Calculo de Un Winche Bmfcim779s

149
Universidad Austral de Chile Facultad de Ciencias de la Ingeniería Escuela de Ingeniería Naval "SISTEMA HIDRÁULICO DE UN WINCHE DE REMOLQUE PARA UN REMOLCADOR DE ALTAMAR" Tesis para optar al Título de: Ingeniero Naval. Mención: Construcción Naval. Profesor Patrocinante: Sr. Héctor Legue Legue. Ingeniero Civil Mecánico. M.Sc. en Ingeniería Oceánica. EDUARDO ANDRES MONTESINOS VERA VALDIVIA - CHILE 2006

Transcript of Calculo de Un Winche Bmfcim779s

Page 1: Calculo de Un Winche Bmfcim779s

Universidad Austral de Chile Facultad de Ciencias de la Ingeniería

Escuela de Ingeniería Naval

"SISTEMA HIDRÁULICO DE UN WINCHE DE REMOLQUE

PARA UN REMOLCADOR DE ALTAMAR"

Tesis para optar al Título de: Ingeniero Naval. Mención: Construcción Naval.

Profesor Patrocinante: Sr. Héctor Legue Legue. Ingeniero Civil Mecánico. M.Sc. en Ingeniería Oceánica.

EDUARDO ANDRES MONTESINOS VERA VALDIVIA - CHILE

2006

Page 2: Calculo de Un Winche Bmfcim779s
Page 3: Calculo de Un Winche Bmfcim779s

RESUMEN

El presente proyecto de tesis expone un diseño, puesta en marcha y protocolos de

pruebas del sistema hidráulico de un winche de remolque, en base a normas

internacionales y recomendaciones de diseño de la bibliografía vigente, apoyándose

en información técnica de los fabricantes de los equipos y componentes

seleccionados para el diseño, conjugando de cierta manera la teoría con la práctica.

El estudio está centrado exclusivamente en criterios hidráulicos, sin profundizar

mayormente en otros análisis, como son los estructurales orientados a establecer

con mayor exactitud ciertas dimensiones que determinan posteriormente las fuerzas

que deben ejercer los actuadores. Es por esta razón que algunos factores, como

rendimientos mecánicos, dimensiones físicas del winche y otros sistemas del barco,

se establecen como “supuestos”, en base a equipos o sistemas similares

SUMMARY

The present thesis project exposes a design, commissioning and acceptances tests

of an hydraulic system for a towing winch, on the basis of international standards and

recommendations of design of the effective bibliography, leaning in technical

information of the manufacturers of the equipments and components selected for the

design, conjugating in certain way the theory with the practice.

This study is exclusively centered on hydraulics criteria, and avoiding other analysis,

such as structural oriented to establish with more accuracy certain dimensions which

determinate actuators forces. This is the reason why some factors, such as

mechanicals efficiency, fiscal’s dimensions or other ship systems, their are establish

like “supposed”, based on similar equipments or systems.

Page 4: Calculo de Un Winche Bmfcim779s

INTRODUCCION

Dentro del área marítima, las embarcaciones de trabajo o apoyo, como son los

remolcadores, cumplen una gran labor al desarrollo de las maniobras de puerto,

asistencia de siniestros, fondeo de boyas, etc. Es por tal motivo que el equipamiento

de cubierta y maniobra debe ser el adecuado, de fácil operación, y que cumpla con

las exigencias de seguridad tanto para la vida útil del equipo como la seguridad de

las personas y la embarcación.

Este tipo de embarcaciones normalmente posee para maniobras de remolque,

salvataje y/o fondeo de boyas, un winche de remolque ubicado en la popa de la

embarcación, consistente en un tambor donde se aloja el cable de remolque, y con

una serie de dispositivos para su operación. Este puede ser de accionamiento

hidráulico, eléctrico, de combustión interna, etc.

Se ha elegido como método de accionamiento el sistema hidráulico, debido a todas

las bondades de este tipo de instalaciones, como es la transmisión de grandes

fuerzas a tamaño relativamente reducido, funcionamiento a carga completa desde el

reposo, protección simple contra sobrecargas y sistemas de accionamientos

sencillos.

A continuación se presentarán los criterios de selección y cálculo de los

componentes del sistema hidráulico de un winche de remolque para un remolcador

de altamar rigiéndose por las normas de Casas Clasificadoras e ISO 7365

(Shipbuilding and Marine Structures – Deck Machinery – Towing winches for Deep

Sea Use), para finalizar con las opciones de funcionamiento, puesta en marcha y

protocolo de pruebas.

Page 5: Calculo de Un Winche Bmfcim779s

INDICE

1. CARACTERÍSTICAS PRINCIPALES DE LA NAVE 1

2. DESCRIPCIÓN DE LA MANIOBRA 1

3. CONSIDERACIONES GENERALES 3

3.1 ISO 7365 3

3.1.1 Freno 3

3.1.2 Cable y Tambor 4

3.1.3 Equipamiento Auxiliar 4

3.1.4 Largada de Emergencia 4

3.1.5 Pruebas de Aceptación 4

3.2 Clase 4

3.2.1 Largada de Emergencia 4

3.2.2 Cable 4

4. TIPO DE WINCHE 5

5. DIMENSIONAMIENTO DE LOS PARAMETROS QUE

DETERMINAN LOS ACTUADORES 5

5.1 Selección del Cable 5

5.2 Dimensionamiento del Tambor 6

5.2.1 Diámetro del Tambor (DT) 6

5.2.2 Largo del Tambor (LT) 6

5.3 Momento Máximo en el Tambor (MT) 8

5.4 Momento Generado por el Devanador (Md ) 8

5.5 Parámetros del Motor Hidráulico 11

5.5.1 Momento Total que Debe Ejercer el Motor Hidráulico 11

5.5.2 Cálculo RPM Motor 12

5.6 Parámetros Cilindro de Freno 12

5.6.1 Tensión de Frenado 13

5.6.2 Determinación de la Carrera del Cilindro 14

5.6.3 Fuerza que Debe Ejercer el Cilindro 17

5.6.4 Velocidad del Cilindro 18

5.7 Parámetros Cilindro de Embrague 18

5.7.1 Fuerza de Empuje 19

5.7.2 Carrera del Vástago del Cilindro 20

5.7.3 Velocidad del Vástago del Cilindro 20

6. SELECCIÓN DE LOS ACTUADORES 21

6.1 Selección del Motor Hidráulico 21

Page 6: Calculo de Un Winche Bmfcim779s

6.2 Selección del Cilindro de Freno 23

6.3 Selección del Cilindro de Embrague 28

7. SELECCIÓN DE LA BOMBA 30

7.1 Determinación del caudal de la bomba 30

7.2 Selección del Equipo 31

8. SELECCIÓN DE TUBERIAS 32

8.1 Tubería de Aspiración 33

8.2 Tubería de Presión 33

8.3 Tubería de Retorno 33

8.4 Tubería de Drenaje 34

8.5 Tuberías de Pilotaje 34

8.5.1 Tubería de Presión 36

8.5.2 Tubería de Retorno de Pilotaje 36

8.6 Tuberías del Cilindro de Freno 36

8.6.1 Tubería de Presión 36

8.6.2 Tubería de Retorno 37

8.7 Elección de Tuberías 37

9. PERDIDA DE PRESIÓN 37

9.1. Tubería de Motor Hidráulico 38

9.1.1 Perdida de Presión por Fricción 38

9.1.2 Perdida de Presión Debido a los Elementos 41

9.2. Tubería de Pilotaje 43

9.2.1 Perdida de Presión por Fricción 43

9.2.2 Pérdida de Presión Debido a los Elementos 44

9.3. Tubería del Cilindro de Freno 45

9.3.1 Perdida de Presión por Fricción 45

9.3.2 Pérdida de Presión Debido a los Elementos 48

10. BALANCE TERMICO 48

10.1 Perdidas de Potencia Debido al Rendimiento

de los Componentes (PV1) 49

10.2 Perdidas de Potencia por Estrangulaciones

en Válvulas (PV3) 50

10.3 Perdidas de Potencia por Resistencias

de Circulación (PV4) 51

10.4 Temperatura de Régimen 52

10.5 Selección del Intercambiador de Calor 53

10.6 Determinación del Caudal de Agua de Enfriamiento 56

10.7 Determinación del Caudal de Aceite 57

Page 7: Calculo de Un Winche Bmfcim779s

11. LARGADA DE EMERGENCIA (QUICK RELEASE) 58

11.1 Liberación del freno 58

11.2 Liberación del Embrague 60

12. SELECCIÓN DEL FLUIDO HIDRAULICO 61

13. DETERMINACIÓN Y DESCRIPCIÓN DEL CIRCUITO 62

13.1 Bombas 62

13.2 Motor Hidráulico 63

13.3 Freno 64

13.4 Enfriamiento 64

13.5 Largada de Emergencia (Quick Release) 64

13.6 Elementos de regulación 65

13.7 Elementos de Seguridad, Protección y Control 65

13.8 Depósito de Aceite 68

14. PUESTA EN MARCHA 69

14.1 Limpieza del Estanque 69

14.2 Lavado del Circuito 69

14.2.1 Preparación de la Instalación para el Lavado 70

14.2.2 Realización del Lavado 71

14.3 Regulación del Sistema 72

14.3.1 Regulación del ajuste de la cinta de freno 73

14.3.2 Verificación de la carrera del cilindro de embrague 74

14.3.3 Carga con Nitrógeno del Acumulador 74

14.3.4 Regulación de la bomba 74

14.3.5 Regulación de las Válvulas de Alivio 75

14.3.6 Regulación de las Válvulas Reguladoras de Presión 75

14.3.7 Regulación del Block Direccional (5) 75

14.3.8 Regulación de la válvula Reguladora de Caudal (10) 76

15. PROTOCOLO DE ENSAYOS FINALES E INSPECCIONES

DE CLASIFICACIÓN 76

15.1 Norma ISO 7365 76

15.1.1 Prueba de Retención del Tambor con el Freno 76

15.1.2 Operación bajo Carga 76

15.1.3 Operación del Embrague y Freno 77

15.1.4 Emergencia y Control 77

15.2 Casa Clasificadora 77

CONCLUSIONES

ANEXOS

BIBLIOGRAFIA

Page 8: Calculo de Un Winche Bmfcim779s

1

1. CARACTERÍSTICAS PRINCIPALES DE LA NAVE:

Remolcador de Altamar 50 [ton] Bollard Pull

Eslora : 28.50 [m]

Manga : 10.30 [m]

Puntal : 05.50 [m]

Calado : 04.70 [m]

Potencia : 2x2350 a 1600 [rpm]

Tracción punto fijo : 50 [ton]

Propulsión azimutal de paso controlable Schottel 1215CP

2. DESCRIPCIÓN DE LA MANIOBRA

Existen distintas maniobras de remolque para un remolcador de alta mar, como

puede ser a través de una espía y gancho de remolque como con un winche para

tal efecto.

Ambas coinciden que deben poseer un sistema de escape rápido para largar la

maniobra en caso de emergencia, como por ejemplo el hundimiento del buque

remolcado o cualquier otra circunstancia que ponga en serio peligro al

remolcador.

A diferencia de la maniobra con espía y gancho de remolque, casos en los

cuales el largo del remolque se mantiene constante, al utilizar un winche permite

ir variando este largo, con el objeto de dar mayor maniobrabilidad en caso de ser

necesario, como el de zonas de alto tráfico marítimo. Al momento de efectuar la

maniobra, el equipo permanece desembragado y frenado, es decir la fuerza

descansa completamente sobre el freno del tambor, por lo que al momento de

accionar la largada de emergencia el freno debe ser liberado. En circunstancias

que esta emergencia se produzca mientras se esta virando o se mantiene

frenado y embragado debido a que todavía se esta operando con el tambor, la

largada de emergencia debe liberar el freno y desembragar el tambor.

El winche además de servir el propósito de remolcar otro barco, puede cumplir

funciones de izamiento de muertos para maniobras de fondeo, o cualquier otro

elemento que se desee levantar para ser sacado del agua o cambiado de

posición.

Page 9: Calculo de Un Winche Bmfcim779s

2

La fuerza del peso o del remolque es ejercida por un motor hidráulico a través del

tambor que almacena el cable. Esta fuerza es accionada directamente sobre este

tambor, de manera que a medida que mientras mayor cable se encuentra

adujado sobre este, mayor será el diámetro al centro, mayor el momento sobre el

tambor y en consecuencia mayor la fuerza que deba ejercer el motor hidráulico.

Es por tal motivo que se debe definir la fuerza en la primera capa de cable

adujado como en la última.

El cable debe ser adujado de manera automática sobre el tambor a medida que

se va arriando o virando el cable. Para tal efecto se ha dispuesto un devanador

de funcionamiento mecánico que consiste en una barra con hilo de doble paso

de acuerdo a la cantidad de vueltas que tiene el cable sobre el tambor, con el

objeto de no ejercer fuerzas demasiado grandes sobre este dispositivo, que

puedan ser destructivas o que afecten su funcionamiento normal, es que se

disponen de elementos guías para que el cable no adopte ángulos demasiado

grandes.

Estos elementos pueden ser cilindros guías, llamados “tow pins” instalados en

popa del remolcador o maniobras de cables que restrinjan su movimiento como

se muestra en la figura:

Figura 1.- Detalle línea de remolque (detalles anexo 16)

Cables

Tow Pins

Page 10: Calculo de Un Winche Bmfcim779s

3

Figura 2.- Detalle del winche y su ubicación (detalles anexo 16)

3. CONSIDERACIONES GENERALES

3.1 ISO 7365 (anexo 1)

En base a la norma ISO 7365 (Shipbuilding and Marine Structures – Deck

Machinery – Towing winches for Deep Sea Use), lo que compete a criterios

hidráulicos se debe tener en consideración lo siguiente:

3.1.1 Freno

Debe estar provisto de un sistema de freno para el tambor capaz de mantener

hasta 2.5 veces la carga de tracción a punto fijo y tener la opción de ser operado

manualmente.

3.1.2 Cable y Tambor

Dimensiones del tambor y características del cable se detallan en punto 5.

El arraigado del cable al tambor debe ser lo suficientemente débil para que se

rompa en caso de una largada de emergencia.

Devanador Tambor con cable

Motor Hidráulico

Cilindro De Freno

Control local

Winche

Control Puente

Tow Pins

Page 11: Calculo de Un Winche Bmfcim779s

4

3.1.3 Equipamiento Auxiliar:

Debe poseer un sistema automático o manual para el adujado del cable si así se

acordase entre el fabricante y el cliente.

3.1.4 Largada de Emergencia

Debe poseer un sistema de largada de emergencia mientras el winche esté

detenido (con el freno) o en movimiento (virando o arriando), con un tiempo

máximo de 10 segundos de retardo.

Debe poder accionarse desde el puente o desde el control local, aún en

condiciones de falla del poder principal o de un “black out”.

El dispositivo de accionamiento debe estar protegido contra operaciones no

intencionales.

3.1.5 Pruebas de Aceptación

Protocolo de pruebas se verá en punto 15.

3.2 Clase

En base a las normas de la casa clasificadora American Bureau of Shipping,

parte 5, capitulo 8, Vessels Intended for Towing, en lo que compete a criterios

hidráulicos se debe tener en consideración lo siguiente:

3.2.1 Largada de Emergencia (Part 5, Chapter 8, section Nº3)

Debe poseer un sistema de largada de emergencia del cable, operable desde el

puente y de cualquier estación de control o mando del equipo.

3.2.2 Cable (Part 5, Chapter 8, section Nº5.1 / section Nº9.3 )

El esfuerzo de ruptura debe ser 2.0 veces la fuerza ejercida a tracción a punto

fijo.

Page 12: Calculo de Un Winche Bmfcim779s

5

4. TIPO DE WINCHE

En base a las consideraciones descritas anteriormente y a los objetivos

planteados, se considera un winche de remolque de accionamiento hidráulico

con las siguientes características:

Capacidad de tiro mínima: 30 ton-f (ultima capa) y 50 ton-f (primera capa)

Largo efectivo del cable: 600 [m]

Devanador: Mecánico

Capacidad estática del freno: 125 ton-f

Largada de emergencia: Remoto (puente) y local

Bomba Power Pack hidráulico: Principal y St-by

Controles: Remoto (Puente) y local

Alarmas Bajo nivel de aceite y alta temperatura

En base a la norma ISO 7365 (Shipbuilding and Marine Structures – Deck

Machinery – Towing winches for Deep Sea Use), el winche recibe la siguiente

denominación:

Winche de Remolque ISO 7365 – H – 49 – R – 1

Tipo de winche

Norma

Tipo de transmisión (H-hidráulica, E-eléctrica,

S-vapor, RICE, recíproco de combustión interna)

Tamaño Nominal (KN/10)

Lado de operación del winche (B-ambos lados, C-central, R-derecha, L-izquierda)

Arreglo del Tambor (1-tambor simple, 2-doble tambor en línea, 2W-doble tambor cascada,

3-triple tambor en línea, 3W-triple tambor cascada

5. DIMENSIONAMIENTO DE LOS PARAMETROS QUE DETERMINAN LOS

ACTUADORES

5.1 Selección del Cable

Tabla 1.- Esfuerzo de mínimo de ruptura del cable de remolque (1) Máxima tracción a punto fijo (MBP)

[KN] Esfuerzo de ruptura

< 300 3.50 x MBP

300 - 800 2.75 x MBP > 800 2.75 x MBP

_________________________________________________________________________ (1) ISO 7365 1983 (E)

Page 13: Calculo de Un Winche Bmfcim779s

6

Según las características de la embarcación 50 [ton] bollard pull corresponde a

490.35 [KN], por lo que el esfuerzo mínimo de ruptura del cable corresponde a:

ER= 1348.5 [kN]

Tabla 2.- Datos de Funcionamiento (1)

Tamaño nominal

Carga del

tambor

Vel. nominal

(min)

Vel. línea sin carga

(min) MBP Diám

cable

Fuerza ruptura (min)

Carga retención

(min)

Diám. tambor (min)

Capacidad tambor

KN [m/s] [m/s] KN [mm] KN KN [mm] [mm] 56 560 0.08 0.16 527 48 1450 1450 768 750

En concordancia con lo anterior, la tabla que a continuación se presenta, y

considerando el diseño básico del cable según norma ISO 7365, que

corresponde a un Warington–Seale steel-cored de 1770 [N/mm2] grado de

tensión para cables de acero, se tiene:

Tabla 3.- Características Técnicas Cable Seleccionado (2)

Por lo tanto el cable seleccionado cumple con tabla 1, 2 .

5.2 Dimensionamiento del Tambor

5.2.1 Diámetro del Tambor (DT):

No menor que:

DT = 16 Dcable = 16 x 48 = 768 [mm]

Lo cual cumple con tabla 2.

5.2.2 Largo del Tambor (LT)

La primera capa de cable enrollado en el tambor debe acomodar al menos 50

[m], por cual se tiene:

_________________________________________________________________________ (1) ISO 7365 1983 (E) – Extracto de tabla “Performance Data” (2) Elka Steel Rope Catalog – Extracto de tabla

Page 14: Calculo de Un Winche Bmfcim779s

7

50 = N x PT Donde N = Nº de vueltas en el tambor

PT= Perímetro del tambor.

Se determina un diámetro del tambor de 800 [mm].

50 = N x π x DT

N = 50 = 19.89 π x 0.8

Considerando un número de 20 vueltas por el diámetro del cable, se obtiene el

largo del tabor.

LT= 20 x 0.048 = 0.96 [m]

LT= 1.00 [m]

Según requerimientos del armador y considerando que los primeros 50 [m] de

cable no se utilizan, se determinó un largo total: LC= 650 [m]

Tabla 4.- Nº de Vueltas Versus Longitud del Cable 1ª vuelta DT vacío 20 x π x 0.800 50.26 [m] 2ª vuelta DT vacío + 0.096 20 x π x 0.896 56.30 [m] 3ª vuelta DT vacío + 0.192 20 x π x 0.992 62.33 [m] 4ª vuelta DT vacío + 0.288 20 x π x 1.088 68.36 [m] 5ª vuelta DT vacío + 0.384 20 x π x 1.184 74.39 [m] 6ª vuelta DT vacío + 0.480 20 x π x 1.280 80.42 [m] 7ª vuelta DT vacío + 0.576 20 x π x 1.376 86.45 [m] 8ª vuelta DT vacío + 0.672 20 x π x 1.472 92.48 [m] 9ª vuelta DT vacío + 0.768 20 x π x 1.568 98.52 [m] ∑ = 669.51 [m]

Figura Nº3.- Esquema de Adujado del Cable Sobre el Tambor

1 vuelta2 vuelta

4 vuelta3 vuelta

7 vuelta8 vuelta

6 vuelta5 vuelta

9 vuelta

aaa

aaa

aaa

F

M

Page 15: Calculo de Un Winche Bmfcim779s

8

5.3 Momento Máximo en el Tambor (MT)

Con un total de 10 vueltas, diámetro tambor vacío + 0.864 [m] de acumulación

de cable, da como resultado un diámetro a tambor lleno de 1.664 [m], por lo que

para efectos de cálculo se considera:

MT= CTmax x DT/2 CTmax= capacidad de tiro

MT= 30 x 0.808 = 24.24 [ton-m]

MT= 24240 [kgf-m]

5.4 Momento Generado por el Devanador (Md )

El devanador se ubica inmediatamente a popa del winche y forma parte integral

de este. Su función es adujar el cable al momento de arriar o virar el cable de

remolque, y su disposición se visualiza en la siguiente figura:

Figura 4.- Dimensiones Sobre el Devanador y Tow Pins

MOLINETE DE ESPIAS

CILINDRO DE FRENO

CILINDRO DE EMBRAGUE

DEVANADOR

MOTOR HIDRAULICO

TOW PINS

9480

500

T

T

Td3°

El cable pasa a través del devanador pasando por los “Tow pins”, los cuales

actúan como guía y seguro sobre la línea de remolque, evitando que actúen

fuerzas demasiado grandes y en direcciones poco convenientes sobre el

Page 16: Calculo de Un Winche Bmfcim779s

9

devanador. Para el caso de alguna condición particular de maniobra se restringe

el desplazamiento mediante una maniobra de cables como se muestra en la

figura Nº3.

Figura 4.- Dimensiones Sobre el Devanador y Cables

Para efectos de cálculo se asume un ángulo máximo de 4º sobre el devanador se

tiene que:

Td = T sen 4º =30000 x sen 4º = 2092.6 [kgf]

Considerando una relación de transmisión entre tambor y devanador de 1:1 y 20

vueltas de cable en un largo de tambor LT= 1.00 [m], tenemos un devanador de

paso doble con paso “P” :

P = LT/N = 1000/20 =50 [mm]

P = 50 [mm]

α = arctg [Dd / P/2] = arctg 110/25 = 65.5º Figura5.- Dimensiones del Devanador

α = 65.5º

P

P/2

65.5°

110Md

Page 17: Calculo de Un Winche Bmfcim779s

10

Figura 6.- Fuerzas que Actúan sobre del devanador

Td

α

µ

Td cos α

Td sen α

Td cos α

Td sen α

N

µN

ESQUEMA D.C.L.

FTsen α

Se considera hierro fundido sobre hierro fundido como material y se utiliza el

coeficiente de fricción en húmedo, que corresponde a elementos sumergidos en

aceite o recubiertos de grasa, como es en este caso.

Tabla 5.- Coeficientes de Fricción Para Distintos Materiales (1)

∑F = Tdcosα - µxTdsenα = 2092.6cos65.5º - 0.05 x 2092.6sen65.5º = 772.6 [kgf]

La fuerza (F) que debe contrarrestar el devanador corresponde a la sumatoria de

fuerzas (∑F) dividido en el seno del ángulo.

F = ∑F/ sen65.5º = 849 [kgf]

Por lo tanto el momento que se debe ejercer sobre el devanador corresponde a

lo siguiente:

Md = F x Dd/2 = 849 x 0.11/2

Md = 46.7 [kgf-m]

_________________________________________________________________________ (1) Paper “Frenos y embragues” Tecnun, Campus Tecnológico Universidad de Navarra

Page 18: Calculo de Un Winche Bmfcim779s

11

5.5 Parámetros del Motor Hidráulico

5.5.1 Momento Total que Debe Ejercer el Motor Hidráulico

Por lo tanto el momento total sobre el conjunto carrete (momento tambor +

momento devanador) es el siguiente:

Mc = 24240 + 46.7 [kgf-m]

Mc = 24286.7 [kgf-m]

Para determinar el momento que debe ejercer el motor hidráulico, se debe

establecer la relación de transmisión y rendimiento mecánico de ésta.

Motor –Tambor

Red. 15:1

ηmec1= 0.95 (Se determina 0.95 por ser el más desfavorable comúnmente considerado)

Motor – devanador

ηmec2= 0.95

Por lo cual se tiene:

ηmec= ηmec1x ηmec2

ηmec= 0.9

MM Hid = Mc . = 1799 [kgf-m] Red x ηmec

MM Hid ≈ 1799 [kgf-m]

MM Hid ≈ 17641 [N-m]

Page 19: Calculo de Un Winche Bmfcim779s

12

5.5.2 Cálculo RPM Motor

Según requerimientos del armador, la velocidad a tambor lleno deberá ser:

VN= 15 [m/min] = 0.25 [m/s]

Lo cual cumple con el mínimo exigido por norma según tabla 2.

Determinación de las RPM:

VN= 15 [m/min] RTambor lleno = 0.808 [m]

ωTLL = VN/ RTambor lleno

ωTLL = 15 / 0.808 = 18.56 [rad/min]

RPMTambor = ωTLL / 2 π = 18.56/ 2π = 2.95 [rpm]

RPMM hid. = RPMTambor x Red. = 2.95 x 15 = 44.31 [rpm]

RPMM hid. = 44.31 [rpm]

5.6 Parámetros Cilindro de Freno

Se establecerá un freno de cinta o banda flexible, con asbesto impregnado

como material de fricción, el cual actúa sobre la rueda que compone el extremo

del tambor de material hierro fundido. Su funcionamiento se explica en la figura

7:

Figura 7.- Secuencia de frenado

Tc

T2

bc

b2

T1

Tc

T1

T2

bc

b2

Cc

MFMF

Page 20: Calculo de Un Winche Bmfcim779s

13

5.6.1 Tensión de Frenado

Figura 8.- Tensión de Frenado

R

TT+dTM C

de giro

Sentido

T21T

R

Tsen

Tcos /2

(T+dT) sen /2

(T+dT) cos /2

giro

µdN

dN

Rd

Debido a la fricción y el sentido de giro señalado en la figura 8, la tensión de

trabajo T2 es menor que la tensión en el punto de retención T1. Planteando el

equilibrio de un diferencial de cinta, ∑F =0.

(T + dT) sen dω/2 + T sen dω/2 – dN = 0

(T + dT) cos dω/2 + T cos dω/2 – µdN = 0

De las ecuaciones anteriormente descritas se deduce:

dN = T dω → dT = ω T dω → dT = ω dω T

dT = ωdN

Sustituyendo el valor de dN en la ecuación e integrando entre T1 y T2; se tiene:

T1 ω

∫ dT/T = µ ∫ dω T2 0

Por lo tanto la relación de fuerzas es.

ln T1 = µω ⇔ T1 = e µω T2 T2

Page 21: Calculo de Un Winche Bmfcim779s

14

T1 = e µωωωω

T2 (1)

Como la expresión del par de frenada por ∑M=0, se tiene.

MC= (T1 - T2)xR (2)

De la ecuación (1) resulta:

T1 = e µω T2 / (-T2)

T1 -T2 = e µω T2 -T2

T1 -T2 = T2(e µω -1)

Reemplazando en (2) se tiene :

M = T2(e µω -1)xR

T2= MC . (e µω

-1)xR1

Se debe considerar que el freno debe ser capaz de retener el tambor hasta 2.5

veces el máximo bollard pull por lo que se tiene:

T2= 2.5 x MC

(e µωωωω

-1)xR1

5.6.2 Determinación de la Carrera del Cilindro

Consideraciones y tolerancias generales:

• Se asume un espesor de revestimiento de 10 [mm].

• Se considerará una separación de 2 [mm] como freno liberado.

• Para condiciones de operación más desfavorables se considerará como

máximo desgaste permisible promedio de un 50%, con el cual se deberá

efectuar cambio de éste.

Page 22: Calculo de Un Winche Bmfcim779s

15

La figura 9 representa la rueda de freno y la cinta con su revestimiento.

Figura 9.- Dimensiones de la Cinta de freno y su Revestimiento

Radio de la rueda de freno:

R1 = 900 [mm]

Radio de cinta sin desgaste en condición de freno liberado

R2 = 902

Radio de cinta con desgaste de 50% en condición de freno

liberado

R3 = 907

S= Longitud de cinta, de totalmente abierto a totalmente

frenado, con el revestimiento desgastado en un 50%.

Se efectuarán los cálculos considerando el caso más desfavorable, que es el

frenado con el revestimiento de la cinta desgastado en un 50%; es decir se debe

pasar de R3 a R1.

γ = Angulo abrazado de la cinta sin freno.

γ+ϕ = Angulo abrazado de la cinta con freno y revestimiento desgastado.

Determinación de “S”:

Lc = 7/4 π R3 = X π R1 Lc= largo de la cinta.

7/4 π R3 = X π R1

X = 7 R3 4 R1

ϕ = 7 R3 π - 7 π 4 R1 4

ϕ = 7 π (R3 - 1 ) = 0.0427 [rad] 4 R1

S = ϕ x R1 = 7 π (R3 - 1 ) x R1 4 R1

s

ϕ

γ

γ+ϕγ=7π/4

Page 23: Calculo de Un Winche Bmfcim779s

16

S = 7 π (π (π (π (R3 - R1) = 38.48 [mm] 4

γ+ϕ = 7 π + 7 π (R3 - 1 ) 4 4 R1

γ+γ+γ+γ+ϕϕϕϕ = 7 ππππ R3 = 5.54 [rad] 4 R1 Figura 10.- Relación de Dimensiones del Accionamiento del Freno

θ

θ

Xb

cc+s/2

ϕ

ϕ

Xa

α

a

b

Xb Xaθ

Donde:

a=292[mm] b=1145[mm] c=860[mm]

Cc= carrera del cilindro

Cc=Xb cos α

cos α≈ 1 para ángulos pequeños.

Cc≈Xb

Por relación de triángulos

Xb = Xa b a

Page 24: Calculo de Un Winche Bmfcim779s

17

Xb = Xa x b a

γ+ϕ = 7 π R3 4 R2

Cálculo de Xa

Por teorema del coseno:

Xa = √ [ (c+s/2)2 + c2 – 2(c+s/2)x cx cosϕ]

Xa = 40.13 [mm]

Xa ≈ 40 [mm]

Xb = 40.13 x 1145/292 [mm]

Xb = 157.38 [mm]

Xb ≈ 158 [mm]

Por lo tanto la carrera del cilindro :

Cc = 160 [mm]

5.6.3 Fuerza que Debe Ejercer el Cilindro:

Donde ω para el caso más desfavorable corresponde a la cinta frenada con su

revestimiento sin desgaste y por analogía corresponde a:

ω = 7 π R2 = 5.51 [rad] 4 R1

µ = 0.3 (Valor mínimo según tabla Nº5 para Asbesto tramado sobre hierro fundido)

T2= 2.5 x MC MC = MBPxRTLL = 50000 x 0.808 = 40400 [kgf] (e µω

-1)xR1

T2= 26576.4 [kgf]

Page 25: Calculo de Un Winche Bmfcim779s

18

MF = T2 x a = Tc x b

Tc = T2 x a / b

Tc = 26576.4 x 292 / 1145

Tc = 6778 [kgf]

5.6.4 Velocidad del Cilindro:

Considerando que el tiempo de liberación del freno en largada de emergencia es

de 10 [s], la velocidad del cilindro se determinará con T= 7 [s] y CC=160[mm].

Vc = CC/T

Vc = 22.85 [mm/s]

Vc ≈ 0.023 [m/s]

Datos para selección del cilindro de freno:

Tc = 6778 [kgf]

CC=160[mm].

Vc = 0.023 [m/s]

5.7 Parámetros Cilindro de Embrague:

El cilindro de embrague deberá vencer la fuerza que genera el momento ejercido

por el motor hidráulico sobre el acoplamiento de éste, con el propósito de poder

actuar como “quick release” (largada emergencia), en caso de tener que liberar el

cable durante alguna maniobra.

La figura Nº11 representa las fuerzas y momentos que interactúan en este

sistema:

Page 26: Calculo de Un Winche Bmfcim779s

19

Figura 11.- Fuerzas y Momentos del Sistema de embrague

F1M

1M

2F1

2

3

F

F

a

cb

5.7.1 Fuerza de Empuje:

M1 = Momento motor hidráulico =1799 [kgf-m]

M2 = F2 x a = F3

x c

a = 250 [mm]

b = 125 [mm]

c = 350 [mm]

F1 = M1 = 1799 = 14392 [kgf] b 0.125

F2 = µN → F1 = N

F2 = µ F1 → µ = 0.05 (Hierro fundido sobre hierro fundido en húmedo, según tabla Nº5 )

F2 = 0.05 x 23984 [kgf]

F2 = 719.6 [kgf].

M2= F2 x a = F3 x c

F3= F2 x a = 719.6 x 250 b 350

F3= 514 [kgf]

Page 27: Calculo de Un Winche Bmfcim779s

20

Debido a que es un cilindro estándar (no un cilindro de impacto) donde la

velocidad media oscila entre 0.1 y 1.5 [m/s], se sobredimensionará la fuerza de

empuje del cilindro (Fc ) en un 25%.

Fc = F3x 1.25

Fc = 642.5 [kgf]

5.7.2 Carrera del Vástago del Cilindro

Figura 12.- Carrera del Vástago del Cilindro de Embrague

CILINDRO NEUMATICO

ACOPLAMIENTO

DE

SP

LAZ

AM

IEN

TO

La figura Nº12 muestra los desplazamientos, brazos y holguras que requiere el

sistema, los cuales determinan la carrera del vástago del cilindro.

CC= 82 [mm]

5.7.3 Velocidad del Vástago del Cilindro

Se establecerá como tiempo máximo de desembrague 1[seg], con el

objeto de proporcionar una rápida largada del cable en caso de emergencia,

teniendo en cuenta que esta velocidad sigue siendo considerada como una

velocidad baja.

Vv = Cc/t

Vv = 0.082 / 1

Vv = 0.082 [m/s]

Page 28: Calculo de Un Winche Bmfcim779s

21

6. SELECCIÓN DE LOS ACTUADORES

6.1 Selección del Motor Hidráulico

En consideración al elevado par respecto de las revoluciones requeridas, es que

se seleccionó un motor LSHT (low speed, high torque), es decir un motor de

marcha lenta y alto par. Dentro de esta categoría se optó por un motor de

pistones radiales debido a su alto par de arranque, gran potencia y la ausencia

de limitaciones de espacio.

Todos los parámetros referidos a: ν = 36 mm2/s; 45 = ּט °C; poutput = zero pressure

Tamaño Nominal – número serie MR 6500

Desplazamiento volumétrico V cm3 6460.5

Momento de inercia J kg cm2 11376.6

Torque específico Nm/bar 103.57

Min. torque partida/torque teórico % 91

Presión máxima continua p bar 250

Presión máxima Intermitente p bar 300

Valor Peak de presión p bar 420

Rango de velocidad sin flushing n min–1 0.5 – 110

Rango de velocidad con flushing n min–1 0.5 – 130

Figura 13.- Rangos de Operación del Motor Hidráulico (1) (detalles anexo 2)

Tor

que

T

N-m

RPM

1 Potencia de Salida 2 Permisible para operación intermitente

3 Permisible para operación continua con flushing

ηt = Rendimiento total ηv = Rendimiento volumétrico

4 Permisible para operación continua

5 Presión de entrada

_________________________________________________________________________ (1) Bosch Rexroth Group, Hydraulic Components for industrial applications

Page 29: Calculo de Un Winche Bmfcim779s

22

Datos máximos continuos:

Pmáx = 250 [bar]

Paresp = 103.57 [N-m/bar] Paresp = par específico

Parmax cont teor = 25.892.5 [N-m]

Parmax cont = Parmax cont teor x 0.91

Parmax cont = 23561.7 [N-m]

RPM = 68 [rev/min] (con Parmax cont y Pmáx)

V (cilindrada)= 6.4605 [lt]

ηvol = 0.972

Validación del equipo:

V = M V = Cilindrada [lt]

1.6x P x ηvol M = Momento máximo continuo calculado en [kgf-m]

P = Presión de trabajo en [bar] =3/4 Pmáx. Int.

ηvol= Rendimiento volumétrico del motor

P = 0.75 x 250 = 187.5 [bar]

V = 1799 1.6x 187.5 x 0.972

V = 6.17 [lt]

La cilindrada del motor seleccionado es de 6.4605 [lt], por lo cual cumple con el

criterio.

Determinación de los parámetros a utilizar por el motor hidráulico:

Par : 17641 [N-m]

RPM : 44.3

Con lo cual se obtiene:

Ptrab : 180 [bar]

V : 286.178 [lt/min]

ηvol : 0.981

ηtot : 0.914

Page 30: Calculo de Un Winche Bmfcim779s

23

6.2 Selección del Cilindro de Freno

La fuerza que debe realizar el cilindro cuando esta retraído es de 6678 [kgf]. Esta

fuerza la ejerce un sistema de resortes de discos de platillos según DIN2093

como se muestra en la figura Nº14.

Figura 14.- Esquema del Cilindro de Freno

Rosca 560mm

Carrera del Vástago

F= 6678 [kgF] ˜ 66471 [N] Presión de trabajo

Lresorte extendido= 1350[mm]

Resorte discos de platillosDIN 2093

Lresorte comprimido= 1190[mm]

L vástago=550 [mm]

Para lograr la fuerza de 66471 [N], se selecciona de la tabla Nº6: “Medidas de

Resortes de Platillos”, el cual tenga mayor deflexión y menor variación de fuerza,

con el objeto de no incrementar demasiado la presión de trabajo.

Tabla 6- Medidas de Resortes de Platillos (1)

Figura 15.- Dimensiones de un Resorte de Platillos _________________________________________________________________________ (1) Handbook for Disc Springs

Page 31: Calculo de Un Winche Bmfcim779s

24

Se elige el disco D20010210 por lo que se tiene:

DE = 200 [mm]

DI = 102 [mm]

L0 = 15.6[mm]

Resortes Extendidos (Vástago retraído)

Para lograr la fuerza de 66471 [N], el disco debe tener una deflexión de 1.618

[mm] (interpolando de la tabla), por lo que el alto de disco comprimido (L01) es de

13.982 [mm].

LRE = 1350 [mm] LRE = Longitud resorte extendido

ND= LRE/L01 = 1350 / 13.982 ND= Nº de discos

ND= 96.55

ND= 97 discos.

Por lo cual se debe volver a determinar L01 con 97 discos.

L01 = LRE/ND = 1350 / 97

L01 = 13.981 [mm]

DRE = L0 - L01 = 15.6 - 13.981 DRE =Deflexión Resorte Extendido

DRE = 1.619 [mm] con lo cual se tiene FRE= 66525 [N] (interpolando de la tabla)

Page 32: Calculo de Un Winche Bmfcim779s

25

Resortes comprimidos (Vástago extendido)

La carrera del vástago (CV) es de 160 [mm] por lo que la deflexión final (DF) para

cada disco cuando el vástago se encuentre extendido es de:

DF = CV/ND + DRE = 160/97 + 1.619

DF = 3.268 [mm] , con lo cual se tiene FF= 119229 [N] (interpolando de la tabla)

Por lo tanto la fuerza final (FF) que opone el resorte cuando el vástago está

extendido (freno liberado) es de:

FF= 12157 [kgf]

Se asume un diámetro de pistón al menos igual al DE del disco = 200 [mm].

AP= π x (DE/2)2

AP= 314.16 [cm2]

Por lo tanto la presión necesaria para lograr extender el vástago es de:

P= FF/AP

P= 38.7 [kgf/cm2] ≈ 39.5 [bar]

P= 39.5 [bar]

Con dicha presión de trabajo y las dimensiones del disco se selecciona el

siguiente cilindro.

Figura 16.-

Parker series 3L Tie Rod Hydraulic cylinder for working pressure up to 70 [bar] (1)

___________________________________________________________________________ (1) Parker Hydraulics Mobile Cylinders, Product Information, Quick Reference, Data & Application Guide, Catalog HY18-0001/US.

Page 33: Calculo de Un Winche Bmfcim779s

26

Tabla 7.- Dimensiones Cilindro Parker series 3L (1)

Bore Rod RodØ Nº Ø LB P XC XK Zbmax ZC ZJ

1 50.8 101.6 50.8 78 219.1 142.9 197.0 244.5 181.02 139.7 177.8 57.2 84 225.4 149.2 203.3 250.8 187.33 63.5 101.6 57.2 84 225.4 149.2 203.3 250.8 187.34 76.2 139.7 57.2 84 225.4 149.2 203.3 250.8 187.35 88.9 139.7 57.2 84 225.4 149.2 203.3 250.8 187.36 101.6 139.7 57.2 84 225.4 149.2 203.3 250.8 187.37 34.9 101.6 41.3 68 209.5 133.4 187.4 235.0 171.58 44.5 101.6 47.2 74 215.9 139.7 193.8 241.3 177.80 127.0 177.8 57.2 84 225.4 149.2 203.3 250.8 187.3

Bore Rod Rod CD+0.00 EE3

Ø Nº Ø -0.05 (BSPP)

1 50.82 139.73 63.54 76.25 88.96 101.67 34.98 44.50 127.0

16 38.1 38.1

LR

39.7 25.43 19.1 215.9 18 G3/4 19.1 50.8 38.1

G J K L

86

203.2

CB CW E EB F

203.2 30.2 192.3 149.2

+ STROKEMR TE TT WF Y

El diámetro del vástago no debe superar los 102 [mm] de diámetro y el largo los

550 [mm]

Figura 17.- Gráfico de Selección de Vástago Versus Carga (1)

Para una carga de aproximadamente 120 [kN] y un largo de vástago de 550 [mm]

se tiene un diámetro no menor de 44.5 [mm]

Considerando que el extremo del vástago debe ser roscado se elige un diámetro

superior de 63.5 [mm]

___________________________________________________________________________ (1) Parker Hydraulics Mobile Cylinders, Product Information, Quick Reference, Data & Application Guide, Catalog HY18-0001/US.

Page 34: Calculo de Un Winche Bmfcim779s

27

Por lo tanto las dimensiones del cilindro serán las siguientes:

Ø Pistón = 203.2 [mm]

Ø Vástago = 63.5 [mm]

Con la real dimensión del pistón se determina la presión de trabajo del cilindro:

AP= π x (Ø Pistón /2)2

AP= 324.29 [cm2]

Por lo tanto la presión necesaria para lograr extender el vástago es de:

P= FF/AP

P= 12157/324.29

P= 37.49 [kgf/cm2] ≈ 38.24 [bar]

P= 38.3 [bar].

Considerando el tiempo de apertura del cilindro T= 7 [s] y la longitud de la carrera

CC= 160 [mm], se tiene:

VLL = AP x CC VLL = Volumen de llenado

VLL = 324.29 x 16

VLL = 5188 .64 [cm3] = 5.18864 [lt]

VGC = VLL/T VGC = Caudal del cilindro

VGC = 5.18864/7

VGC ≈ 0.74 [lt/seg]

VGC ≈ 44.47 [lt/min]

Page 35: Calculo de Un Winche Bmfcim779s

28

6.3 Selección del Cilindro de Embrague

Cilindro de Doble Efecto:

FN= A x P - FR FN = Fuerza real del embolo

A = Superficie del embolo

FR = Fuerza de roce = 10% de FN

P = Presión de trabajo [kgf/cm2]

Debido a que el uso de presiones mayores a 15 [bar] se considera poco

económico y la eficiencia del sistema se reduce, es que se establecerá como

presión de trabajo P = 7 [bar] (= 7.14 [kgf/cm2], lo comúnmente utilizado como

presión de servicio en las embarcaciones.

A = FN + FR = 1.1 x FN

P P

A = 1.1 x 642 7.14

A = 98.9 [cm2]

DE= √(4A/π)

DE= 11.22 [cm]

Con los parámetros antes descritos se elige el siguiente cilindro neumático:

Características Técnicas

• ISO 6431, VDMA 24562.

• Diámetros de émbolos – 160mm, 200mm.

• Diámetros de vástagos – 40mm.

• Extremo de vástago – Dos estándares, especiales por pedido.

• Carrera de vástago – disponible en cualquier largo práctico.

Page 36: Calculo de Un Winche Bmfcim779s

29

• Presión de servicio: 10 [bar]

• Fluido estándar –Aire filtrado.

• Temperatura estándar – -10°C to +74°C (+14°F to +165°F).

• Sellos de Fluorocarbono para alta temperatura de servicio -10°C to 121°C

(+14°F to +250°F).

• Tipo de montaje – 12 estándares.

Figura 18.- Cilindro de Embrague (1)

Tabla 8.- Dimensiones Cilindro Seleccionado (1)

De los cuales se selecciona:

DE = 125 [mm]

DV= 32 [mm]

___________________________________________________________________________ (1) Catálogo General de Productos Micro Automatización.

Page 37: Calculo de Un Winche Bmfcim779s

30

Figura 19.- Gráfico Carrera Máxima por Pandeo (1)

Del gráfico anterior se deduce que para una presión de servicio de 7 [bar]

y un diámetro de embolo de 125 [mm], se obtiene una fuerza aproximada de

8000 [N], lo que corresponde a 815.7 [kgf], y una carrera máxima por pandeo

para el vástago correspondiente de 800 [mm], por lo que el cilindro elegido

cumple con los parámetros de selección.

7. SELECCIÓN DE LA BOMBA

7.1 Determinación del caudal de la bomba

Qbba= NxV Qbba = Caudal que debe suministrar la bomba 1000x ηvol N = RPM motor hidráulico V = Caudal geométrico motor

ηvol = Rendimiento volumétrico motor

Qbba= 44.3x6460,5 1000x 0,981

Qbba= 291,743 [lt/min]

___________________________________________________________________________ (1) Catálogo General de Productos Micro Automatización.

Page 38: Calculo de Un Winche Bmfcim779s

31

Asumiendo un 5% por concepto de pérdidas, en goteo línea de pilotaje en caso

de operación remota:

Qbba= 306,33 [lt/min]

7.2 Selección del Equipo (detalles anexo 3)

Bomba variable A4VSO 180 DP (pistones axiales a placa inclinada, con

regulador de presión a servicio en paralelo)

Tabla 9.- Características de la Bomba (1)

Tamaño Nominal 180 Cilindrada Vg máx. 180 cm3 Velocidad máx. con Pº entrada 1bar n0 máx 1800 min-1 Velocidad máx. admisible n0 máx zul 2100 min-1

Para n0 máx 324 Caudal máximo

Para nE = 1500 min-1 qv0 máx

270 lt/min

Para n0 máx 189 Potencia máx.

Para nE = 1500 min-1 P0 máx

158 Kw

Par máximo (∆P =350 bar) para Vg máx. 1002 N-m Par (∆P =100 bar) para Vg máx 286 N-m Mto. Inercia sobre el eje J 0.055 Kgf-m2 Volumen de llenado 4 lts

Figura 20.- Grafico de la Bomba (1)

_________________________________________________________________________ (1) Bosch Rexroth Group, Hydraulic Components for industrial applications

Page 39: Calculo de Un Winche Bmfcim779s

32

Del gráfico:

Para n= 1750 [min-1] y qv=306.3 [lt/min] se tiene:

Pservicio= 200 [bar] Potencia 110 [kW]

ηv = qvx1000 = 306,3 x 1000

Vg xn 180 x 1750

ηv = 0.972

8. SELECCIÓN DE TUBERIAS

A continuación se presenta el dimensionamiento de las tuberías que componen

el circuito, en base al caudal y presión de cada una y un valor de velocidad

recomendada para cada tipo. Cabe resaltar que el cálculo de espesor de pared

presentado para las tuberías de retorno, goteo y drenaje, es una mera

formalidad, debido que la presión no supera mayormente los 5 [bar], y según

catálogo, la menor presión de diseño de las tuberías de más bajo espesor parten

de 130 [bar], como valor mínimo.

Diámetro Interior:

dint = 4.607 √(V/w) V= caudal en [l/min]

w= Velocidad media en [m/s]

Tabla 10 .-Valores recomendados para velocidades de flujo en tuberías de

sistemas hidráulicos (1)

Tubería de Aspiración Tubería de Presión

Viscosidad cinemática v

[mm2/s]

w [m/s] Presión

[bar]

w [m/s]

Tubería Retorno w

[m/s]

150 0.6 25 2.5 bis 3 1.7 bis 4.5 100 0.75 50 3.5 bis 4 50 1.2 100 4.5 bis 5 30 1.3 200 6

>200 con v=30

hasta 150 [mm/s}

_________________________________________________________________________ (1)Training Hidráulico Compendio 3" Proyecto y Construcción de Equipos Hidráulicos Pág. 257

Page 40: Calculo de Un Winche Bmfcim779s

33

Espesor de Pared:

Sv = di x P___ di = Diámetro interior

20 x k/s – 2P P = Presión de trabajo

k = 235[N/mm2]( tubos de acero según DIN2391-c)

S= 1.5 (factor de seguridad)

8.1 Tubería de Aspiración

dint = 4.607 √(306.3/1.3)

dint = 70.7 [mm]

Espesor de pared: Debido a que la presión en la tubería de aspiración no

excede a 1 [bar], es que el espesor puede ser mayor o igual a 1 [mm].

8.2 Tubería de Presión

dint = 4.607 √(306.3/6)

dint = 32.91 [mm]

Sv = 32.91 x 200___ 20 x 235/1.5 – 2x200

Sv = 2.4 [mm]

8.3 Tubería de Retorno

Caudal de retorno:

ηtot motor hid : Qret_ Qret = Caudal de Retorno Qsum Qsum = Caudal suministrado

Qret = ηtot m h x Qsum = 0.914 x 306.3

Qret = 279.96 [l/min]

dint = 4.607 √(279.96 /3.1)

Page 41: Calculo de Un Winche Bmfcim779s

34

dint = 43.78 [mm]

Espesor de pared: Para esta línea la presión no excede los 5 [bar], por lo tanto

se considera un Sv ≈ 2[mm]. (Por catalogo la presión de diseño de la tubería

seleccionada es de 134 [bar].) (detalles anexo 17)

8.4 Tubería de Drenaje

Caudal de Drenaje:

Qd = Qsum - Qret

Qd = 306.3 – 279.96 = 26.34

dint = 4.607 √(26.34 /2)

dint = 16.71 [mm]

Espesor de pared: Para esta línea la presión no excede los 2 [bar], por lo tanto

se puede considerar un Sv ≈ 2[mm].

8.5 Tuberías de Pilotaje

Para operar remotamente el block direccional desde el puente, la presión de

pilotaje máxima recomendada por el fabricante es de 20 [bar], para lo cual en la

línea e debe instalar una reguladora de presión.

Válvula reguladora de presión DR6DP (detalles anexo 8)

Máxima presión de trabajo : 315 [bar]

Máximo caudal de trabajo : 60 [lt/min]

Page 42: Calculo de Un Winche Bmfcim779s

35

Figura 21.- Símbolo y Curvas Características de Reguladora de Presión (1)

La presión secundaria se regula a 20 [bar] para lo cual el caudal e entrada no

debe ser mayor de 60 [lt/min].

Por tal motivo se debe instalar una válvula reguladora de caudal.

Válvula Reguladora de Caudal Modelo MG (detalles anexo 7)

Máxima presión de trabajo : 315 [bar]

Máximo caudal de trabajo : 400 [lt/min]

Figura 22.- Símbolo y Curvas Características de reguladora de Caudal (1)

Se considera un caudal de salida de 45 [lt/min], con el objeto de utilizar la misma

unidad para el cilindro de freno.

Con los datos anteriormente presentados se determinan las dimensiones de las

líneas de pilotaje:

_________________________________________________________________________ (1) Bosch Rexroth Group, Hydraulic Components for industrial applications

Page 43: Calculo de Un Winche Bmfcim779s

36

8.5.1 Tubería de Presión

dint = 4.607 √( 45 /6)

dint = 12.62 [mm]

Sv = 12.62 x 20___ 20 x 235/1.5 – 2x20

Sv ≈ 0.08 [mm]

8.5.2 Tubería de Retorno de Pilotaje

dint = 4.607 √(45 /3.1)

dint = 17.55 [mm]

El retorno del pilotaje está dado por un flujo sin restricciones, por lo que al estar

conectada con la línea de drenaje de la reguladora de presión, se considera ésta

última como presión de cálculo.

Sv = 17.55 x 20___ 20 x 235/1.5 – 2x20

Sv ≈ 0.113 [mm]

8.6 Tuberías del Cilindro de Freno:

Para operar el cilindro de freno se debe instalar una válvula reguladora de

presión similar a la utilizada en las líneas de pilotaje, considerando como presión

de secundaria ≈ 40 [bar]

8.6.1 Tubería de Presión

dint = 4.607 √( 45 /6)

dint = 12.62 [mm]

Sv = 12.62 x 40___ 20 x 235/1.5 – 2x40

Page 44: Calculo de Un Winche Bmfcim779s

37

Sv ≈ 0.16 [mm]

8.6.2 Tubería de Retorno

dint = 4.607 √(45 /3.1)

dint = 17.55 [mm]

Se asume como presión de retorno la ejercida por el cilindro al retornar a su

posición de resorte extendido.

Sv = 17.55 x 40___ 20 x 235/1.5 – 2x40

Sv ≈ 0.23 [mm]

8.7 Elección de Tuberías

Del catalogo de tuberías y fittings hidráulicos Ermeto se seleccionaron las

siguientes tuberías.

Tabla 11.- Selección de tuberías (detalles anexo 17) Tubería Diámetro interior di

[mm] Espesor de pared Sv

[mm] Tubería seleccionada

de x Sv Aspiración 70.7 1 88.9 x 5.49 Presión 32.91 2.4 42 x 4 Retorno 43.78 2 42x2 Drenaje 16.71 2 22x2 Presión Pilotaje 12.62 0.08 16x1.5 Retorno Pilotaje 17.55 0.113 22x2 Presión Freno 12.62 0.16 16x1.5 Retorno Freno 17.55 0.23 22x2

9. PERDIDA DE PRESIÓN

Perdida de presión total:

∆PT = ∆Pλ + ∆Pξ ∆Pλ= Pérdida de presión por fricción

∆Pξ= Pérdida de presión por los elementos

Page 45: Calculo de Un Winche Bmfcim779s

38

9.1. Tubería de Motor Hidráulico

9.1.1 Perdida de Presión por Fricción

∆Pλ = λ x 1 x ρ x w2 ∆Pλ/L=Pérdida de presión por unidad de longitud de tubo.

L di 2 λ = Valor de rozamiento

di = Diámetro interior del tubo

ρ = Densidad del fluido hidráulico

w = Velocidad

Primero se debe calcular el valor del Nº de Reynolds ( Re ).

Re = w x di v = Viscosidad cinemática

v Re = Número de Reynolds

ρaceite = 880 [kgm/m3]→89.7[kgf-s2/m4]

w = V__ di

2 x π/4

w = 306.3 X 103_ 342 x π/4 x 60

w = 5.61 [m/s]

Re = 5.61 x 34x103 36

Re = 5298.3

Tabla 12.- Rugosidad Interna de Tubos Hidráulicos (1)

Tubos Material Tipo Estado

Rugosidad absoluta k en [mm]

Sin soldadura Calidad

comercial

Nuevo • Capa de laminación • Decapado

• revestido

0.02 hasta0.06 0.03 hasta0.04 0.07 hasta0.10

Soldado longitudinal

Nuevo • Capa de laminación • Embetunado • Galvanizado

0.04 hasta0.10 0.01 hasta0.05

0.008

Acero

Sin soldadura y soldado

longitudinal

Usado • Oxidación moderada o poca

costra

0.1 hasta0.2

Relación di/k = 34/0.04 = 850

_________________________________________________________________________

Page 46: Calculo de Un Winche Bmfcim779s

39

Figura 23- Valor del rozamiento λ en función del Nº de Reynolds (1)

Del gráfico anterior se determina el valor del rozamiento λ en función del número de Reynolds Re.

λ = 0.038

Por lo tanto la pérdida de presión por unidad de longitud es la siguiente:

∆Pλ = 0.038 x 1 x 89.7 [kgf s2] x 5.612 [m2] L 0.034 [m] [ m4 ] 2 [ s2 ]

∆Pλ = 1577 [kgf/m3]

L

∆Pλ = 0.1577 [kgf] x 1_ ≈ 0.1577 [bar/m] L [cm2] [m]

∆Pλ = 0.1577 [bar/m] L

_________________________________________________________________________ (1)Training Hidráulico Compendio 3" Proyecto y Construcción de Equipos Hidráulicos

Page 47: Calculo de Un Winche Bmfcim779s

40

Aplicado a la situación particular del remolcador:

Longitud de cañerías desde power pack hasta control local:

L1 ≈ 1.290 + 3.100 + 2.140 + 1.170

L1 ≈ 7.700 [m]

Longitud de cañerías desde control local hasta motor hidráulico:

L2 ≈ 0.735 + 0.590 + 1.120

L2 ≈ 2.445 [m]

L total ≈ 10.145 [m]

L total + 5% = 10.652 [m]

Figura 24.- Largo de Cañerías desde Bombas a Motor Hidráulico

CONTROL LOCAL WINCHE

∆Pλ = 10.652 [m] x 0.1577 [bar/m]

∆Pλ = 1.68 [bar]

Page 48: Calculo de Un Winche Bmfcim779s

41

9.1.2 Perdida de Presión Debido a los Elementos

El elemento más significativo en pérdida de presión es el block direccional del

control local, que según muestra el gráfico de fabricante, para 306.3 [lt/min] entre

P y B o entre P y A es de aproximadamente 22 [bar].

Figura 25.- Caída de Presión v/s Caudal del Block direccional (1) (detalles anexo 4)

Por lo tanto la pérdida de presión total es la siguiente:

∆PT = ∆Pλ + ∆Pξ = 1.68 + 22

∆PT ≈ 24 [bar]

Considerando la pérdida de presión total, la bomba debe suministrar 224 [bar]

para lograr la presión requerida en el motor hidráulico.

Figura 27.- Grafico de la Bomba (1)

_________________________________________________________________________ (1) Hydranor Hydraulics. Modular Unit 6MB Catalog (2) Bosch Rexroth Group, Hydraulic Components for industrial applications

Page 49: Calculo de Un Winche Bmfcim779s

42

Del gráfico:

Para Pservicio= 224 [bar] y qv=306.3 [lt/min] se tiene:

n≈ 1800 [min-1] y potencia 125 [kW]

ηv = qvx1000 = 306,3 x 1000

Vg xn 180 x 1800

ηv = 0.945

Una vez determinado los datos finales de la bomba se determina el caudal de

fuga (Vf) de la siguiente manera:

QTbba = Qbba = 306.3 ηV 0.945

QTbba = 324.13 [lt/min]

Vf = QTbba - Qbba

Vf = 17.82 [t/min]

Por lo tanto la dimensión de la cañería de fuga de la bomba es:

dint= 4.607 √ V/W

dint= 4.607 √ 17.82 /3.1 (W=3.1 [m/s] de tabla 10)

dint= 11.04

Por lo tanto se selecciona una cañería de 16 x 2 [mm]

Page 50: Calculo de Un Winche Bmfcim779s

43

9.2 Tubería de Pilotaje

9.2.1 Perdida de Presión por Fricción

∆Pλ = λ x 1 x ρ x w2 ∆Pλ/L=Pérdida de presión por unidad de longitud de tubo.

L di 2 λ = Valor de rozamiento

di = Diámetro interior del tubo

ρ = Densidad del fluido hidráulico

w = Velocidad

Calculo del Nº de Reynolds ( Re ).

Re = w x di v = Viscosidad cinemática

v Re = Número de Reynolds

ρaceite = 880 [kgm/m3]→89.7[kgf-s2/m4]

w = V__ di

2 x π/4

w = 45 X 103_ 132 x π/4 x 60

w = 5.65 [m/s]

Re = 5.65 x 13x103 36

Re = 2040.3

Por lo tanto se utiliza el valor de λ es el siguiente:

λ = 64/Re

λ = 64/2040.3

λ = 0.031

Por lo tanto:

∆Pλ = 0.031 x 1 x 89.7 x 5.652 L 0.013 2

Page 51: Calculo de Un Winche Bmfcim779s

44

∆Pλ = 3414.1 [kgf/m3] L

∆Pλ = 0.34141 [kgf] x 1_ ≈ 0.34141 [bar/m] L [cm2] [m]

∆Pλ = 0.3414 [bar/m] L

Aplicado a la situación particular del remolcador:

Longitud de cañerías desde derivación de líneas de pilotaje, hasta puente y

regreso a control local:

L= 3550 + 2500x2 + 4500x2 + 780x2 + 1295x2 + 880

L= 26130 [mm]

L= 26.13 [m]

L total = L + 5%

L total = 27.45 [m]

∆Pλ = 27.45 x 0.3414

∆Pλ = 9.37 [bar]

9.2.2 Pérdida de Presión Debido a los Elementos

Se selecciona la siguiente válvula direccional de 4 vías, tres posiciones,

accionamiento manual y retorno por resorte:

Válvula Direccional 4/3 4WMM6J5X/- (detalles anexo 5)

Page 52: Calculo de Un Winche Bmfcim779s

45

Figura 28.- Características Válvula direccional 4/3 4WMM6J5X/- (1)

Según gráfico ∆P = 4.75 [bar]

∆PT = ∆Pλ + ∆Pξ = 9.37 + 4.75 [bar]

∆PT = 14.12 [bar]

Debido a esto la reguladora de presión se debe ajustar considerando esta

perdida:

PRP≈ 35 [bar]

9.3 Tubería del Cilindro de Freno

9.3.1 Perdida de Presión por Fricción

∆Pλ = λ x 1 x ρ x w2 ∆Pλ/L=Pérdida de presión por unidad de longitud de tubo.

L di 2 λ = Valor de rozamiento

di = Diámetro interior del tubo

ρ = Densidad del fluido hidráulico

w = Velocidad

_________________________________________________________________________ (1) Bosch Rexroth Group, Hydraulic Components for industrial applications

Page 53: Calculo de Un Winche Bmfcim779s

46

Cálculo del Nº de Reynolds ( Re ).

Re = w x di v = Viscosidad cinemática

v Re = Número de Reynolds

ρaceite = 880 [kgm/m3]→89.7[kgf-s2/m4]

w = V__ di

2 x π/4

w = 45 X 103_ 132 x π/4 x 60

w = 5.65 [m/s]

Re = 5.65 x 13x103 36

Re = 2040.3

Por lo tanto se utiliza el valor de λ es el siguiente:

λ = 64/Re

λ = 64/2040.3

λ = 0.031

Por lo tanto:

∆Pλ = 0.031 x 1 x 89.7 x 5.652 L 0.013 2

∆Pλ = 3414.1 [kgf/m3] L

∆Pλ = 0.34141 [kgf] x 1_ ≈ 0.34141 [bar/m] L [cm2] [m]

∆Pλ = 0.3414 [bar/m] L

Page 54: Calculo de Un Winche Bmfcim779s

47

Aplicado a la situación particular del remolcador:

Se determina la longitud de cañerías desde la reguladora de presión, pasando

por la válvula direccional ubicada en sala de máquinas hasta el cilindro:

L= 440 + 2540 + 2370

L= 5350 [mm]

L= 5.35 [m]

L total = L + 5%

L total = 5.62 [m]

∆Pλ = 5.62 x 0.3414

∆Pλ = 1.92 [bar]

Figura 29.- Largo de Cañerías al freno

REG ULAD O RA DE PRESIÓ N

CO N TRO L LO CAL W INC HE

Page 55: Calculo de Un Winche Bmfcim779s

48

9.3.2 Perdida de Presión Debido a los Elementos

Electro-válvula Direccional 4/2 4WE6C6X/EG24N9DL/ (detalles anexo 6)

Figura 30.- Características Electro-válvula Direcc. 4/2 4WE6C6X/EG24N9DL/ (1)

Según gráfico ∆P = 4.75 [bar]

∆PT = ∆Pλ + ∆Pξ = 1.92 + 4.75 [bar]

∆PT = 6.67 [bar]

Debido a esto la reguladora de presión se debe ajustar considerando esta

perdida:

PRP≈ 45 [bar]

10. BALANCE TERMICO

En la conversión de energía y en el transporte de energía hidráulica en

hidrosistemas se originan pérdidas de potencia en forma de calor. Este calor es

absorbido y transportado por el fluido.

_________________________________________________________________________ (1) Bosch Rexroth Group, Hydraulic Components for industrial applications

Page 56: Calculo de Un Winche Bmfcim779s

49

La potencia total de perdida PperdT de un hidrosistema se compone de las

siguientes pérdidas individuales:

PV1= Rendimiento de los componentes

Se consideran las fugas internas de las bombas y motores, las cuales

están incluidas en el rendimiento de las mismas.

PV2= Fugas internas

No se consideran fugas internas por resquicios de válvulas ya que no se

utilizaron válvulas con caudal de fuga.

PV3= Estrangulaciones

Se consideran regulación de caudales a través estranguladores, cantos y

diafragmas de válvulas en general

PV4= Resistencias a la circulación

Se consideran pérdidas por rozamiento en tuberías.

PperdT = ∑ PV = PV1 + PV2 + PV3 + PV4

10.1 Perdidas de Potencia Debido al Rendimiento de los Componentes (PV1)

PV1= V x P_ [kW] V = caudal total en [dm3/min]

600 x η P = sobrepresión en bar

η = Rendimiento total del componente

Bomba:

Figura 31.- Caída de Presión de la Bomba (1)

_________________________________________________________________________ (1) Bosch Rexroth Group, Hydraulic Components for industrial applications

Page 57: Calculo de Un Winche Bmfcim779s

50

PV1B = 16.8 x 2.3_ [kW] 600 x 0.945

PV1B = 0.068 [kW]

Motor Hidráulico

Figura 32.- Caída de Presión del Motor Hidráulico (1)

PV1M = 5.5 x 7 _ [kW] 600 x 0.981

PV1M = 0.065 [kW]

PV1 = PV1B + PV1M

PV1 = 0.133 [kW]

10.2 Perdidas de potencia por Estrangulaciones en Válvulas (PV3)

PV3= V1 x P1 + V2 x P2 + Vn x Pn_ [KW] 600 600 600 Vn = caudal que fluye por el correspondiente estrangulador [dm3/min]

Pn= Caída de presión reinante en el correspondiente estrangulador [bar]

Block Direccional

PV3 BD = 306.3 x 22 600

PV3 BD = 11.231 [kW]

_________________________________________________________________________ (1) Bosch Rexroth Group, Hydraulic Components for industrial applications

Page 58: Calculo de Un Winche Bmfcim779s

51

Válvula Reductora de Presión Línea de Pilotaje

PV3 RP = 45 x 9 600

PV3 RP = 0.675 [kW]

Válvula Reguladora de Caudal

PV3 RC = 45 x 5.2 600

PV3 RC = 0.39 [kW]

Válvula Direccional de Pilotaje

PV3 DP = 45 x 4.75 600

PV3 DP = 0.356 [kW]

PV3 = PV3 BD + PV3 RP + PV3 RC + PV3 DP

PV3 = 12.652 [kW]

10.3 Perdidas de Potencia por Resistencias de Circulación (PV4)

PV4 = V x ∑∆P V = caudal total en [dm3/min]

600 ∑∆P = Caída de presión [bar]

Suma de todos los valores.

Los valores que se presentan a continuación corresponden al cálculo efectuado

en punto 9.-

Page 59: Calculo de Un Winche Bmfcim779s

52

Línea de presión

∆PLP = 1.68 [bar]

PV4 LP = 306.3 x 1.68 600

PV4 LP = 0.858 [kW]

Línea de presión de pilotaje

∆PLPP = 9.37 [bar]

PV4 LPP= 4.5 x 9.37 600

PV4 LPP = 0.703 [kW]

PV4 = PV4 LP + PV4 LPP

PV4 = 1.561 [kW]

Por lo tanto la potencia de pérdida total es la siguiente:

PperdT = ∑ PV = PV1 + PV3 + PV4

PperdT = 14.346 [kW]

10.4 Temperatura de Régimen:

T2= PperdT + T1 PperdT = Potencia de pérdida total en [kW]

K x A A = Área radiante del depósito [m2]

K = Conductibilidad térmica (0.01 [kW/m2])

T1 = Temperatura ambiente en [ºC]

Primero se debe determinar la capacidad del estanque y su superficie radiante.

Page 60: Calculo de Un Winche Bmfcim779s

53

La capacidad del estanque se determinará según la siguiente fórmula.

VTK= 3 x V VTK = Capacidad del estanque en [lt]

V = Caudal de la bomba en [lt/min]

VTK= 3 x 306.3

VTK= 918.9 [lts] = 918900 [cm3]

Por lo tanto las dimensiones del estanque serán:

Lo que da un volumen aproximado de 925.65 [lt]

De esta forma la superficie del estanque será:

A = 2 x 1.65 x 0.85 + 2 x 1.65 x 0.66 + 2 x 0.66 x 0.85

A = 6.105 [m2]

Considerando una temperatura ambiente de 20ºC se tiene:

T2= 14.346 + T1 0.01 x 6.105

T2= 253.35ºC

Esto significa que se debe incorporar un intercambiador de calor

10.5 Selección del Intercambiador de Calor

Calor entregado = Calor extraído

PperdT = PW PB= Calor a ser evacuado por el depósito

PK= Calor a ser evacuado por un intercambiador de calor

PW = PB + PK

Page 61: Calculo de Un Winche Bmfcim779s

54

Para una temperatura de régimen T2= 45ºC y una temperatura ambiente de

20ºC, el calor evacuado por el depósito será el siguiente:

PB= (T2 – T1) x K x A = (45 – 20) x 0.01 x 6.105

PB= 1.526 [KW]

El calor que puede extraer un intercambiador es el siguiente:

PK= PperdT – PB = 14.346-1.526 = 12.82 [kW]

PK= 12.82 [kW]

Considerando el siguiente circuito de enfriamiento de agua de mar para el

remolcador y los siguientes supuestos como datos de entrada del motor principal.

∆TSW =15 [ºC] Dif. de temperatura en los enfriadores de agua de chaqueta

∆P =0.65 [bar] Resistencia en la descarga de agua de mar de la bomba.

TSWe= 12ºC → Temperatura de agua de mar de entrada

TSWs= 27ºC → Temperatura de agua de mar de salida

Figura 32.- Esquema del Circuito de Enfriamiento del Barco

En base a la potencia a dispar por el intercambiador de calor se selecciona el

siguiente:

Azcue Serie CHO 116.

Page 62: Calculo de Un Winche Bmfcim779s

55

Para lo cual se debe considerar los siguientes factores de corrección en la

potencia a disipar en función de la temperatura de entrada de agua, cuando sea

distinta a 35º.

Tabla 13.- Factores de Corrección de Temperatura de Entrada de Agua al Intercambiador(1) Tº entrada de agua 20ºC 25ºC 30ºC 35ºC 40ºC 45ºCFactor de corrección 1.75 1.4 1.17 1 0.875 0.78

Interpolando de la tabla se tiene que para 27ºC el F.C. = 1.308

Por lo cual la potencia de disipar para efectos de cálculo será:

PKC = PK x F.C.

PKC = 12.82 x 1.308

PKC = 16.769 [kW]

El diagrama adjunto se basa en parámetros de temperatura de entrada de agua

igual a 35ºC, y viscosidad del aceite entre 20 y 37 cSt.

Figura 33.- Potencia Disipada v/s Caudal Agua/Aceite del Intercambiador (1)

_________________________________________________________________________ (1) Bombas Azcue S.A. Catálogo de Intercambiadores de Calor

Page 63: Calculo de Un Winche Bmfcim779s

56

Según el diagrama correspondiente al intercambiador de calor CHO116-G9, se

determina un caudal de agua de enfriamiento de aproximadamente 53 [lt/min] y

un caudal de aceite de aproximadamente 124 [lt/min].

10.6 Determinación del Caudal de Agua de Enfriamiento

Considerando 1600 RPM del motor como régimen normal y constante de

operación, se determina del grafico adjunto el siguiente caudal para la bomba

auxiliar acoplada de agua de mar del motor: (detalles anexo 13)

Figura 34.- Caudal v/s Resistencia Externa de Bomba Auxiliar Motor Principal (1)

VBMP = 560 [lt/min]

Lo que equivale a 0.0093 [m3/min], con una velocidad máxima en la tubería de

descarga de 3 [m/s] se tiene un diámetro interior de Di= 62.926 [mm]. Para lo

cual con una tubería de 3” sch 40 (88.9 x 5.65), se tiene un diámetro interior de

77.6 [mm] .

Teniendo en cuenta que el caudal de agua necesario para el intercambiador es

un 9.5% del caudal de la bomba y considerando como supuesto en el caso más

desfavorable que la resistencia a la circulación de la derivación al enfriador es un

100% mayor que la continuación de la línea principal al costado, es que se

determina el siguiente diámetro interior para dicha cañería:

_________________________________________________________________________ (1) Caterpillar 1993. Caterpillar 3500 Marine Propulsion Engine Performance

Page 64: Calculo de Un Winche Bmfcim779s

57

Die = Di x 10% x 2

Die = 15.52 [mm]

Considerando las menores dimensiones del enfriador seleccionado se determina

una cañería de 1” sch 40 (33.4 x 3.38), lo que nos da como diámetro interior:

Die = 26.64 [mm]

Ante la dificultad de regular exactamente el caudal de enfriamiento es que se

instala en la línea de entrada al enfriador un flujómetro.

10.7 Determinación del Caudal de Aceite

Debido a que el caudal de retorno es muy elevado, es que esta cañería se deriva

directamente al estanque, y se instala una bomba que haga circular el aceite

desde la zona caliente del estanque a la zona intermedia, como se muestra en la

figura:

Figura 35.- Esquema del Sistema de Retorno de Aceite a Través del Enfriador

Se selecciona una bomba de tornillo para aceite, ya que garantiza un bombeo del

fluido sin pulsaciones ni turbulencia, para evitar así emulsión del aceite, todo esto

en base a los requerimientos de caudal para el enfriador, según muestra el

cuadro de datos técnicos de la bomba.

Page 65: Calculo de Un Winche Bmfcim779s

58

Tabla 14.- Características Técnicas de la Bomba Seleccionada (1)

Teniendo en cuenta una pérdida de carga de aceite obtenida interpolando

valores del gráfico del enfriador, de aproximadamente 0.65 [bar], y considerando

una carga de 8 [bar] en la bomba para lograr tener un caudal de 124 [lt/min], es

que al momento de regular el paso del aceite al enfriador a través de la válvula

de bola en la descarga, el manómetro de la bomba debe marcar 8.65 [bar].

De todas formas al momento de la puesta en marcha se deben verificar las

temperaturas de trabajo y constatar las diferencias, a fin de regular los caudales

respectivos mediante las válvulas dispuestas para ello.

11. LARGADA DE EMERGENCIA (QUICK RELEASE)

El sistema de largada de emergencia o “quick release” se define como la largada

del cable ante una emergencia que ponga en riesgo al remolcador aún en

condiciones de “black out”. En dicha situación se debe liberar el freno y el

embrague del tambor, con el objeto de largar cable en su totalidad.

Es por tal motivo que las válvulas de freno y embrague son operadas

eléctricamente con poder de 24V DC, que se encuentran conectadas al banco de

baterías del barco, de manera de poder operar en caso de un “black out”.

11.1 Liberación del freno

Para la liberación del freno se considera un acumulador hidráulico de vejiga que

almacene la energía suficiente para proporcionar el volumen de aceite y la

presión necesaria para liberar el freno.

_________________________________________________________________________ (1) Bombas Azcue S.A. Catálogo de Bombas de Tornillo Serie B.T.

Page 66: Calculo de Un Winche Bmfcim779s

59

Según el lugar de instalación del acumulador, este debe proporcionar la presión

de apertura del cilindro más las pérdidas calculadas para efectos de la

reguladora de presión y el volumen de llenado del cilindro más un 25% por

concepto de volumen de las tuberías:

P1 = 45 [bar]

P2 = 100[bar]

∆V= VLLC x 1.25

∆V= 5.2 x 1.25

∆V= 6.5 [lt]

P0 = Presión de llenado de la cámara de gas sin influencia de presión en la cámara de fluido.

P1 = Presión mínima requerida de trabajo, normalmente10%>P0

P2 = Máxima sobrepresión del sistema (en este caso es según la sobrepresión que se regule)

V0 = Volumen efectivo del gas a presión de llenado

∆V = Volumen utilizable

Determinación de la presión de llenado de gas:

P0= 0.9 x P1 = 0.9 x 45 = 47.7 [bar] = 40.5 [bar]

Determinación del volumen requerido de gas:

V0 = ∆V__ __

(P0/P1)0.714 - (P0/P2)

0.714

V0 = 6.5__ ___

(40/45)0.714 - (40.5/100)0.714

V0 = 16.13 [lt]

Cálculo de la presión de llenado de gas a temperatura ambiente

Se tiene considerado 20ºC como temperatura ambiente y 45ºC como

temperatura de régimen, por lo tanto, para que exista una presión de 40.5 [bar] a

una temperatura de 45ºC, el acumulador se debe cargar con una presión menor

a 20ºC.

Page 67: Calculo de Un Winche Bmfcim779s

60

P0(T0) = P0(TR) x T0

TR

P0(20ºC) = 40.5 x 20 + 273 45 + 273

P0(20ºC) = 37.3 [bar]

P0(20ºC) ≈ 38 [bar]

De esta forma se selecciona el siguiente acumulador con su sistema de

seguridad (válvula de sobrepresión):

Acumulador hidráulico con block de seguridad Rexroth ABSBG-B20/SS30-U-

100CM/C (detalles anexo 9)

Acumulador de vejiga

Capacidad: 20Lts

Ajuste válvula sobrepresión: 100[bar]

Figura 36.- Símbolo y Descripción del Acumulador (1)

11.2 Liberación del Embrague:

El sistema de embragado, al ser neumático, es decir estar conectado al

acumulador de presión del sistema de aire comprimido del barco, siempre tendrá

disponible la energía necesaria para efectuar el desembragado. Basta con la

adecuada conexión de la válvula solenoide al banco de baterías del barco, con el

objeto de poder operar en caso de un “black out”.

_________________________________________________________________________ (1) Bosch Rexroth Group, Hydraulic Components for industrial applications

Page 68: Calculo de Un Winche Bmfcim779s

61

12. SELECCIÓN DEL FLUIDO HIDRAULICO

El fluido hidráulico se seleccionará de acuerdo a las exigencias de los principales

componentes del sistema, que en este caso son las bombas y motor hidráulico.

Según catálogos del fabricante se tiene lo siguiente:

Figura 37.- Diagrama de Selección de Aceite para la Bomba (1)

Figura 38.- Diagrama de Selección de Aceite para el Motor (1)

De ambos gráficos se deduce que a una temperatura de régimen de 45ºC y una

viscosidad de 36 [mm2/s], el aceite recomendado es un ISO VG 46.

_________________________________________________________________________ (1) Bosch Rexroth Group, Hydraulic Components for industrial applications

Page 69: Calculo de Un Winche Bmfcim779s

62

De acuerdo a catálogos, la viscosidad para este tipo de aceite es de 46 [mm2/s] a

40ºC, por lo que se escapa del rango óptimo para la bomba, por lo cual se

selecciona el siguiente aceite hidráulico:

Tabla 15. Aceite Hidráulico Shell Tellus 37 (1) (detalles anexo 12)

Este aceite se encuentra en el límite superior de lo exigido por la bomba, pero

considerando que la temperatura de régimen es de 45ºC, se interpolan los

valores de viscosidad para 40ºC y 100ºC, lo que da una viscosidad aproximada

de 34.5 [cSt], manteniéndose dentro del rango establecido para la bomba y el

motor.

13. DETERMINACIÓN Y DESCRIPCIÓN DEL CIRCUITO (*)

13.1 Bombas

El circuito está determinado principalmente por dos bombas de pistones axiales a

placa inclinada para circuito abierto, una principal (1) y la segunda stand by (2),

estas son las encargadas de levantar la presión y caudal necesarios para el

funcionamiento del sistema. En caso de emergencia se pueden utilizar las dos

bombas simultáneamente sin un aumento de presión, debido a que se incorporó

un dispositivo regulador de presión para servicio en paralelo. De esta forma se

tiene un aumento del caudal y por consiguiente un aumento en la velocidad del

motor. Hay que tener en cuenta que el circuito no esta diseñado para tanto

caudal, lo que conlleva un aumento en la temperatura del aceite. De todas

formas, al estar sobredimensionado el circuito de enfriamiento, se pueden

efectuar regulaciones del caudal de agua.

_________________________________________________________________________ (1) Shell 2003/2004. Guía de Lubricantes (*) Todos los números o letras entre paréntesis o comillas están referidos al plano del sistema adjunto en esta tesis

Page 70: Calculo de Un Winche Bmfcim779s

63

13.2 Motor Hidráulico

El movimiento del tambor del winche esta dado por un motor hidráulico de

pistones radiales (3) controlado por un block direccional “Hydranor 6MB-320-1-

2C” (5) ubicado en a un costado de éste como control local. Este block funciona

de la siguiente manera:

Virado:

La presión entra por “P”, y pilotea a través de “PB” y “Z” la válvula compensatoria

de caudal “B” sobre la válvula direccional “F”. El fluido sigue por el puerto “A” de

la válvula direccional “F” en dirección de la contrabalanza “C”, que se mantiene

normalmente cerrada, por lo que su dirección normal es a través de la válvula

antirretorno “CA”, para finalmente salir por el puerto “A” del block. El caudal hace

actuar el motor y el retorno vuelve por el puerto “B” del block para pasar directo al

puerto “T” del mismo en dirección del estanque. Dentro de su paso parte del

fluido pasa por la válvula de cambio “PC” la cual transmite presión al puerto “V”

donde se instalará un manómetro para control local.

Arriado:

La presión sigue el mismo camino descrito anteriormente hasta la válvula

direccional “F”, que en esta ocasión, se encuentra en posición de salida por

puerto “B”, en dirección del puerto “B” del block, pasando parte de ese caudal al

pilotaje de apertura de la contrabalanza “C”, permitiendo que el caudal de retorno

pase y salga finalmente por el puerto “T” del block.

El propósito de la contrabalanza es evitar una largada del cable al momento del

arriado, es decir, mantener bajo control una carga mínima equivalente al peso del

cable. Si este peso, o alguna fuerza externa hace virar el tambor mas rápido de

la velocidad de arriado, el motor actuaría como bomba y se produciría una caída

de presión en la línea de pilotaje de la contrabalanza, por lo cual esta se cerraría

impidiendo el retorno del fluido y por consiguiente la detención del motor.

El block posee un sistema de control de flujo compensatorio de presión

compuesto por el conjunto de válvulas “PB”, “B”, “Z”, “PA”, “PC” y “F”. Este

sistema tras sensar presión en la línea “A” o “B” después de la válvula

direccional, compensa para cambios de carga un flujo constante a través de la

Page 71: Calculo de Un Winche Bmfcim779s

64

válvula direccional, es decir el flujo al motor se mantiene constante independiente

de la carga que tenga éste. Este flujo depende de la fuerza inducida por el

pilotaje sobre el resorte del compensador “B”, un resorte regulable en la válvula

de alivio o válvula de pilotaje compensatorio “PA” y la presión en la línea “A” o “B”

a través de la válvula de cambio “PC”. En la medida que se regule el resorte de

la válvula “PA”, se puede regular el caudal sobre el motor.

La válvula de seguridad “D” deberá ser ajustada a la presión e trabajo, y funciona

tanto para el modo de virado como para el arriado cuando se produce una carga

que haga trabajar el motor como bomba, de la manera descrita anteriormente.

El block direccional (5) antes mencionado tiene la opción de se pilotado

hidráulicamente desde el puente de gobierno a través de una válvula direccional

de cuatro vías y tres posiciones, la cual debe quedar en el mismo sentido que el

accionamiento manual del control local, es decir en una función lógica, cuando se

muevan las palancas, tanto del puente como local, hacia proa, el winche debe

arriar, y cuando se muevan hacia popa, debe virar.

13.3 Freno

El control del freno se realiza alternativamente a través de una electro-válvula de

cuatro vías dos posiciones (7), con botonera desde el puente o desde el control

local. Al momento de operar con el winche se debe liberar el freno.

13.4 Enfriamiento

El caudal de retorno es demasiado alto para pasar por el enfriador (13), por lo

que se lleva directamente al estanque, de donde se dispone de una bomba (14)

para circulación de aceite, a un caudal más bajo, para que pase a través del

enfriador y vuelva al estanque en zona intermedia. El enfriamiento se ha

dispuesto de la descarga de agua de mar del sistema principal de enfriamiento

de los motores.

13.5 Largada de Emergencia (Quick Release)

La largada de emergencia se puede realizar simplemente con operar las válvulas

del freno (7) y del embrague (18), pero según lo exigido por las normas, se ha

dispuesto de un botón con cubierta para evitar accionamiento involuntario, tanto

Page 72: Calculo de Un Winche Bmfcim779s

65

en el puente como en el control local. Este botón acciona las electro-válvulas del

freno y embrague, llevando estos elementos a posición desfrenado y

desembragado respectivamente, además de la válvula de alivio (12) que libera la

energía del acumulador (11), el cual provee de la presión y volumen de aceite

necesario para el desfrenado en caso de falla de energía o de las bombas.

13.6 Elementos de regulación

Se establecen distintos elementos de regulación para presión y caudal, debido a

que lo distintos elementos instalados para comandar los dispositivos tiene ciertas

restricciones como se describieron en los puntos precedentes.

Una reguladora de caudal (10) para la válvula direccional dispuesta para el

pilotaje del block principal (5) y para regular la velocidad de apertura del cilindro

de freno (4).

Una reguladora de presión (8) para el pilotaje “2” del block direccional (5) según

restricciones del fabricante y otra (9) para la presión del freno. Ambas limitadas

por el caudal proporcionado por la válvula dispuesta para ello (10).

13.7 Elementos de Seguridad, Protección y Control

Válvulas de Alivio

Una válvula de alivio (17) para protección de las bombas, en caso de obstrucción

de la salida de presión, y una (16) para protección del circuito contra cargas

externas u obstrucciones, ambas ajustadas a la presión de trabajo 224 [bar].

Un block de seguridad para el acumulador (12) con una válvula de alivio ajustada

a 100[bar], más una válvula de alivio manual (color negro).

Indicadores de Presión

Manómetros de control en el puente y control local para freno, embrague y motor

y manómetro con válvula de aislamiento (18) para medir presión a la salida de las

bombas.

Page 73: Calculo de Un Winche Bmfcim779s

66

Filtros

Filtro de retorno (15) Rexroth ABZFR-D0450-10-10/M con indicador de

obturación visual ABZFV-RV2-1X/M para montaje directo al estanque.

Su dimensionamiento va de acuerdo a las exigencias de filtrado de los elementos

componentes del circuito, como es la bomba, motor hidráulico, válvulas. Estos

según catálogo del fabricante se encuentran en el rango de NAS 9, SAE 6 y/o

ISO 18/15, por lo cual se determina un filtro de finura mínima 10 µm para un

caudal de retorno de 280 [lt/min]

Tabla 16.- (1) Tabla 17.- (1)

Finura de Filtro absoluta recomendada

Para diversos componentes hidráulicos Comparación entre clases de pureza

Un filtro (21) de llenado que cumple además funciones de ventilación del

estanque.

Indicadores de Nivel

Un nivel visual en el costado del estanque “N1” y un nivel de flotador magnético

“N2” con conexión de alarma de bajo nivel de aceite.

Indicadores de Temperatura

Un termómetro en el costado del estanque “T1” y un termostato de alarma por

alta temperatura “T2”.

ISO DIS 4406 o

Cetop RP 70H

Partículas por ml

> 10 µ m

ACFTD Contenido de Subst. Sólidas

mg/l

MIL STD 1246 A (1967)

NAS 1638

(1964)

SAE 749 D (1963)

26/23 140000 1000 25/23 85000 1000 23/20 14000 100 700 21/18 4500 12 20/18 2400 500 20/17 2300 11 20/16 1400 10 19/16 1200 10 18/15 580 9 6 17/14 280 300 8 5 16/13 140 1 7 4 15/12 70 6 3 14/12 40 200 14/11 35 5 2 13/10 14 0.1 4 1 12/9 9 3 0 18/8 5 2 10/8 3 100 10/7 2.3 1 10/6 1.4 0.01 9/6 1.2 0 8/5 0.6 00 7/5 0.3 50 6/3 0.14 0.001 5/2 0.04 25

Clase de Pureza

Componentes Hidráulicos NAS 1638

ISO DIS

4406

Finura de filtrado

recomendada en µm

Bombas de engranajes 10 19/15 20 Cilindros 10 19/15 20 Válvulas Direccionales 10 19/15 20 Válvulas de Seguridad 10 19/15 20 Válvulas Estranguladoras 10 19/15 20 Bombas de Pistones 9 18/14 10 Bombas de Paletas 9 18/14 10 Válvulas de Presión 9 18/14 10 Válvulas Proporcionales 9 18/14 10 Servoválvulas 7 17/13 5 Servocilindros 7 17/13 5

_________________________________________________________________________ (1)Training Hidráulico Compendio 3" Proyecto y Construcción de Equipos Hidráulicos

Page 74: Calculo de Un Winche Bmfcim779s

67

Válvulas de Operación y Mantención

Válvula de bola de alta presión “V1” de comunicación de líneas de presión y

retorno, ubicada en el punto mas bajo del circuito y sobre el estanque, con el

objeto de drenar el circuito en caso de mantención.

Válvulas de bola de baja presión “V2” para la succión de las bombas, ubicadas

en la parte inferior del estanque, con el propósito de cortar el suministro de

aceite a las bombas para su mantención.

Válvulas de bola de baja presión “V3”, ubicadas en la línea del filtro de retorno,

enfriador y bomba, con el fin de poder hacer mantención y limpieza del filtro y

circulación por el enfriador, o limpieza del enfriador y circulación normal por el

filtro.

Válvula antiretorno “R1”, instalada en la línea de presión del freno, con el objeto

de evitar una fuga de aceite a través del drenaje de la reguladora de presión (9)

por fuerzas externas en el cilindro.

Válvula antirretorno “R2” y “R3”, instaladas una en la línea de presión del

acumulador y la segunda en la línea de presión del cilindro, de manera de

mantener la presión del acumulador.

Calefactor para aceite “C1” ubicado en el estanque, con el propósito de alcanzar

la temperatura de régimen al momento de operar el equipo, conectado con un

termostato de encendido a los 35ºC y parada a los 45ºC..

Compensadores y Mangueras

Los elementos vibratorios o con movimiento, como motor, bombas y cilindro,

deben tener conexiones flexibles para amortiguar las vibraciones y movimiento

hacia los elementos rígidos, que en este caso son las cañerías.

En la línea de succión de las bombas se utilizarán compensadores con flange, de

acuerdo a la dimensión de la cañería utilizada, la cual no es cañería hidráulica.

Page 75: Calculo de Un Winche Bmfcim779s

68

En la línea de presión de las bombas, así como en todas las conexiones del

motor hidráulico y cilindro de freno, se utilizarán mangueras de alta presión para

aceite.

Limit switch

El sistema de embrague posee un limit switch de proximidad que indicará a

través de una luz, tanto en el puente como en el control local cuando el sistema

esté embragado.

13.8 Depósito de Aceite

Como se mencionó anteriormente, el volumen del estanque corresponde a

aproximadamente 3 veces el caudal de la bomba para uso de aceites minerales.

El depósito se instalará como un conjunto con las bombas y tendrá las siguientes

características aparte de las mencionadas en el punto anterior:

1. Tapa de registro que permita la limpieza de todo el estanque.

2. Posillo para drenaje con válvula y tapón

3. Placas deflectoras para dividir la zonas de retorno y succión de la bomba

de enfriamiento, retorno de la bomba de enfriamiento y la succión del

sistema.

Figura 39.- Esquema del Conjunto del Power Pack

Page 76: Calculo de Un Winche Bmfcim779s

69

14. PUESTA EN MARCHA

14.1 Limpieza del Estanque

Una vez efectuada la instalación del los elementos que componen el circuito y las

conexiones del estanque se encuentran instaladas, los equipos, tales como

filtros, niveles visuales, termostatos, calefactores, etc. deben ser retirados, con el

objeto de proceder con la limpieza del estanque.

Existen pinturas compatibles con los fluidos hidráulicos, pero generalmente los

estanques que almacenan hidrocarburos se dejan sin pintura, es decir la plancha

viva. Esto sobretodo en un estanque que está constantemente sometido a

cambios de temperatura y flujo dentro de éste, así en la zona de descarga del

aceite como en la succión de la bomba de enfriamiento y de las principales, que

es donde se produce mayor desgaste debido a los vórtices producidos por la

succión.

De esta forma se procede a la limpieza del estanque por dentro, generalmente

con disco lija hasta dejar metal blanco, para posteriormente con un paño libre de

pelusas sacar hasta la última partícula metálica o de suciedad que pueda quedar,

y así finalmente con otro paño libre de pelusas aceitar las paredes del estanque

para evitar corrosión por humedad del ambiente.

Una vez terminada la limpieza se procede a inspección y cierre, con todos los

elementos que en un principio se sacaron.

14.2 Lavado del Circuito (Flushing)

Durante el montaje puede haber penetrado suciedad en las tuberías y piezas

constructivas. Por este motivo resulta necesario eliminar la suciedad mediante el

lavado de la instalación, a fin de evitar una reducción de la vida útil de los

distintos equipos y por la propia exigencia de filtrado de éstos.

Durante el lavado se envía fluido hidráulico a gran velocidad a través del sistema,

provocando que las partículas de suciedad sean arrastradas y puedan extraerse

mediante un circuito de filtración independiente.

Page 77: Calculo de Un Winche Bmfcim779s

70

La velocidad del fluido deberá ser en lo posible el doble a la suministrada

normalmente por el sistema, y una temperatura de al menos 60ºC para aceites

minerales.

Para este efecto se debe contar con una unidad de lavado o grupo hidráulico,

consistente en un conjunto compuesto por lo siguiente:

1. Una bomba de alto caudal conectada a un depósito de aceite, con

conexiones para manguera.

2. Una válvula de alivio y una reguladora de presión, con el objeto de no

sobrepasar niveles que puedan ser dañinos para el sistema.

3. Una válvula reguladora de caudal.

4. Un calefactor de manera de alcanzar la temperatura de lavado.

5. Un tablero de energía y control para la operación de la unidad.

6. Un filtro de retorno conmutable con indicador de obturación, de manera de

ir cambiando los filtros a medida que se vayan saturando, sin interrumpir el

lavado del circuito.

14.2.1 Preparación de la Instalación para el Lavado

Aquellas piezas que pudiesen sufrir deterioros durante el lavado deberán

sustituirse por accesorios adecuados o evitarse mediante tuberías o mangueras

de desvío.

Se procederá a lavar el circuito por partes, con el fin de lograr un mejor lavado y

asegurar un flujo total y constante por las cañerías.

Circuito de Presión y Retorno: Se conectarán las dos líneas de presión de las

bombas a la unidad de lavado, se evitará el motor hidráulico con una manguera

de unión, y el block direccional “P” con “A” y “B” con “T”.

Se aislará el circuito de presión y retorno de las demás líneas, mediante tapones

dejando fuera las válvulas de alivio (17) y (16), y se mantendrá cerrada la válvula

“V1”. Desconecta el filtro de retorno llevando esa línea al estanque de la unidad

de lavado.

Page 78: Calculo de Un Winche Bmfcim779s

71

Para esto la unidad de lavado deberá ajustarse aproximadamente a 600 [lts/min]

Circuito de Pilotaje, accionamiento del cilindro y goteo: Se conectará la línea de

pilotaje sacando la reguladora de caudal a la presión de la unidad de lavado, se

evitará la válvula reguladora de presión (8) conectando “P” con “A”, la válvula

direccional del puente (6) conectando “P” con “A” y “B” con “T”, el block

direccional (5) conectando “X” con “Y”, el cilindro de freno (4) conectando la línea

de goteo del motor con la línea de presión del cilindro, la válvula direccional del

freno conectando “B” con “T”, y la salida de esta de retorno a la unidad de

lavado. El resto del circuito se aislará mediante tapones.

Para esto la unidad de lavado deberá ajustarse aproximadamente a 100 [lts/min]

Circuito de indicadores de presión: Se conectará la línea del manómetro del

control local del motor hidráulico a la presión de la unidad de lavado, se unen las

líneas de los manómetros del puente del cilindro de freno y motor, y la línea de

del manómetro del control local del freno al retorno de la unidad de lavado.

Para esto la unidad de lavado deberá ajustarse a aproximadamente 100 [lts/min]

Las demás líneas de interconexión de los elementos (11), (12), (9), (7), (8), (16) y

(10), sólo se efectúa una limpieza de taller, mediante una “laucha” que consiste

en un alambre que en su extremo tiene un paño libre de pelusas bañado en

aceite. Esto debido a que por montaje estas líneas son demasiado cortas, y si se

efectúa una limpieza e instalación con pulcritud, controlada con la debida

supervisión, no debería generar mayor problema. Estos elementos se pueden

montar como un módulo en el taller y llevarse armado al lugar del barco

destinado para su montaje final.

14.2.2 Realización del Lavado (Flushing)

El lavado se efectuará en tres partes según la secuencia mencionada

anteriormente procediendo del siguiente modo:

1. Se pondrá en funcionamiento el calefactor hasta alcanzar una temperatura

de 60ºC, que es cuando se pondrá en funcionamiento la unidad de lavado.

2. Durante el lavado deben controlarse los indicadores de obturación de los

filtros a fin de reemplazarlos a tiempo o limpiarlos.

Page 79: Calculo de Un Winche Bmfcim779s

72

3. Después de una hora es recomendable invertir el sentido del caudal.

4. El lavado se prolongará hasta que los indicadores de obturación de los

filtros no indiquen suciedad durante más de una hora.

5. Se tomarán muestras del fluido para cada circuito y se enviarán a

laboratorio para su análisis e informe.

6. Si el aceite utilizado no es el mismo que se va a emplear en el

funcionamiento normal del sistema, al finalizar el lavado habrá que

controlar que restos de aceite en espacios muertos sean eliminados por

completo.

7. Una vez finalizado el lavado, se restituye la instalación del circuito y los

elementos extra empleados deberán ser desmontados, a fin de dejar el

sistema en condiciones de funcionar, proecediendo con el llenado del

estanque a través del filtro de llenado.

8. Una forma de controlar de mejor manera la limpieza del circuito, es instalar

un contador de partículas. Para esto se saca una derivación de la línea de

retorno que pase por el contador, el cual arroja lecturas del grado de

contaminación ISO 4406 o NAS 1638, y proporciona un registro gráfico.

Figura 40.- Contador de Partículas “Hydac”

14.3 Regulación del Sistema

Antes de poner en marcha definitiva el circuito, se deben regular los

componentes de éste, para que trabajen a las presiones y caudales deseados.

Además se deben verificar los movimientos de los elementos mecánicos que

inciden directamente en el trabajo de los actuadotes hidráulicos.

Page 80: Calculo de Un Winche Bmfcim779s

73

Se deberá confirmar que los siguientes puntos se hayan realizado y efectuar una

inspección visual de ello:

1. Soldadura del fundamento del winche y sus componentes asociados.

2. Ajuste de los pernos con el torque adecuado.

3. Montaje de las bombas a su fundamento.

4. Apriete general de racores, mangueras, compensadores, y demás

elementos del sistema.

5. Estanque con aceite.

6. Energía conectada.

7. Aceite lubricante de engranajes del winche.

8. Grasa en devanador, y muela del cilindro de embrague.

Una vez verificados estos puntos con los jefes de departamento correspondiente

y control de calidad, se procede con la regulación y verificación de los elementos

mecánicos de los actuadores.

14.3.1 Regulación del ajuste de la cinta de freno

Para que el freno se ajuste a la fuerza calculada, se debe verificar que la cinta

esta perfectamente calzada en su lugar, y comenzar a mover la tuerca que se

indica en la figura 41, la cual tensa la cinta, hasta que se note de forma visual

que el vástago de cilindro se extiende por unos dos a tres milímetros. De esta

forma se asegura que el resorte está trabajando en la parte inicial de su

compresión.

Figura 41.- Tuerca de Ajuste de la Cinta de Freno

2 a 3 [mm]

Tuerca

Page 81: Calculo de Un Winche Bmfcim779s

74

14.3.2 Verificación de la carrera del cilindro de embrague:

Se verifica manualmente que la carrera del cilindro de embrague sea lo suficiente

para que la muela del cilindro llegue al final de su contraparte y al desembragado

quede libre. Al momento de confirmar el embragado, se debe regular el limit

switch de proximidad para la señal al puente y control local.

Una vez regulados estos elementos se procede con la regulación de los

componentes hidráulicos.

14.3.3 Carga con Nitrógeno del Acumulador

Para cargar con nitrógeno el acumulador, primero se debe confirmar que la

temperatura ambiente corresponda a 20ºC, de lo contrario se deberá realizar el

cálculo nuevamente con la temperatura que se mida al momento de efectuar la

carga. Posteriormente se debe verificar que el acumulador se encuentre sin

fluido en su cámara, abriendo la válvula de alivio manual y desconectando la

cañería de retorno para cerciorarse visualmente. Una vez comprobado esto, se

arma nuevamente la cañería y se cierra la válvula. Por la parte superior se

conecta el dispositivo de prueba y llenado y en su otro extremo a una botella de

nitrógeno. El dispositivo deberá tener un manómetro objeto poder ver la presión

de carga. Una vez hecha la instalación, se procede a abrir gradualmente la

válvula de la botella hasta que el manómetro marque una presión de 44.2 [bar].

14.3.4 Regulación de la bomba:

Antes de poner en funcionamiento la bomba, se debe verificar el sentido de giro

del motor eléctrico, en caso de no coincidir con en el la bomba, que

generalmente se encuentra marcado en la carcasa, se deben invertir las fases.

Se pone en funcionamiento una de las bombas y se sigue el procedimiento

descrito mas abajo. Una vez finalizado esto, se detiene la bomba, se pone en

funcionamiento la segunda y se repite el procedimiento.

La variación del ángulo de inclinación de la placa inclinada se realiza regulando

el resorte de la válvula de cambio “HM” que pilotea el pistón de posicionamiento

de ésta. Al aumentar el ángulo de basculamiento también aumenta la cilindrada y

el par de giro. Al ir girando el tornillo de regulación se debe ir controlando el

Page 82: Calculo de Un Winche Bmfcim779s

75

manómetro de sala de máquinas, que deberá estar instalado con todo el conjunto

“bombas - estanque”, hasta que marque los 224 [bar] necesarios según cálculo.

14.3.5 Regulación de las Válvulas de Alivio

Al estar el block direccional en su posición normal centro, es decir la válvula

direccional del block se encuentra en posición central, con “P” cerrada, siempre

habrá carga en el sistema, si se pone en funcionamiento la bomba levantará

presión hasta que abran las válvulas de seguridad. De esta forma se regulan las

válvulas de alivio (17) y (16) a la presión de trabajo [224 bar], a través del tornillo

que regula el resorte de ellas.

La válvula de alivio del acumulador se regula abriendo la válvula de la línea de

presión y manteniendo la de alivio manual cerrada, verificando que la presión del

manómetro (11) llegue a 100 [bar]

14.3.6 Regulación de las Válvulas Reguladoras de Presión

Reguladora de Presión (8)

Al mantener la válvula direccional del puente (6) en su posición central, el puerto

“P” se encuentra cerrado y por lo tanto habrá máxima presión en la línea. Se

conecta un manómetro del puerto “M” de la válvula (8) y se regula el resorte

hasta que el manómetro marque la presión de cálculo 35 [bar].

Reguladora de Presión (9)

Al mantener la electro-válvula direccional (7) en su posición normal izquierda, es

decir la línea del cilindro al retorno, y tomando la precaución de mantener un

tapón hidráulico en el puerto “A” de forma permanente, habrá máxima presión en

la línea. Se conecta un manómetro del puerto “M” de la válvula (9), y se regula el

resorte hasta que el manómetro marque la presión de cálculo 45 [bar].

14.3.7 Regulación del Block Direccional (5)

Se regula la válvula de alivio “D”, manteniendo frenado el tambor y la válvula

direccional en posición de “virado”, con el objeto de mantener máxima presión en

la línea, así el manómetro conectado en “V” deberá marcar los 180 [bar].

Page 83: Calculo de Un Winche Bmfcim779s

76

La velocidad del motor se regula con el tambor en movimiento, es decir

desfrenado, y regulando el resorte de la válvula de pilotaje compensatorio “PA”.

La contrabalanza “C” se puede regular colgando un peso mínimo equivalente al

del cable o mayor (≈ 6 [ton]), por la popa del barco y comenzar a arriar el cable,

hasta que se estabilice la presión y la velocidad, para repentinamente llevar la

palanca de la válvula direccional a su posición centro. El tambor no debiera

seguir girando, si esto sucede, se deberá regular el resorte hasta que esto no se

repita y el tambor quede frenado instantáneamente. Este proceso se puede

repetir durante la prueba de tracción a punto, con un poco más de carga sobre el

cable.

14.3.8 Regulación de la válvula Reguladora de Caudal (10)

La mejor forma de regular el caudal de esta válvula es ir midiendo los tiempos de

apertura del freno, que según cálculo debiera ser de 7 segundos, asegurando así

que tenemos un caudal de aproximadamente 44.5 [lt/min].

15. PROTOCOLO DE ENSAYOS FINALES E INSPECCIONES DE CLASIFICACIÓN

15.1 Norma ISO 7365

A continuación se describen las pruebas de aceptación a realizar en base a la

norma ISO 7365 (Shipbuilding and Marine Structures – Deck Machinery – Towing

winches for Deep Sea Use):

15.1.1 Prueba de Retención del Tambor con el Freno

El tambor no debe rotar cuando el torque en este sea igual al producido por la

carga de retención (2.5 veces la tracción a punto fijo).

15.1.2 Operación bajo carga

La carga sobre el tambor del winche en maniobra de virado, debe ser medida

durante 15 minutos de forma continua.

Page 84: Calculo de Un Winche Bmfcim779s

77

Durante esta prueba se debe verificar lo siguiente:

1. Velocidad del tambor

2. Temperatura de los descansos del eje

3. Consumo de energía (corriente en el motor eléctrico de las bombas)

4. Operación de los controles

5. Ruidos anormales

6. Operación apropiada del devanador

15.1.3 Operación del embrague y freno

Verificar la correcta operación del embrague y freno, y sus elementos de control,

como manómetros y luces del limit switch

15.1.4 Emergencia y Control

Se deberá probar la largada de emergencia bajo las siguientes condiciones tanto

desde el puente como del control local:

1. En condiciones de tiro con el tambor frenado

2. Durante maniobra de izado del cable

3. Durante maniobra de arriado del cable

15.2 Casa Clasificadora

La Casa para la clasificación del la embarcación, exige las pruebas

operacionales y de emergencia antes mencionadas, pero además para la

clasificación del equipo propiamente tal, se deben cumplir una serie de

exigencias para el winche mismo, según se muestra en anexo Nº14.

Page 85: Calculo de Un Winche Bmfcim779s

78

CONCLUSIONES

La influencia de los elementos mecánicos, como son la relación de transmisión en la

caja de engranajes, relación de brazos para el accionamiento de frenos y embragues,

ha sido determinante en la definición de los actuadores, y por consiguiente las cañerías

y elementos de control, por lo que el momento de diseñar, se debe hacer un cuidadoso

estudio de las posibilidades que se manejan y los espacios disponibles, objeto optimizar

el diseño hidráulico propiamente tal.

La elección de la bomba y los actuadores principales, así como de los elementos que

componen el sistema, válvulas direccionales, control de caudal, alivio, acumuladores,

reductoras de presión, deben ser, en lo posible, compatibles entre sí, de manera que

tengan similares exigencias en cuanto a presiones, caudales, grado de limpieza del

aceite, etc. Esto con el propósito de no tener que emplear excesivo tiempo en un lavado

del sistema por solo un elemento que sea dispar con el resto, o tener que emplear

varias reductoras de caudal o reductoras de presión. Para esto se debe contar con una

gran cantidad de información técnica disponible o definir una sola línea de fabricantes.

Estos son algunos de los motivos que lleva al ingeniero de diseño a dar varias vueltas a

la espiral de secuencia de proyecto, antes de llegar a un diseño óptimo, confiable y de

fácil mantenimiento.

El winche de remolque es el equipo principal de un remolcador de altamar y el que la da

la razón de ser, por lo cual debe ser plenamente confiable y versátil. Es por tal motivo

que los sistemas de seguridad son tan exigentes y las posibilidades de control deben

estar tanto en el puente como en forma local. Es así que el diseño del sistema control

debe estar muy de acuerdo con las exigencias del armador, para su mantenimiento y

operación, como pudo haber sido considerar solamente electro-válvulas y concentrarlas

como un solo módulo en sala de máquinas, dejando en el puente y control local

botoneras de comando.

El diseño presentado tiene la bondad de poder encontrar con mayor facilidad las fallas y

darles una oportuna solución, además de haber querido mostrar la conmutabilidad y

versatilidad de los distintos elementos que da la oleohidráulica.

Page 86: Calculo de Un Winche Bmfcim779s

ANEXO Nº 1

Page 87: Calculo de Un Winche Bmfcim779s
Page 88: Calculo de Un Winche Bmfcim779s
Page 89: Calculo de Un Winche Bmfcim779s
Page 90: Calculo de Un Winche Bmfcim779s
Page 91: Calculo de Un Winche Bmfcim779s
Page 92: Calculo de Un Winche Bmfcim779s
Page 93: Calculo de Un Winche Bmfcim779s

MR, MRE 1/36 RE 15 228/10.02

© 2002by Bosch Rexroth AG, Industrial Hydraulics, D-97813 Lohr am Main

All rights reserved. No part of this document may be reproduced or stored, processed, duplicated or circulated usingelectronic systems, in any form or by any means, without the prior written authorisation of Bosch Rexroth AG.In the event of contravention of the above provisions, the contravening party is obliged to pay compensation.

This document was prepared with the greatest of care, and all statements have been examined for correctness.This document is subject to alterations for reason of the continuing further developments of products.No liability can be accepted for any incorrect or incomplete statements.

Overview of contents

Contents Page

Ordering details 2Section, function, symbols 3Features, general technical data 4Technical data 5, 6Housing flushing 7Pressure fluid technical data 8Characteristic curves:Torque, power, efficiency 9 to 19Off-load pressure 20, 21Boost pressure 21, 22Unit dimensions:MR and MRE 23, 24Shaft end 25, 26Bearing life 27Shaft loading 28Holding brake: technical data, ordering details, 29Holding brake: unit dimensions 30Shaft for speed sensing 31Incremental transducer 32, 33Coupling, adaptor, connection flanges 34, 35Assembly and commissioning guidelines 36

RE 15 228/10.02Replaces: 06.96

Radial piston hydraulic motorwith a fixed displacementTypes MR, MRE

Nominal sizes 33 to 8200Maximum operating pressure up to 300 barSwept volume up to 8226 cm3

Torques up to 32.000 Nm

Types MR, MREH/

A 20

65

Features

– Closely spaced swept volumes

– Very high starting torque

– High efficiency, high continuous power

– Smooth rotation even at lowest speeds

– High temperature shock resistance

– Reversable

– Highly suitable for closed loop control applications

– Suitable for use with fire-resistant andbio-degradable fluids

– Roller bearings for an extremely long service life

– Very low operating noise

– Versions with:

• Sensor shaft

• Incremental transducer

• Brake

ANEXO Nº 2

Page 94: Calculo de Un Winche Bmfcim779s

RE 15 228/10.02 2/36 MR, MRE

*–

Ordering details

Motor typeMR (standard 250 bar continuous) = MRMRE (expanded 210 bar continuous) = MRESwept volume – NS – BSMotor type MR32.1 cm3 – NS 33 – A = 33A56.4 cm3 – NS 57 – A = 57A72.6 cm3 – NS 73 – B = 73B92.6 cm3 – NS 93 – B = 93B109.0 cm3 – NS 110 – B = 110B124.7 cm3 – NS 125 – C = 125C159.7 cm3 – NS 160 – C = 160C191.6 cm3 – NS 190 – C = 190C250.9 cm3 – NS 250 – D = 250D304.1 cm3 – NS 300 – D = 300D349.5 cm3 – NS 350 – D = 350D451.6 cm3 – NS 450 – E = 450E607.9 cm3 – NS 600 – F = 600F706.9 cm3 – NS 700 – F = 700F1125.8 cm3 – NS 1100 – G = 1100G1598.4 cm3 – NS 1600 – H = 1600H1809.6 cm3 – NS 1800 – H = 1800H2393.0 cm3 – NS 2400 – I = 2400I2792.0 cm3 – NS 2800 – I = 2800I3636.8 cm3 – NS 3600 – L = 3600L4502.7 cm3 – NS 4500 – L = 4500L6460.5 cm3 – NS 6500 – M = 6500M6967.2 cm3 – NS 7000 – M = 7000MMotor type MRE332.4 cm3 – NS 330 – D = 330D497.9 cm3 – NS 500 – E = 500E804.2 cm3 – NS 800 – F = 800F1369.5 cm3 – NS 1400 – G = 1400G2091.2 cm3 – NS 2100 – H = 2100H3103.7 cm3 – NS 3100 – I = 3100I5401.2 cm3 – NS 5400 – L = 5400L8226.4 cm3 – NS 8200 – M = 8200MShaft endSplined shaft to DIN ISO 14 = N1Splined shaft to DIN 5480 = D1Cylindrical shaft with key = P1Hollow shaft, internal splineto DIN 5480 = F1

Further details in clear text

ControlN = Standard

clockwise rotation, inlet in Aanti-clockwise rotation, inlet in B

S = Control rotatedclockwise rotation, inlet in B

anti-clockwise rotation, inlet in A

Connection flangeN1 = Without connection flangeC1 = Pipe threadS1 = SAE standard pressure range metricT1 = SAE standard pressure range UNC

Seals

N1 = NBR seals suitable forHLP mineral oil to DIN 51 524 part 2

V1 = FKM sealsF1 = Shaft seal ring for max. 15 bar housing pressure,

NBR sealsU1 = Without shaft seal ring for mounting the brake,

NBR seals

Speed sensor(2nd shaft end) see page 31

N1 = Without speed sensorQ1 = Cylindrical shaft Ø 8 mmM1 = Mono directional incremental transducerB1 = Bi-directional incremental transducer

Ordering example:MR 300D-D1N1N1C1N

For brake ordering details see page 29

Page 95: Calculo de Un Winche Bmfcim779s

MR, MRE 3/36 RE 15 228/10.02

B

A

B

A

Z

A B

2 E 3 D 9 1 4 7 6 F (1)

8.38.28.1C5

Section, function

The MR and MRE hydraulic motors are externally pressurised radialpiston motors with a fixed swept volume.

Design

The main components are housing (1), eccentric shaft (2), cover (3),control housing (4), roller bearing (5), cylinder (6), piston (7) andcontrol (8.1; 8.2; 8.3).

Inlet and return of operating fluid

The operating fluid is fed to and returned from the motor via ports Aor B. The cylinder chambers (E) are filled or drained via the controland the channels (D) in the housing (1).

Rotary group, torque generation

The cylinders and the pistons support themselves on the sphericalareas of the eccentric shaft and the cover. It is thereby possible forthe piston and cylinder to align themselves, free from side forces, asthe shaft rotates, together with hydrostatic unloading of the pistonsand cylinders results in friction being minimised and very highefficiencies are achieved.

The pressure in the cylinder chambers (E) acts directly on the excentricshaft. Of the 5 cylinders 2 or 3 are respectively connected with thesupply or return sides.

Control

The control consists of the control plate (8.1) and the distributorvalve (8.2). Whilst the control plate is fixed to the housing with pins,the distributor valve rotates at the same speed as the eccentric shaft.Drillings in the distributor valve form the connection to the controlplate and to the piston chambers. The reaction ring (8.3) acts togetherwith the compression spring and the system pressure and effectivelycompensates for play. This results in a very high temperature shockresistance and constant performance values during the entire servicelife.

Leakages

The low leakage within the housing F (1) which occurs at the pistonand the control must be returned via the leakage port (C).

With holding brake

Symbols

Page 96: Calculo de Un Winche Bmfcim779s

RE 15 228/10.02 4/36 MR, MRE

A B

MR and MRE supplementary features

Features:

• Line connections via adaptor plates,SAE flanges or pipe thread

• Splined shaft or parallel shaft with key

• Hollow shaft

• Shaft for speed sensing

• Version with built-on holding brake

• Accessories for speed and positioning closed loop controlcircuits

Nominal sizes

Motor type MR: 33, 57, 73, 93, 110, 125, 160, 190, 250, 300, 350, 450, 600, 700, 1100, 1600, 1800, 2400, 2800,

3600, 4500, 6500, 7000

Motor type MRE: 330, 500, 800, 1400, 2100, 3100, 5400, 8200

General performance dataMotor type Constant pressure Intermittent pressure Peak pressure Drive speed range

in bar in bar in bar in min-1

MR 250 300 420 0.5 to 800

MRE 210 250 350 0.5 to 600

General – MR; MRE

Model Radial piston motor, externally pressurised, constant

Type MR; MRE

Mounting style Flange mounting

Connection type Connection flange

Installation Optional (take the installation guidelines on page 36 into account)

Bearing service life, shaft loadability See pages 27 and 28

Direction of rotation Clockwise/anti-clockwise - reversible

Pressure fluid HLP mineral oil to DIN 51 524 part 2; HFB and HFC as well asbio-degradable fluids on request;with phosphate ester (HFD), FKM seals are necessary

Pressure fluid temperature range °C – 30 to + 80

Viscosity range mm2/s 18 to 1000, recommended operating range 30 to 50 in motorhousing, must be adhered to with high constant powers

Cleanliness class to ISO codes Maximum permissible pressure fluid degree of contamination isto ISO 4406 class19/16/13

Page 97: Calculo de Un Winche Bmfcim779s

MR, MRE 5/36 RE 15 228/10.02

MRNominal size NS 33 57 73 93 110 125 160 190

Swept volume V cm3 32.1 56.4 72.6 92.6 109.0 124.7 159.7 191.6

Moment of inertia J kg cm2 4.32 4.76 14.03 15.11 16.19 56.88 57.5 58.2

Specific torque Nm/bar 0.50 0.9 1.2 1.5 1.7 2.0 2.54 3.05

Min. starting torque/theo. torque % 90 90 90 90 90 90 90 90

Max. input pressure Continuous p bar 250

Intermittent p bar 300

Peak value p bar 420

Max. summated pressure in ports A + B p bar 400

Max. leakage pressure p bar 5 (15 bar with version ...F...), also see page 8

Speed range n min-1 1-1400 1-1300 1-1200 1-1150 1-1100 1-900 1-900 1-850

Max. continuous power Without flushing P kW 6.6 11 15 17 18 17 20 24

With flushing P kW 10 17 20 25 28 25 30 36

Weight m kg 30 30 38 38 38 46 46 46

MRNominal size NS 250 300 350 450 600 700 1100 1600

Swept volume V cm3 250.9 304.1 349.5 451.6 607.9 706.9 1125.8 1598.4

Moment of inertia J kg cm2 60.8 65.43 225.9 229.3 265.07 358.4 451.5 666.43

Specific torque Nm/bar 4.00 4.80 5.57 7.20 9.70 11.26 17.93 25.40

Min. starting torque/theo. torque % 90 90 90 90 90 90 91 90

Max. input pressure Continuous p bar 250

Intermittent p bar 300

Peak value p bar 420

Max. summated pressure in ports A + B p bar 400

Max. leakage pressure p bar 5 (15 bar with version ...F...), also see page 8

Speed range n min-1 1-800 1-750 1-640 1-600 1-520 1-500 0,5-330 0,5-260

Max. continuous power Without flushing P kW 32 35 41 46 56 65 77 96

With flushing P kW 48 53 62 75 84 97 119 144

Weight m kg 50 50 77 77 97 97 140 209

MRNominal size NS 1800 2400 2800 3600 4500 6500 7000

Swept volume V cm3 1809.6 2393.1 2792.0 3636.8 4502.7 6460.5 6967.2

Moment of inertia J kg cm2 854.1 2835.4 2975.7 4851.4 5015.1 11376.6 11376.6

Specific torque Nm/bar 28.82 38.11 44.50 57.91 57.90 103.57 111.39

Min. starting torque/theo. torque % 90 90 90 90 91 91 91

Max. input pressure Continuous p bar 250

Intermittent p bar 300

Peak value p bar 420

Max. summated pressure in ports A + B p bar 400

Max. leakage pressure p bar 5 (15 bar with version ...F...), also see page 8

Speed range Without flushing n min-1 0.5-250 0.5-220 0.5-215 0.5-150 0.5-130 0.5-110 0.5-100

With flushing n min-1 0.5-250 0.5-220 0.5-215 0.5-180 0.5-170 0.5-130 0.5-130

Max. continuous power Without flushing P kW 103 120 127 123 140 165 170

With flushing P kW 153 183 194 185 210 240 250

Weight m kg 209 325 325 508 508 800 800

Technical data (for applications outside these parameters, please consult us!)

All technical data at ν = 36 mm2/s; ϑ = 45° C; p outlet = zero pressure

Page 98: Calculo de Un Winche Bmfcim779s

RE 15 228/10.02 8/36 MR, MRE

VG 46 - VI 100

VG 68 - VI 100VG 10 - VI 100

VG 22 - VI 100

VG 32 - VI 100

VG 100 - VI 100

VG 68 - VI 200

-30 -20 -10 0 10 20 30 40 50 60 70 8010

1214161820

30

40506080

100

200

300400500

1000

10

1214161820

30

40506080

100

200

300400500

1000

ν opt.

Pressure fluid technical data

Pressure fluid

See catalogue sheet RE 07 075 for detailed information regardingthe selection of pressure fluids before carrying out any engineering/design work.

Further notes on installation and commissioning can be found onpage 36 of this catalogue sheet.

When operating with HF pressure fluids or bio-degradable pressurefluids possible limitations to the technical data must be taken intoconsideration, please consult ourselves.

Operating viscosity rangeWe recommend that the operating viscosity is so selected (at operatingtemperature) that it lies in the optimum range of

νopt = optimum operating viscosity 30...50 mm2/s

for efficiency and service life, referring to the circulation temperaturein closed circuit and the tank temperature in open circuit as well asthe motor housing temperature (drain fluid temperature).

Limiting viscosity rangeFor the limiting conditions the following values are valid:

νmin = 10 mm2/s in emergency, briefly

νmin = 18 mm2/s with reduced performance data

νmax = 1000 mm2/s briefly with cold start

Selection diagram

Choosing the type of pressure fluida prerequisite for the selection of a pressure fluid is that the operatingtemperature in relation to the ambient temperature is known. In closedcircuits the circulation temperature, in open circuits the tanktemperature. To achieve the maximum continuous power values theoil viscosity must be within the optimum operating viscosity range,referring to the inlet temperature as well as the drain oil temperature.

Example:

With an ambient temperature of X °C the operating temperaturesettles to a temperature of 50 °C (closed circuit: circulationtemperature, open circuit: tank temperature). For an optimum viscosityrange this (νopt; raster field ) relates to a viscosity class of VG 46 orVG 68; select: VG 68.

The drain oil temperature which is influenced by the pressure andspeed lies above the circulation or tank temperature. At no point inthe system must this exceed 80 °C.

If the above stated conditions cannot be maintained due to extremeoperating conditions or high ambient temperatures we recommendthat, also outside the foreseen range, housing flushing is used (seediagram on pages 9 to 19), or consult ourselves.

Filtering of pressure fluidThe finer the filtration and the better the cleanliness class that canbe achieved the longer the service life of the radial piston motors.

To guarantee the functional safety of the radial piston motors acleanliness class of at least

6 to SAE, ASTM, AIA

19/16/13 to ISO 4406 is necessary.

Leakage fluid pressureThe lower the speed and the leakage fluid pressure, the longer thelife of the shaft seal ring. The maximum permissible housing pressureis

pmax = 5 bar

which is independent of the motor speed.

For higher housing pressures a shaft seal which is suitable up to apmax = 15 bar can be fitted (ordering code F). Further informationregarding housing flushing can be found on page 7.

Shaft seal ring FKM

Some fluids require the use of FKM sealsand shaft seal rings (type: HFD ...). Werecommend the use of FKM shaft sealrings with high operating temperaturesin order to extend the service life.

Viscosity range to ISO 3448

Temperature ϑ (°C)

Pressure fluid temperature range →

Visc

osity

ν (m

m2 /

s) →

Page 99: Calculo de Un Winche Bmfcim779s

RE 15 228/10.02 16/36 MR, MRE

3000

6000

9000

12000

15000

18000

21000

24000

27000

30000

33000

10 20 30 40 50 60 70 80 90 100 110 120 130

1

2

3

4

5

47 Kw

71 Kw

94 Kw

118 Kw

141 Kw

165 Kw

193 Kw

222 Kw

300 bar

250 bar

200 bar

150 bar

100 bar

50 bar

100 l/min35 l/min 300 l/min200 l/min 400 l/min 500 l/min 600 l/min 780 l/min700 l/min

240 Kw

1

2

3

4

5

49 Kw

73 Kw

97 Kw

170 Kw

200 Kw

230 Kw

250 Kw

300 bar

200 bar

150 bar

100 bar

50 bar

800 l/min35 l/min 100 l/min 200 l/min 300 l/min 400 l/min 500 l/min 700 l/min600 l/min

10 20 30 40 50 60 70 80 90 100 110 120 130

33000

30000

27000

24000

21000

18000

15000

12000

9000

6000

3000

121 Kw

146 Kw

250 bar

12 Kw

18 Kw

24 Kw

31 Kw

49 Kw

36 Kw

42 Kw

78%

t=92%.5

92%

η

89%

91%

86%

v=99%η

97.5%

98.5%

30 l/min 60 l/min 100 l/min 130 l/min 220 l/min190 l/min160 l/min

200

100 200 300 400 500 600 700

1200

400

600

800

1000

1400

50 bar

150 bar

100 bar

210 bar

250 bar

3

5

4

2

1

Characteristic curves (average values) measured at ν = 36 mm2/s; ϑ = 45° C; p output = zero pressure

1 Output power 2 Permissible for intermittentoperation

3 Permissible for continuousoperation with flushing

4 Permissible for continuousoperation

5 Input pressure

ηt Total efficiencyηv Volumetric efficiency

Torq

ue T

in N

m →

Torq

ue T

in N

m →

Torq

ue T

in N

m →

Speed n in min–1 →

Speed n in min–1 →

Speed n in min–1 →

MR 6500

MR 7000

MRE 330

Page 100: Calculo de Un Winche Bmfcim779s

RE 15 228/10.02 22/36 MR, MRE

MR

E 82

00

MR 3600

MR 7

000

MR 6500

MRE 5

400

MR 4500

MR 2800

MR 2400MRE 3100

MRE 2

100

MR 1

800

MR

E 14

00

MR 1100

MR 1

600

MR 700

MRE 5

00

MR 600

MR 350MR 450

MRE 800

8

4

24

16

12

20

36

32

28

40

4

16

12

8

24

20

32

28

16

4

12

8

20

24

28

32

36

640100 200 300 400 500 600150 250 350 450 55050

30 2409060 120 180150 210 330270 300

10020 6040 80 120 140 160 200180 220

Characteristic curves (average values) measured at ν = 36 mm2/s; ϑ = 45° C; p output = zero pressure

MR / MRE350 - 800

MR / MRE1100 - 2100

MR / MRE2400 - 8200

Speed n in min-1 →

Boos

t pre

ssur

e in

bar

Min. required boost pressure during pump operation

Speed n in min-1 →

Boos

t pre

ssur

e in

bar

Speed n in min-1 →

Boos

t pre

ssur

e in

bar

Page 101: Calculo de Un Winche Bmfcim779s

IndustrialHydraulics

Electric Drivesand Controls

Linear Motion andAssembly Technologies Pneumatics

ServiceAutomation

MobileHydraulics

Variable displacement pump A4VSO

Sizes 40...1000

Series 1, 2 and 3

Nominal pressure 350 bar

Peak pressure 400 bar

RE 92 050/09.97 1/40Replaces: 03.97 and 11.95

open circuit

Features

– The variable displacement axial piston pump type A4VSO in

swashplate design is designed for open circuit hydrostatic

drives.

– The flow is proportional to the input drive speed and

displacement. By adjusting the swashplate it is possible to

infinitely vary the flow.

– Slot-controlled swashplate design

– Infinitely variable displacement

– Good suction characteristics

– Permissible nominal operating pressure 350 bar

– Low noise level

– Long service life

– Drive shaft capable of absorbing axial and radial loads

– Good power/weight ratio

– Modular design

– Short control times

– Through drive and pump combinations possible

– Swash plate angle indicator

– Optional mounting position

– Operation on HF fluids under reduced operational

parameters possible

Contents

Features 1

Ordering code 2, 3

Hydraulic fluid 4

Technical data 5

Input power and flow 6 ... 8

Installation notes 9

Unit dimensions size 40, series 1 10

Unit dimensions size 71, series 1 11

Unit dimensions size 125, series 2 and 3 12

Unit dimensions size 180, series 2 and 3 13

Unit dimensions size 250, series 3 14

Unit dimensions size 355, series 2 and 3 15

Unit dimensions size 500, series 3 16

Unit dimensions size 750, series 3 17

Unit dimensions A4VSLO 750 with boost pump, series 3 18

Unit dimensions A4VSO 1000, series 3 19

Summary of controls 20 ... 23

Through drive 24

Unit dimensions of combination pumps A4VSO + A4VSO 25

Unit dimensions of combination pumps A4VSO + A10VSO 26

Dimensions through drive 27 ... 39For separate descriptions of the control devices see RE data

sheets

RE 92055, RE 92060, RE 92064,

RE 92072, RE 92076, RE 92080

ANEXO Nº 3

Page 102: Calculo de Un Winche Bmfcim779s

2/40 Bosch Rexroth AG | Mobile Hydraulics A4VSO | RE 92 050/09.97

P

Ordering details

E

A4VS

L

O

see RE 92064

see RE 92068in preparation

see RE 92076

see RE 92055

see RE 92080

10

RL

VP

= available

= in preparation

– = not available

22

Z

= preferred programme (with short delivery times)(for preferred types see page 39)

30

anti-clockwise

BH

H

see RE 92072

see RE 92060

Hydraulic fluid / version 40 71 125 180 250 355 500 750 1000

Mineral oil (no code)HF hydraulic fluid (with the exception of Skydrol) – –High-Speed-Version – – – – – –

Axial piston unit

Swashplate design, variable, for industrial applications

Boost pump (Impeller) 40 71 125 180 250 355 500 750 1000

Without boost pump (no code)With boost pump (Impeller) only for version 25 – – – – – – – –

Type of operation

Pump, open circuit

Nominal size

displacement Vg max (cm3) 40 71 125 180 250 355 500 750 1000

Control device

Pressure control DR DR..

Flow control FR – – – FR..

Power control with hyperbolic curve LR LR..

Manual control MA – – MA..

Electric motor control EM – – EM..

Hydraulic control, position dependent HW HW..

Hydraulic control, volume dependent HM HM..

Hydraulic control with servo/proportional valve HS HS..

Electronic control EO EO..

Hydraulic control, pressure dependent HD HD..

Speed control, secondary controlled DS DS..

Series

– – – – – – –

– – – – – –

– –

Direction of rotation

Viewed on shaft end clockwise

Seals

NBR (Nitrile rubber to DIN ISO 1629) with shaft seal FPM

FPM (Fluorine india rubber to DIN ISO 1629)

Shaft end

Keyed parallel shaft DIN 6885Splined shaft DIN 5480

Mounting flange 40 71 125 180 250 355 500 750 1000

ISO 4-hole – – –ISO 8-hole – – – – – –

Page 103: Calculo de Un Winche Bmfcim779s

RE 92 050/09.97 | A4VSO Mobile Hydraulics | Bosch Rexroth AG 3/40

Service line connection 40 71 125 180 250 355 500 750 1000

Connections B and S: SAE on side 90o offset, metric fixing screws – 13Connections B and S: SAE on side 90o offset, metric fixing screws 252nd pressure connection B1 opposite B - when delivered blanked off with a flange

Through drive

Without auxiliary pump, without through drive N00With through drive to accept an axial piston unit, gear or radial piston pumpFlange Hub/shaft to accept

ISO 125, 4-hole Splined shaft 32x2x30x14x9g A4VSO/H/G 40 K31ISO 140, 4-hole Splined shaft 40x2x30x18x9g A4VSO/H/G 71 – K33ISO 160, 4-hole Splined shaft 50x2x30x24x9g A4VSO/H/G 125 – – K34ISO 160, 4-hole Splined shaft 50x2x30x24x9g A4VSO/G 180 – – – K34ISO 224, 4-hole Splined shaft 60x2x30x28x9g A4VSO/H/G 250 – – – – K35ISO 224, 4-hole Splined shaft 70x3x30x22x9g A4VSO/G 355 – – – – – K77ISO 315, 8-hole Splined shaft 80x3x30x25x9g A4VSO/G 500 – – – – – – K43ISO 400, 8-hole Splined shaft 90x3x30x28x9g A4VSO/G 750 – – – – – – – K76ISO 400, 8-hole Splined shaft 100x3x30x32x9g A4VSO/G 1000 – – – – – – – – K88ISO 80, 2-hole Splined shaft 3/4" 19-4 (SAE A-B) A10VSO 18 KB2ISO 100, 2-hole Splined shaft 7/8" 22-4 (SAE B) A10VSO 28 KB3ISO 100, 2-hole Splined shaft 1" 25-4 (SAE B-B) A10VSO 45 KB4ISO 125, 2-hole Splined shaft 1 1/4" 32-4 (SAE C) A10VSO 71 – KB5ISO 125, 2-hole Splined shaft 1 1/2" 38-4 (SAE C-C) A10VSO 100 – – KB6ISO 180, 4-hole Splined shaft 1 3/4" 44-4 (SAE D) A10VSO 140 – – – KB782-2 (SAE A, 2-hole) Splined shaft 5/8" 16-4 (SAE A) G2 / GC2/GC3-1X K0182-2 (SAE A, 2-hole) Splined shaft 3/4" 19-4 (SAE A-B) A10VSO 18 K52101-2 (SAE B, 2-hole) Splined shaft 7/8" (SAE B) G3 K02101-2 (SAE B) Splined shaft 25-4 (SAE B-B) GC4-1X, A10VO 45 K04127-2 (SAE C) Splined shaft 32-4 (SAE C) A10VO 71 – K07101-2 (SAE B) Splined shaft 32-4 (SAE C) GC5-1X K06127-2 (SAE C) Splined shaft 38-4 (SAE C-C) GC6-1X, A10VO 100 – – � � � K24152-4 (SAE D) Splined shaft 44-4 (SAE D) A10VO 140 – – – K17Ø 63, metric 4-hole Keyed shaft Ø 25 R4 � K57101-2 (SAE B) Splined shaft 22-4(SAE B) G4, A10VO 28 � K68With through drive shaft, without hub, without adapter flange, with cover plate K99

Filtration (only with HS and DS control)Without filter NSandwich plate filter (with HS and DS control see RE 92076 and RE 92055) Z

Series

Seals

Shaft end

Direction of rotation

Control device

Axial piston unit

Boost pump

Nominal size

Type of operation

Combination pumps1. If a second Brueninghaus pump is to be fitted in the factory, then both type codes should be joined with "+".

Type code 1st pump + type code 2nd pumpOrdering example: A4VSO 125 DR/22R – PPB13K33 + A4VSO 71 DR/10R – PZB13N00.

2. If a gear or radial piston pump is to be fitted in the factory, please consult us.

Hydraulic fluid / version

A4VS O / –

Mounting flange

Page 104: Calculo de Un Winche Bmfcim779s

4/40 Bosch Rexroth AG | Mobile Hydraulics A4VSO | RE 92 050/09.97

t min = - 25° C Druckflüssigkeitstemperaturbereich t max = + 90° C

- 25° - 10° 10°

20°

30° 50° 70° 90°

- 20° 0° 40° 60° 80° 100°1000

36

16

Temperaturt (° C)

10

1000600400

200

1008060

40

20

15

10

Visk

ositä

t υ (m

m2

/ s)

υ op

t

VG 22

VG 32

VG 46VG 68VG 100

Hydraulic fluidFor extensive information on the selection of hydraulic fluids andfor application conditions, please consult our data sheet RE90220 (mineral oils), RE 90221 (ecologically acceptablepressure fluids) and RE 90223 (HF pressure fluids). Whenoperating with ecologically acceptable and HF fluids limitationsto the technical data may be necessary.

Operating viscosity rangeIn order to obtain optimum efficiency and service life, werecommend that the operating viscosity (at operatingtemperture) be selected in the range

νopt = optimum operating viscosity 16...36 mm2/s

referred to tank temperature (open circuit).

Limit of viscosity rangeFor critical operating conditions the following values apply:νmin = 10 mm2/s

for short periods at max. permissible leakage oiltemperature 90° C.

νmax = 1000 mm2/sfor short periods on cold start.

Comments on the selection of the hydraulic fluidIn order to select the correct fluid, it is necessary to know theoperating temperature in the tank (open circuit), in relation to theambient temperature.The hydraulic fluid should be selected such that, within theoperating temperature range, the operating viscosity lies withinthe optimum range (νopt), see shaded section of selection dia-gram. We recommend that the higher viscosity grade is selectedin each case.

Selection diagram

Determination of displacementVg • n • ηv

Flow qv = [L/min] 1000

1,59 • Vg • ∆ pDrive torque T = [Nm]

100 • ηmh

2π • T • n T • n qv • ∆ pDrive power P = = = [kW]

60000 9549 600 • ηt

Vg = Geometric displacement [cm3] per revolution

∆ p = Pressure differential [bar]n = Speed [RPM]ηv = Volumetric efficiencyηmh = Mechanical/hydraulic efficiencyηt = Overall efficiency (ηt = ηv • ηmh)

Example: At an ambient temperature of X° C, the operatingtemperature in the tank is 60° C. Within the operating viscosityrange (νopt; shaded area), this corresponds to viscosity range VG46 or VG 68. VG 68 should be selected.Important: The leakage oil (case drain oil) temperature isinfluenced by pressure and pump speed and is always higherthan the tank temperature. However, at no point in the circuit maythe temperature exceed 90° C.

Notes regarding series 30When using external bearing flushing at port U the throttle screw,which is to be found at port U, has to be screwed in up to its endstop.

Filtration of the hydraulic fluid (axial piston unit)In order to ensure correct functioning of the axial piston unit, aminimum level of cleanliness class

9 to NAS 163818/15 to ISO/DIS 4406 is required.

Temperature range (see selection diagram)tmin

= – 25° Ctmax

= + 90° C

Bearing flushingFor the following operating conditions bearing flushing isrequired for safe continuous operation:– Applications with special fluids (non-mineral oils), due to

limited lubricity and narrow operating temperature range

– Operation at critical conditions of temperature and viscositywith mineral oil

Flushing is recommended with vertical mounting (drive shaftfacing upwards), in order to ensure lubrication of the frontbearing and shaft seal.

Flushing is carried out via port "U", which is located in the frontflange area of the variable displacement pump. The flushing oilflows through the front bearing and leaves the system togetherwith the pump leakage oil at the drain port.

The following flows are recommended for flushing:Size 40 71 125 180 250 355 500 750 1000QSp L/min 3 4 5 7 10 15 20 30 40For the given flushing flows there will be a pressure difference ofapprox. 2 bar (series 1 and 2) and approx. 3 bar (series 3)between port "U" (including screwed fitting) and the leakagechamber.

Vis

cosi

ty ν

(m

m2 /

s)

Fluid temperature range

Temperature t(°C)

Page 105: Calculo de Un Winche Bmfcim779s

RE 92 050/09.97 | A4VSO Mobile Hydraulics | Bosch Rexroth AG 5/40

1,41,21,0

1,6

0,9

1,1

1,0

1,2

omax

1,25

0,80,70,60,5 0,9 1,0

0,8

Nenngröße4

3

2

140003000200010000

Drehzahl n [min-1]Leck

flüss

igke

itsdr

uck

p L

abs [

bar]

180

125 71 40

500

750

250

355

1000

± Fax

Fq

X

X/2 X/2

03.97

Technical data

Operating pressure range - inlet sideAbsolute pressure at port S (suction inlet)pabs min ___________________________________________________________________ 0.8 barpabs max ___________________________________________________________________ 30 bar

Operating pressure range - outlet sidePressure at port BNominal pressure pN _____________________________________________ 350 barPeak pressure pmax _______________________________________________ 400 bar(pressure data to DIN 24312)

Flow direction: S to B.

Determination of inlet pressure pabs at suction port S, orreduction of displacement when increasing drive speed

Table of values (theorectical values, without considering ηmh and ηv; values rounded off)

Nominal size 40 71 125 180 250/H* 355/H* 500/H* 750 750 1000with boost

pump

Displacement Vg max cm3 40 71 125 180 250/250 355/355 500/500 750 750 1000

Max. speed with inlet pressure pabs 1 bar at port S no max min–1 2600 2200 1800 1800 1500/1900 1500/1700 1320/1500 1200 1500 1000

Max.permissible speed (speed limit)with increased inlet pressure pabs no max zul. min–1 3200 2700 2200 2100 1800/2100 1700/1900 1600/1800 1500 1500 1200or reduced displacement Vg < Vg max

Max. flow at no max qvo max L/min 104 156 225 324 375/475 533/604 660/750 900 1125 1000

at nE = 1500 RPM L/min 60 107 186 270 375 533 5811) 7701) 1125 -Max. power at no max Po max kW 61 91 131 189 219/277 311/352 385/437 525 656 583

(∆p = 350 bar) at nE = 1500 RPM kW 35 62 109 158 219 311 3391) 4491) 656 -

Max. torque (∆p = 350 bar) at Vg max Tmax Nm 223 395 696 1002 1391 1976 2783 4174 4174 5565Torque (∆p = 100 bar) at Vg max T Nm 64 113 199 286 398 564 795 1193 1193 1590

Moment of inertia about drive axis J kgm2 0.0049 0.0121 0.03 0.055 0.0959 0.19 0.3325 0.66 0.66 1.20

Case drain volume L 2 2.5 5 4 10 8 14 19 22 27Approx. weight (pump with pressure control) m kg 39 53 88 102 184 207 320 460 490 605Permissible axial force ± Fax max N 600 800 1000 1400 1800 2000 2000 2200 2200 2200

Permissible radial force Fq max N 1000 1200 1600 2000 2000 2200 2500 3000 3000 3500

1) Vg < Vg max

Case drain pressureThe permissible case drain pressure (housing pressure) isdependent on the drive speed (see diagramm).

(valid for operation with mineral oil)

Nominal size

Speed n [min–1]

Max. case drain pressure (housing pressure)pL abs max 4 barThese are approximate values. Under certain operatingconditions a reduction in these values may be necessary.➝

Spee

d➝

n n o m

ax

Inle

t pre

ssur

e p ab

s [ba

r]

Vg

Vg max

Important:Max. permissible speed no max.perm. (speed limit).

The inlet pressure is the static feed pressure or the minimumdynamic value of the boost pressure.

Displacement

Application of force

Ca

se d

rain

pre

ssur

e p L

abs [

bar]

H* = High-Speed-Version

Page 106: Calculo de Un Winche Bmfcim779s

6/40 Bosch Rexroth AG | Mobile Hydraulics A4VSO | RE 92 050/09.97

0 100 200 300 350

5050

0 0

100

150

100

150

Q

PQ max

PQ Null

0 100 200 300 350

50100

0 0

200

300

100

150

Q

PQ max

PQ Null

0 100 200 300 350

50100

0 0

200

300

100

150

400 200

PQ max

PQ Null

Q

0 100 200 300 350

50100

0 0

200

300

100

150P

Q max

PQ Null

400

500

200

250

Q

0 100 200 300 350

2550

0 0

100

150

50

75

PQ Null

PQ maxQ

03.97

Pqv zero

Pqv Null

n = 1800 RPMn = 1500 RPM

Input power and flow(operating fluid: hydraulic oil ISO VG 46 DIN 51519, t = 50°C)

qv • pOverall efficiency: η

t =

Pqv max

• 600

qvVolumetric efficiency: ηv =

qvtheor

Nominal size 40

n = 2200 RPMn = 1500 RPM

Nominal size 125

Operating pressure p [bar]

Inpu

t pow

er P

[kW

]In

put p

ower

P [k

W]

Operating pressure p [bar]

Nominal size 180

Inpu

t pow

er P

[kW

]

Operating pressure p [bar]

n = 1800 RPMn = 1500 RPM

Nominal size 250

Inpu

t pow

er P

[kW

]

Operating pressure p [bar]

n = 1500 RPMn = 1000 RPM

Nominal size 71

n = 2600 RPMn = 1500 RPM

Inpu

t pow

er P

[kW

]

Operating pressure p [bar]

Flow

[L/m

in]

Flow

[L/m

in]

Flow

[L/m

in]

Flow

[L/m

in]

Flow

[L/m

in]

qv Pqv max

qv

Pqv max

qv

Pqv max

qv

Pqv max

qv

Pqv max

Pqv Null

Pqv zero

Pqv zero

zero

zero

Page 107: Calculo de Un Winche Bmfcim779s

20/40 Bosch Rexroth AG | Mobile Hydraulics A4VSO | RE 92 050/09.97

Q

p

Q

p

Q

p

Q

p

X

Summary of controls (see RE 92060)

Pressure and flow control DFR

This control maintains a constant flow from thepump even under varying operating conditions(flow). Overriding this control is a mechanicallyadjustable pressure control.Optional:Orifice in X port plugged (DFR1)

Flow control FR

Maintains a constant flow in a hydraulic system(flow)Optional:Remote pressure control (FRG),Orifice in X port plugged (FR1, FRG1)

Pressure control for parallel operation DP

Suitable for pressure control with multiple axialpiston pumps A4VSO in parallel operation.Optional:Flow control (DPF)

Pressure control DR

Regulates max. pressure in a hydraulic systemSetting range 20 – 350 barOptional:Remote control (DRG)

Not included within thescope of supply

Not included within thescope of supply

Not included within thescope of supply

Page 108: Calculo de Un Winche Bmfcim779s

Modular Unit 6MB

Modular unit/code 6MB- * * * - * * * - * * - * *- * * * - * * * - * * - * * *Standard:-Directional valve-Counterbalance valve in A-Pressure relief valve (mooring) valve A to B-Anticavitation valve to B-Internal boosting to B-Pressure compensator flow control-Operating pressure 315 bar

SizePressure drop at Q=200 l/min :200Pressure drop at Q=320 l/min 32 bar :320P, A, B : 1" SAE 6000 T : 11/4" SAE 3000Pressure drop at Q=450 l/min :450Pressure drop at Q=650 l/min 32 bar :650P, A, B : 11/2" SAE 6000 T : 2" SAE 3000

Direction control valve 4/3Manually operated :1Manually/remote operated :37Manually operated, with brake release 4BA3 :1BManually/remote operated, with brake release 4BA3 :37BProportionally electrically remote controlled :37EProportionally electrically remote controlled, with :37BEbrake release 4BA3

Spool type

-2C

Manual control safty lock, mechanically0 Position only :L0 + 100% in A :L10 + 30% in A :L2100% in A and B :L30 + 10-15% in A :L4

Pressure relief valveMooring valve,direct manually operated by hand wheel :MAM

Two-speed valveManually operated :TManually operated with reduced pressure :TRHydraulic operated :THHydraulic operated with reduced pressure :THRPressure reducing valve only :ROptionsBoosting external (E to B) :BEDouble counterbalance valve (A+B) :C2Pressure relief valves in (A+B) :D2

Modification code (001-999)

HYDRANOR

ANEXO Nº 4

Page 109: Calculo de Un Winche Bmfcim779s

Modular unit 6MB

A/S HYDRANOR N-3613 KONGSBERG HIGH QUALITY MARINE HYDRAULICS 3

HYDRANO

HYDRAULIC DIAGRAM 6MB (remote operated version)

VALVE DESCRIPTION-BASIC VERSION 6MB

Item 1 Main block. Item 2 Directional control valve 4/3. This is a three position directional valve, integrated in the main block. Item C Counterbalance valve A→T.

Counterbalance valves are designed to transform the energy generated by the winch-load forces. This energy is converted into heat, which causes local heating of the inner parts of the valve. As a result of this change in temperature, the viscosity of the oil also changes. These changes should not affect the function of the counterbalance valve. However, it should be noted that the function of a counterbalance valve is rather complicated. Parameters, such as the system volume, the hydraulic motor features and the dynamics of the counterbalance valve itself, must interact correctly.

Item Q Adjustable throttling.

Throttling for the counter balance pilot channel. Item CA Check-valve free flow P→A

Bypassing the counter balance valve Item D Pressure relief valve A→B

This pilot operated pressure relief valve will in some application be used as a mooring valve, to keep a constant tension on the drum, or freewheeling of the hydraulic motor. Tension pressure can either be adjusted by a hand wheel (option MAM) or remote controlled by port MX.

Page 110: Calculo de Un Winche Bmfcim779s

Modular unit 6MB

A/S HYDRANOR N-3613 KONGSBERG HIGH QUALITY MARINE HYDRAULICS 4

HYDRANO

Item DA Anticavitation check valve Boosting from T to B

General Measures must be taken to ensure that cavitation cannot occur in a hydraulic system. Therefore, a certain flow must be applied to A or B to replace internal leakage. It is important to prevent boosting oil from running out of the boosting system. A check valve with opening pressure of 2-3 bar in T will usually satisfy this. As far as possible, internal leakage from the hydraulic motor should be connected before the check valve in T, e.g. port TPT or E. Remember to check max motor casing return pressure against system return pressure. Standard Boosting 6MB 6MB has internal boosting from T to B as standard. Also a certain flow will leak through nozzle PB, and shuttle valve PC to either A or B. Generally about the pressure compensator system. Main direction valve in conjunction with the pressure compensator system forms a pressure compensated flow control valve. By sensing pressure either in A or B line the compensator will, independently of load, compensate for changes in load and maintain same flow across the main directional valve. Flow over the main directional valve is depending on the force induced on the compensator. This force is made up of a spring force in the compensator element item P, and adjustable spring force in the compensator pilot valve PA and the load pressure sensing in A or B via PC. When setting is altered on the compensator pilot valve, flow will change.

Item PC Shuttle valve for the pressure compensator.

Port V can be used to load sensing or in some application hydraulically operated brake release valve.

Item P Pressure compensator element. Automatically adjusted throttle valve (together with PC, PB, PA and Z).

Item Z Adjustable throttling. Adjustable throttle for the pressure compensator element. Item PB Nozzle Maintain flow to compensator pilot valve PA. Item PA Compensator pilot valve.

The spring on the compensator is rather weak. Therefore, pressure created by an adjustable pressure relief valve is added to the spring force.

Page 111: Calculo de Un Winche Bmfcim779s

Modular unit 6MB

A/S HYDRANOR N-3613 KONGSBERG HIGH QUALITY MARINE HYDRAULICS 8

HYDRANO

PRESSURE DROP 6MB

6MB-200-1-2CMain valve in A or B positionMeasured at vicosity 44 cSt

Counterbalance valve in A set to min

0

10

20

30

40

50

60

70

80

100 120 140 160 180 200 220 240 260 280 300

FLOW [L/MIN]

P-AP-BB-TA-T

6MB-320-1-2CMain valve in A or B positionMeasured at vicosity 44 cSt

Counterbalance valve in A set to min

0102030405060708090

100

160 180 200 220 240 260 280 300 320 340 360

FLOW [L/MIN]

P-AP-BB-TA-T

∆P

[BA

R]

∆P

[BA

R]

Page 112: Calculo de Un Winche Bmfcim779s

Modular unit 6MB

A/S HYDRANOR N-3613 KONGSBERG HIGH QUALITY MARINE HYDRAULICS 10

HYDRANO

TECHNICAL DATA

Description Symbol Unit Value 6MB-200 6MB-320 6MB-450 6MB-650 Flow

(∆p 32 bar) Qmax l/min

240 320 500 650

Max. operating pressure pmax bar 315 Directional valve pilot pressure p bar 5-20

6MB-200/320 6MB-450/650 Weight basic version m kg 56 96

Hydraulic fluid Mineral oils for hydraulic systems. Viscosity range ν mm²/s 10 to 350 (cSt) Viscosity index VI >120

Filtration Recommended filter with

β20 ≥ 100

Class 9 according to NAS 1638,

18/15 according to

ISO 4406

Fluid temperature range T °C -20 to +70 Ambient temperature range T °C -20 to +50

Page 113: Calculo de Un Winche Bmfcim779s

WMR, WMU, WMM, WMD(A) 1/10 RE 22 280/02.03

© 2003by Bosch Rexroth AG, Industrial Hydraulics, D-97813 Lohr am Main

All rights reserved. No part of this document may be reproduced or stored, processed, duplicated or circulated usingelectronic systems, in any form or by any means, without the prior written authorisation of Bosch Rexroth AG.In the event of contravention of the above provisions, the contravening party is obliged to pay compensation.

Overview of contents

Contents PageFeatures 1

Ordering details 2

Preferred types 3

Symbols, operating types 2 and 3

Function, section 4

Technical data 5

Characteristic curves 6

Performance limits 7

Unit dimensions 8

RE 22 280/02.03Replaces: 01.96

4/3-, 4/2- and 3/2-way directional valveswith mechanical, manual operationTypes WMR, WMU, WMM and WMD(A)

Nominal size 6Series 5XMaximum operating pressure 315 barMaximum flow 60 L/min Mechanical, manual operation

K 49

48-1

6

Features

– Direct operated directional spool valve

– Operating elements:

• Roller/plunger

• Hand lever

• Rotary knob

– Porting pattern to DIN 24 340 Form A, without locating pinhole (standard)

– Porting pattern to ISO 4401 and CETOP–RP 121 H, withlocating pin hole (ordering details .../60 at the end of the valvetype code)

Subplates to catalogue sheet RE 45 052

(separate order)

ANEXO Nº 5

Page 114: Calculo de Un Winche Bmfcim779s

RE 22 280/02.03 2/10 WMR, WMU, WMM, WMD(A)

= A

= C

= D

a b

TP

A B

a b

TP

A B

= B 5)

= Y 5)

T T

a b

P

A B

a b

P

A B = R

= T

= U

= V

= W

= P

= Q

= L

= M

= E 6)

= F

= G

= H

= J

= E1 7)

A B

0 b

TP

A B

T

0 b

P

A B

= .B 6)

a b

TP

A B

0

T

a b

P

0

a 0

TP

A B

T

a 0

P

A B

= .A 6)

Ordering details

Symbols

*3 actuator ports = 34 actuator ports = 4

OperationRoller/plunger see = WMRRoller/plunger page 7 = WMUHand lever = WMMRotary knob = WMDRotary knob, lockable 1) = WMDA

Nominal size 6 = 6

Symbols, e. g. C, E, EA, EB etc. 2)

Series 50 to 59 = 5X(50 to 59: unchanged installation and connection dimensions)

With spring return = No code(available for WMR, WMU, WMM)With detent = F(available for WMM, WMD, WMDA)

Further details in clear text

No code = Without locting pin hole/60 4) = With locating pin hole

No code = NBR sealsV = FKM seals

(other seals on request)

Attention!The compatibility of the seals and

pressure fluid has to be taken into account!

No code = Without throttle insertB08 3) = Throttle Ø 0.8 mmB10 3) = Throttle Ø 1.0 mmB12 3) = Throttle Ø 1.2 mm

1) Key with Material No. R900006980 for series 50 to 52R900008158 for series 53are included within the scope ofsupply.

2) For symbols and examples, see below and page 3.3) Use if volume flow is > valve performance limit,

fitted in the P line.4) Locating pin 3 x 8 DIN EN ISO 8752.

Material No. R900005694 (separate order)

5) Only available for types WMR/WMU and WMM.6) Example:

• Spool E with switched position “a”→ Ordering detail ..EA..

• Spool E with switched position “b”→ Ordering detail ..EB..

7) Symbol E1-: P → A/B pre-opening

Attention!Care must mbe taken because of possible pressureintensification when using differential cylinders!

6 5X

Preferred types, see page 3, arereadily available!

Page 115: Calculo de Un Winche Bmfcim779s

WMR, WMU, WMM, WMD(A) 3/10 RE 22 280/02.03

0a bTP

A Bb

a

0a bTP

A Bb

a

0a bTP

A B

ba

0 bTP

A B

0 bA B

b

0aTP

A B

a

0aTP

A B

a

baTP

A B

a

b

b

baTP

A B

a b

baTP

A B

a b

baTP

A B

ab

baTP

A B

a b

baTP

A B

a b

0a bTP

A Bb

a

0 bTP

A Bb

0aTP

A B

a

baTP

A Bb

a

TP

Actuator types

Ordering detailsSpool Detent WMR, WMU WMM WMD, WMDA

(roller/plunger) (hand lever) (rotary knob)

Valve types

Switchedposition "a"2)

= .A

Switchedposition "b"2)

= .B

../F..

../F..

../F..

../F..

B, Y

A, C, D

E1–,E, F,

G, H,

J, L,

M, P,Q, R,

T, U,

V, W../F..

2) See symbols on page 2

Preferred types (readily available)

Further preferred types and standard units canbe found in the EPS (Standard Price List).

Type WMR / WMU Material number

3WMR 6 A5X/ R900471414

4WMR 6 D5X/ R900465984

4WMR 6 J5X/ R900477994

3WMU 6 A5X/ R900401031

4WMU 6 D5X/ R900479282

Type WMM Material number

4WMM 6 D5X/ R900468328

4WMM 6 E5X/ R900467936

4WMM 6 G5X/ R900471209

4WMM 6 H5X/ R900467370

4WMM 6 J5X/ R900469302

Type WMD Material number

4WMD 6 C5X/F R900476226

4WMD 6 D5X/F R900476880

4WMD 6 E5X/F R900475573

4WMD 6 J5X/F R900471013

Page 116: Calculo de Un Winche Bmfcim779s

WMR, WMU, WMM, WMD(A) 5/10 RE 22 280/02.03

NFR = Fo.T-druck + pT x 1,4

barpressure

Type WMR/WMU WMM WMD

Operating pressurePorts A, B, P bar 100 200 315

Operating force on roller/plungerWithout tank pressure N 100 112 121

With tank pressure N 184 196 205(pT = max 60 bar) 1.4 N per bar tank pressure

Operating torque max: Ncm – 150

Operating forceWithout tank pressure, N 20 –with and without detent

150 bar tank pressure N 30 –

General

Installation Optional

Ambient temperature range °C – 30 to + 80 (NBR seals)

– 20 to + 80 (FKM seals)

Weight kg Approx. 1.4

HydraulicMaximum operating pressure Ports A, B, P bar Up to315

Port T:• For WMM, WMD, WMDA bar 160 For symbols A or B, port T must be used as a

drain port if the operating pressure, is higher• For WMR, WMU bar 60 than the permissible tank pressure.

Maximum flow L/min 60

Flow cross-section For symbol Q 6 % of the nominal cross-section

(switching position 0): For symbol W 3 % of the nominal cross-section

Pressure fluid Mineral oil (HL, HLP) to DIN 51 524 1);

Fast bio-degradable pressure fluids toVDMA 24 568 (also see RE 90 221); HETG (rape seed oil) 1);HEPG (polyglycols) 2); HEES (synthetic ester) 2);Other pressure fluids on request

Pressure fluid temperature range °C – 30 to + 80 (NBR seals)

– 20 to + 80 (FKM seals)

Viscosity range mm2/s 2.8 to 500

Cleanliness class to ISO code Maximum permissible degree of contamination of the pressurefluid is to ISO 4406 (C) class 20/18/15 3)

Technical data (for applications outside these parameters, please consult us!)

1) Suitable for NBR and FPM seals2) Only suitable for FKM seals

Operating force/torque

Formula for calculating operating force onroller/plunger (FR) when there is a tankpressure

3) The cleanliness class stated for the components must be adhered too in hydraulicsystems. Effective filtration prevents faults occurring and at the same time increasesthe component service life.For the selection of filters see catalogue sheets RE 50 070, RE 50 076 and RE 50 081.

Page 117: Calculo de Un Winche Bmfcim779s

RE 22 280/02.03 6/10 WMR, WMU, WMM, WMD(A)

0 20 60

100

2

10 30 40 50

200

300

6

1

0 20 60

100

5

10 30 40 50

200

300

4

8

0 20 60

100

7

10 30 40 50

200

300

3

0 20 40 60

2

4

6

8

10

7 8 10 6

5

3

91

2

4

10 30 50

Symbols Flow directionP–A P–B A–T B–T

A 3 3 – –B 3 3 – –C 1 1 3 1D 5 5 3 3E 3 3 1 1F 1 3 1 1G 6 6 9 9H 2 4 2 2J 1 1 2 1L 3 3 4 9M 2 4 3 3P 3 1 1 1Q 1 1 2 1R 5 5 4 –T 10 10 9 9U 3 3 9 4V 1 2 1 1W 1 1 2 2Y 5 5 3 3

7 Symbol “R” in switched position "b" (A → B)

8 Symbols “G” and “T” in neutral position (P → T)

Characteristic curves (measured with HLP 46, ϑoil = 40 °C ± 5 °C)

∆p-qV-characteristic curves

Pres

sure

diff

eren

tial i

n ba

r →

Flow in L/min →

Performance limits (measured with HLP 46, ϑoil = 40 °C ± 5 °C)

Ope

ratin

g pr

essu

re in

bar

Ope

ratin

g pr

essu

re in

bar

Flow in L/min →Flow in L/min →

Ope

ratin

g pr

essu

re in

bar

Flow in L/min →

Types WMR/WMU

Char. curves Symbol

1 A, B

2 C, D, Y, E, E1–, H, M, Q, U, W

6 R

4 G

5 J, L

8 V

3 F, P

7 T

The performance limits shown apply when the valve is subject tosimultaneous flow in two directions (e.g. from P to A and to B to T).

Due to the flow forces occurring within the valve, the permissibleperforamnce limit for one flow path (e.g. from P to A and with B

blocked) may be considerably reduced!

(Please consult us in such cases.)

Page 118: Calculo de Un Winche Bmfcim779s

WE 6../.E 1/10 RE 23 178/03.02

© 2002by Bosch Rexroth AG, Industrial Hydraulics, D-97813 Lohr am Main

All rights reserved. No part of this document may be reproduced or stored, processed, duplicated or circulated usingelectronic systems, in any form or by any means, without the prior written authorisation of Bosch Rexroth AG.In the event of contravention of the above provisions, the contravening party is obliged to pay compensation.

This document was prepared with the greatest of care, and all staements have been examined for correctness.This document is subject to alterations for reason of the continuing further developments of products.No liability can be accepted for any incorrect or incomplete statements.

Overview of contents

Contents PageFeatures 1

Ordering details 2, 3

Symbols 2

Function, section 3

Technical data 4

Performance limits 5, 6

Characteristic curves 7

Preferred types 7

Unit dimensions 8, 9

RE 23 178/03.02Replaces: 04.01

4/3, 4/2 and 3/2 directional valveswith wet pin DC or AC solenoids,Type WE 6 ../.E

Nominal size 6Series 6XMaximum operating pressure 350 barMaximum flow 80 L/min Type 4WE 6 E6X/EG24N9K4 with plug-in connector (separate

order)HA

D590

9

Features

– Direct solenoid operated directional spool valve, highperformance version

– Porting pattern to DIN 24 340 form A, without locating pinhole (standard)

– Porting pattern to ISO 4401 and CETOP–RP 121 H, withlocating pin hole, (ordering code .../60 at the end of the valvetype code)

– For subplates see catalogue sheet RE 45 052(separate order)

– Wet pin DC or AC solenoids with removable coil

– Solenoid coil can be rotated through 90°– It is not necessary to open the pressure tight chamber when

changing the coil

– Electrical connections either as individual or central connections

– Hand override, optional

– Soft switching version, see RE 23 183

– Inductive limit switch (contact or inductive), see RE 24 830

ANEXO Nº 6

Page 119: Calculo de Un Winche Bmfcim779s

RE 23 178/03.02 2/10 WE 6../.E

a bP T

A B

a bP T

A B

a bP T

A B

a bP T

A B

P T

A Ba ba b

= Y

= B

= C

= D

= A

a ba bP T

A B

…/OF..

…/O..a ba bP T

A B

a ba bP T

A Ba b

P T

A B0

P T

A B0a ba b

P T

A B0a

P T

A B0aa

P T

A B0 b

P T

A B0 b b

= L

= J

= H

= G

= F

= E1-5)= E 4)

= .A 4)

= .B

= W

= V

= U

= T

= R

= Q

= P

= M

Ordering details

3 service ports = 34 service ports = 4

Nominal size 6 = 6

Symbol e.g. C, E, EA, EB etc.for possible designs see below

Series 60 to 69 = 6X(60 to 69: unchanged installation andconnection dimensions)

Spring return = No codeWithout spring return = OWithout spring return with detent = OF

High power solenoid = EWet pin (oil immersed) with removable coil

24 V DC = G24230 V AC 50/60 Hz = W230205 V DC = G205 2)

For the ordering details of other voltagesand frequencies see page 4

With protected hand override (standard) = N9With hand override = NWithout hand override = No code

No code = Without locating pin hole

/60 4) = With locating pin hole

No code = NBR seals

V = FKM seals(other seals on request)

Attention!The compatibility of the seals and pressure

fluid has to be taken into account!

No code = Without cartridge throttleB08 = Throttle Ø 0.8 mmB10 = Throttle Ø 1.0 mmB12 = Throttle Ø 1.2 mm

Used where the flow > than the performancelimit of the valve, active in the P line

Electrical connections

Individual connectionsK4 1) = Without plug-in connector

with component plug DIN EN 175 301-803Central connections

DL = Cable entry in cover, with indicator lightDKL 3) = Central connection on cover,with indicator light (without angled plug-in connector)

Preferred types, see page 7, arereadily available!

2 3 4 6 7 9 10 11 12 15 19 22 23 24

WE 6 6X E

1) Plug-in connectors must be ordered separately (see page 3).2) When connecting to an AC supply a DC solenoid must be used

which is controlled via a rectifier (see table on the left ).

With an individual connection a large plug-in connectorwith built-in rectifier can be used (separate order).

3) Angled plug-in connector (Mat. No. 00005538) must be orderedseparately.

4) Locating pin 3 x 8 DIN EN ISO 8752, Material No.00005694 (separateorder)

Symbols

AC supply voltage (permissible voltage

tolerance± 10%)

Nominal voltage of DCsolenoids when used

withan AC supply O

rder

ing

deta

ils

110 V - 50/60 Hz 96 V G96

230 V - 50/60 Hz 205 V G205

Further details in clear text

*

5) Example: Spool E with switched position "a"ordering code ..EA..6) Symbol E1-: P – A/B pre-opening, Attention: Take pressure intensification with differential cylinders into account!

5)

5)6)

Page 120: Calculo de Un Winche Bmfcim779s

RE 23 178/03.02 4/10 WE 6../.E

Technical data (for applications outside these parameters, please consult us!)

GeneralInstallation Optional

Ambient temperature °C – 30 to + 50 (NBR seals)

– 20 to + 50 (FKM seals)

Weight Valve with 1 solenoid kg 1.45

Valve with 2 solenoids kg 1.95

HydraulicMax. operating pressure Ports A, B, P bar 350

Port T bar 210 (=) ; 160 (~)With symbols A and B, port T must be used as adrain port if the operating pressure is above thepermitted tank pressure.

Max. flow L/min 80 (=); 60 (~)

Flow cross-section For symbol Q mm2 Approx. 6 % of the nominal cross-section

(switched position 0) For symbol W mm2 Approx. 3 % of the nominal cross-section

Pressure fluid Mineral oil (HL, HLP) to DIN 51 524 1);Fast bio-degradable pressure fluids toVDMA 24 568 (also see RE 90 221); HETG (rape seed oil) 1);HEPG (polyglycols) 2); HEES (synthetic ester) 2);Other pressure fluids on request

Pressure fluid temperature range °C – 30 to + 80 (NBR seals)

– 20 to + 80 (FKM seals)

Viscosity range mm2/s 2.8 to 500

Degree of contamination Maximum permissible degree of contamination of the pressurefluid is to NAS 1638 class 9. We therefore, recommend a filterwith a minimum retention rate of ß10 ≥ 75.

ElectricalVoltage type DC AC 50/60 Hz

Available voltages 3) V 12, 24, 96, 205 110, 230(for ordering details of AC solenoids see below)

Voltage tolerance (nominal voltage) % ±10

Power consumption W 30 –

Holding power VA – 50

Switch-on power VA – 220

Duty Continuous Continuous

Switching time to ISO 6403 ON ms 25 to 45 10 to 20

OFF ms 10 to 25 15 to 40

Switching frequencies Cycles/h UP to 15000 UP to 7200

Protection to DIN 40 050 4) IP 65 IP 65

Max. coil temperature 5) °C 150 180

1) Suitable for NBR and FKM seals2) Only suitable for FKM seals3) Other voltages on request4) With fitted and locked plug-in connector5) Due to the occuring surface temperatures of the solenoid coils,

the European standards EN563 and EN982 must be taken intoaccount!

Note:AC solenoids may be used for2 or 3 types of supply;E.g. solenoid type W110 for:110 V, 50 Hz; 110 V, 60 Hz;120 V, 60 Hz

With electrical connections the protective conductor (PE )must be connected according to the relevant regulations.

Ordering details110 V, 50 Hz

W110 110 V, 60 Hz120 V, 60 Hz

230 V, 50 Hz230 V, 60 HzW230

Page 121: Calculo de Un Winche Bmfcim779s

WE 6../.E 7/10 RE 23 178/03.02

11

10

8

6

4

2

0 20 403010 50 60 70 80

7 8 10 6 5 3 9 1 2

4

Preferred types (readily available)

Further preferred types and standard componentsare shown in the EPS (standard price list).

Type Material number

4WE 6 J6X/EG12N9K4 00567496

3WE 6 A6X/EG24N9K4 00561180

3WE 6 B6X/EG24N9K4 00561270

4WE 6 C6X/EG24N9K4 00561272

4WE 6 C6X/OFEG24N9K4 00564107

4WE 6 D6X/EG24N9K4 00561274

4WE 6 D6X/0FEG24N9K4 00567512

4WE 6 E6X/EG24N9K4 00561278

4WE 6 EA6X/EG24N9K4 00561280

4WE 6 EB6X/EG24N9K4 00561281

4WE 6 G6X/EG24N9K4 00561282

4WE 6 H6X/EG24N9K4 00561286

4WE 6 HA6X/EG24N9K4 00549534

4WE 6 J6X/EG24N9K4 00561288

4WE 6 M6X/EG24N9K4 00577475

4WE 6 Q6X/EG24N9K4 00561292

4WE 6 R6X/EG24N9K4 00571012

4WE 6 T6X/EG24N9K4 00934414

4WE 6 U6X/EG24N9K4 00572785

4WE 6 W6X/EG24N9K4 00568233

4WE 6 Y6X/EG24N9K4 00561276

Type Material number

4WE 6 D6X/EW110N9K4 00551704

4WE 6 D6X/OFEW110N9K4 00552321

4WE 6 E6X/EW110N9K4 00558641

4WE 6 J6X/EW110N9K4 00551703

3WE 6 A6X/EW230N9K4 00915672

4WE 6 C6X/EW230N9K4 00913132

4WE 6 D6X/EW230N9K4 00909559

4WE 6 D6X/OFEW230N9K4 00915095

4WE 6 E6X/EW230N9K4 00912492

4WE 6 H6X/EW230N9K4 00912494

4WE 6 J6X/EW230N9K4 00911762

4WE 6 Y6X/EW230N9K4 00909415

Characteristic curves (measured with HLP46, ϑ oil = 40 °C ± 5 °C)

7 Symbol “R” in switched position B – A

8 Symbol “G” and “T” in mid position P – T

Flow in L/min →

Pres

sure

diff

eren

tial i

n ba

r →∆p-qV-characteristic curves Symbols Flow direction

P – A P – B A – T B – TA, B 3 3 – –

C 1 1 3 1

D, Y 5 5 3 3

E 3 3 1 1

F 1 3 1 1

T 10 10 9 9

H 2 4 2 2

J, Q 1 1 2 1

L 3 3 4 9

M 2 4 3 3

P 3 1 1 1

R 5 5 4 –

V 1 2 1 1

W 1 1 2 2

U 3 3 9 4

G 6 6 9 9

9 Symbol “H” in mid position P – T

Page 122: Calculo de Un Winche Bmfcim779s

1/2

RA 27 219/06.98

Throttle valve = MGThrottle/check valve = MKSize 6 (1/4") = 6Size 8 (3/8") = 8Size 10 (1/2") = 10Size 15 (3/4") = 15Size 20 (1") = 20Size 25 (1-1/4") = 25Size 30 (1-1/2") = 30In-line mounted = G

Further details to be written in clear text

no desig. = G (BSP) threads5 = NPT threads12 = SAE threads (size 10, 15, 20, 25, 30 only)

V = FPM seals, suitable forPetroleum oils (HM, HL, HLP)

Phosphate ester fluids (HFD-R)

1X = Series 1X(10 to 19; externally interchangeable)

G 1X V *

RA27 219/06.98Replaces: 05.94

Throttle and Throttle Check ValvesModels MG/MK (Series 1X)

Size 6 to 30 up to 4600 PSI (315 bar) up to 106 GPM (400 L/min)

Hydraulic fluid: Petroleum oils (HM, HL, HLP); phosphate-ester fluids (HFD-R)

Fluid temperature range: –4 to +176 °F (–20 to +80°C)Viscosity range: 60 to 3710 SUS (10 to 800 mm2/s)

Maximum degree of fluid contamination: Class 19/16 according to ISO 4406. Therefore, we recommend a filter with a retention rate of β

10 ≥ 75.

Maximum operating pressure: up to 4600 PSI (315 bar)

Cracking pressure for check valve: Model MK: 7 PSI (0.5 bar)

K 3564/1

Model MK .. G1.2/V

SymbolsFeatures:– Throttle & throttle/check valve

– For in-line mounting

– Leak-free closure in one direction

– Pressure, temperature andviscosity dependent Model MKModel MG

Flow control valves Model MG/MK are pressure, temperature andviscosity dependent throttle and throttle/check valves, used torestrict flow. They consist of adjustment sleeve (1) and innerhousing (2).

Model MG (Throttle valve)This valve is capable of flow control in either direction. Fluid flowsthrough radial drillings (3) to the throttling area (4), which is definedby the inner housing (2) and adjustment sleeve (1). Turningadjustment sleeve (1), larger or smaller throttle areas are created,thus regulating flow.

Ordering code

Technical data (for applications outside these parameters, please consult us!)

Functional description, section

Throttle ValveModel MG

Throttle Check ValveModel MK

1 2 4 3 5 4 3 1 6 2

Model MK (Throttle/Check Valve)This valve is capable of flow control in one direction while allowingreverse free flow in the opposite. Fluid passes spring (6), throughradial drillings and throttling area (4). Throttling is achievedsimilarly to the MG valve. In the reverse direction, pressure actson the area of check valve (5). When pressure exceeds springforce (6), the poppet opens, allowing reverse free flow through thevalve. Fluid also passes through the throttle area (4), therebyflushing contamination from the valve.

Caution! Do not adjust the valve while under pressure

ANEXO Nº 7

Page 123: Calculo de Un Winche Bmfcim779s

2/2

RA 27 219/06.98

Flow qv in GPM (L/min) →

Size Ø D1-G (BSP) Ø D1-SAE Ø D2 L 1 A/F 2 A/F T Weight (approx.)or NPT in lbs (kg)

6 * 1/4" – 1.339 (34) 2.56 (65) 22 mm 32 mm 0.47 (12) 0.7 (0.3)8 * 3/8" – 1.496 (38) 2.56 (65) 24 mm 36 mm 0.47 (12) 0.9 (0.4)

10 * 1/2" SAE-8; 3/4-16 1.89 (48) 3.15 (80) 30 mm 46 mm 0.55 (14) 1.5 (0.7)15 * 3/4" SAE-12; 1-1/6-12 2.283 (58) 3.94 (100) 41 mm 55 mm 0.63 (16) 2.4 (1.1)20 * 1" SAE-16; 1-5/16-12 2.835 (72) 4.33 (110) 46 mm 70 mm 0.71 (18) 4.2 (1.9)25 1 1/4" SAE-20; 1-5/8-12 3.425 (87) 5.12 (130) 55 mm 85 mm 0.79 (20) 7.0 (3.2)30 1 1/2" SAE-24; 1-7/8-12 3.661 (93) 5.91 (150) 60 mm 90 mm 0.87 (22) 9.0 (4.1)

∆p-qV-curve through open check valve with closed throttle (Model MK)

Operating curves, measured at ν = 190 SUS (41 mm2/s) and t = 122 SUS (50 °C)

∆p-qV-curve through wide open throttle (Model MG and MK)

Flow qv in GPM (L/min) →

Flow qv in GPM (L/min) → Flow qv in GPM (L/min) →

Flow qv in GPM (L/min) →

Unit dimensions: dimensions in inches (millimeters)

1 = Size 62 = Size 83 = Size 104 = Size 155 = Size 206 = Size 257 = Size 30

Notes:A/F = wrench size across flats* Adaptors available from female G (BSP) to male JIC 37° flare, see RA 45 530, must be ordered separately

øD2

2 A/F

D1

1 A/F

D1

05

1

L

TT

0

(10) (20) (40)(30) (50)

(1)

(2)

(3)40

30

20

10

2 4 6 8 10 12

1 2

3

(50) (100) (150) (200)

0

(1)

(2)

(3)40

30

20

10

10 20 30 40 50

4 5

0

(1)

(2)

(3)40

30

20

10

20 40 60 80 100

(100) (200) (400)(300)

67

(40)

0(0.1)(0.5)

(1)(2)(3)(4)(6)(8)

(10)

(20) (60) (80) (100) (120)

14511085554025101.5

4 8 12 16 20 24 28

1 2 34

(100) (200) (300) (400)

20 40 60 80 1000(0.1)(0.5)

(1)(2)(3)(4)(6)(8)

(10) 14511085554025101.5

5 6 7

Mannesmann Rexroth Corporation Rexroth Hydraulics Div., Industrial, 2315 City Line Road, Bethlehem, PA 18017-2131 Tel. (610) 694-8300 Fax: (610) 694-8467Rexroth Hydraulics Div., Mobile, 1700 Old Mansfield Road, Wooster, OH 44691-0394 Tel. (330) 263-3400 Fax: (330) 263-3333

All rights reserved – Subject to revisionPrinted in U.S.A.

Pre

ssur

e di

ffere

ntia

l∆p

in P

SI (

bar)

→P

ress

ure

diffe

rent

ial

∆p in

PS

I (ba

r) →

Pre

ssur

e di

ffere

ntia

l∆p

in P

SI (

bar)

Pre

ssur

e di

ffere

ntia

l∆p

in P

SI (

bar)

→P

ress

ure

diffe

rent

ial

∆ p in

PS

I (ba

r) →

Page 124: Calculo de Un Winche Bmfcim779s

DR 6 DP 1/4 RE 26 564/02.03

© 2003by Bosch Rexroth AG, Industrial Hydraulics, D-97813 Lohr am Main

All rights reserved. No part of this document may be reproduced or stored, processed, duplicated or circulated usingelectronic systems, in any form or by means, without the prior written authorisation of Bosch Rexroth AG. In the event ofcontravention of the above provisions, the contravening party is obliged to pay compensation.

*DR 6 DP –5X Y

Overview of contentsContents Page

Features 1

Ordering details 1

Preferred types 2

Function, section, symbol 2

Technical data 3

Characteristic curves 3

Unit dimensions 4

RE 26 564/02.03Replaces: 11.02

Pressure reducing valvedirect operated,Type DR 6 DP

Nominal size 6Series 5XMaximum operating pressure 315 barMaximum flow 60 L/min Type DR 6 DP2–5X/…YM…

H556

1

Features– Subplate mounting:

Porting pattern to DIN 24 340 Form A,ISO 4401 and CETOP–RP 121 H,subplates to catalogue sheet RE 45 052(separate order)

– 5 pressure stages– 4 adjustment elements:

• Rotary knob,• Set screw with hexagon and protective cap,• Lockable rotary knob with scale,• Rotary knob with scale

– Check valve, optional

Ordering detils

Preferred types, see page 2, arereadily available!

1) H-key with Material No. R900008158 isincluded within the scope of supply

2) Only with adjustment element "2" and withoutcheck valve

Direct operated pressure reducing valve NS 6

Adjustment elementRotary knob = 1Set screw with hexagon and protective cap = 2Lockable rotary knob with scale 1) = 3Rotary knob with scale = 7

Series 50 to 59 = 5X(50 to 59: unchanged installation and connection dimensions)

Max. secondary pressure 25 bar = 25Max. secondary pressure 75 bar = 75Max. secondary pressure 150 bar = 150Max. secondary pressure 210 bar = 210Max. secondary pressure 315 bar 2) = 315

Further details in clear text

No code = NBR sealsV = FKM seals (other seals on request)

Attention! The compatibility of the seals and pressure

fluids must be taken into account!

No code = With check valveM = Without check valve

Y = Internal pilot oil supplyExternal pilot oil drain

ANEXO Nº 8

Page 125: Calculo de Un Winche Bmfcim779s

RE 26 564/02.03 2/4 DR 6 DP

P A T(Y)

M

4 3 7 2 5 8 1

6

A

M

P T(Y)

A

M

P T(Y)

Type Material No.

DR 6 DP2-5X/25Y R000465254DR 6 DP2-5X/25YM R000472470DR 6 DP2-5X/75Y R000413241

DR 6 DP2-5X/75YM R000450964

Type Material No.

DR 6 DP2-5X/150Y R000413242DR 6 DP2-5X/150YM R000472020DR 6 DP2-5X/210Y R000413243

DR 6 DP2-5X/210YM R000455316

Further preferred types and standard units canbe found in the EPS (Standard Price List).

Preferred types (readily available)

Function, section, symbol

The valve type DR 6 DP is a 3-way direct operated pressure reducingvalve with a pressure relief function in the secondary circuit.It is used to reduce the system pressure. The secondary pressure isset by the pressure adjustment element (4).At rest, the valve is normally open and the pressure fluid can flowunhindered from port P to port A. The pressure in port A is at thesame time, via the control line (6), present at the spool area oppositeto the compression spring (3). When the pressure in port A exceedsthe pressure level set at compression spring (3), the control spool (2)moves into the control position and holds the set pressure in port Aconstant.The control and pilot oil are taken from port A via control line (6).

If the pressure in port A increases due to external forces on theactuator, then the control spool (2) moves still further towards thecompression spring (3).This causes a flow path to be opened at port A via control land (8) onthe control spool (2) to the tank. Sufficient pressure fluid then flowsto tank to prevent any further rise in pressure.The spring chamber (7) is always drained to tank externally via port T(Y).For free return flow, from port A to port P, an optional check valve (5)can be fitted.A pressure gauge port (1), permits the secondary pressue at the valveto be monitored.

Version "Y"

Internal pilot oil supplyexternal pilot oil drainwith check valve

Version "YM"

Internal pilot oil supplyexternal pilot oil drainwithout check valve

Type DR 6 DP1–5X/…Y…

Page 126: Calculo de Un Winche Bmfcim779s

DR 6 DP 3/4 RE 26 564/02.03

040

50

50 20 0 20 40 60

100

150

200

250

300315

350

0

5

10 20 30 40 50 60

10

15

20

25

32

1

4

Technical data (for applications outside these parameters, please consult us!)

Characteristic curves (measured with HLP46, ϑoil = 40 °C ± 5 °C)

GeneralInstallation Optional

Ambient temperature range °C –30 to +80 with NBR seals

–20 to +80 with FKM seals

Weight kg 1.2

HydraulicMax. operating pressure Port P bar 315

Max. secondary pressure Port A bar 25, 75, 150, 210, 315

Max. back pressure Port T (Y) bar 160

Max. flow L/min 60

Pressure fluid Mineral oil (HL, HLP) to DIN 51 524 1);Fast bio-degradable pressure fluids to VDMA 24 568(also see RE 90 221); HETG (rape seed oil) 1);HEPG (polyglycols) 2); HEES (synthetic ester) 2);Other pressure fluids on request

Cleanliness class to ISO code Maximum permissible degree of contamination of the pressurefluid is to ISO 4406 (C) class 20/18/15 3)

Pressure fluid temperature range °C –30 to +80 with NBR seals

–20 to +80 with FKM seals

Viscosity range mm2/s 10 to 800

1) Suitable for NBR and FKM seals2) Only suitable for FKM seals

RE 26 564/11.02

1 P to A (min. pressure differential)

2 A to T (Y) (min. pressure differential)

3 ∆p only over the check valve

4 ∆p over the check valve and fully opencontrol cross-section

Note:The curve characteristics remain, with a lower set pressure, thesame in relation to the pressure rating.

The characteristic curves for the pressure relief functionare valid for the outlet pressure = zero over the entireflow range!

Flow in L/min →

Flow in L/min →

Seco

ndar

y pr

essu

re in

bar

pA–qV characteristic curves

∆p–qV characteristic curves

Pres

sure

diff

eren

tial i

n ba

r →

A to T P to A

3) The cleanliness class stated for the components must beadhered too in hydraulic systems. Effective filtration preventsfaults from occurring and at the same time increases thecomponent service life.

For the selection of filters see catalogue sheetsRE 50 070, RE 50 076 and RE 50 081.

Page 127: Calculo de Un Winche Bmfcim779s

ABSBG 1/8 RE 50 135/04.03

© 2003by Bosch Rexroth AG, Industrial Hydraulics, D-97813 Lohr am Main

All rights reserved. No part of this document may be reproduced or stored, processed, duplicated or circulated using elec-tronic systems, in any form or by any means, without the prior written authorisation of Bosch Rexroth AG.In the event of contravention of the above provisions, the contravening party is obliged to pay compensation.

Overview of contents

Contents PageFeatures 1

Ordering details 2

Symbols 2

Selection table 3

Accumulator assembly kits 4

Unit dimensions 5 to 7

Notes on commissioning, maintenance and operation 8

Engineering guidelines 8

RE 50 135/04.03

Replaces: 01.03

Accumulator assemblyType ABSBG

Accumulator assembly type ABSBG-…

H/A/

D 61

70/9

9

Features

– Accumulator assembly with safety block to DIN 24 552

– Diaphragm or bladder type accumulators

– Safety block with integrated isolator valve, safety valve (designtested) and unloading valve

– Unloading valve optionally with manual or electrical operation

– Glycerine filled pressure gauge with red marking of themaximum relief pressure

– Weld-on brackets

ANEXO Nº 9

Page 128: Calculo de Un Winche Bmfcim779s

RE 50 135/04.03 2/8 ABSBG

S M1 M2

P T

1 3 2

S M1 M2

P T

1 3 2

Ordering details

Accumulator assembly

Accumulator type / size in litres– Bladder type accumulatorto Bosch Rexroth standard AB-E 42-01

1.0 L = B1,02.5 L = B2,54.0 L = B4,010 L = B1020 L = B2032 L = B3250 L = B50– Diaphragm type accumulatorto Bosch Rexroth standard AB-E 42-01

0.6 L = M0,60.75 L = M0,751.4 L = M1,42.0 L = M2,0

Safety blockto catalogue sheet RE 50 131

DN 10 = SS10DN 20 = SS20DN 30 = SS30Acceptance, country of installatione.g. EU member states = U(for others, see Bosch Rexroth standard AB-E 42-01 section 12)

Example:

ABSBG-B1,0/SS10-U-330-EG24NK4CM/C

SeriesHydraulic fluid

M = Suitable for mineral oilto DIN 51 524

BracketC = With bracketY = Without bracket

Electrical connectionK4 = Without plug-in connector, individual connection

with component plug to DIN EN 175 301-803(plug-in connectors must be ordered

separately, material no. R900074683)

N = With manual override Voltage

G24 = 24 V DC(other voltages on request)

Unloading valve

M = Manually operated unloading valveE = Electrically operated unloading valve

Set pressure of the safety valve(direct operated pressue relief valve)

100 = 100 bar140 = 140 bar210 = 210 bar330 = 330 bar

Only withversion "E"

ABSBG – / – – – M / C

Symbols

With manually operated unloading valve With electrically operated unloading valve

1 Hydraulic accumulator

2 Safety block with:– System isolator valve– Pressure relief valve (design tested)– Manual unloading– Electro-magnetic unloading (version E)

3 Pressure gauge with red marking of maximum relief pressure

RE 50 135/01.03

Page 129: Calculo de Un Winche Bmfcim779s

ABZFR 1/8 RE 50 081/01.03

© 2003by Bosch Rexroth AG, Industrial Hydraulics, D-97813 Lohr am Main

All rights reserved. No part of this document may be reproduced or stored, processed, duplicated or circulated usingelectronic systems, in any form or by any means, without the prior written authorisation of Bosch Rexroth AG.In the event of contravention of the above provisions, the contravening party is obliged to pay compensation.

Table of contents

RE 50 081/01.03Replaces: 07.99

Return line filterfor direct tank mountingType ABZFR

Series 1XMaximum operating pressure 25 barMaximum flow 450 l/min

Features

H619

1+61

92.ti

f

Return line filter type ABZFRVariant A Variant B

Contents Page

Features 1

Ordering code 2

Symbols 3

Function, section 3

Technical data 4

Characteristic curves 5

Unit dimensions 6 and 7

Clogging indicator; spare parts 8

Return line filters of type ABZFR… are designed for mounting ontofluid reservoirs. They are used to separate solid matter from thehydraulic fluid that is flowing back into the tank.

They have the following features:

– Filter elements based on inorganic fibre

– Excellent separation characteristics (b-values) over a widedifferential pressure range

– High contamination retention capacity due to large specificfilter surface area

– Good chemical resistance of the filter elements due to the useof epoxy resins for impregnation and bonding

– High bursting pressure resistance of the filter elements (e.g.during cold start)

– Water and water traces in the hydraulic fluid do not cause areduction in the filtration capacity

– 10 µm filter rating absolute

ANEXO Nº 10

Page 130: Calculo de Un Winche Bmfcim779s

RE 50 081/01.03 2/8 ABZFR

Ordering code

ABZ F R – –10 –1X –Rexroth plant construction accessories

FilterReturn line filter

Return line filter, single = SReturn line filter, duplex = D

Size (flow at ∆∆∆∆∆p = 0.4 bar / 29 mm2/s)Series 50 = 0050Series 140 = 0140Series 450 = 0450

A = Variant AB = Variant B

Hydraulic fluidM = See table (page 4)V = See table (page 4)

Series 1X1X = Series 10 to 19(10 to 19; unchanged installation and connection dimensions)

10 = Filter element (rating in micron absolute)

Return line filter

ABZ F V – –1X –

Rexroth plant construction accessoriesFilter

Clogging indicator

Visual backpressure indicatorwith cracking pressure ∆p = 2 to 3 bar = RV2Electrical backpressure switchwith cracking pressure ∆p = 2 to 3 bar = RE2

A = Variant AB = Variant B

Hydraulic fluidNo code = All hydraulic fluids

See table (page 4)M = See table (page 4)V = See table (page 4)

Series 1X1X = Series 10 to 19

(10 to 19; unchanged installation and connection dimensions)

Clogging indicator

Variant A (return line filter) Material no.

ABZFR-S0050-10-1X/M-A R900229554

ABZFR-S0140-10-1X/M-A R900229555

ABZFR-S0450-10-1X/M-A R900229556

Variant B (return line filter) Material no.

ABZFR-S0050-10-1X/M-B R900229572

ABZFR-S0140-10-1X/M-B R900229573

ABZFR-S0450-10-1X/M-B R900229574

Variant A (clogging indicator) Material no.

ABZFV-RV2-1X/M-A (optisch) R900229741

ABZFV-RE2-1X/M-A (elektrisch) R900229635

Variant B (clogging indicator) Material no.

ABZFV-RV2-1X/B (optisch) R900229636

ABZFV-RE2-1X/M-B (elektrisch) R900229637

Order example: Return line filter for a flow of 50 l/min with 10 mµ filter element for hydraulic fluid, mineral oil HLP to DIN 51524Variant A and clogging indicator variant A.

1: ABZFR-S0050-10-1X/M-A Material number: R9002295542: ABZFV-RE2-1X/M-A Material number: R9002296353: Leitungsdose Z14 Material number: R900058528

Designation: Material numberPlug-in connector DC voltage AC voltage Material number Cable length 5m Cable length 10m

“Z14“(standard) 12 – 240 V R900001260 R900058528 R900217139without circuitry

“Z14L“ 24 V – R900210635 R900217140with indicator lamp

“Z15L“ 24 V R900545845 – –with indicator lamp 110 V R900545847 – –

220 V R900545848 – –

Plug-in connectors for mounting on electrical clogging indicators, variants A and B

For technical data and unit dimensions, see data sheet RE 08 006, pages 5 and 6.

Filters and clogging indicators ofvariants A and B cannot combinedwith each other

Only use filter with the clogging indicator fitted !

Page 131: Calculo de Un Winche Bmfcim779s

ABZFR 3/8 RE 50 081/01.03

A

B

B

A

6

4

3

2

1

7

51)

123

123

PE

123

123

PE-N

gegn

123

PE

P

123

4

gegn

PE

23

1

Symbols

Return linefilter

Visual backpressure indicator

Function, section

These return line filters are designed to be directly mounted onto thefluid tank.

They basically consist of the filter housing (1), cover (2) with connec-tion for backpressure indicator (3), filter element (4), strainer (51)) aswell as clogging indicator (6) (connection provided as standard). Thefilter elements comprise by-pass valves (7).

The hydraulic fluid is fed via port A to the filter element (4), where itis filtered in accordance with the relevant filter rating. The dirt par-ticles filtered out settle in the strainer (5)1) and filter element (4). Thefiltered hydraulic fluid is directed via port B to the tank.

When the filter element (4) is taken out, the strainer (5)1) is pulledout as well, which prevents the settled dirt particles from enteringthe tank.

1) Variant A only

Electrical backpressure switch

Z14

Z15L

Z14L

Plug-in connectors type Z...

Only use filter with the clogging indicator fitted !

Page 132: Calculo de Un Winche Bmfcim779s

RE 50 081/01.03 4/8 ABZFR

GeneralInstallation position Vertical

Direction of flow Inlet at the side, outlet vertically downwards

Weight Series 50 140 450

Variant A kg 1.0 2.1 20.0

Variant B kg 2.6 1.1 11.3

Hydraulic Variant A Variant BMaximum operating pressure bar 25 25

Cracking pressure of the by-pass valve bar 3 + 0.5 3.4 ± 0.3

Response pressure of the clogging indicator bar 2 – 0.2 2.4 ± 0.3

Temperature range °C – 30 to + 100 – 43 to+ 120

Technical data (for applications outside these parameters, please consult us!)

ElectricalElectrical connection to DIN 43 650 Plug-in connection, 3-pin + PE

Contact load AC voltage 6 A at 220 V resistive load

DC voltage 6 A at 24 V resistive load

Type of switching Make-contact or break-contact, switching contacts (changeover contacts)

Max. switching voltage V 230

Type of protection (to DIN 40050) IP 65 (when using a plug-in connector)

In the case of DC voltage above 24 V provide a sparksuppressor to protect the switching contacts.

Max. switching capacity at resistive load 300 VA; 250 W

Filter elementFilter element Disposable element based on inorganic fibre

Retention rate Variant A β10 ≥ 200 to ∆p = 15 bar

Variant B β10 ≥ 200 to ∆p = 4 bar

Permissible pressure differential Variant A bar 25

Variant B bar 20

Weight Series 50 140 450

Variant A kg 0.264 0.536 1.991

Variant B kg 0.25 0.4 1.1

Hydraulic fluids Variant A Variant BMineral oilsMineral oil HL/HLP to DIN 51524 M MHardly inflammable hydraulic fluidsEmulsions HFA-E to DIN 24320 M MSynthetic aqueous solutions HFA-S 1) 1)

Viscosity-adjusted HFA fluids HFA-V V VAqueous solutions HFC to VDMA 24317 M MPhosphate esters HFD-R to VDMA 24317 V 1)

Organic esters HFD-U to VDMA 24317 V 1)

Fast bio-degradable hydraulic fluidsTriglycerides (rape seed oil) HETG to VDMA 24568 V 1)

Synthetic esters HEES to VDMA 24568 V 1)

Polyglycols HEPG to VDMA 24568 V 1)

1) Enquiry stating the hydraulic fluid

Page 133: Calculo de Un Winche Bmfcim779s

ELF, BF, BL 1/10 RE 50 070/01.03

© 2003by Bosch Rexroth AG, Industrial Hydraulics, D-97813 Lohr am Main

All rights reserved. No part of this document may be reproduced or stored, processed, duplicated or circulated usingelectronic systems, in any form or by means, without the prior written authorisation of Bosch Rexroth AG. In the eventof contravention of the above provisions, the contravening party is obliged to pay compensation.

Overview of contents

Contents Page

Features 1

Ordering details 2, 3

Technical data 4

Function, symbols, section 4, 5

Characteristic curves 5, 6

Unit dimensions 6 to 9

RE 50 070/01.03Replaces: 10.95

Reservoir oil filler/breatherTypes ELF, BF and BL

Reservoir oil filler/breatherwith sieve type ELF 3...

R 7802/2

Features

– Resistant to mineral oil, fire resistant fluids(only build sizes 5 and 7) and bio-degradablefluids

– Good retention rate at low pressure drop

– Synthetic mesh filler sieve (metal mesh as standard inbuild size 5, also possible for build sizes 3 and 7)

– Larger filler sieve area

– Build size 7 with clogging indicator

– Bayonet joint between air filter and filler sieve(build sizes 5 and 7 with screwed joint)

– Air filter secured to filler sieve by means of a chain(build sizes 3 and 4)

– Build sizes 5 and 7 are fitted with replaceable elements(see table on page 3)

– Spin on filter cartridge type BL

– Welded joint in type BL

Reservoir breathertype BF 7...K...

H/S/95

ANEXO Nº 11

Page 134: Calculo de Un Winche Bmfcim779s

RE 50 070/01.03 2/10 ELF, BF, BL

Only

with

ELFP

3 a

nd 7

∆ = Available, also see pages 6 to 9

Ordering details

Reservoir air breather = BFwith filling sieve = ELFwith spin-on-cartridge = BL

Filter material paper fibre = P

Build size 3 = 3Build size4 = 4Build size 5 = 5Build size 7 = 7Build size 162 Only with BL = 162

Threaded connection, only with BF = GFlanged connection, only with ELF and BL = FWelded connection, only with BL = S

Filter rating3 µm absolute (only with ELF and BF) = 0310 µm absolute = 10

Clogging indicatorWithout connection possbilities for clogging indicators = WWith pressure gauge, measuring range –1 to +0,6 bar (only with ELF7 and BF7) = K

Connection sizesFilter type Thrreaded Flanged Welded Connection

connection (G) connection (F) connection (S) sizes

ELFP3... ∆ = 11; 2)ELFP4... ∆ = 11)ELFP5... ∆ G 2 1/2 = 2

∆ G 3 = 3∆ G 2 = 4

∆ G 1 1/2 = 5ELFP7... ∆ = 12)

BFP3... ∆ G 3/4 = 1∆ G 3/8 = 2∆ G 1/2 = 3

BFP4... ∆ G 1/4 = 1BFP5... ∆ G 2 1/2 = 1BFP7... ∆ G 1 = 1

BLP162F... ∆ = 22)BLP162S... ∆ = 23)

FILTER P X *

Only withELF and BF

Further details in clear text

Additional details

AS = Surge protectionSO175 = Metal filter sieve

(100 mm long)SO148 = Metal filter sieve

(200 mm long)

No code = NBR seals,filter suitable for use with mineral oil

(HL, HLP) to DIN 51 524and fast bio-degradable

pressure fluids HETG, HEES, HEPGto VDMA 24 568

V = FKM seals,filter suitable for use withphosphate ester (HFD-R),

polyglycol (HEPG)and synthetic ester (HE)

W = NBR seals, filtersuitabale for use with oil-in-water or

water-in-oil emulsions (HFA),water glycol (HFC)

and vegetable oils (HETG)

X = Series Nos. 0 to 9

1) Flange mounting with self tapping capscrews

2) Flange mounting to DIN 24 557/T23) Weldabale joint, material: St 35

4) Suitable for use with fire resistant fluidsBuild size HFA HFC HFD-R

3 – – –4 – – –5 W W V7 W W –

162 – – –

Filter type Filter rating Type description Material No.in µm

10 FILTER ELFP 3 F10W1.X/ R900011023

ELF 10 FILTER ELFP 4 F10W1.X/ R900011241

10 FILTER ELFP 5 G10W4.X/ R900005153

4; 5)

5) Suitable for use with bio-degradable fluidsBuild size HETG HEES HEPG

3 + + �4 + + �5 + + �7 + + �

162 + + �

+ Unlimited use– Not suitable����� Only limited use

Preferred filter types

Further preferred types and standard componentscan be found in the EPS (Standard Price List).

Page 135: Calculo de Un Winche Bmfcim779s

ELF, BF, BL 3/10 RE 50 070/01.03

Ordering details for replacement air filter elements (only possible for build sizes 5, 7 and 162)

FILTERELEMENT 0005 L P V *

FILTERELEMENT 0007 L P V *

build size 5 = 0005

Element type L = L

Filter rating 3 µm = 00310 µm = 010

Filter material P = P

Further details in clear text

V = FKM seals, filter suitable for use withphospate ester (HFD-R),

polyglycol (HEPG) and syntheticester (HE)

For types ELFP 5 and BFP 5

Build size 7 = 0007Element type L = L

Filter rating 3 µm = 00310 µm = 010

Filter material P = P

Further details in clear text

V = FKM seals, filter suitable for use withphosphate ester (HFD-R),

polyglycol (HEPG) and syntheticester (HE)

Ordering details for type BL 162: FILTERELEMENT 0160 MU010P

For types ELFP 5 and BFP 7

General

Installation Vertical, max. 30 º from vertical

Filter cartridges and Build sizes 3, 4, 5 Paper fibre, depth filter (3, 10 µm)

filter rating Build size 7 Impregnated paper, depth filter (3, 10 µm)

Build size BLP 162 Phenol resin impregnated paper, filter rating 10 µm

Weight Build size 3 4 ..5-..2.X/.. ..5-..3.X/.. ..5-..4.X/.. ..5-..5.X/.. 7

Type ELF kg 0.25 0.10 2.7 3.1 2.7 2.6 0.38

Type BF kg 0.28 0.08 2.00 0.40

Type BLP 162 S kg 1.75

Type BLP 162 F kg 2.10

Technical data (for applications outside these parameters, please consult us!)

Hydraulic

Pressure fluid Mineral oil (HL, HLP) to DIN 51 524;Fast bio-degradable pressure fluids toVDMA 24 568 (also see RE 90 221); HETG (rape seed oil);HEPG (polyglycols); HEES (synthetic ester);Other pressure fluids on request

Pressure fluid temperature range °C – 10 … + 100

Filling sieve filter rating µm 500(only with type ELF )

Cleanliness class to ISO code Maximum permissible degree of contamination of the pressurefluid is to ISO 4406 (C) relates to the requirements for the entirehydraulic system 1)

Pneumatic

Air flow See characteristic curves

1) The cleanliness class stated for the components must be adhered too in hydraulic systems. Effective filtration prevents faults fromoccurring and at the same time increases the component service life.For the selection of filters see catalogue sheets RE 50 070, RE 50 076 and RE 50 081.

Page 136: Calculo de Un Winche Bmfcim779s

RE 50 070/01.03 4/10 ELF, BF, BL

1.1

1.2

2

3

5

2

5

4

3

1

5

1.1

5

1.2

6

2

3

Function, symbol, section

The reservoir oil filler/breathers, type ELF basically comprises of anair filter for filtering the air flowing into the reservoir and a filler sievefor retaining coarse dirt particles while filling.The reservoir breathers, types BF and BL are, however only air filters.

Reservoir filler/breather type ELF

Reservoir filler/breathers, type ELF are combined air filters for filteringair flowing into the fluid reservoir and filler sieves for retaining coarsedirt particles when filling.

The large sieve area allows the pressure fluid to be rapidly filled.

Types ELFP 3... and ELFP 4...

These basically comprise of filter cap (1), air filter element (2), fillersieve (3) and security chain (4).

Air enters via holes (5) on the underside of filter cap (1). In this way,only particles suspended in air may enter the air filter element (2),where they are separated according to the filter rating.

Type ELFP 5...

These basically comprise of an air filter housing (cover 1.1; lowercomponent 1.2), air filter element (2) and filler sieve which is screwedonto the air filter (3).

Air enters via the ring gap (5) between cover 1.1 and the lowercomponent 1.2. In this way, only particles suspended in air may enterthe air filter element (2), where they are separated according to thefilter rating.

They are fitted with replaceable air filter elements (2).

Symbol

Type ELFP 3...

Type ELFP 5...

Type ELFP 7...These basically comprise of an air filter housing (cover 1.1, lowercomponent 1.2), air filter element (2) and filler sieve (3).Cover (1.1) and the lower component (1.2) are made of glass fibrereinforced plastic and connected to each other via threads. Air entersvia openings (5) on the sides of lower component (1.2).In this way, only particles suspended in air may enter the air filterelement (2), where they are separated according to the filter rating.They are fitted with replaceable air filter elements (2).For the monitoring of element contamination, the filters are availablewith a pressure gauge (6).

With clogging indicatorversion "K"(only build size 7)

Type ELFP 7...K...

Page 137: Calculo de Un Winche Bmfcim779s

ANEXO Nº 12

Page 138: Calculo de Un Winche Bmfcim779s

ANEXO Nº 13

Page 139: Calculo de Un Winche Bmfcim779s

ANEXO Nº14

Nº Nº Hojas : 5

REGISTRO DE PRUEBAS PARA WINCHE DE REMOLQUE

Fecha Hoja Nº 1/3

IDENTIFICACIÓN, DESIGNACIÓN Y DATOS TECNICOS DEL EQUIPO

ARMADOR/BARCO:

MODELO DIBUJO PRELIMINAR PLACA/S Nº

ESPECIFICACIONES:

CARACTERISTICAS TECNICAS

CAPACIDAD LARGO DEL CABLE DIAMETRO DEL CABLE

Tambor Principal

Tambor Auxiliar

Tambor Auxiliar

Extremos Alabeados

LINEA NOMINAL, TIRO Y VELOCIDAD TIRO VELOCIDAD

Primera Capa

Medio Tambor

Ultima Capa

Extremos Alabeados

Presión y Caudal Requeridos

Page 140: Calculo de Un Winche Bmfcim779s

Nº Nº Hojas : 5

REGISTRO DE PRUEBAS PARA WINCHE DE REMOLQUE

Fecha Hoja Nº 2/3

WINCHE: PLACA Nº:

VERIFICACIONES PRELIMINARES

VERIFICACION A SER REALIZADA OK CHECK OK

Check OBSERVACIONES

Verificación del Fundamento

Dimensiones Generales y Particulares

Ajuste General de Pernos

Sistema de Ataduras para Carga y Transporte (orejas, grilletes, etc.)

Puntos de Engrase y Lubricación

Llenado de Carcasa del Motor con Aceite Hidráulico

Conexión de Circuitos Hidráulicos y Eléctricos

Inspección Visual de Soldadura

Nivel y Sello de Aceite en Engranajes

Estado Gral. de Tapas, Bombas, Motores, Estructura, Etc.

Estado de Contacto de Dientes de Engranajes

Alineamiento de Ejes

Peso Total Aproximado

VERIFICACIÓN DE ACCIONAMIENTOS OK CHECK OK

CHECK OBSERVACIONES

Embrague/Desembrague del Tambor del Winche

Embrague/Desembrague del Tambor de Red/Espías

Embrague/Desembrague del Devanador

Frenado y Desfrenado del Tambor del Winche

Frenado y Desfrenado del Tambor de Red/Espías

Accionamiento Manual del Devanador

Movimiento del Rolete del Devanador

Page 141: Calculo de Un Winche Bmfcim779s

Nº Nº Hojas : 5

REGISTRO DE PRUEBAS PARA WINCHE DE REMOLQUE

Fecha Hoja Nº 3/3

WINCHE: PLACA Nº:

PRUEBAS DE VIRADO SIN CARGA CON CARGA

Verificación a ser Realizada Ok Check Resultados Ok Check Resultados

Caja de Engranajes Girando en Ambas Direcciones

Velocidad del Tambor en Virado

Velocidad del Tambor en Arriado

Medición del Nivel de Ruido Durante el Virado

Medición del Nivel de Ruido Durante el Arriado

Movimiento del Devanador

Medición de Temperatura de los Descansos

Medición de Vibraciones en Caja de Engranajes en Arriado y Virado

Consumo de motores Eléctricos

Presión de trabajo de las bombas

Sello de Cubiertas, Retenes, etc.

Oscilaciones de la Cinta de Freno y Alabes del Tambor

Limitación de Torque de Trabajo

Tiempo Corrido de arriado/virado

OBSERVACIONES

Jefe de Taller Control de Calidad Inspector del Armador Inspector la Clase

Page 142: Calculo de Un Winche Bmfcim779s

PRUEBA DE VIBRACIONES Referencia: Bueno………………. 0.0 – 1.8 [mm/s] Satisfactorio……….. 1.8 – 4.5 [mm/s] No Satisfactorio…… 4.5 – 11.2 [mm/s] Inaceptable…………11.2 – 71.0 [mm/s]

WINCHE: PLACA Nº:

Velocidad del Eje: Velocidad del Tambor: Presión de la Bomba:

VIBRACIONES EN EL FUNDAMENTO

VIRADO ARRIADO

Pos L V H L V H

1

2

3

4

RPM: RPM:

VIBRACIONES EN CAJA DE ENGRANAJES

VIRADO ARRIADO

Pos L V H L V H

1

RPM: RPM:

Fecha: Control de Calidad:

Page 143: Calculo de Un Winche Bmfcim779s

ALINEAMIENTO DEL SOPORTE EJE PRINCIPAL Y CAJA DE ENGRANAJES DEL TAMBOR

WINCHE: PLACA Nº:

SOPORTE LATERAL

CAJA DE ENGRANAJES DEL TAMBOR

SOPORTE

EJE

DESCANSO

Fecha: Control de Calidad:

Page 144: Calculo de Un Winche Bmfcim779s

ANEXO Nº15

EJEMPLO CONTROL LOCAL

EJEMPLO CONTROL DEL PUENTE PARA UN SISTEMA DE DOS WINCHES

EMBRAGADO

PARADA DE EMERGENCIA DE LA BOMBA

CONTROL DE VIRADO Y ARRIADO

LARGADA DE EMERGENCIA PROA POPA

DESEMBARAGADO

ENECENDIDO Y APAGADO DE LA BOMBA

SILENCIADO DE LA ALARMA

SELECTOR WINCHE PROA/POPA

SELECTOR DE VEOCIDAD

SELECTOR DE CONTROL LOCAL O PUENTE

BOCINA

EMBRAGADO

PARADA DE EMERGENCIA DE LA BOMBA

CONTROL DE VIRADO Y ARRIADO

LARGADA DE EMERGENCIA

DESEMBARAGADO

Page 145: Calculo de Un Winche Bmfcim779s

EJEMPLO DE UN POWER PACK HIDRAULICO

VALVULAS DE SUCCION

INTERCAMBIADOR DE CALOR

BOMBAS

VALVULAS DE MANOMETRO

COMPENSADOR DE GOMA

TERMOSTATO DE ALARMA

TAPA DE REGISTRO

NIVELES VISUALES

BOMBA DE TORNILLO PARA ENFRIAMIENTO

UNIONES FLEXIBLES (MANGUERAS HIDRAULICAS

FILTRO DE LLENADO FILTRO DE RETORNO

MOTOR ELECTRICO

ESPECIFICACIONES DEL ESTANQUE

Page 146: Calculo de Un Winche Bmfcim779s

ANEXO Nº16

MANIOBRA DE CABLES Y TOW PINS

DETALLE DE MANIOBRA DE CABLES Y TOW PINS

CABLE DE REMOLQUE

TOW PINS SUBIDA Y BAJADA HIDRAULICA

CABLES

CABLES

Page 147: Calculo de Un Winche Bmfcim779s

UBICACIÓN DEL WINCHE

DETALLE DEL WINCHE

CONTROL DEL PUENTE

WINCHE CONTROL LOCAL TOW PINS

MOTOR HIDRAULICO

DEVANADOR

CILINDRO DE FRENO

TAMBOR CON CABLE DE REMOLQUE

CINTA DE FRENO VASTAGO DE PASO DOBLE DEL DEVANADOR

ACCIONAMIENTO MANUAL DEL FRENO

Page 148: Calculo de Un Winche Bmfcim779s

ANEXO Nº17

Page 149: Calculo de Un Winche Bmfcim779s

BIBLIOGRAFIA

1. A. Schnorr 2003. Handbook for Disc Springs. 151p.

2. American Bureau of Shipping 2001. Rules for Building and Classing Steel

Vessels Under 90 Meters (295 Feet) In Length. 92p.

3. Bombas Azcue S.A. Catálogo de Bombas de Tornillo Serie B.T. 25p.

4. Bombas Azcue S.A. Catálogo de Intercambiadores de Calor. 15p.

5. Bosch Rexroth Group, Hydraulic Components for industrial applications.

(multimedia)

6. Elka d.d. Steel Rope Catalog. 34p.

7. H. Exner, R. Freitag, Dr.-Ing. H. Geis, R. Lang, J. Oppolzer, P. Schwab, E.

Sumpf, U. Otendorff, M.Reik, 1988. Training Hidráulico Compendio 1 Fundamentos y Componentes de la Oleohidraúlica. 344p.

8. Hydranor Hydraulics. Modular Unit 6MB Catalog. 10p.

9. International Organization for Standardization 1983. Shipbuilding and Marine

Structures – Deck Machinery – Towing winches for Deep Sea Use (ISO 7365). 8p.

10. Microtec S.A. 2004. Catálogo General de Productos Micro Automatización.

(Multimedia)

11. P. Drexler, H. Faatz, F. Feicht, Dr.-Ing. H. Geis, j. Morlock, E. Wiesmann, A.

Krielen, Dr.-Ing. N. Achten, M. Reik, 1988. Training Hidráulico Compendio 3 Proyecto y Construcción de Equipos Hidráulicos. 376p.

12. Parker Fluid Connectors. Catalogo General Ermeto 4000/E.

13. Parker Hydraulics 2004. Mobile Cylinders, Product Information, Quick

Reference, Data & Application Guide, Catalog HY18-0001/US. 136p.

14. Shell 2003/2004. Guía de Lubricantes. 86p.

15. Tecnun, Campus Tecnológico Universidad de Navarra. Elementos de Máquinas,

Frenos y Embragues. 25p. 16. Caterpillar 1993. Caterpillar 3500 Marine Propulsion Engine Performance. 132p.