 O

vali

zac

ión

ver

tic

al p

or

car

ga

s e

xte

rnas

a la

rgo

pla

zo e

n t

ub

erí

as d

e h

orm

igó

nM

od

elo

par

a d

isti

nto

s s

up

ues

tos

de

dis

trib

uc

ión

de

l mó

du

lo d

el s

uel

o c

on

co

mp

ort

amie

nto

elá

stic

o

(In

sta

laci

ón

tip

o E

T4,

Gs

2/4

W)

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)D

N 1

000 (

Op

1)

DN

2000

(O

p1)

DN

1000 (

Op

2)

DN

2000

(O

p2)

DN

1000 M

EF

E(O

p1)

DN

2000 M

EF

E(O

p1)

DN

1000 M

EF

E(O

p2)

DN

2000 M

EF

E(O

p2)

Page 477: cálculo estructural de tuberías enterradas por el método

Anexo C

Comparación de resultados entre el CEN/TR 1295-3 y el MEF propuesto

- 449 -

Fig

ura

C.2

3 O

valiz

aci

ón

ve

rtic

al p

or

car

ga

s ex

tern

as

a la

rgo

pla

zo e

n t

ub

ería

s d

e h

orm

igó

n

Mo

del

o e

lás

tico

y e

last

op

lást

ico

co

n d

istr

ibu

ció

n d

e m

ód

ulo

s d

el s

uel

o s

egú

n o

pci

ón

1 (

Inst

ala

ció

n t

ipo

ET

4, G

s 2/

4 W

)

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Ovalización vertical (%)

DN

1000 (

Op1)

DN

2000 (

Op1)

DN

1000 (

Op2)

DN

2000 (

Op2)

DN

1000 M

EF

E(O

p1)

DN

200

0 M

EF

E(O

p1)

DN

1000 M

EF

E(O

p1)+

D-P

DN

200

0 M

EF

E(O

p1)+

D-P

Page 478: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 450 -

Fig

ura

C.2

4 T

en

sió

n e

n C

, S

y B

po

r ca

rgas

ex

tern

as

a la

rgo

pla

zo e

n t

ub

ería

s d

e h

orm

igó

n

Mo

de

lo p

ara

dis

tin

tos

sup

ue

sto

s d

e d

istr

ibu

ció

n d

el m

ód

ulo

de

l su

elo

co

n c

om

po

rta

mie

nto

elá

sti

co

(In

sta

laci

ón

tip

o E

T4,

Gs

2/4

W)

-10-8-6-4-202468

10

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

Te

nsió

n M

ax. (O

p1)

Tensió

n M

ax.

(O

p2

)

Te

nsió

n M

in. (O

p1)

Tensió

n M

in.

(Op

2)

C D

N1000 M

EF

E(O

p1)

C D

N2000 M

EF

E(O

p1

)

S D

N1000 M

EF

E(O

p1)

S D

N2000 M

EF

E(O

p1)

B D

N1000 M

EF

E(O

p1)

B D

N2000 M

EF

E(O

p1)

C D

N1000 M

EF

E(O

p2)

C D

N2000 M

EF

E(O

p2

)

S D

N1000 M

EF

E(O

p2)

S D

N2000 M

EF

E(O

p2)

B D

N1000 M

EF

E(O

p2)

B D

N2000 M

EF

E(O

p2)

Page 479: cálculo estructural de tuberías enterradas por el método

Anexo C

Comparación de resultados entre el CEN/TR 1295-3 y el MEF propuesto

- 451 -

Fig

ura

C.2

5 T

en

sió

n e

n C

, S

y B

po

r ca

rgas

ex

tern

as

a la

rgo

pla

zo e

n t

ub

ería

s d

e h

orm

igó

n

Mo

del

o e

lás

tic

o y

ela

sto

plá

stic

o c

on

dis

trib

uci

ón

de

du

los

de

l su

elo

se

n o

pc

ión

1 (

Ins

tala

ció

n t

ipo

ET

4, G

s 2/

4 W

)

-10-8-6-4-202468

10

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N100

0 M

EF

E(O

p1)

C D

N2000 M

EF

E(O

p1)

S D

N1000 M

EF

E(O

p1)

S D

N2000 M

EF

E(O

p1)

B D

N1000 M

EF

E(O

p1)

B D

N2000 M

EF

E(O

p1)

B D

N1000 M

EF

E(O

p1)+

D-P

S D

N1000 M

EF

E(O

p1)+

D-P

C D

N100

0 M

EF

E(O

p1)+

D-P

B D

N2000 M

EF

E(O

p1)+

D-P

S D

N2000 M

EF

E(O

p1)+

D-P

C D

N2000 M

EF

E(O

p1)+

D-P

Page 480: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 452 -

Fig

ura

C.2

6 T

ensi

ón

en

C,

S y

B p

or

carg

as

exte

rna

s m

as p

resi

ón

inte

rio

r a

larg

o p

lazo

en

tu

ber

ías

de

h

orm

igó

n. M

od

elo

pa

ra d

isti

nto

s s

up

ue

sto

s d

e d

istr

ibu

ció

n d

el m

ód

ulo

del

su

elo

co

n c

om

po

rtam

ien

to

elá

stic

o (

Ins

tala

ció

n t

ipo

ET

4, G

s 2

/4 W

)

-5-3-113579

11

13

15

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

Tensió

n M

ax.

(Op1)

Te

nsió

n M

ax. (O

p2)

Tensió

n M

in.

(Op1)

Te

nsió

n M

in. (O

p2)

C D

N100

0 M

EF

E(O

p1)

C D

N2000 M

EF

E(O

p1)

S D

N1000 M

EF

E(O

p1)

S D

N2000 M

EF

E(O

p1)

B D

N1000 M

EF

E(O

p1)

B D

N2000 M

EF

E(O

p1)

C D

N100

0 M

EF

E(O

p2)

C D

N2000 M

EF

E(O

p2)

S D

N1000 M

EF

E(O

p2)

S D

N2000 M

EF

E(O

p2)

B D

N1000 M

EF

E(O

p2)

B D

N2000 M

EF

E(O

p2)

Page 481: cálculo estructural de tuberías enterradas por el método

Anexo C

Comparación de resultados entre el CEN/TR 1295-3 y el MEF propuesto

- 453 -

Fig

ura

C.2

7 T

ensi

ón

en

C,

S y

B p

or

carg

as

exte

rna

s m

as p

resi

ón

inte

rio

r a

larg

o p

lazo

en

tu

ber

ías

de

h

orm

igó

n. M

od

elo

elá

sti

co

y e

last

op

lást

ico

co

n d

istr

ibu

ció

n d

e m

ód

ulo

s d

el s

ue

lo s

egú

n o

pc

ión

1 (

Ins

tala

ció

n t

ipo

ET

4, G

s 2

/4 W

)

-5-3-113579

11

13

15

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Tensíon máxima (MPa)

C D

N1000 M

EF

E(O

p1)

C D

N2

000 M

EF

E(O

p1)

S D

N1

000 M

EF

E(O

p1)

S D

N2000

ME

F E

(Op1)

B D

N1

000 M

EF

E(O

p1)

B D

N2000

ME

F E

(Op1)

B D

N1

000 M

EF

E(O

p1)+

D-P

S D

N1000

ME

F E

(Op1)+

D-P

C D

N1000 M

EF

E(O

p1)+

D-P

B D

N2000

ME

F E

(Op1)+

D-P

S D

N2

000 M

EF

E(O

p1)+

D-P

C D

N2

000 M

EF

E(O

p1)+

D-P

Page 482: cálculo estructural de tuberías enterradas por el método

Tesis doctoral Cálculo estructural de tuberías enterradas por el MEF, con base en el informe técnico CEN/TR 1295-3

- 454 -

Fig

ura

C.2

8 C

arg

a cr

ític

a d

e p

and

eo

a la

rgo

pla

zo e

n t

ub

erí

as d

e h

orm

igó

nM

od

elo

par

a d

isti

nto

s s

up

ues

tos

de

dis

trib

uc

ión

de

l mó

du

lo d

el s

uel

o c

on

co

mp

ort

amie

nto

elá

stic

o

(In

sta

laci

ón

tip

o E

T4,

Gs

2/4

W)

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

45,0

50,0

55,0

60,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

Alt

ura

de

cob

ertu

ra (

m)

Carga de pandeo (MPa)D

N 1

000 (

Op

1)

DN

200

0 (

Op1)

DN

1000 (

Op

2)

DN

200

0 (

Op2)

DN

1000 M

EF

E(O

p1)

DN

2000 M

EF

E(O

p1

)

DN

1000 M

EF

E(O

p2)

DN

2000 M

EF

E(O

p2

)